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Abstract

Model Predictive Control (MPC) is an established control framework, based on the solution of an opti-
misation problem to determine the (optimal) control action at each discrete-time sample. Accordingly,
major theoretical advances have been provided in the literature, such as closed-loop stability and recursive
feasibility certificates, for the most diverse kinds of processes descriptions. Nevertheless, identifying good,
trustworthy models for complex systems is a task heavily affected by uncertainties. As of this, developing
MPC algorithms directly from data has recently received a considerable amount of attention over the last
couple of years. In this work, we review the available data-based MPC formulations, which range from
reinforcement learning schemes, adaptive controllers, and novel solutions based on behavioural theory and
trajectory representations. In particular, we examine the recent research body on this topic, highlighting
the main features and capabilities of available algorithms, while also discussing the fundamental connections
among approaches and, comparatively, their advantages and limitations.

Keywords: Model Predictive Control, Data-driven control, Reinforcement Learning, Trajectory
representation, Adaptive control.

1. Introduction

Dating from the original algorithms proposed from the process industry in the 80’s, e.g. [1, 2], Model
Predictive Control (MPC) has since become a widely used control technique for the regulation of constrained
systems [3]. Over the last decades, a considerable amount of research has been devoted to the study of MPC
algorithms, considering different system models and settings, e.g. [4, 5, 6, 7]. Corresponding theoretical5

certificates for closed-loop stability (and recursive feasibility of the (recurrent) optimisation problem) have
been established since the seminal results provided by Mayne et al. [8] - which recently have been extended
to broader settings by means of dissipativity theory in [9].

The MPC framework is set in discrete-time: at each sampling instant, the (optimal) control action
is generated through the solution of a constrained optimisation problem, which embeds the performance10

objectives along a future horizon window, as well as the considered constraints. The general form of this
optimisation, at each discrete time sample k, is given, generically, by:

min
Uk

J(x(k),Uk)︷ ︸︸ ︷Np−1∑
j=0

`(x(k + j|k), u(k + j|k))

+ V (x(k +Np|k)) , (1)

subject to: x(k + j + 1|k) = f (x(k + j|k), u(k + j|k)) , for all j ∈ N[0,Np−1],

x(k + j|k) ∈ X , for all j ∈ N[1,Np],

u(k + j − 1|k) ∈ U , for all j ∈ N[1,Np],

x(k +Np|k) ∈ Xt,
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Figure 1: Traditional model-based MPC applications.

where x and u denote, respectively, the (predicted) process state and input variables, while

Uk :=
[
uT (k|k) uT (k + 1|k) . . . uT (k +Np − 2|k) uT (k +Np − 1|k)

]T
represents the optimisation1 decision variable, i.e. the sequence of control actions along the prediction
window Np. From the optimal solution U?k , the first entry u?(k|k) is applied to the system.

It is indisputable that MPC has great theoretical and practical value - yet, it requires a reliable process15

model for a correct operation, as its name indicates. In the optimisation presented in Eq. (1), this model
is marked by the generic function f(·, ·), which gives the state-space transition between samples. In the
simpler setting, of systems with sufficient measurements and a reduced number of involved variables, the
task of obtaining an accurate model (i.e. system identification) is standard and widely documented [10].
Nevertheless, in the case of system with complex dynamics and inaccessible variables, obtaining a trustworthy20

model is costly and ponderous task, affected by uncertainties and disturbances, as warns De Persis and Tesi
[11], Bisoffi et al. [12], Steentjes et al. [13].

Over the last few years, developing control laws directly from data, measured from the controlled
process, has received significant attention. We highlight that the notion of data-driven control - i.e. synthesis
direct from data, skipping the system identification step - has indeed been under the spotlight: Figure 225

shows the interest2 for the word “data-driven” in the Google online search engine along the last fifteen years
- since 2017, the interest has been consistently growing.

In order to further elucidate the differences between traditional model-based MPC schemes and data-
based formulations, we provide a schematic representation of the model-based schemes in Fig. 1: during an
offline phase (Step 1), system data is collected and an identification procedure is applied in order to generate30

a model; then, during the online implementation (Step 2), the model is used to span process predictions
along a horizon window of Np steps, given an initial condition x(0). By means of an optimisation, e.g. Eq.
(1), the control law is generated. In data-driven MPC formulations, one seeks to eliminate Step 1, make it
simpler or combine it together to the online phase (Step 2).

Notably, within the control community, the topic of data-driven control has been assessed specially in35

terms of adaptive methods, e.g. [14, 15], and reinforcement learning techniques, c.f. [16, 17]. More recently,
several results have been presented using behavioural theory as a basis for data-driven control, c.f. the
survey papers by Markovsky and colleagues [18, 19] and references therein.

1In the MPC optimisation given in Eq. (1), X and U known sets used to represent the process constraints, while Xt is a
terminal set used for stability-related features. The optimisation cost J(x(k), Uk) comprises a performance-related stage cost
`(·, ·), summed along the future horizon, and a terminal cost V (·), related to the state prediction at the end of the horizon.
We note that Eq. 1 is initialised with the current sampled state measurement x(k); its solution is the minimiser U?

k .
2The interest measure is related frequency of search queries online on the Google platform for a given term. In particular,

an interest value of 100 represents the peak popularity of a given term, over a considered time window.
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Figure 2: Google Trends: Online searches for data-driven in the Google engine along the last fifteen years.

Based on the aforementioned context, we focus henceforth on debating and detailing the available data-
based MPC techniques3. In particular, by data science MPC applications, we specifically refer to:40

(i) MPC techniques purely based on measured process data, that do no require any kind of model de-
scription in the formulation, i.e. [20, 22, 23] - that is, data-driven MPC algorithms for which the
optimisation is based on future predictions made directly from process data measured during the
implementation; and

(ii) MPC schemes based on an initial process description (baseline model) that is iteratively refined,45

during the online implementation, in an adaptive fashion, based on the available process measurements
collected over samples [24, 25, 26]. Here, we also consider schemes for which the process description is
fixed, but the MPC optimisation cost function is adapted online, e.g. [15, 27, 28].

Despite the growing enthusiasm on such data-driven MPC schemes (as indicates Fig. 2), no study has
formally discussed and compared the advantages and deficiencies of the available approaches, up to our best50

knowledge. Accordingly, the main contribution of this work is to survey and review the current of body of
research on the topic, indicating fundamental connections between the available algorithms. In particular,
we examine algorithms that are categorised along the three following branches, as indicates Fig. 3:

1. Adaptive schemes (Sec. 2), based on the online adaptation of the MPC problem, such as the techniques
by Lorenzen et al. [15] and Tanaskovic et al. [27];55

2. Methods based on reinforcement learning results (Sec. 3), as the formulations by Berkenkamp et al.
[29] and Zanon and Gros [25];

3. Techniques based on behavioural theory and trajectory features (Sec. 4), e.g. [20, 30, 21], which
exploit the persistency of excitation condition and Willem’s Fundamental Lemma, i.e. [31].

Remark 1. With regard to scope of this survey, we emphasise that we consider herein, primarily, works60

which include theoretical certificates [32], that is, data-driven MPC schemes that are formally demonstrated

3In some references, MPC schemes based on data are referred to as data-enabled predictive control (DeePC, e.g. [20]) or
DPC (used for data-based predictive control, c.f. [21]). For notation consistency, we use either the term data-driven MPC or
data-based MPC, throughout this article.
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Figure 3: Surveyed categories of algorithms.

to stabilise the controlled process in closed-loop, e.g. [33, 26]. In many cases, these certificates also relate to
the optimisation itself, which should be shown to be recursively feasible for a coherent implementation of the
control strategy. Moreover, we stress that, although some authors refer to MPC schemes based on neural
networks, and variations, e.g. [34, 35, 36], as data-driven MPC methods, we do not classify them as so. We65

opt not to evaluate these algorithms in this survey due to the fact that an offline training phase is forcefully
required (just as an identification step when using a traditional model-based design). Nevertheless, we do
not exclude reinforcement learning techniques that use Neural Networks as the basis for approximators when
estimating adaptive model parameters.

Before presenting further details with regard to these three categories, and taking into account the70

model-based MPC schematic in Fig. 1, we provide a comparative schematic to the data-driven case in
Figure 4. In the case of categories (A) and (B), i.e. adaptive and learning-based formulations, a simple
system identification procedure is performed in order to obtain a baseline model, whose predictions are
adapted online with adaptation (learning) laws based on new process data. Moreover, regarding trajectory
formulations, i.e. category (C), an initial data dictionary is used to construct, combined with new data, an75

online data-driven optimisation problem.
With regard to these three aforementioned categories, we include Figure 5 in order to show a correspond-

ing co-relation network cluster4. In particular, the cluster network was generated in order to illustrate the
relations between the papers that are surveyed along this work. Author keywords with at least two occur-
rences were selected to identify correlations among the bibliography under review5. As indicated by the80

cluster, category A (adaptive schemes) is tightly linked to optimal control and system identification theory,
for which robust MPC algorithms are applied; category B (reinforcement learning algorithms) takes into
account data models, online learning and adaptation, as well as stochastic inference tools; notwithstanding
the prior, category C (trajectory/behavioural schemes) is related to linear system theory and corresponding
data-driven system analysis, especially due to the intrinsic use of the persistency of excitation condition, as85

detailed in the sequel.

Remark 2. The Reader can find an extensive overview of data-driven approaches to classical control theory
in [38]. Furthermore, a brief historical recap of data-based strategies and a discussion of the future landscape
of (direct and indirect) data-driven control can be found in the recent opinion articles by F. Dörfler, e.g.
[39, 40]. As indicated therein, we care to highlight that data and learning-based algorithms already have90

considerable scientific impact and continue to gain increasing attention within academia and the industry.
Therefore, we indicate that the current survey comprises, as a highlight, qualitative analyses w.r.t. the

4This network visualisation was generated by VOSviewer - a widely used software tool for visualising and analysing networks,
particularly in bibliometrics, often employed to examine citation networks, co-authorship networks, and other academic data
structures.

5In the figure, items are depicted as circles with labels, for which the size of the circles is determined by the weight of the
corresponding items. Items are color-coded according to the clusters to which they belong, and lines represent connections
between them. The proximity of the items in the network indicates their level of relatedness; the closer two items are, the more
closely related they are, often in terms of co-citation links. Lines between journals typically represent the strongest co-citation
connections. A cluster represents a group of related items, sometimes referred to as a “community” [37]. We care to highlight
that certain keywords were excluded from this process, including “model predictive control”, “predictive control”, “data-driven
control,” and “data-based control”, because they were common across all the papers being analysed. Furthermore, terms like
“linear parameter varying” and “model” were excluded due to their weak correlations with other keywords.
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Figure 5: Network of co-citation of author keywords categorized by clusters.

data-driven MPC categories given in Fig.3; we also discuss advantages, limitations, and interconnections
among the control approaches.

Outline. This paper is structured as follows: In Section 2, we discuss the available adaptive schemes, while95

machine learning solutions and trajectory-based algorithms are surveyed in Sections 3 and 4, respectively;
we also elaborate on research gaps for further investigation on this field. General conclusions are drawn in
Section 5.
Notation. The index set N[a,b] represents {i ∈ N | a ≤ i ≤ b}, with 0 ≤ a ≤ b, and we use N0 :=
N ∪ {0}. The identity matrix of size j is denoted as Ij . The predicted value of a given variable v(k) at100

time instant k + i, computed based on the information available at instant k, is denoted as v(k + i|k). In
particular, v(k|k) = v(k). A class C1 function f : Rm → R is such that it is differentiable with continuous
derivatives. ‖ · ‖ denotes the 2-norm. For a discrete-time signal v : N → Rnv , we denote v(k) ∈ Rnv
each of its entries and {v(k)}N−1k=0 the corresponding sequence of N data entries, or just v in short. We use

col{v} :=
[
v(0)T . . . v(N − 1)T

]T
to denote the column vectorisation, and diag{v} as the block-diagonal105

matrix formed with col{v}. The Kronecker product is represented by ⊗; the corresponding block-diagonal
operator is denoted ~, implying that (v ~ Iξ) = diag{v(0)⊗Iξ . . . v(N−1)⊗Iξ}. For a sequence {v(k)}N−1k=0 ,
we have the corresponding Hankel matrix, for a window of L entries, given by:

HN (v) :=


v(0) v(1) . . . v(N − L)
v(1) v(2) . . . v(N − L+ 1)

...
...

. . .
...

v(L− 1) v(L) . . . v(N − 1)

 .
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Definition 1.1 (Persistent excitation [31]). A signal {u(k)}L−1k=0 , with u(k) ∈ Rnu ,∀k ≥ 0, is persistently
exciting of order N if the rank of HN (u) greater or equal than nuN .110

2. Category A: Adaptive algorithms

The first set of methods that we consider as data-driven MPC schemes comprises the techniques based on
online model adaptation (using “traditional” control and system identification arguments, as evidenced in
the cluster provided in Fig. 5), such as the works [41], [42], and [43].

Synthetically, these algorithms are deployed from an initial model description - usually written in terms115

of time-varying parameters or an additive disturbance term, which is recursively re-identified, during the
online implementation of the MPC. Typically, the optimisation is designed in order to impose certificates
for the whole expected set of different models (which are implicitly mapped by the time-varying parameters
or disturbances) and, thus, the implementation only requires the model to be updated at each sample.

In order to properly survey these adaptive data-driven MPC algorithms, we first given an overview of their120

intrinsic mechanism, with more details, then we review the available formulations (stochastic, scenario-based,
and so forth), and, finally, we provide corresponding discussions and some perspectives. A corresponding
investigation on the topic of adaptive (learning) data-driven MPC schemes is presented in [44], considering
the problem of automated insulin delivery in diabetes.

2.1. Outline of the mechanism125

For exposition clarity, we consider a parametric adaptive formulation6 as discussed by Fagiano et al. [48],
and Lorenzen et al. [15]. Thus, consider the following parameter-varying state-space model:

x(k + 1) = A(θ(k))x(k) +B(θ(k))u(k) , (2)

where x ∈ Rnx are the system states, u ∈ Rnu is the control input and θ ∈ Rnt are the unknown uncertainty
parameter, for which an initial value θ0 is available. In general, papers assume that the model matrices are
affine on the adaptation parameter, that is: (A(θ), B(θ)) := (A0, B0)+

∑nt
i=1 (Ai, Bi) θi. Finally, we consider130

that the space of the adaptive parameter is known, that is θ(k) ∈ Θ, ∀k ≥ 0, being Θ a known (generally
convex) set.

Remark 3. In some formulations, e.g. [15], the parameter set Θ is also assumed time-varying and adapted
online with respect to measured data. That is, a non-falsified smaller set is considered in the identification
procedure; this set tends to shrink over time, as the system parameter identification becomes stationary.135

During the online implementation, at each discrete-time instant k ≥ 0, not only an MPC optimisation
in similar form of Eq. (1) is solved, but also a complementary recursive data-driven model adaptation step.
Accordingly, consider the collected state-input data set from previous samples: {x(i)}k−1i=0 and {u(i)}k−1i=0 ,
and the corresponding filter matrix D (x(k − 1), u(k − 1)). Then, Lorenzen et al. [49] propose an adaptation
parameter estimate based on the new available state measurement data x(k) - which can be generated by140

the means of a recursive law in the form of:

θ(k) = θ(k − 1) = qµD (x(k), u(k − 1))
T

(x(k)−A(θ(k − 1))x(k − 1)−B(θ(k − 1))u(k − 1)) , (3)

being qµ is a forgetting/update factor of appropriate dimension.

6Many alternatives formulations are used in adaptive MPC schemes, including: nonlinear state-space models subject to time-
varying additive disturbances, which imply the adaptation, e.g. [24, 43]; step-response input-output models with time-varying
transition matrices, c.f. [41, 45]; linear state-space models with output disturbances, e.g. [46]; and so forth. We highlight the
discussion from [47]: in the case of parametric models, seen in most control engineering applications, the adaptation is set in
terms of a finite number of parameters (that often have no physical interpretation), which are often linearly tied. In these
approaches, uncertainty regarding the model structure is not considered. In the case of non-parametric models, the available
data is used to infer the current state and local data (i.e. smoothing). For these models, the uncertainty can be included with
respect to local data density and model complexity, which can be helpful for sparsely sampled transient dynamics.
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The adaptation parameter estimation rule in Eq. (3) can be synthesised using different metrics and
syntheses, such as set-membership rules, c.f. [50, 51], least-square criteria, c.f. [52, 53], and so forth. These
criteria relate both to the adaptive parameter set Θ and the structure of the considered system model (e.g.145

the affine dependency).
Based on the adaptation parameter estimate θ(k), the MPC problem is solved based on predictions

spanned via Eq. (2). In order to provide performance and stability certificates, the MPC optimisation is
forcefully designed to be robust with respect to the parameter variation over samples, mapped implicitly
through Eq. (3), and also to parameter space Θ. Many of the available formulations rely on using robust150

terminal ingredients, as done in [41] and [54], or robust optimisation solutions, such as tube MPC, c.f.
[55, 51], and min-max MPC, see [48, 56].

2.2. Existing formulations

Regarding the different formulations to these data-driven, adaptive MPC methods, we consider four
distinct categories, as detailed in the sequel: (i) schemes based on robust synthesis; (ii) approaches based155

on stochasticity of the adaptive parameters; and (iii) schemes that rely on the adaptation of the MPC
optimisation itself.

The first class of adaptive MPC schemes that we survey, herein considering the data-driven context, is
those that are robust with respect to the adaptation parameter θ. That is, algorithms that are able to ensure
the satisfaction of both state and input constraints, despite the variation of the process dynamics over time.160

In the robust setting, the adaptive controller is synthesised to tolerate the dynamics imposed by a set of
models, implicitly mapped by the (bounded) time-varying uncertainty. In these data-driven, adaptive MPC
formulations with robust design, theoretical features from robust MPC methods (such as tubes, e.g. [14],
min-max. arguments, e.g. [24, 56], results based on set-membership, e.g. [54], and so forth) are coupled
with online system identification tools in order to guarantee the safe learning of the process model together165

with performance certificates.
In recent literature, one can find multiple references which propose the design of robust MPC schemes

for adaptive models based on data. Next, we detail the main elements and some pertinent works.
First, we can observe several formulations (e.g. [41, 49, 57]) for which the control law is expressed in

terms of a nominal control action supplemented by an additional robust stabilisation bias. The fundamental170

idea resides in tuning the first part of the control law (the nominal MPC action) to stabilise the nominal
(initial) process model, while the remainder of the control law is preoccupied with the adaptation of the
model, thus being a data-driven signal. We detail how these references relate to each other:

• Tanaskovic et al. [41] propose a real-time set membership identification law in the form of Eq. (3)
in order to qualify the adaptation parameter online, based on data, and, from this, selects an instan-175

taneous candidate model that describes the system; finally, the robust control law is based on the
minimisation problem in the form of Eq. (1), whose terminal set is real-time refined in terms of θ. The
main advantage of the adaptive MPC in [41] is that the sets within which the true system trajectories
lie is identified with precision; however, as this set grows in volume, the resulting control becomes
more conservative.180

• Lorenzen et al. [49] provide a similar approach, for which a recursive identification law is proposed,
also based on set-related arguments. In this approach, the control is robustified using a an invariant
tube, whose size is scaled online in terms of the adaptation parameter. W.r.t. the prior approach, the
key advantage is that the conservativeness is reduced, being implied more strongly for larger-horizon
predictions (i.e. the tube - and conservativeness - grows along the predictions).185

• Following the same rationale as the prior, the methods coined by Adetola and Guay [24] and Zhang and
Shi [57] formulate the robust MPC as a min-max problem that is able to ensure constraint satisfaction
and input-to-state practical stability of the closed-loop. The main advantage of these methods is that
the performance can be improved online by shrinking the size of the uncertain parameter set at each
time step.190
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Similarly to the previous two schemes, an adaptive scheme based on min-max MPC is proposed in [56] for
the fault-tolerant control of autonomous vehicles, considering a formulation based on a Linear Parameter
Varying (LPV) model. The main difference here is that the proposed control law is not written as the
above-mentioned sum of a nominal and an adaptive law, but rather as parameter-dependent law, which
varies according to the adaptation parameter measured from process itself. In particular, the fault-related195

parameters adapt the LPV model online, and the controller is robust with respect to possible variations of
these scheduling variables. The main feature is that the MPC is robustified by using parameter-dependent
terminal ingredients, which are shown to provide better performances than when using classical quadratic
ones.

Also in scope of robust MPC formulations for adaptive data-driven control, Sasfi et al. [58] use general200

control contraction metrics which are adapted online with respect to estimated uncertainties using set-
membership, in order to parameterise a robust homothetic tube MPC formulation. The main difference of
this work w.r.t. the prior tube MPCs is how the tubes are derived based on contraction metrics able to
account for the state- and input-dependency of the time-varying model uncertainties, according to new data
available online.205

Finally, in the so-called dual adaptive schemes, e.g. [46, 53], strong duality theory is used to recast set-
membership parameter estimate equations exactly within the MPC optimisation. By doing so, these works
are able to guarantees robust constraint satisfaction and recursive feasibility of the optimisation. Essentially,
the main drawback is that the dual effect on the initial model estimates may impose considerable performance
degradation, with a corresponding large variation in closed-loop control costs.210

Next, we analyse other relevant data-driven adaptive MPC schemes based on theoretical foundations that
take into account the stochastic nature of the controlled processes, e.g. [48, 43, 59]. The main difference
from the prior is that these MPCs are tuned by incorporating stochastic knowledge from the uncertainty
of the controlled system, such as probability distribution. Their main advantage is that, by doing so, the
corresponding controllers are able to ensure performances, stability, and constraints satisfaction for the given215

stochastic range of the uncertainty. Then, the adaptation feature is embedded by harnessing the uncertainty
estimate information online. Typically, the incorporation of the stochastic knowledge - inferred from data-
enhances the resulting control w.r.t. the aforementioned adaptive robust MPC schemes. Next, we detail
these main formulations with regard to this scope.

In [43], a so-called cautious adaptive MPC schemes is formulated: the controller considers a nominal220

system subject to an additive nonlinear uncertainty modelled as a Gaussian process, as well as chance
constraints written with respect to the residual uncertainties given by the difference between a Gaussian
distribution model and online-generated uncertainty estimates. The main advantage in the cautious adap-
tive MPC formulation is that (performance and safety) improvements enabled over nominal (robust MPC)
schemes - as shown in the several simulation (and comparison) examples in [43]. Yet, the drawback is the225

requirement of a Gaussian-type model for the related uncertainty, which is not applicable for all kinds of
systems.

By relieving this Gaussian-process requirement, Bujarbaruah et al. [59] propose a comparable framework,
also using chance constraints to account for stochastic characteristics of the considered uncertainty. In their
work, as new data becomes available during the implementation, the feasible parameter set is redefined, con-230

sidering a set-membership approach. The method is somewhat in between set-based robust adaptive MPC
schemes and the cautious adaptive MPC formulation - the drawback is that, if the uncertainty stochasticity
is too significant, the resulting controller can be quite conservative, as when using [49].

More recently, Aboudonia and Lygeros [60] proposed an alternative adaptive MPC scheme based on
set membership identification. The main difference w.r.t. the method by Bujarbaruah et al. [59] is that a235

rigid tube-based robust trajectory is computed, instead of the chance constraints formulation. The major
difference is that the MPC (terminal) ingredients - which ensure stability - are adapted online, during an
adaptation phase that takes the learnt uncertainty set into account. Results indicate that the approach is
promising, especially in the case of interconnected systems, for which the average computational time of
the resulting MPC becomes significantly reduced. We highlight that tube-based formulations, such as [58]240

(nominal) and [60] (stochastic) are often less conservative than set-based counterparts, given that the tubes
typically scale in volume w.r.t. predictions made along the horizon.
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Finally, as another sub-category of adaptive data-based MPCs, we refer to approaches that do not adapt
the constraints of the MPC optimisation online, but rather its form in terms of the cost elements that are
minimised, c.f. [61, 50, 62, 63]. Accordingly, these schemes make use of new data in order to re-select the245

tuning weights of the performance costs, according to the estimated level of uncertainty. We detail the main
elements of these approaches and how they related to the prior:

• In the formulations proposed by Salvador et al. [61] and Collet et al. [28], the MPC frameworks are
set to optimises the weights of a linearly combined cost function, which minimises not only control
performance but also the variance of the prediction error. In synthesis, the online operation requires250

a separate quadratic optimisation to determine the optimal weights, taking into account new process
data. Then, these weights are used in the MPC to generate the adaptive control law. The main
drawback is the increased computational burden of the scheme, due to the two optimisation procedures
that are solved - which complicates real-time applications of the methods. In comparison to the prior
adaptive data-driven methods, the key novelty is that the prediction error decreases over time, which255

means that, as the controlled system dynamics settle, the predictions become more accurate. For
systems which exhibit slowly-varying model changes, the methods are an appropriate solution, given
that after some samples the predictions typically converge to the true system dynamics. For processes
with significant time-varying uncertainties, the resulting performances may be poorer than adaptive
stochastic and well-tuned (tube) robust formulations.260

• Differently from the prior, the algorithm proposed in [63] is centered in adapting the MPC prediction
matrices online, based on data. In particular, an estimation prediction procedure is used to adapt these
matrices, based on integral action and a rate-based formulation. The main advantage w.r.t. [61, 28] is
that only one optimisation problem is solved online; nevertheless, formal comparisons and experimental
validations are lacking to concretely conclude how these schemes compare performance-wise.265

• More recently, the controllers proposed in [50, 62] use (data-based) active learning to account for
uncertainties in an adaptive manner. That is, the MPC costs, c.f. Eq. (1), `(·, ·) (stage cost) and
V (·) (terminal cost), as well as the terminal set Xf are learnt online in terms of a baseline model
description and a corresponding data-driven model update rule7. These works, in practice, also include
a performance cost to excite the system in such a way that (system) identification is made possible270

altogether with the control action. For instance, the learning costs can include, e.g., least-square
arguments, Gaussian rules and enforce persistence of excitation. The fundamental highlight related to
these scheme is how they can incorporate stochastic information, system identification and learning
arguments in order to adapt the MPC costs, thus combining features from the previous surveyed
algorithms. Yet, their main drawback is that potentially conflicting objectives (of model identification275

and control) may result in inappropriate performance results, which may include even deterioration,
oscillatory behaviours and permanent steady-state error.

2.3. Overall discussion: Summary of Strengths and Limitations

In Table 1, we present a broad overview of the surveyed adaptive MPC methods, detailing the main
features and characteristics of each work. We also point out the kinds of systems considered in each surveyed280

article, as well as the type of validation available (experimental or numerical). Next, with regard to these
schemes, we offer some general perspectives on their advantages and drawbacks.

Considering the emphasis on data-driven MPCs, we highlight that the fundamental relation among
all these adaptive schemes is that they require, for a start, a baseline process model - which may be
phenomenological or locally identified. Then, the model is adapted online according to new measurements,285

in terms of an uncertainty term. During their implementation, the methods depend on the data-driven
estimation of the uncertainty parameter - using set-membership tools, Least-Square arguments and so forth.

7We note that these allow for both MPC optimisation with and without terminal ingredients.
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Therefore, if the estimates are not accurate, the performance of the resulting adaptive controller may be
below expectations, i.e. worst than when using nominal control laws.

In some cases, when the initial model is unreasonably biased, the uncertainty that is to be estimated290

online belongs to a set which is too large with respect to state feasibility set, which conversely implies
in excessively conservative control - this feature can be seen both in robust and stochastic formulations.
Furthermore, for some systems, the synthesis of the control contraction sets, terminal ingredients, and
robust tubes related to the uncertainty may be infeasible or non-existing, that is the formulation offers
sufficient conditions (in general, LMIs) that lead to empty sets.295

An interesting perspective (which surely deserves further investigation) is to design these adaptive
schemes by means of LPV models, which are able to very naturally embed the adaptation feature to the
controller. Moreover, the MPC can be robustified using parameter-dependent terminal ingredients, thus ty-
ing together both the MPC prediction model and the optimisation arguments to the adaptation parameter
(that is determined online).300

Table 1: Overview of surveyed adaptive MPC schemes.

[41] Input and out-
put constraints
satisfaction

- System iden-
tification: Set-
membership

Numerical
simulation:
Mass, spring
and damper
system

[49] Closed-loop
stability and
recursive feasi-
bility

Min-max opti-
misation, con-
straint tighten-
ing (tube)

System iden-
tification: Set-
membership

Numerical
simulation:
Random sys-
tem

[57] Constraint sat-
isfaction, recur-
sive feasibility,
closed-loop
input-to-state
practical stabil-
ity

Min-max opti-
misation, con-
straint tighten-
ing (tube)

System iden-
tification: Set-
membership

Numerical
simulation

[24] Closed-loop ro-
bust stability

Min-max opti-
misation

System iden-
tification: Set-
membership

Numerical
simulation:
Chemical reac-
tor system

[56] Closed-loop
stability, recur-
sive feasibility

LPV
parameter-
dependent
terminal in-
gredients,
min-max opti-
misation

- Numerical
simulation:
Realistic au-
tonomous
vehicle system

Reference Certificates Robustness
tools

Design argu-
ments

Application

Continued on next page
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Table 1: Overview of surveyed adaptive MPC schemes. (Continued)

[58] Closed-loop
stability,
constraints
satisfaction,
recursive feasi-
bility

Control con-
traction met-
rics, constraints
tightening
(homothetic
tube)

System iden-
tification

Numerical
simulation:
Planar quad-
copter system

[46] - Dual formula-
tion

System iden-
tification: Set-
membership,
Stochastic
framework:
Gaussian pro-
cess, probabilis-
tic constraints,
expected co-
variance

Numerical
simulation:
FIR system

[53] Recursive fea-
sibility, robust
constraints
satisfaction

Strong dual-
ity, constraint
tightening
(homothetic
tube)

System iden-
tification: Set-
membership

Numerical
simulation:
Polytopic
system

[43] - Constraint
tightening
(tube)

System iden-
tification,
Stochastic
framework:
Gaussian
uncertainty
description

Experimental
validation:
Autonomous
racing of re-
mote controlled
race car

[59] Robust con-
straint satisfac-
tion, recursive
feasibility,
closed-loop
stability

- System iden-
tification: Set-
membership,
feasible pa-
rameter
set,Stochastic
framework:
Stochastic
(chance) con-
straints

Numerical
simulation

Reference Certificates Robustness
tools

Design argu-
ments

Application

Continued on next page
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Table 1: Overview of surveyed adaptive MPC schemes. (Continued)

[61] - - Stochastic
framework:
Variance of
the model
estimation
error

Numerical
simulation:
Quadruple tank
system

[28] - - Stochastic
framework:
Parameter vari-
ance estimate

Numerical
simulation:
Horizontal axis
wind turbine

[50] Closed-loop
finite-gain L2

stability, ro-
bust recursive
feasibility,
constraint
satisfaction

Constraints
tightening
(tube), ro-
bust terminal
ingredients

System iden-
tification:
Least mean
square esti-
mates

Numerical
simulation

[63] - - System iden-
tification:
Least mean
square esti-
mates

Experimental
validation:
DC-DC Buck
converter

[62] Safe perfor-
mance bounds,
recursive feasi-
bility

Terminal ingre-
dients

- Numerical
simulation:
Mass, spring
and damper
system

Reference Certificates Robustness
tools

Design argu-
ments

Application

3. Category B: Machine learning schemes305

In the previous Section, we revisited relevant results on adaptive MPC formulations that can be understood,
in our perspective, as data-driven schemes, given that process data is iteratively used to refine an initial
model and improve the control performances. Indeed, we can find diverse approaches in recent literature
(often linked to the field of machine learning) that address the issue of adaptive data-driven predictive
control. As surveyed in the previous section, several of these works improve an initial process model to the310

data measured during the implementation, e.g. [64, 51], while others opt to re-select the optimisation cost
[28] or tighten the system constraints [62].

Albeit these interesting schemes, we recap, next, another branch of existing formulations (as evidenced
in Figures 3 and 5) with a similar conceptual idea, which have attracted a significant amount of attention
in recent literature: the so-called learning-based MPCs, e.g. [65, 16, 66, 29, 67, 68, 69, 25, 70, 26, 71]. The315

fundamental difference among the adaptive schemes is summarised in Sec. 2 (category A) and these learning
MPCs resides in the methods that are used to infer on the sampled uncertainty, given new data. The key
similarities, anyhow, reside in the different synthesis approach for the MPC optimisation itself (i.e. using
tubes, set-membership arguments, etc).
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Gros and Zanon [72] offer solid theoretical foundation on why to use reinforcement learning to improve320

adaptive MPC schemes. In particular, these approaches, often explicitly referred to as model-free, c.f.
[73], reside in combining the MPC framework with machine learning techniques in order to reduce the
dependency of the controller in the an initial process model (as in adaptive MPC formulations), while
exploiting the growing amount of data available (during the implementation) by means of machine learning
and reinforcement learning tools.325

We highlight that reinforcement learning is indeed a powerful theoretical framework to learn optimal
control laws from data. Yet, standard reinforcement learning schemes are based on exploration - i.e. apply-
ing all possible control actions to the system to observe what happens -, which is obviously not a feasible
approach for any real system. As argued by Berkenkamp et al. [29], several recent papers have provided
learning algorithm that explicitly consider safety - defined in terms of stability guarantees and constraints330

satisfaction. In particular, we focus, in this survey, on the works that combine MPC and reinforcement learn-
ing frameworks with guarantees, i.e. the theoretical properties that enable stability and imply in a control
action that is explainable and safe [25, 26], w.r.t the reinforcement learning task. That is, techniques which
account for online model parameter updates (delivered by the learning tools, during the implementation,
based on available data) that maintain the safety and stability of the MPC in closed loop.335

Remark 4. As indicated by Zanon and Gros [25], the combination of learning and predictive control methods
has been proposed in several papers as, such as [16, 74, 29, 75, 76, 77, 78]. Nevertheless, we emphasise that
the papers by Zanon et al. [78], Gros et al. [17], Zanon and Gros [25] and Amos et al. [77] are the first
to actually use a nonlinear MPC formulation as an approximator in reinforcement learning (RL). That is,
the optimal control policy generated by the RL layer is indirectly obtained by the minimisation of a given340

function - both the control policy and the associated value function are, in these references, written in terms
of a nonlinear MPC formulation. In many other references, these are obtained by approximators based on
Neural Networks, c.f. [79, 80].

3.1. Outline of the mechanism

In broad terms8, reinforcement learning is a method originally conceived for solving Markov decision345

processes [81]. Instead of using state transition probabilities as in regular Markov approaches, RL techniques
are based on measured (state) samples and observed costs (often named rewards) associated to each possible
state. Recently, RL schemes have been successfully applied to wide range of practical applications, including
playing board-games and robots learning to walk without supervision, c.f. [82, 83].

When RL schemes are used for control applications, the implementation consists in computing an optimal350

control policy for each given state, based on the minimisation of a action-value function. According to data,
this function is adapted over time according the observed closed-loop behaviour. Even tough RL methods
have been employed for a wide range of systems, demonstrating great potential, many standard theoretical
properties - that are typically expected from any simple controller -, such as closed-loop stability and
satisfaction of constraints are tough to demonstrate. In synthesis, as argued extensively by Garcıa and355

Fernández [84], the RL-based methods which are safe (i.e. exhibit the theoretical guarantees as in regular
control approaches) tend to require a form of model of the underlying uncertainty of the controlled system.

For safe RL schemes, the controlled system is not modelled by a state transition law as in Eq. (2), but
rather by a conditional probability density for a given state x to commute to another successor state x+,
due to a control action u; this probability density is usually given in the form of P [x+ |x, a]. Then, the360

deterministic optimal control policy is obtained using u(k) = κ(x(k)), where κ? := arg minκ J(κ), being
this cost given by the expected value of an infinite-horizon sum of a stage cost, much similar to what is

done in standard MPC, that is: E
[∑+∞

k=0 γ
k` (x(k), κ(x(k)))

]
. Typically, the differences lie in the form of

the stage cost `(·, ·), in the non-unitary discount factor γ ∈ ]0, 1] and the infinite-horizon.

8Seeking brevity, we omit here the fundamental aspects regarding the appropriate selection of the expectancy value supports.
A thorough discussion can be found in [26]. Moreover, in general, we can understand reinforcement learning as a sub-category
of machine learning techniques. Yet, we use these two terms as equivalencies in this work, for simplicity.
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In RL formulations, the optimal value function is given by the application of the optimal policy κ?:365

V?(x(k)) := E

[
+∞∑
k=0

γk` (x(k), κ(x(k))) |x(k)

]
, (4)

while the associated Bellman equation gives the action-value function:

Q?(x, u) := `(x, u) + γE
[
V?(x+)|x, u

]
, (5)

where the expectation is computed according to the considered conditional probability density related to
the states commuting from x to the successor x+.

The distinct RL algorithms apply different approximations for the optimal maps V?, Q? and κ?. In
synthesis, these are parametrically expressed in terms of an optimal adaptation parameter θ? (much in the370

likes of the uncertainty parameter that appears in adaptive MPC formulations, as gives Eqs. (2)-(3)). This
optimal parameter is used to solve the optimal RL problem either by directly of approximately solving Eq.
(5) in a sampled-data fashion.

As do Gros and Zanon [26], we compact this parameter estimation task by means of the the following
optimisation problem θ? := minθ

∑nθ
k=0 ψ (x(k + 1), x(k), u(k), θ), given an estimation function candidate375

ψ(·, ·, ·, ·), which depends on the specific RL algorithm that is used. For example, in the so-called Q-learning
schemes, e.g. [73, 78], this estimation function is given, with nθ = 1, by a quadratic difference between the
current action-value and its θ-related counterpart, that is:

ψ(x(k + 1), x(k), u(k), θ) = (`(x(k), u(k)) + γVθ(x(k + 1))−Qθ(x(k), u(k)))2 , (6)

where Vθ and Qθ stand, respectively, for the parametric approximations of V? and Q?.
In RL, the optimal adaptation parameter support θ is also found by taking into account a sample-based380

dispersion set parametric S+. In practice, the state transitions are assumed to be confined, at each sample,
within an estimated dispersion set Ŝ+. Accordingly, the RL problem takes the following form:

θ? := min
θ

nθ∑
k=0

ψ (x(k + 1), x(k), u(k), θ) , (7)

s.t. x(k + j + 1|k) ∈ Ŝ+ (x(k + j|k), u(k + j|k), θ) , ∀j ∈ N[1,nθ] .

Based on the previous discussion, the operation of data-driven RL-based MPC schemes is, thus, imple-
mented through a twofold:

1. At each discrete-time sample k, a standard (possibly robust) MPC in the form of Eq. (1) is solved,385

considering a baseline process model description that relies on θ; the corresponding MPC input u?(k)
is applied to the system and new process data is collected;

2. Then, based on the available data, the RL problem from Eq. (7) is solved9 and the parameter θ is
updated.

9We highlight that in some of the formulations surveyed next, the RL mechanism operates at a lower sampling rate than
the MPC. With respect to this matter, we stress that performing learning and control at the same time requires to regularly
update both the model parameters and the corresponding control law that are implemented. Accordingly, when parameter
updates are implemented while the system is being operated, as argued herein, it should be remarked that implementing a
safe and stable control result at a given instant does not necessarily ensure that the overall system dynamics are stable (nor
that constraints are continuously satisfied) in closed-loop - this property can only be ensured when the parameter updates

occurs while the system trajectories are found within a specific set (i.e. the dispersion set estimate Ŝ+). In synthesis, thus,
guaranteeing coherent closed-loop performance requires both a safe RL approach and a robust MPC formulation with respect
to these updates.
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Remark 5. In the so-called safe RL formulations, the dispersion set parametric estimate Ŝ+ not only confines390

the state transitions but also the systems’ constraints. Basically, Ŝ+ is taken as an outer approximation
of the real state transition dispersion set S+, thus also encompassing safety remarks. As in robust MPC
formulations, the ideal formulation would depend on a closed-loop dispersion set; yet, what is done is to
(recursively) select an open-loop profile reconstructed using an affine feedback law, and iterate this task at
each sample.395

Remark 6. As discussed in [85], MPC algorithms are differentiable if, essentially, they are solvable. Thus,
Problem 7 can often be solved using sensitivity-based algorithms. For such, in the context of adaptive
schemes, one should verify that the function approximator is differentiable with respect to the adaptation
parameter θ - which implies in linear independence constraints qualification, strong second order sufficiency400

and strict complementarity of the optimisation (accounting for variations in θ). Accordingly (even if the
later property is not satisfied), an RL step can be computed with appropriate estimates for the dispersion
set Ŝ+ and for the parametric terms Vθ and Qθ.

3.2. Existing formulations

Taking into account the previous discussion on how data-driven MPC schemes with RL-based model405

adaptation operate and are implemented, we provide, next, an overview of the available formulations. Indeed,
recent literature exhibits a vast amount of works that combine learning techniques with control application,
c.f.[16, 86, 87, 66, 88, 67, 76, 78, 25, 89, 90, 91]. In particular, in this survey, we review first the methods which
enable safe performances, then we discuss alternative formulations and, finally, methods with registered
experimental validation or benchmark comparisons.410

With respect to the category of safe schemes, we stress that combining robust MPC with RL has been
extensively studied by Gros and Zanon [26] - including in several recent works by these authors, as cited
in this review. In synthesis, their formulations offers a direct path to seemingly merge an RL-based model
adaptation layer with a robust predictive controller, thereby providing performance certificates (which are
thoroughly theoretically validated). These safe RL MPC schemes do not have to resort to any kind of415

offline certification of the resulting parameter estimates (i.e. Monte Carlo simulations - which is often
difficult to perform in practical situations), as done in learning MPC schemes based on Neural Networks,
e.g. [35, 34, 36]. Next, we highlight the main elements of these safe RL MPC techniques.

Even though there are currently some strategies available to induce safe control laws in the context of
RL, c.f. the survey [84] and references mentioned therein, none of them are able to strictly ensure constraints420

satisfaction for all sampling instants - constraint violation is typically considered as a possible outcome and
strongly penalised in [72] and in some of the methods detailed in [84].

• While [92] is the first work to ensure the robust satisfaction of constraints (using an LQR control
formulation), the works [25, 17, 26] are the first concrete propositions where an RL formulation based
on (nonlinear) MPC that include the theoretical guarantees of safety. We indicate that a corresponding425

formulation for systems with mixed-integer dynamics is available in [93];

• In [16], one can find an alternative formulation to the safe learning-based MPC problem, which also
offers deterministic guarantees on robustness. The main difference w.r.t. the algorithms in [25, 17, 26,
93] reside in decoupling the problem of safe exploration and performance, considering two models of
the controlled process: (i) one initial (approximate) model subject to a bounded uncertainty term; and430

(ii) another statistical model related to the uncertainty. Accordingly, statistical (parametric or non-
parametric) identification tools are used within the learning formulation in order to address the problem
of estimating the later model, while the control formulation is used to ensures safety and robustness
by maintaining the predictions of the future dynamics (using the approximate model) stable. A key
feature of method is that it is shown to ensure closed loop stability; moreover, probabilistic arguments435

are used to demonstrate that the resulting control performances converges to what would be obtained
using a deterministic MPC with the true model at hand.
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• More recently, Lin et al. [71] propose an RL-based MPC scheme integrated by the means of policy
iteration. That is, the proposed MPC is responsible for generating a given control policy which is,
then, evaluated by a RL layer according to measured data. In particular, similarly to what is done in440

[25, 17, 26, 93], the obtained value function is taken as the terminal cost of MPC. The main benefit
of using the policy iteration formulation is that it removes the necessity of using stabilising terminal
ingredients in the MPC, does eliminating the need of the offline preparation of the optimisation. Safety,
stability and performance are thus verified with regard to the RL layer only.

With respect to alternative of learning-based MPC schemes, which do not employ the safety-related445

arguments as in, e.g., [25], we highlight, next, some relevant formulations.
First, we refer to the scheme proposed by Esfahani et al. [90], which relate the use of the RL layer to a

Moving Horizon Estimation problem (MHE). Not only the MHE is parametrised by RL techniques in order
to estimate the adaptation parameter θ online, but it is also used to provide full state information of the
real process. In particular, RL is used to jointly tune the parameters of the MHE and MPC optimisation450

problems, enclosing considerations on closed loop performances. The main drawback of the scheme is that
the convergence of uncertainty inference from the MHE scheme is only demonstrated, to the best of our
knowledge, under linearly independent constraints in the formulation - which restricts the systems for which
the method can be applied.

The recent output-feedback algorithm by Maiworm et al. [94] combines a robust adaptive-kind MPC455

algorithm with machine learning and Gaussian-inference. In particular, the scheme comprises terminal
ingredients and ensures guaranteed ISS with constraint satisfaction for general prediction models that are
learned online and satisfy some Gaussian-related conditions. With regard to the adaptive MPC schemes
surveyed in Sec. 2, the method is much alike the robust algorithm proposed by Tanaskovic et al. [41] - the
fundamental difference is the use of the machine learning tools instead of set membership identification.460

Accordingly, similar discussions on resulting performances apply.
Bellegarda and Byl [89] combines RL MPC with the so-called trajectory optimisation (TO) problem.

Specifically, TO is used in MPC schemes in order to analyse stability and robustness with regard to the
generated motions and trajectories in closed-loop. Typically, TO is operated in a separate layer, coordinating
the MPC scheme that lies below, using simplified (sometimes static) models of the process. The referred465

work, by coupling TO with RL, is able to decrease the RL sample complexity with knowledge of the real-time
optimal control solution. Moreover, it allows to compute the MPC law by using the TO model for nominal
predictions, while continuously improving it in the upper layer via RL.

The work [95] considers that the controlled system has a fixed model structure, with time-varying param-
eters. Accordingly, system identification techniques are mixed to the RL layer, which is, thus, responsible for470

two tasks: (i) to parametrise the MPC in order to optimise performance, in terms of an adaptation param-
eter; and (ii) to match the process data to a given model structure using system identification arguments
(i.e. Least-Squares)

In [96], a cautious adaptive MPC is formulated using an RL layer using a Bayesian approximator. The
method is much similar to the surveyed adaptive cautious MPC [43], yet the main innovation lies in using475

a constraint tightening mechanism in order to bound the expected number of unsafe episodes. A significant
result of the paper is how the method is tested, in simulation, for different kinds of systems and settings,
which indicate its competitiveness to other adaptive schemes and how an RL layer could be better that
typical identification arguments (such as, e.g., set-membership and least-squares).

We care to highlight, finally, that most of the surveyed RL MPC method require gradient-based solvers to480

obtain a feasible solution, which actually restricts their application to larger datasets. Accordingly, Sawant
et al. [97] propose a solution to this issue by formulating the learning procedure online, directly connected
to the measured data. The proposes approach offers an MPC scheme that does not have to be solved over
any collected data-set, thereby softening the resulting computational complexity and rendering it possible
for big data problems.485

We remark that, recently, there has been considerable research on data-driven MPC schemes, with
theoretical features from reinforcement learning, with experimental validation (or applied in realistic, high-
fidelity numerical simulations). We recap some of the main findings that are indicated in the available
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literature:

• Considering a realistic autonomous surface vehicle (ASV) model, Cai et al. [98] propose an optimal con-490

trol policy for freight missions which include the tasks of collision-free path fol- lowing and autonomous
docking. In particular, the proposed parametrised MPC is based on a deterministic gradient method
to update the adaptive model parameters in the context of RL. The published results indicate how the
method is able to improve closed-loop performances. Similarly, in [99], the same freight mission prob-
lems are addressed, whereas a scenario-tree robust MPC is used to deal with possible thruster faults.495

In particular, the RL layer is tuned with Q-learning arguments and an economic cost is considered in
the control formulation. Results also indicate good performances in practice;

• Rosolia et al. [69] provide a thorough survey of data-driven MPC schemes applied for autonomous
systems. In this work, several learning MPC schemes are applied to the control often inverted pendulum
with an assistive motor held in the palm of a hand. In particular, the learning task is thoroughly500

analyses and discussed in terms of how the scheme improves over time (as the RL converges and the
MPC is deployed with a every-iteration-closer-to-reality model);

• In [68], we can find experimental validation results of an RL-based MPC for the control of an au-
tonomous vehicle in aggressive driving situations. The provided results, yet empirical, demonstrate
how the scheme is able to provide good performances using only data collected from the system.505

3.3. Overall discussion: Summary of Strengths and Limitations

There has been a consistent growing interesting in applying learning schemes to control problems. Specif-
ically, using RL techniques has been shown (in theory and practice - through simulation and experimental
validation) to be quite interesting when coupled with MPC: an adaptive process model update layer based
on RL is an adequate solution, providing good estimation result for a wide variety of nonlinear models and510

settings. For the Reader’s convenience, we provide, in Table 2, a broad overview of the surveyed methods,
indicating the main features of each approach (used approximator, learning tools, etc) and detailing the
kinds of systems considered, as well as the type of validation available (experimental or numerical).

The first schemes that combined RL and MPC were typically not shown to provide any strict certificate,
which complicates realistic validation and any kind of implementation for complex systems subject to hard515

constraints. Yet, very recently, tools have been presented for safe exploration, which, in practice, means the
availability of closed loop performance guarantees, c.f. [26].

We emphasise that, for many of the surveyed techniques, the MPC optimisation is tuned similarly to
what is done in adaptive formulations. The main difference resides in the approach used to infer on the
uncertainty from data. Nevertheless, even though the research community has given a great deal of attention520

to these learning schemes, Recht [100] extensively argues that these methods consistently require large data
sets - typically much larger than data used for classical Least-Squares or set-membership approaches. This
issue becomes a particularly difficult aspect in the case of complex systems with inaccessible variables, for
which data sets are not so robust and can be quite difficult to generate.

Moreover, despite of the recent available safe formulations, the majority of RL estimation schemes tend525

to lack formal guarantees on stability and performance of the resulting closed-loop. In synthesis, further
coordinated research on the topic of RL MPC with guarantees can certainly be of interest in order to
fustigate the establishment of theoretically-validated implementations.
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Table 2: Overview of surveyed machine learning MPC schemes.

[16] Closed-loop
asymptotic sta-
bility, robust
feasibility, ro-
bust constraint
satisfaction

Probabilistic
and determin-
istic robust
invariant set,
constraints
tightening
(tube)

Approximator:
Parametric,
stochastic,
least-squares,
Safe explo-
ration

Numerical
simulation:
Moore-Greitzer
compressor
system, Ex-
perimental
validation:
Energy-efficient
building au-
tomation
system, quad-
copter flight

[72, 25, 17, 26] Robust recur-
sive feasibility,
closed-loop
stability,
constraint
satisfaction

Robust invari-
ant sets

Approximator:
MPC costs and
structure, Safe
exploration

Numerical
simulation
(several)

[29] Closed-loop
stability

- Approximator:
Lyapunov can-
didate, Safe
exploration

Numerical
simulation:
Inverted pendu-
lum benchmark

[71] Parameter
estimation con-
vergence, recur-
sive feasibility,
closed-loop
stability

Robust termi-
nal ingredients

Approximator:
Policy iterated
MPC costs and
structure

Numerical
simulation:
Linear and
Hammerstein-
Wiener systems

[94] ISS, recursive
feasibility,
constraint
satisfaction

Robust termi-
nal ingredients

Approximator:
Gaussian pro-
cess

Numerical
simulation:
CSTR system

[90] - - Approximator:
MHE-based
structure and
Q-learning

Numerical
simulation:
Mass, spring
and damper
system

Reference Certificates Robustness ar-
guments

Learning tools Application

Continued on next page530
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Table 2: Overview of surveyed machine learning MPC schemes. (Continued)

[89] - - Approximator:
Proximal policy
optimisation

Numerical
simulation:
Trajectory
generation for
autonomous
cars

[95] - KKT argu-
ments

MPC cost and
structure, Ap-
proximator:
Q-learning,
system iden-
tification
arguments

Numerical
simulation

[96] Yes Constraints
tightening
(tube)

Approximator:
Bayesian repre-
sentation, Safe
exploration

Numerical
simulation:
Thermal pro-
cess and drone
system

[97] - - Approximator:
Markov deci-
sion process,
MPC cost and
structure

Numerical
simulation:
Tracking prob-
lem, pendulum
swing-up
task, cart-pole
swing-up and
balancing issue

[98] - - Approximator:
MPC
parametri-
sation, least
squares tempo-
ral difference
policy gradient

Numerical
simulation:
Freight mission
of autonomous
surface vehicles

[69] Recursive feasi-
bility, non- de-
creasing perfor-
mance, closed-
loop stability

Terminal ingre-
dients

Approximator:
Q-learning,
Safe explo-
ration

Numerical
simulation:
Dubins’ car
problem

Reference Certificates Robustness ar-
guments

Learning tools Application

Continued on next page
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Table 2: Overview of surveyed machine learning MPC schemes. (Continued)

[68] - - Approximator:
Multi-layer
neural net-
works

Numerical
simulation:
Cart-pole
swing-up
problem, quad-
copter navi-
gation task,
Experimental
validation:
Aggressive
driving task
in autonomous
vehicles

Reference Certificates Robustness ar-
guments

Learning tools Application

4. Category C: Behavioural/trajectory-based formulations

Over the last few years, an alternative class of data-driven predictive control algorithms has been consistently
developed, which we name herein as MPC algorithms based on trajectory features, sometimes referenced as535

methods based on behavioural theory, c.f. the discussion presented by Markovsky and Dörfler [18].
The first two categories of data-driven MPCs - i.e. adaptive schemes (Category A, Sec. 2) and learning-

based algorithms (Category B, Sec. 3) - held considerable similarities between techniques. Moreover,
the MPC optimisation was maintained in the same format. Now, this final surveyed category of work
fundamentally differs from the prior: as indicated in Figure 4, the so-called behavioural formulations do540

not require a baseline prediction model, but rather only an initial data dictionary. Then, during the online
implementation, the MPC optimisation itself is written in terms of measured data.

Specifically, these data-driven MPC algorithms derive from the unified framework originally celebrated10

in [11, 101]. This framework, in fact, exploits and remembers the well-known result from the 00’s by Willems
et al. [31] (Willems’ Fundamental Lemma) in the context of data-based control synthesis: a persistency of545

excitation condition over the applied control input is used in order to characterise all possible trajectories
of an unknown system, considering a single measured input–output dictionary of a sufficient length. This
framework has been thoroughly discussed in the context of LTI systems, with links provided for stability
properties and the analysis of dissipativity and passivity, c.f. [11, 102, 103, 104, 105, 106]. More recently,
the thorough “handbook” paper by Verheijen et al. [107] details the fundamental details of these data-driven550

predictive control schemes, from theory to implementation aspects.
Next, we recall and outline the main arguments used to develop such trajectory-based representations,

detailing how they can be applied in the context of MPC. We also present a broad overview of the existing
formulations and investigate their capabilities and disadvantages.

Remark 7. In [18, 19], the Reader can find comprehensive overviews of the scope of behavioural theory555

in data-driven control. Furthermore, in [107, 108] application-oriented recaps of corresponding data-driven
MPC schemes can be found.

10We note that, recently, an alternative synthesis approach using Peterson’s Lemma has been presented by Bisoffi et al. [12].
Since only few papers use this formulation, we focus henceforth only on the results that arise from the application of Willems’
Fundamental Lemma.
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4.1. Outline of the mechanism

The condition of persistent excitation (see Def. 1.1) is widely used in system identification theory.
Accordingly, as shows Berberich and Allgöwer [101], a persistently exciting input signal of sufficient order,560

applied to an LTI system, allows us to construct a vector space that comprises all possible trajectories of this
system. Under the assumption that the system order nx is known (or, at least, an upper bound estimate
ν ≥ nx), the following result demonstrates how to map system trajectories based on a single measured
input-output sequence.

Proposition 4.1 (LTI Data-driven predictor [101]). Suppose that {ũ(i), ỹ(i)}L−1i=0 is a fixed (measured)565

input-output trajectory of an LTI system, being u a control input which is persistently exciting of order
Np + ν. Let {u(i), y(i)}k−1i=k−ν be another input-output trajectory dictionary of this same system (of “initial

conditions”, sampled at instant k − 1). Then, let {û(i)}k+Np−1i=k be a sequence of future inputs that will be
applied to this system. Then, as long as ν ≥ nx, there exists a vector α ∈ RL−Np+1 for ξ = L−Np + ν − 1
such that:570  Hν(u⊥)

Hν(y⊥)
HNp(u)

α =

 col{ũ}
col{ỹ}
col{û}

 ,

where the compacted data trajectories u⊥ and y⊥ comprise L+ν+1 entries, ordered as follows: {u⊥(i)}L−1i=0 =
{ũ(i)}L−1i=0 , i.e. fixed data, and {u⊥(i)}L+νi=L = {u(i)}k−1i=k−ν , i.e. sampled data (the same holds for the output
data). Accordingly, the future output behaviour of this system is given by is

col{ŷ} =
[
ŷT (k) . . . ŷT (k +Np − 1)

]T
= HNp(y)α .

We note that Proposition 4.1 represents a data-driven prediction rule for LTI systems. It consists
in combining an initially measured data dictionary {ũ(i), ỹ(i)}L−1i=0 (of L samples, fixed) with a sampled
data dictionary of initial conditions {u(i), y(i)}k−1i=k−ν in order to generate predict the future outputs of the
system, given a sequence of inputs. Naturally, it can be directly used as a basis to develop data-driven MPC
algorithms, as detailed next.575

Remark 8. Recently, Klädtke and Darup [109] detail how the data-driven trajectory representation from
[101, 11], recapped in Proposition 4.1, implicitly characterises an input-output predictor just as in traditional
model or subspace predictive control, even if it is not explicitly enforced as an equality constraint. That is,
in some sense, the corresponding data-driven MPC schemes (as discussed in the sequel) implicit impose a
certain kind of model-related representation recovered from data.580

Remark 9. For brevity, and seeking alleviated notation, we indicate, herein, only the data-driven predictor
based on trajectory features for the case of LTI systems. Nevertheless, we stress that there currently exits
several corresponding counterparts for specific classes of nonlinear systems. In particular, in [101], the
previous result is also extended for the case of nonlinear systems composed by a an LTI part an an input
(or output) static nonlinearity, such as Lur’e, Hammerstein and Weiner dynamics. Also, extensions for585

second-order Volterra systems are available in [110], flat nonlinearities are addressed by Alsalti et al. [111],
and Koopman operators are used in [112]. Also, Strässer et al. [113] show how such prediction rule can be
extended to the case of nonlinear processes with rational or general non-polynomial dynamics. Furthermore,
recent works [21, 106] demonstrate how these trajectory features can be extended to the case of LPV systems,
which can be used to represent nonlinear dynamics under some assumption, given that the (current and590

future) scheduling parameter data is also known. The approach can be used to control generic nonlinear
systems using the quasi-LPV embedding approach, considering that the function to map the scheduling
parameters from the measured system variables is explicitly known (i.e. partial model information of the
process is available, the same hypothesis brought forward by Berberich et al. [103]. A corresponding MPC
application using Taylor-based linear expansions is also shown in [23].595

22



4.2. Existing formulations

In terms of data-driven predictive control applications using the trajectory approach, we consider the
following quadratic regulation performance cost, written in terms of the future input and output variables,

from the viewpoint of sampling instant k: J(ŷ, û) :=
∑k+Np−1
i=k

(
‖ŷ(i)‖2Q + ‖û(i)‖2R

)
, where Q and R are

positive definite weighting matrices and Np gives the size of the prediction horizon window. Note that,600

within this framework, input and output representations are used, and state trajectories, thus, are usually
not considered. Then, given a fixed data dictionary {ũ(k), ỹ(k)}L−1k=0 and a sampled data set of initial

conditions {u(i), y(i)}k−1i=k−ν , the original works [20, 114, 115] show how an MPC scheme can be synthesised
based on the recurrent solution (at each discrete-time sampling instant k) of the following constrained
quadratic programming problem:605

α?(k) = min
α(k),ŷ,û

J(ŷ, û) + V (ξ̂(k +Np|k)) , (8)

s.t.:

 col{ũ}
col{ỹ}
col{û}

 =

 Hν(u⊥)
Hν(y⊥)
HNp(u)

α(k),

ŷ = HNp(y)α(k) ,

ŷ(k + j − 1 | k) ∈ Y, ∀j ∈ N[1,Np] ,

û(k + j − 1 | k) ∈ U ,∀j ∈ N[1,Np] ,

ξ(k +Np) ∈ Xt .

where the bold font emphasis is given to the optimisation decision variables. In this optimisation procedure,
the system operational constraints are represented by the corresponding (compact and convex) input and
output sets U and Y, respectively.

Let J? (ŷ, û) be the optimal solution of data-driven MPC optimisation, from which α(k)? is the optimal
minimiser. Then, the MPC application is implemented by applying data-driven control input u?(k), which610

is the first entry of the predicted optimal input sequence û? = HNp(u)α?(k).
Some variations to the data-driven optimisation in Eq. (8) are possible, such as the inclusion of (ridge)

regularisation and slack variables, e.g. [116], compare also to the experimentally-validated result presented
in [117]. We note nevertheless, that the core structure of the method remains the same: a fixed sequence
of input-output data is used to setup a prediction matrix, which includes the currently sampled initial615

conditions. In contrast to a model-based predictive control synthesis, as in [118], Eq. (8) does not have the
sequence of inputs as its minimiser, but rather the (rectangular) predictor gain α(k), which, in turn, affects
both the future sequence of inputs and outputs. In Algorithm 4.2, we summarise how these methods are
implemented.

In Eq. (8), we purposely include the presence of the so-called terminal ingredients: the terminal set620

Xt, the terminal cost V (ξ̂(k + Np|k)), and a fictive terminal variable ξ̂. In the recent work by Berberich
et al. [33], formal arguments are provided on how to generate these elements, thus ensuring closed-loop
stability guarantees11. We stress that their synthesis does not require any model knowledge and are enabled
by fractional transformations of data-dependent matrices based on the trajectory representation discussed
in the prequel12. Stability and robustness properties of these algorithms are also investigated in [116, 11,625

119, 23], with experimental validation demonstrated in [22]. We also stress that adaptations of the previous
optimisation for the tracking problem (ensuring that the output follows a given reference signal) has also been
addressed in the literature, with special focus to the use of artificial tracking arguments, e.g. [30, 33, 115].

11The use of terminal equality constraints can also be considered as an alternative to the terminal ingredients, as shown
Berberich et al. [119]. Yet, although being easier to implement (no offline synthesis of the terminal ingredients is required),
the equality constraints often render MPC schemes with poorer robustness properties and smaller corresponding regions of
attraction.

12Due to scope of this paper, we opt not to discuss the synthesis of these ingredients herein.
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Algorithm 4.2 (Data-driven trajectory-based MPC).

• Offline procedure:

1. Determine the system order upper-bound ν ≥ nx;

2. Collect the initial fixed input-output data set {ũ(i), ỹ(i)}L−1i=0 , considering the application of a
persistently exciting input;

3. Define the control objective, choosing weights to the performance objective J(ŷ, û).

• Online implementation, for each sampling instant k:

1. Collect the input-output initial conditions {u(i), y(i)}k−1i=k−ν ;

2. Solve the data-driven optimisation from Eq. (8), thus obtaining α?(k);

3. Apply the first input of the corresponding control input sequence u? = HNp(u)α?(k).

Remark 10. The surveyed trajectory-based algorithms indeed to not require any kind of model knowledge, in630

the sense of representation structure (matrices, input-state channels with direct transfers, direct output-state
maps, etc) or process information itself (time response, frequency range, etc). Nevertheless, we emphasise
that the methods do require the knowledge of the system order nx (or, at least, an upper bound estimate
ν ≥ nx).

4.3. Overall discussion: Summary of Strengths and Limitations635

As done in the previous sections, we provide, in Table 3, a broad overview of the surveyed trajectory-
based MPC methods, detailing the main features of each scheme and which kind of validation (experimental,
numerical) is currently available.

Even though these data-driven MPC schemes based on trajectory features have been very extensively
discussed over the last few years, we offer, next, some general perspectives on these methods, taking into640

account the previous discussions.
As detailed throughout this work, MPC schemes generate (predictive) control policy by means of op-

timisation programs - which rely on the prediction of the system trajectories. In both model-based and
(trajectory) data-driven formulations, the discrepancy between the prediction rule within the optimisation
and the true system trajectories plays a significant role w.r.t. robustness and optimality and of the resulting645

control action.
In terms of robustness, typical uncertainty propagation and constraint tightening methods (tubes) can

also be used in the data-driven context, c.f. [105, 120]. Yet, as argues Anand et al. [121], the latter property
can be analysed in terms of the self-consistency13 of the MPC algorithm - which cannot be explicitly
verified for the available behavioural data-driven formulations. This lack of optimality can be critical in650

many practical situations.
Furthermore, these behavioural MPC schemes require the knowledge of a sufficiently large upper bound

ν with respect to the system dimension nx. Even though a rough approximation can be easily obtain, it
may lead to an MPC algorithm which is excessively costly in the computational sense, which may be an
impediment for real-time applications:655

13As proposed by Anand et al. [121], self-consistency is implied if the predictive control value function satisfies a Bellman
relation. In synthesis, a self-consistent MPC algorithm can be re-stated as a time-invariant sequential decision process. In
the model-based context, MPC is self-consistent by construction; in the data-driven formulations, the prediction rule does not
derive from an open-loop simulation of the controlled system, which means that, in general, self-consistency cannot be inferred.
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• Since the optimisation decision is made in terms of the rectangular matrix α(k), which is of dimension
L−Np + 1, the resulting problem may be computationally more complex than a model-based scheme,
which (usually) scales numerically in terms of nxNp;

• Another issue is related to the size of the initial fixed data window L, which must be sufficiently large
in order to bound L ≥ (nu + 1)(Np + ν)− 1 ≥ (nu + 1)(Np +nx)− 1. As a real, an increase arises on660

the computational load required to solve the optimisation (due to the size of the resulting prediction
matrix);

• Despite the increased numerical complexity of the resulting optimisation, (very) recent advances have
provided relevant relaxations (such as dimension reduction for the decision variables) for the DeePC
algorithm, making its numerical toughness comparable to model-based MPCs, c.f. [122, 123]. These665

advances can be exploited for other data-driven MPC schemes based on trajectory representations,
which indicates that the numerical aspect is not a limitation that tends to persist;

We stress that one of the major issues of the current literature on this topic is that the closed-loop stability
certificates essentially rely on the assumption that the controlled system truly displays LTI dynamics, which
is often a false premise. Moreover, if the system is indeed LTI, it seems unreasonable to use these formulations670

in practice, since LTI identification is very well established and mature.
In terms of nonlinear schemes using the LPV approach from [21], we emphasise that the methods require

the condition of a persistently exciting control input, which must be maintained over time both for the
original signal and the LPV one, which is generated by the means of a Kronecker product between the
scheduling data and the input data. This requirement, in practice, can only be guaranteed if a small noisy675

signal is added to the applied control signal, in such a way that the sum of signals remains persistently
exciting in closed-loop. This condition was not necessary in the original LTI formulations from Berberich
et al. [30], which maintained the same data set over time. However, in the nonlinear scenario using qLPV
descriptions, the trajectory-based predictions are only valid due to a local dependence on the outputs mapped
to the parameters, and, therefore, they should be reassessed at each sample. Discussions on this subject680

were also presented in [103].
The inclusion of a bias signal over the applied control input, in order to maintain closed-loop persistency

of excitation, may also degrade the control results in real experimental tests, since the magnitude of the
noise signal, which guarantees that the rank of HNp(u) ≥ nuNp, can damage actuators due to excessive
vibrations, for example.685

The issue of noisy data also affects the obtained performances by these controllers. In synthesis, the
effects measurement noise can be alleviated by the means of ridge regularisation, for instance, e.g. [116].

Finally, we also emphasise that recent results provided by Dinkla et al. [124] reveal, through simulation
and theoretical assessments, that the direct application of these trajectory-based data-driven MPC schemes
may lead to performances which are impacted by an identification bias that arises from correlation between690

control inputs and noise in closed-loop.
Since the majority of processes is not LTI, we note that the interest of using these trajectory-based

schemes remain rather diluted while concrete formal certificates for nonlinear systems are available. Further
nonlinear representation schemes with corresponding MPC stability analyses would help leverage the interest
of data-driven framework for systems with complex dynamics.695

In general, the available literature indicates the the current state-of-the-art on behavioural data-driven
MPC schemes can achieve comparable performances to model-based counter parts [107]. This feature is
particularly consistent for the case of LTI systems.

When more complex systems are considered, traditional model-based predictive control typically pro-
vides better performances than data-driven schemes (i.e. less conservative control, with a larger region700

of attraction). However, recent advances on LPV embeddings for data-driven control, c.f. [106, 21], are
promising for the more general nonlinear, time-varying setting. We care to emphasise that, in the case of
really complex systems, identifying a trustworthy model is very difficult (or even impossible), which means
that traditional MPC schemes will mostly rely on biased prediction models. Overall, such data-driven MPC
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formulations based on behavioural theory, especially in the nonlinear and LPV setting, certainly deserve705

further scholastic attention.
With respect to the aforementioned context, we highlight the main message: so far, the model-based

predictive control design remains, in most cases, a superior solution (with more accurate predictions and
therefore allowing for greater robustness), as long as there are enough measurements so that it is possible to
perform a reliable identification procedure of the controlled process. The data-driven approach emerges as710

a plausible alternative primarily for processes with few measurements available, for which the identification
of a model is not only a costly step, but also not truly viable.

Finally, we highlight that, even though better performances have not yet been enabled by these schemes
(in comparison to model-based counterparts), trajectory formulations can certainly be integrated to adaptive
MPC schemes, in such a way that local linear models (or LPV representations) based on data are used to715

enhance a baseline process description. The topic is definitely open for further investigation.

Table 3: Overview of surveyed trajectory-based MPC schemes.

[114, 101, 30,
22]

Recursive fea-
sibility, closed-
loop stability
(LTI case),
performance
guarantees
(LTI case)

Robust termi-
nal ingredients,
noise effect
minimisation

Possibility
to consider
Hammerstein-
Weiner dynam-
ics

Numerical
simulation
(several), Ex-
perimental
validation
(simple sys-
tems)

[11, 20, 116,
117, 122, 123]

Recursive
feasibility
(LTI case),
closed-loop
asymptotic
stability (LTI
case)

Noise effect
minimisation,
(ridge) regular-
isation

- Numerical
simulation
(several), Ex-
perimental
validation:
Nano quad-
copter system

[102, 104] - Dissipativity
arguments
noise effect
minimisation

- Numerical
simulation
(several)

[106, 21] Recursive feasi-
bility, stability
(hard assump-
tions on the
LPV scheduling
signal)

- LPV embed-
dings

Numerical
simulation

Reference Certificates Robustness ar-
guments

Nonlinearity is-
sues

Application

Continued on next page
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Table 3: Overview of surveyed trajectory-based MPC schemes. (Continued)

[23] Recursive
feasibility,
closed-loop sta-
bility (within a
neighbourhood
of the measured
data)

Noise effect
minimisation

qLPV-
embeddings
under schedul-
ing proxy
knowledge

Numerical
simulation:
rotational
pendulum,
Experimental
validation:
Electro-
mechanical
positioning
system

[111] - - Flatness-based
nonlinearities

Numerical
simulation

[110] - - Volterra sys-
tems

Numerical
simulation

[113] - - Koopman-
based nonlin-
earities

Numerical
simulation

[124] Recursive fea-
sibility (LTI
case), closed-
loop stability
(LTI case)

Noise min-
imisation,
identification
bias reduction

- Numerical
simulation

Reference Certificates Robustness ar-
guments

Nonlinearity is-
sues

Application

5. Conclusions720

In this work, we reviewed the current relevant literature available regarding data-driven MPC algo-
rithms. In particular, we surveyed safe methodologies - i.e. those with theoretical certificates that allow
for closed-loop stability (and performance and constraints satisfaction) and recursive feasibility of the MPC
optimisation.

Our aim in this work was to provide a better comprehension of the state-of-the art on the analysed topic,725

drawing conclusions on the capabilities and deficiencies of the possible design alternatives. Specifically,
we discussed how MPC schemes can be formulated under a data-driven perspective by means of adaptive
algorithms, solutions based on reinforcement learning, or derived from the more recent design alternative
based on input-output trajectories (data dictionaries). Our main findings are recalled next.

First, we highlight that the available adaptive algorithms often require an initial model that is a suf-730

ficiently fair description of the process, in such a way that stability can be ensured despite the online
adaptation procedure. That is, most methods rely on a given structure with known initial parameters or
assume some form of bounded (or a given stochastic distribution of) model mismatches over time. Several
of the alternatives used for online adaptive estimation schemes are correlated with system identification
tools, such as recursive least-squares inferences. There are also formulations which reside on using a single735

baseline model and, during the implementation, vary the form and structure of the MPC itself. Many results
indicate interesting performances of these adaptive schemes, yet formal performance certificates frequently
depend on worst-case demonstrations (example: showing that stability is enable for all models considering a
given set of bounded parameter values). We emphasise, nevertheless, that the use of LPV models is a viable
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path to synthesise adaptive MPC schemes with certificates with potentially less conservative results - given740

that the robustness can be verified only with respect to the variation rate of the scheduling parameters over
samples, which are typically small.

We also stress that several recent works have shown how techniques based on reinforcement learning can
be provably robust and safe for a variety of situations. In synthesis, further research can still be devoted in
the topic of safe RL MPC schemes, considering that the majority of experimentally-validated schemes exhibit745

only empirically-verified performance guarantees. Moreover, the majority of these RL MPC techniques often
require large amounts of data and stochastic assumptions regarding the process, which can be a difficult
issue to solve for complex systems with inaccessible measurements.

Finally, we discussed how works based on trajectory features assume an underlying persistency of exci-
tation condition and a baseline LTI behaviour, which means it is possibly not adequate for hardly nonlinear750

dynamics and that, in such cases, the closed-loop implemented signal must be sufficient rich, which may
deteriorate actuators.
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[35] B. M. Åkesson, H. T. Toivonen, A neural network model predictive controller, Journal of Process Control 16 (2006)
937–946.

[36] P. Kittisupakorn, P. Thitiyasook, M. A. Hussain, W. Daosud, Neural network based model predictive control for a steel830

pickling process, Journal of process control 19 (2009) 579–590.
[37] N. J. Van Eck, L. Waltman, Vosviewer manual, Manual for VOSviewer version 1 (2023).
[38] A. S. Bazanella, L. Campestrini, D. Eckhard, The data-driven approach to classical control theory, Annual Reviews in

Control 56 (2023) 100906.
[39] F. Dörfler, Data-driven control: Part one of two: A special issue sampling from a vast and dynamic landscape, IEEE835

Control Systems Magazine 43 (2023) 24–27.
[40] F. Dörfler, Data-driven control: Part two of two: Hot take: Why not go with models?, IEEE Control Systems Magazine

43 (2023) 27–31.
[41] M. Tanaskovic, L. Fagiano, R. Smith, P. Goulart, M. Morari, Adaptive model predictive control for constrained linear

systems, in: 2013 European Control Conference (ECC), IEEE, pp. 382–387.840

[42] M. Tanaskovic, D. Sturzenegger, R. Smith, M. Morari, Robust adaptive model predictive building climate control,
Ifac-Papersonline 50 (2017) 1871–1876.

[43] L. Hewing, J. Kabzan, M. N. Zeilinger, Cautious model predictive control using Gaussian process regression, IEEE
Transactions on Control Systems Technology 28 (2019) 2736–2743.

[44] M. R. Askari, I. Hajizadeh, M. Rashid, N. Hobbs, V. M. Zavala, A. Cinar, Adaptive-learning model predictive control845

for complex physiological systems: Automated insulin delivery in diabetes, Annual Reviews in Control 50 (2020) 1–12.
[45] M. Tanaskovic, L. Fagiano, R. Smith, M. Morari, Adaptive receding horizon control for constrained MIMO systems,

Automatica 50 (2014) 3019–3029.
[46] T. A. N. Heirung, B. E. Ydstie, B. Foss, Dual adaptive model predictive control, Automatica 80 (2017) 340–348.
[47] R. Murray-Smith, D. Sbarbaro, C. E. Rasmussen, A. Girard, Adaptive, cautious, predictive control with gaussian process850

29



priors, IFAC Proceedings Volumes 36 (2003) 1155–1160.
[48] L. Fagiano, G. Schildbach, M. Tanaskovic, M. Morari, Scenario and adaptive model predictive control of uncertain

systems, IFAC-PapersOnLine 48 (2015) 352–359.
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