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ANALYSIS AND NUMERICAL SIMULATION OF A GENERALIZED
COMPRESSIBLE CAHN–HILLIARD–NAVIER–STOKES MODEL WITH

FRICTION EFFECTS

Charles Elbar1,* and Alexandre Poulain2

Abstract. We propose a new generalized compressible diphasic Navier–Stokes Cahn–Hilliard model
that we name G-NSCH. This new G-NSCH model takes into account important properties of dipha-
sic compressible fluids such as possible non-matching densities and contrast in mechanical properties
(viscosity, friction) between the two phases of the fluid. The model also comprises a term to account
for possible exchange of mass between the two phases. Our G-NSCH system is derived rigorously and
satisfies basic mechanics of fluids and thermodynamics of particles. Under some simplifying assump-
tions, we prove the existence of global weak solutions. We also propose a structure preserving numerical
scheme based on the scalar auxiliary variable method to simulate our system and present some numer-
ical simulations validating the properties of the numerical scheme and illustrating the solutions of the
G-NSCH model.
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1. Introduction

We derive, analyze and simulate numerically the generalized compressible Navier–Stokes–Cahn–Hilliard vari-
ant (G-NSCH in short)

𝜕𝜌

𝜕𝑡
+ div(𝜌v) = 0, (1.1)

𝜕(𝜌𝑐)
𝜕𝑡

+ div(𝜌𝑐v) = div(𝑏(𝑐)∇𝜇) + 𝐹𝑐, (1.2)

𝜌𝜇 = −𝛾∆𝑐+ 𝜌
𝜕𝜓0

𝜕𝑐
, (1.3)
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− 2
3

div(𝜈(𝑐)div(v)I) + div(𝜂(𝑐)div(v)I)− 𝜅(𝜌, 𝑐)v, (1.4)

stated in (0, 𝑇 ) × Ω, where 𝑇 > 0 is finite time horizon, and Ω ⊂ R𝑑 (𝑑 = 1, 2, 3) is an open bounded domain
with a smooth boundary 𝜕Ω.

Interested by the modeling of invasive growth of tumors in healthy tissues, we motivate the different terms
of the model with this biological application in mind. However, we emphasize that the model is a general
compressible diphasic fluid model that could be used for other applications.

System (1.1)–(1.4) models the motion of a diphasic fluid composed of two immiscible components, i.e. two
different cell types (e.g. tumor and healthy cells), and comprises viscosity effects, surface tension, and friction on
rigid fibers representing the extracellular matrix (ECM in short). In System (1.1)–(1.4), 𝜌 is the total density of
the mixture (i.e. the sum of the two partial densities), 𝑐 is the relative mass fraction of one component (e.g. the
cancer cells), v is the mass averaged total velocity, 𝜇 is called the chemical potential, 𝑝 is the pressure. The
coefficient 𝛾 is related to the surface tension and is equal to the square of the width of the diffuse interface existing
between the two populations. The friction coefficient 𝜅(𝜌, 𝑐) is a non-negative function of the density and the
mass fraction, and takes into account the possible difference of friction strength between the two populations. We
use this friction term to model possible adhesive effects of the cells on the ECM. The coefficients 𝜈(𝑐) and 𝜂(𝑐)
represents the viscosity coefficients (shear and dilatational, respectively) of the mixture. Possible differences
in viscosities could be considered for the two populations. The function 𝜓0 represents the separation of the
two components of the mixture and phenomenologically models the behavior of cells (i.e. cells tend to form
aggregates of the same cell type). The function 𝐹𝑐(·) accounts for the possible proliferation and death of cells
and these two effects are assumed to be modelled as an exchange of mass between the populations. The non-
negative function 𝑏(·) models the mobility of cells. This function models the probability for a cell of any of the
two populations to find an available neighboring spot to which it can move. More details about the general
assumptions and precise forms of the different functions will be given in the next sections.

The motivation of our model stands from the modeling of tumor progression and invasion in healthy tissues.
Indeed, as explained in Appendix B, under suitable choices of functionals, our model can be viewed as a
representation of a proliferating population of cells, i.e. the tumor cells, in a domain filled with a non-proliferating
population, i.e. the healthy cells and the rest of tissue (ECM, extracellular fluid, etc.). The proliferation of cells
happens by consuming mass from the other phase (we are not injecting mass in the system). Both cell populations
move in an ECM constituted of rigid fibers on which they can adhere. As we only focus on the mechanical effects
generated by the properties of the cells that could play a role during invasion, we do not consider in the model
other effects that are known to be important in tumor progression: e.g. angiogenesis, digestion of the ECM by
proteolic enzymes, role of helping cells located in the stroma.

We emphasize that this article only concerns the analysis and the numerical simulation of the G-NSCH
model (1.1)–(1.4). This latter comprises effects that are negligible in biological situations, e.g. inertia effects.
We propose here an analysis of the model and a structure preserving numerical scheme for the G-NSCH model.
Literature review. The motion of a binary mixture of two immiscible and compressible fluids can be described
by the Navier–Stokes equation coupled to the Cahn–Hilliard model: the Navier–Stokes–Cahn–Hilliard model
(NSCH model in short). The well-known incompressible variant of the compressible NSCH model has been
denominated model H (see e.g. [35, 38]). Model H has been proposed to represent viscous fluid flow in an
incompressible binary mixture undergoing phase separation. This model assumes matching densities, i.e. 𝜌1 = 𝜌2

and, hence, constant total density 𝜌. To consider non-matching densities, Lowengrub and Truskinovsky [51]
proposed the compressible NSCH model. Expanding the divergence term in the mass balance equation, the
authors found a relation denoting the quasi-compressible nature of the fluid. Concomitantly, Anderson et al. [10]
proposed a similar system. In the present work, we use a similar system. We also remark that a very recent
work [63] proposed a unified framework for the incompressible NSCH system and shows that the different
NSCH models found in the literature only differ from their general modelling framework by specific constitutive
hypotheses.
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Under some simplifying assumptions compared to the system proposed in [51] but being closer to the system
in [10], the analysis of the compressible NSCH model with no-flux boundary conditions has been realized by
Abels and Feireisl [3]. Their analysis requires to simplify the model proposed in [51] to avoid zones with zero
density which would make this analysis a lot more difficult since the control from certain estimates would be
lost. In another article, for the same system, Abels proved the existence of strong solutions for short times [2].
Considering the same assumptions and dynamic boundary conditions, Cherfils et al. [21] proved the well-
posedness of the compressible NSCH model with these special boundary conditions. These latter allow to model
the interaction of the fluid components and the walls of the domain.

Results on the analysis of the incompressible variant of the NSCH model, i.e. the model H, are numerous and
we here mention only a few of them since a complete review would be out of the scope of the present article.
With a non-degenerate mobility coefficient and a physically relevant choice of potential, the well-posedness and
regularity analysis of model H has been performed by Abels [1] using tools both from the analysis of Navier–
Stokes model and the Cahn–Hilliard model. It is worth mentioning that the non-degeneracy of the mobility
coefficient leads to non-physical effects, i.e. Ostwald ripening effects (see [4]). For this reason, Abels, Depner
and Garcke studied model H with a degenerate mobility [5]. Their analysis relies on a regularization of the
mobility and singular potential into, respectively, a non-degenerate and non-singular potential. Then, suitable
a-priori estimates uniform in the regularization parameter allow to pass to the limit in the regularization and
show the existence of weak solutions to the degenerate model H.

We now review partially the extensive literature about the Cahn–Hilliard equation and its use for the mod-
elling of tumors. The Cahn–Hilliard equation has been initially used to represent the phase separation in binary
mixtures and has been applied to the spinodal decomposition of binary alloys under a sudden cooling [17, 18].
The model represents the two phases of the fluids as continua separated by a diffuse interface. This equation
has been used later in many different applications and we do not intend here to give an overview of all these.
However, we refer the reader interested in the topic to the presentation of the Cahn–Hilliard equation and its
applications to the review book [53]. We are interested here in the application of the Cahn–Hilliard framework
to tumor modelling (see e.g. [52]). Latter, different variants of the Cahn–Hilliard model appeared: e.g. (without
giving a complete overview) its coupling to Darcy’s law [31], Brinkman’s law [22], chemotaxis [59]. Recently, a
variant of the CH equation has been used to better represent the growth and organization of tumors. The main
change is the use of a single-well logarithmic degenerate potential instead of a double-well potential [7, 19, 57].
This type of potential has been proposed in [9] to represent the action of the cells depending only on the local
density, i.e. attraction at low cell density and repulsion for large cell density representing the tendency of cells
to avoid overcrowding. The Cahn–Hilliard framework has also been utilized in systems representing invasive
growth of tumors. The interested reader can find a lot of information about phase-field type systems modelling
tumor growth and invasion in the very recent survey paper [30] and references therein.

We now review some of the literature about the numerical simulation of NSCH models. The numerical
simulation of model H for binary fluids with non-matching densities has been the subject of numerous works
(see e.g. [39] and references therein). However, in part due to its complexity, the numerical simulation of the
compressible NSCH system has been less explored. A 𝐶0 finite element numerical scheme for a variant of the
quasi-compressible NSCH model proposed in [51] has been proposed in [33]. Around the same time, Giesselmann
and Pryer [8, 32] designed a discontinuous Galerkin finite element scheme to simulate the quasi-incompressible
NSCH system which preserves the total mass and the dissipation of energy. A numerical method has also been
proposed in [37] in the case of constant mobility 𝑏(𝑐) and smooth polynomial potential 𝜓(𝑐). However, the
system simulated in [37] is a simplification of the compressible NSCH system since the derivative pressure does
not appear in the definition of the chemical potential 𝜇 in their system.

The previous works we presented for the simulation of the compressible or quasi-compressible NSCH systems
deal with constant mobility combined with a smooth polynomial potential. We aim to simulate the compressible
NSCH model with choices of mobility and potential relevant for biology (but also relevant for material sciences
and fluid mechanics), i.e. degenerate mobility combined with a logarithmic potential. We now review briefly
some relevant discretization methods for the Cahn–Hilliard equation with degenerate mobility and singular
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potentials. Considering a degenerate mobility and a double-well logarithmic potential, we mention the work of
Barrett et al. [12]. In this article the authors proposed a finite element scheme with a variational inequality to
preserve the bounds of the solution. Based on these ideas, Agosti et al. [7] proposed a similar finite element
scheme for the single-well logarithmic potential case. The difficulty in this latter case lies in the fact that the
degeneracy and the singularity sets do not coincide and, considering an order parameter that must remain within
the bounds [0, 1), negative solutions can appear if a standard discretization method is used. The numerical
scheme proposed in [7] solves this issue but does not preserve the mass. In a more recent work, Agosti [6]
proposed a discontinuous Galerkin finite element scheme that preserves the bounds [0, 1) and preserves the
exact mass. However, the main drawback of the previously mentioned methods is that they are computationally
expensive: they solve a strongly coupled nonlinear system and resort to the use of iterative algorithms.

Since the Cahn–Hilliard equation is a gradient flow (see e.g. [49]), a structure-preserving linear scheme can
be constructed using the Scalar Auxiliary Variable (SAV in short) method [60]. The SAV method is a very
powerful tool to design unconditionally energy-stable numerical schemes for models possessing a gradient-flow
(see e.g. [62, 66] and references therein) or Hamiltonian structure (see e.g. [11, 58] and references therein). The
SAV method has evolved during the past 6 years starting from the original SAV method [60, 61] to improved
variants such as the generalized version GSAV (see e.g. [41, 66]) and the relaxed RSAV method [43]. In our
work, we use the GSAV method that has been already used in [42] for the Cahn–Hilliard equation. In this
latter work, the scheme is structure-preserving from the use of a scalar variable that represents the discrete
energy, and an additional equation is solved to ensure dissipation at the discrete level. The bounds of the order
parameter are ensured using a transformation that maps R to the physical relevant interval ((0, 1) in the case of
a double-well potential). Hence, compared to other techniques, the SAV method has the advantage to allow for
the design of a linear, efficient, structure-preserving scheme and can easily be used for our G-NSCH system. We
also emphasize that the SAV method has been used for the simulation of the incompressible NSCH model with
positive mobility and polynomial potential in [47]. In the present work, we use the GSAV method to design a
numerical scheme for the G-NSCH model. Our numerical scheme allows to use degenerate mobility and singular
potential functionals which are more physically relevant. To the best of our knowledge, our G-NSCH model is
new because it comprises the friction force term and the exchange between the two phases of the fluid. Moreover,
the use of the GSAV method for a compressible NSCH system is new, especially with our choice of functionals
(i.e. degenerate mobility and singular potential).

Objectives of our work. The first objective of our work is to study the well-posedness of the G-NSCH model
under some simplifying assumptions (i.e. smooth potential and positive mobility). The second objective is the
design of an efficient and structure-preserving numerical scheme for the G-NSCH model with singular double-
well potential and degenerate mobility. The third focus of the present work concerns the rigorous derivation of
the G-NSCH model that is presented in the appendix.

Outline of the paper. Section 2 presents the notations, functional spaces and assumptions we use in our work
for the analytical part but also for the numerical part. Section 3 concerns the proof of the existence of weak
solutions for the G-NSCH system (1.1)–(1.4) under simplifying assumptions. A structure preserving numerical
scheme based on the GSAV method is then proposed in Section 4 and some numerical results are presented
in Section 5. Our model’s equations come from a thermodynamically consistent derivation of the compressible
Navier–Stokes–Cahn–Hilliard model including friction effects and source terms. The derivation is described in
Appendix A. From the general model, we propose in Appendix B two reductions: The G-NSCH studied and
simulated in the present work and one biologically relevant reduction that will be the focus of a forthcoming
work.

2. General assumptions, notations and functional setting

The equations are set in a domain Ω𝑇 = Ω× (0, 𝑇 ) with Ω an open and bounded subset of R𝑑 (𝑑 = 1, 2, 3).
We assume that the boundary 𝜕Ω is sufficiently smooth. We indicate the usual Lebesgue and Sobolev spaces
by respectively 𝐿𝑝(Ω), 𝑊𝑚,𝑝(Ω) with 𝐻𝑚(Ω) := 𝑊𝑚,2(Ω), where 1 ≤ 𝑝 ≤ +∞ and 𝑚 ∈ N. For 𝑞 ∈ [1,+∞], we
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indicate the Bochner spaces by 𝐿𝑞(0, 𝑇 ;𝑋) (where 𝑋 is a Banach space). Finally, 𝐶 denotes a generic constant
that appears in inequalities and whose value can change from one line to another. This constant can depend on
various parameters unless specified otherwise.

2.1. Assumptions on functionals

We divide the assumptions on the different terms appearing in system (1.1)–(1.4) into two parts: analytical
and numerical assumptions. Indeed we are not able to prove the existence of weak solutions in the general setting
used for the numerical simulations. For instance, the case of the usual logarithmic double-well potential in the
Cahn–Hilliard equation is not treated but can be implemented in our numerical scheme. However, we can analyze
our system with a polynomial approximation of the double well. We also consider non-degenerate mobilities
to obtain estimates on the chemical potential 𝜇 directly. The case of degenerate mobility, see for instance [24],
seems unavailable as we do not have anymore the classical “entropy” estimates of the Cahn–Hilliard equation
that provide bound on second-order derivatives of the mass fraction 𝑐.

Framework for numerical simulations. We assume that the viscosity 𝜈(𝑐), 𝜂(𝑐) and permeability 𝜅(𝜌, 𝑐)
coefficients are smooth non-negative functions. The mobility is a non-negative function of the order parameter
(mass fraction) 𝑐. Hence, we assume that

𝑏 ∈ 𝐶1
(︀
[0, 1]; R+

)︀
, and 𝑏(𝑐) ≥ 0 for 0 ≤ 𝑐 ≤ 1. (2.1)

In agreement with the literature (see e.g. [21]), the homogeneous free energy 𝜓0(𝜌, 𝑐) is assumed to be of the
form

𝜓0(𝜌, 𝑐) = 𝜓𝑒(𝜌) + 𝜓mix(𝜌, 𝑐), (2.2)

with 𝜓mix(𝜌, 𝑐) = 𝐻(𝑐) log 𝜌+𝑄(𝑐) and 𝑄(𝑐) is a double-well (or single-well) potential. Then, using the consti-
tutive relation for the pressure, we have

𝑝(𝜌, 𝑐) = 𝜌2 𝜕𝜓0

𝜕𝜌
= 𝑝𝑒(𝜌) + 𝜌𝐻(𝑐), (2.3)

where 𝑝𝑒 = 𝜌2𝜓′𝑒(𝜌) and is assumed to satisfy

𝑝1𝜌
𝑎−1 − 𝑝2 ≤ 𝑝′𝑒(𝜌) ≤ 𝑝3(1 + 𝜌𝑎−1), for 𝑎 > 3/2, 𝑝1, 𝑝2, 𝑝3 > 0. (2.4)

We assume that the exchange term 𝐹𝑐 (that can depend on the mass fraction and the density) is bounded,

|𝐹𝑐(𝜌, 𝑐)|+
⃒⃒⃒⃒
𝐹𝑐(𝜌, 𝑐)

𝜌

⃒⃒⃒⃒
≤ 𝐶, ∀(𝜌, 𝑐) ∈ R2. (2.5)

Remark 2.1 (Double-well logarithmic potential). In the present work, we aim to use a double-well logarithmic
potential in the definition of the mixing potential. A relevant example of potential is

𝜓mix =
1
2

(𝛼1(1− 𝑐) log(𝜌(1− 𝑐)) + 𝛼2𝑐 log(𝜌𝑐))− 𝜃

2

(︂
𝑐− 1

2

)︂2

. (2.6)

This potential gives

𝐻(𝑐) =
1
2

(𝛼1(1− 𝑐) + 𝛼2𝑐), 𝑄(𝑐) =
1
2

(𝛼1(1− 𝑐) log(1− 𝑐) + 𝛼2𝑐 log(𝑐))− 𝜃

2

(︂
𝑐− 1

2

)︂2

,

where 𝜃 > 1.
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Additional assumptions for the existence of weak solutions and analysis of the numerical scheme.
Concerning the existence of weak solutions and analysis of the numerical scheme, we need to strengthen our
assumptions. The viscosity coefficients 𝜈(𝑐), 𝜂(𝑐) are assumed to be bounded from below by a positive constant
and the friction coefficient 𝜅(𝜌, 𝑐) is assumed to be nonnegative. Moreover, 𝜈(𝑐), 𝜂(𝑐) and 𝜅(𝜌, 𝑐) are bounded
functions. We consider 𝑎 > 2 the exponent of the pressure law. In the numerical simulations, we take degenerate
mobilities of the form 𝑏(𝑐) = 𝑐(1 − 𝑐)𝛼. However, in the analysis, we consider a non-degenerate mobility by
truncating the previous mobility. For instance, using a small parameter 0 < 𝜀𝑏 << 1, we approximate the
mobility 𝑏(·) by

𝑏𝜀𝑏
(𝑐) =

⎧⎪⎨⎪⎩
𝑏(1− 𝜀𝑏), if 𝑐 ≥ 1− 𝜀𝑏,

𝑏(𝜀𝑏), if 𝑐 ≤ 𝜀𝑏,

𝑏(𝑐), otherwise,

and consider the case of a fixed 𝜀𝑏. Dropping the 𝜀𝑏 subscript, we obtain that

𝑏 ∈ 𝐶1(R; R+), and 𝑏(𝑐) ≥ 𝐶 > 0 ∀𝑐 ∈ R. (2.7)

Concerning the functionals appearing in the definition of the free energy 𝜓0 we assume that 𝐻 and 𝐻 ′ are
bounded and that 𝑄 is a polynomial approximation of the double well potential. More precisely we take

𝐻1 ≤ 𝐻 ′(𝑐), 𝐻(𝑐) ≤ 𝐻2, 𝑐 ∈ R, 𝐻1, 𝐻2 > 0,

𝑄(𝑐) =
1
4
𝑐2(1− 𝑐)2.

(2.8)

The case of the double-well logarithmic potential has not been tackled yet even though this is the main motivation
for the decomposition of 𝜓𝑚𝑖𝑥 as in the works [3, 21].

Also, to make the computations simpler, we assume that

– 𝑎 > 6 where 𝑎 is the pressure exponent,
– 𝜓𝑒(𝜌) = 𝜌𝑎−1

𝑎−1 and therefore 𝑝𝑒(𝜌) = 𝜌𝑎.

These two assumptions are not necessary and could be removed but simplify the analysis. We refer for instance
to [3,27] for the more general setting. For instance, the condition 𝑎 > 6 is used to not introduce another parameter
in the approximating scheme which would make the article longer. Note that the assumptions on 𝜓0 imply in
particular the following lemma which is essential to obtain estimates on the energy dissipation:

Lemma 2.2. There exists a constant 𝐶 such that⃒⃒⃒⃒
𝜌
𝜕𝜓0

𝜕𝑐

⃒⃒⃒⃒
≤ 𝐶𝜌𝜓0 + 𝐶.

Its proof uses the assumption on 𝐻 and the fact that for 𝑐 large, 𝑄′(𝑐) ≈ 𝑐3 ≤ 𝑐4 + 1 ≈ 𝑄(𝑐) + 1.

3. Existence of weak solutions

We now turn to the proof of the existence of weak solutions for the G-NSCH model (1.1)–(1.4) subjected to
boundary conditions

v = 0,
𝜕𝑐

𝜕n
= 𝑏(𝑐)

𝜕𝜇

𝜕n
= 0, on 𝜕Ω, (3.1)

and initial conditions

𝜌(0, 𝑥) = 𝜌0 ≥ 0 ∈ 𝐿𝑎(Ω), 𝑐(0, 𝑥) = 𝑐0 ∈ 𝐻1(Ω) 𝜌0v(0, 𝑥) = m0, with
|m0|2

𝜌0
∈ 𝐿1(Ω). (3.2)
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Also, we suppose 𝜌0 ̸= 0. In this section we take 𝑑 = 3. The proof of the result is quite long and technical.
Therefore, when possible and for the sake of clarity, we omit some proofs and give instead appropriate references.

Outline of the analysis. For readability reasons, we here present the outline of the analysis of the G-NSCH
model. We first start with the analysis of a “truncated” version of G-NSCH model in the sense that the double-
well is truncated for large values of 𝑐 with a parameter 𝜀𝑄. Then, for this fixed truncation, we prove the existence
of weak solutions using the ideas of [3, 21, 27, 48]. Then, we pass to the limit 𝜀𝑄 → 0. Namely, recalling that
𝑄(𝑐) = 1

4𝑐
2(1− 𝑐)2 we first consider 𝑄𝜀𝑄

(𝑐) a smooth truncated approximation of 𝑄 that satisfies

⃒⃒
𝑄𝜀𝑄

⃒⃒
,
⃒⃒⃒
𝑄′𝜀𝑄

⃒⃒⃒
,
⃒⃒⃒
𝑄′′𝜀𝑄

⃒⃒⃒
≤ 𝐶

(︂
1
𝜀𝑄

)︂
· (3.3)

In the first subsections, we drop the 𝜀𝑄 notation and work with the regularized problem. We will use the 𝜀𝑄
notation when we pass to the limit. For the moment, we benefit from the properties of the regularization.

3.1. Energy estimates

The G-NSCH system comes with an energy structure which is useful to obtain first a priori estimates.

Proposition 3.1. Smooth solutions of the system (1.1)–(1.4) satisfy the following energy relation

d
d𝑡
𝐸 +𝐷 =

∫︁
Ω

𝜇𝐹𝑐 d𝑥, (3.4)

where 𝐸 is the energy, and 𝐷 is the dissipation defined as

𝐸 =
∫︁

Ω

𝜌
|v|2

2
+ 𝜌𝜓0 +

𝛾

2
|∇𝑐|2 dx, (3.5)

𝐷 =
∫︁

Ω

𝜈(𝑐)
2

⃒⃒⃒⃒
∇v +∇v𝑇 − 2

3
div(v)I

⃒⃒⃒⃒2
+ 𝜂(𝑐)|div(v)I|2 + 𝑏(𝑐)|∇𝜇|2 + 𝜅(𝜌, 𝑐)|v|2 dx. (3.6)

This yields a priori estimates on the solution i.e. there exists a positive constant 𝐶 such that

𝐸(𝑡) +
∫︁ 𝑡

0

𝐷(𝑠) d𝑠 ≤ 𝐶 + 𝐶𝐸(0).

Note that the energy is bounded from below since 𝜌 log 𝜌𝐻(𝑐) is bounded from below with (2.8). Also, the
purpose of the assumptions 𝜈(𝑐), 𝜂(𝑐) and 𝑏(𝑐) bounded from below by a positive constant becomes clear, they
are crucial to obtain estimates on the 𝐻1(Ω) norm of 𝜇 and v.

Proof. We recall the formula

∇𝑐∆𝑐 = div(∇𝑐⊗∇𝑐)− 1
2
∇|∇𝑐|2. (3.7)

We denote by T the tensor

T = 𝜈(𝑐)
(︂
∇v +∇v𝑇 − 2

3
div(v)I

)︂
+ 𝜂(𝑐)div(v)I. (3.8)

Then we multiply equation (1.1) by |v|2
2 and sum it with the scalar product of equation (1.4) with v. We obtain
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𝜕

𝜕𝑡

(︂
𝜌
|v|2

2

)︂
+ div

(︂
1
2
𝜌|v|2v + 𝑝(𝜌, 𝑐)v − T · v

)︂
+ T : ∇v + 𝜅(𝜌, 𝑐)v2 = 𝑝(𝜌, 𝑐)div(v)

+ 𝛾div
(︂

1
2
|∇𝑐|2I− (∇𝑐⊗∇𝑐)

)︂
· v,

which is equivalent to

𝜕

𝜕𝑡

(︂
𝜌
|v|2

2

)︂
+ div

(︂
1
2
𝜌|v|2v + 𝑝(𝜌, 𝑐)v − T · v

)︂
+ T : ∇v + 𝜅(𝜌, 𝑐)v2 = 𝑝(𝜌, 𝑐)divv − 𝛾∆𝑐∇𝑐 · v. (3.9)

Then, we multiply equation (1.2) by 𝜇 and obtain using also (1.1)

𝜌𝜇(𝜕𝑡𝑐+ v · ∇𝑐) = div(𝑏(𝑐)∇𝜇)𝜇+ 𝜇𝐹𝑐.

And, using (1.3) we obtain

𝜌
𝜕𝜓0

𝜕𝑐
(𝜕𝑡𝑐+ v · ∇𝑐) = div(𝑏(𝑐)∇𝜇)𝜇+ 𝛾∆𝑐(𝜕𝑡𝑐+ v · ∇𝑐) + 𝜇𝐹𝑐.

The previous equation can be rewritten using the chain rule as

𝜕𝑡(𝜌𝜓0) + div(𝜌𝜓0v)− 𝜓0(𝜕𝑡𝜌+ div(𝜌v))− 𝜌
𝜕𝜓0

𝜕𝜌
(𝜕𝑡𝜌+ v · ∇𝜌)

= div(𝑏(𝑐)∇𝜇)𝜇+ 𝛾∆𝑐(𝜕𝑡𝑐+ v · ∇𝑐) + 𝜇𝐹𝑐.

We have 𝜌𝜕𝜓0
𝜕𝜌 (𝜕𝑡𝜌 + v · ∇𝜌) = 𝜌𝜕𝜓0

𝜕𝜌 (−𝜌div(v)) = −𝑝div(v) (see Eq. (2.3) for the definition of the pressure).

Moreover, we know that ∆𝑐𝜕𝑡𝑐 = div(𝜕𝑡𝑐∇𝑐)− 𝜕𝑡

(︁
|∇𝑐|2

2

)︁
and, hence,

𝜕𝑡(𝜌𝜓0) + div(𝜌𝜓0v) + 𝑝div(v) = div(𝑏(𝑐)∇𝜇)𝜇+ 𝛾

[︂
div(𝜕𝑡𝑐∇𝑐)− 𝜕𝑡

(︂
|∇𝑐|2

2

)︂
+ ∆𝑐v · ∇𝑐

]︂
+ 𝜇𝐹𝑐. (3.10)

Summing (3.9) and (3.10) we obtain

𝜕

𝜕𝑡

(︂
𝜌
|v|2

2
+ 𝜌𝜓0 +

𝛾

2
|∇𝑐|2

)︂
+ div

(︂
𝜌𝜓0v +

1
2
𝜌|v|2v + 𝑝(𝜌, 𝑐)v − T : v − 𝛾𝜕𝑡𝑐∇𝑐

)︂
− div(𝑏(𝑐)∇𝜇)𝜇

+ T : ∇v + 𝜅(𝜌, 𝑐)|v|2 = 𝜇𝐹𝑐.

Now we use the fact that

T : ∇v =
𝜈(𝑐)

2

⃒⃒⃒⃒
∇v +∇v𝑇 − 2

3
div(v)I

⃒⃒⃒⃒2
+ 𝜂(𝑐)|div(v)I|2. (3.11)

Integrating in space and using the boundary conditions (3.1) ends the proof of the first part of the proposition.
To prove the second part, we integrate the equation in time and control the right-hand side. Indeed, due to the
assumption on the source term (2.5), we have⃒⃒⃒⃒∫︁ 𝑡

0

∫︁
Ω

𝜇𝐹𝑐 d𝑥d𝑡
⃒⃒⃒⃒
≤ 𝐶

∫︁ 𝑡

0

∫︁
Ω

|𝜇|.

We want to use Lemma 3.7 to control the 𝐿1 norm of 𝜇. Integrating the equations on 𝜌 to obtain
∫︀
Ω
𝜌d𝑥 =∫︀

Ω
𝜌0 d𝑥 > 𝑀0 we satisfy the first assumption of the lemma. For the second, we notice that we can consider a

variant of this lemma such that instead of asking 𝜌 to be in 𝐿6/5 we have the inequality⃦⃦⃦⃦
u− 1

|Ω|

∫︁
Ω

𝜌u
⃦⃦⃦⃦
𝐿2

≤ 𝐶‖∇u‖𝐿2 + ‖𝜌‖𝐿6/5 .
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Using Young’s inequality, the fact that in the energy 𝜌𝜓0 contains a term of the form 𝜌𝑎+1 we obtain for ̃︀𝐶
small enough∫︁ 𝑡

0

∫︁
Ω

|𝜇|d𝑥 ≤ 𝐶 + ̃︀𝐶 ∫︁ 𝑡

0

∫︁
Ω

|𝜇|2 d𝑥 ≤ 𝐶 + 𝐶𝐸(𝑡) +
inf𝑐 𝑏(𝑐)

2

∫︁
Ω

|∇𝜇|2 d𝑥+ 𝐶

⃒⃒⃒⃒∫︁
Ω

𝜌𝜇d𝑥
⃒⃒⃒⃒
.

Since the energy dissipation controls the third term of the right-hand side, it remains to control the last term of
the right-hand side. We recall that 𝜌𝜇 = 𝜌𝜕𝜓0

𝜕𝑐 − 𝛾∆𝑐. Using the Neumann boundary conditions on 𝑐, it remains

to control
⃒⃒⃒∫︀

Ω
𝜌𝜕𝜓0
𝜕𝑐

⃒⃒⃒
. Using Lemma 2.2, we obtain⃒⃒⃒⃒∫︁

Ω

𝜌
𝜕𝜓0

𝜕𝑐
d𝑥
⃒⃒⃒⃒
≤ 𝐶 + 𝐶𝐸(𝑡).

We conclude using Gronwall’s lemma. �

3.2. Existence of weak solutions for fixed 𝜀𝑄

The weak solutions of system (1.1)–(1.4) are defined as follows

Definition 3.2. We say that (𝜌,v, 𝑐, 𝜇) is a weak of system (1.1)–(1.4) provided:

– 𝜌 ≥ 0 and we have the regularity

𝜌 ∈ 𝐿∞(0, 𝑇 ;𝐿𝑎(Ω)),
v ∈ 𝐿2(0, 𝑇 ;𝐻1

0 (R3)),
√
𝜌v ∈ 𝐿∞(0, 𝑇 ;𝐿2(Ω; R3)), T : ∇v ∈ 𝐿1(0, 𝑇 ;𝐿1(Ω)),

𝑐 ∈ 𝐿∞(0, 𝑇 ;𝐻1(Ω)),
𝜇 ∈ 𝐿2(0, 𝑇 ;𝐻1(Ω)).

– Equations (1.1)–(1.4) are satisfied in the distributional sense.
– The initial conditions (3.2) are satisfied a.e. in Ω.
– The boundary conditions (3.1) are satisfied.

We state our main theorem about the existence of weak solutions

Theorem 3.3 (Existence of weak solutions). There exist (𝜌,v, 𝑐, 𝜇) weak solutions of (1.1)–(1.4) in the sense
of Definition 3.2.

In order to prove the existence of weak solutions, we use an approximating scheme with a small parameter
𝜀 > 0 borrowing the idea from [27,48]. More precisely, let 𝑋𝑛 = span{𝜂𝑖}𝑖=1,...,𝑛 be the set of the first 𝑛 vectors
of a basis of 𝐻1

0 (Ω; R3) such that 𝑋𝑛 ⊂ 𝐶2(Ω; R3). We consider the following problem for (𝜌,v𝑛, 𝑐) with v𝑛 ∈ 𝑋𝑛

(with coordinates depending on time):
𝜕𝑡𝜌+ div(𝜌v𝑛) = 𝜀∆𝜌, (3.12)

and for every 𝜂 ∈ 𝑋𝑛,∫︁
Ω

𝜌v𝑛(𝑡) · 𝜂 d𝑥−
∫︁

Ω

m0 · 𝜂 d𝑥−
∫︁ 𝑡

0

∫︁
Ω

𝜌v𝑛 ⊗ v𝑛 : ∇𝜂 d𝑥d𝑠−
∫︁ 𝑡

0

∫︁
Ω

𝑝(𝜌, 𝑐)div(𝜂) d𝑥d𝑠

+ 𝜀

∫︁ 𝑡

0

∫︁
Ω

(∇v𝑛∇𝜌) · 𝜂 d𝑥 d𝑠+
∫︁ 𝑡

0

∫︁
Ω

T : ∇𝜂 d𝑥d𝑠+ 𝛾

∫︁ 𝑡

0

∫︁
Ω

(︂
1
2
|∇𝑐|2I− (∇𝑐⊗∇𝑐)

)︂
: ∇𝜂 d𝑥d𝑠

+
∫︁

Ω

∫︁ 𝑡

0

𝜅(𝜌, 𝑐)v𝑛 · 𝜂 d𝑥 d𝑠 = 0. (3.13)
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And for the equation on the mass fraction

𝜕𝑡𝑐+ v𝑛 · ∇𝑐 =
1
𝜌

div(𝑏(𝑐)∇𝜇) +
𝐹𝑐
𝜌
, 𝜇 =

𝜕𝜓0

𝜕𝑐
− 𝛾

∆𝑐
𝜌
· (3.14)

We consider Neumann boundary conditions

∇𝜌 · n = 𝑏(𝑐)∇𝜇 · n = ∇𝑐 · n = 0 on 𝜕Ω, (3.15)

and the Dirichlet boundary condition for v𝑛 is included in the definition of 𝑋𝑛. Finally, we consider the initial
conditions

𝜌(0, ·) = 𝜌0,𝜀 > 0, 𝑐(0, ·) = 𝑐0,𝜀, 𝜌v𝑛(0, ·) = m0, (3.16)

where 𝜌0,𝜀, 𝑐0,𝜀 satisfy the Neumann boundary conditions and they are smooth approximations of 𝜌0, 𝑐0 (when
𝜀→ 0).

We now comment on the scheme used above and detail the strategy of the proof. We add the artificial
diffusion in (3.12) with the parameter 𝜀 > 0. Here, v𝑛 is fixed and we can conclude the global in time existence
of classical solutions to (3.12) which are positive since the initial condition is positive (and using maximum
principle). Using this positivity, we conclude the existence of a strong solution to equation (3.14) which is in
fact a fourth-order parabolic equation. Having obtained 𝑐, we focus on equation (3.13) and we prove existence
for a small time with Schauder’s fixed point theorem. Note the presence of the additional term 𝜀

∫︀
(∇v𝑛∇𝜌) · 𝜂

which is useful to cancel energy terms introduced by 𝜀∆𝜌 in (3.12). Having obtained existence on a short time
interval we compute the energy of the system and obtain global existence. Then, we pass to the limit 𝑛 → ∞.
It remains to send 𝜀 and 𝜀𝑄 to 0 and obtain solutions of system (1.1)–(1.4).

We first turn our attention to equation (3.12). From [27], we obtain the following proposition, and lemma

Proposition 3.4. Let Ω ⊂ R3 be a bounded domain of class 𝐶2+𝛽 for some 𝛽 > 0. For a fixed v𝑛 ∈ 𝑋𝑛,
there exists a unique solution to equation (3.12) with Neumann boundary conditions (3.15) and initial data
conditions (3.16). Furthermore, the mapping v𝑛 ↦→ 𝜌[v𝑛], that assigns to any v𝑛 ∈ 𝑋𝑛 the unique solution
of (3.12), takes bounded sets in the space 𝐶

(︀
0, 𝑇 ;𝐶2

0

(︀
Ω,R3

)︀)︀
into bounded sets in the space

𝑉 :=
{︀
𝜕𝑡𝜌 ∈ 𝐶

(︀
0, 𝑇 ;𝐶𝛽

(︀
Ω
)︀)︀
, 𝜌 ∈ 𝐶

(︀
0, 𝑇 ;𝐶2+𝛽

(︀
Ω
)︀)︀}︀

.

Lemma 3.5. The solutions of (3.12) satisfy(︂
inf
𝑥∈Ω

𝜌(0, 𝑥)
)︂

exp
(︂
−
∫︁ 𝑡

0

‖div v𝑛(𝑠)‖𝐿∞(Ω) d𝑠
)︂
≤ 𝜌(𝑡, 𝑥)

≤
(︂

sup
𝑥∈Ω

𝜌(0, 𝑥)
)︂

exp
(︂∫︁ 𝑡

0

‖div v𝑛(𝑠)‖𝐿∞(Ω) d𝑠
)︂
,

for all 𝑡 ∈ [0, 𝑇 ] and 𝑥 ∈ Ω.

Using the latter lemma, if the velocity field is in 𝑊 1,∞, the density is bounded from below by a positive
constant (provided the initial condition is positive). We now focus on equation (3.14).

Proposition 3.6. Let 𝜌 be given such that 𝜌 ∈ 𝐶
(︀
0, 𝑇 ;𝐶2

(︀
Ω
)︀)︀

and 𝜌 ≥ 𝜌 > 0. Then equation (3.14) with
Neumann boundary conditions (3.15) admits a strong solution. Moreover, the mapping v𝑛 ↦→ 𝑐[v𝑛] takes bounded
sets in the space 𝐶

(︀
0, 𝑇 ;𝐶2

0

(︀
Ω,R3

)︀)︀
into bounded sets in the space

𝑊 :=
{︀
𝑐 ∈ 𝐿∞

(︀
0, 𝑇 ;𝐻1(Ω)

)︀
∩ 𝐿2

(︀
0, 𝑇 ;𝐻3(Ω)

)︀}︀
. (3.17)
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The existence of a strong solution is based on the remark that the highest order term of this equation is
−𝛾 𝑏(𝑐)𝜌 ∆2𝑐. Using 𝑏(𝑐), 𝜌 ≥ 𝐶 > 0 we obtain a fourth-order parabolic equation with smooth coefficients and
with zero Neumann boundary conditions. Therefore, we can admit the global in time strong solution than can
be achieved through a Galerkin scheme and we focus on the estimates (3.17). In the proof, we need the following
two lemmas

Lemma 3.7 ([28], Lem. 3.1). Let Ω ∈ R3 be a bounded Lipschitz domain and let 𝑀0 > 0, 𝐾 > 0. Assume that
𝜌 is a nonnegative function such that

0 < 𝑀0 ≤
∫︁

Ω

𝜌d𝑥,
∫︁

Ω

𝜌𝑎 d𝑥 ≤ 𝐾, with 𝑎 >
6
5
·

Then, there exists a positive constant 𝐶 = 𝐶(𝑀0,𝐾, 𝑎) such that the inequality⃦⃦⃦⃦
u− 1

|Ω|

∫︁
Ω

𝜌u
⃦⃦⃦⃦
𝐿2(Ω;R3)

≤ 𝐶‖∇u‖𝐿2(Ω;R3×3),

holds for any u ∈𝑊 1,2(Ω; R3).

Lemma 3.8 ([29], Thm. 10.17). Let Ω ⊂ R3 be a bounded Lipschitz domain, and let 1 < 𝑝 < +∞, 𝑀0 > 0,
𝐾 > 0, 𝑎 > 1. Then there exists a positive constant 𝐶 = 𝐶(𝑝,𝑀0,𝐾, 𝑎) such that the inequality

‖u‖𝑊 1,𝑝(Ω;R3) ≤ 𝐶

(︂
‖∇u +∇𝑇u− 2

3
divuI‖𝐿𝑝(Ω;R3×3) +

∫︁
Ω

𝜌|u|d𝑥
)︂
,

holds for any u ∈𝑊 1,𝑝(Ω; R3) and any non-negative function 𝜌 such that

0 < 𝑀0 ≤
∫︁

Ω

𝜌d𝑥,
∫︁

Ω

𝜌𝑎 d𝑥 ≤ 𝐾.

Proof of Proposition 3.6. We admit the existence of solutions and focus on a priori estimates. We multiply
equation (3.14) by −∆𝑐. Using the boundary conditions and integrating in space yields

𝜕𝑡

∫︁
Ω

|∇𝑐|2

2
d𝑥+ 𝛾

∫︁
Ω

𝑏(𝑐)
⃒⃒⃒⃒
∇
(︂

∆𝑐
𝜌

)︂⃒⃒⃒⃒2
d𝑥

=
∫︁

Ω

1
2

div(v𝑛)|∇𝑐|2 −∇v𝑛 : ∇𝑐⊗∇𝑐d𝑥+
∫︁

Ω

𝑏(𝑐)∇
(︂
𝜕𝜓0

𝜕𝑐

)︂
· ∇
(︂

∆𝑐
𝜌

)︂
d𝑥−

∫︁
Ω

𝐹𝑐
𝜌

∆𝑐.

Here, we have also used the formula (3.7). We use the 𝐿∞ bounds on v𝑛, div(v𝑛), 𝑏(𝑐), 𝜌 the fact that 𝐹𝑐

𝜌 is
also bounded in 𝐿∞, properties on 𝜕𝑐𝜓0 (3.3), and obtain

𝜕𝑡

∫︁
Ω

|∇𝑐|2

2
d𝑥+ 𝛾

∫︁
Ω

𝑏(𝑐)
⃒⃒⃒⃒
∇
(︂

∆𝑐
𝜌

)︂⃒⃒⃒⃒2
d𝑥 ≤ 𝐶

∫︁
Ω

|∇𝑐|2 d𝑥+ 𝐶

∫︁
Ω

⃒⃒⃒⃒
∇∆𝑐

𝜌

⃒⃒⃒⃒
d𝑥+ 𝐶

∫︁
Ω

|∆𝑐|.

We want to control the last term on the right-hand side. We use Lemma 3.7 with u = Δ𝑐
𝜌 (1, 0, 0)𝑇 and obtain,

together with Neumann boundary conditions on 𝑐,⃦⃦⃦⃦
∆𝑐
𝜌

⃦⃦⃦⃦
𝐿2(Ω)

≤ 𝐶

⃦⃦⃦⃦
∇
(︂

∆𝑐
𝜌

)︂⃦⃦⃦⃦
𝐿2(Ω;R3)

. (3.18)

Then, writing ∆𝑐 = 𝜌Δ𝑐
𝜌 and using the 𝐿∞ bound on 𝜌,∫︁

Ω

|∆𝑐| ≤ 𝐶

⃦⃦⃦⃦
∇
(︂

∆𝑐
𝜌

)︂⃦⃦⃦⃦
𝐿2(Ω;R3)

.



2000 C. ELBAR AND A. POULAIN

Finally, using Young’s inequality and Gronwall’s lemma, we obtain

sup
𝑡∈(0,𝑇 )

∫︁
Ω

|∇𝑐|2 d𝑥+ 𝛾

∫︁ 𝑇

0

∫︁
Ω

𝑏(𝑐)
⃒⃒⃒⃒
∇
(︂

∆𝑐
𝜌

)︂⃒⃒⃒⃒2
d𝑥 ≤ 𝐶. (3.19)

With Lemma 3.7 (and integrating the equation on 𝜌𝑐 using also the boundary conditions) we obtain the bound

𝑐 ∈ 𝐿∞
(︀
0, 𝑇 ;𝐻1(Ω)

)︀
∩ 𝐿2

(︀
0, 𝑇 ;𝐻3(Ω)

)︀
. (3.20)

�

Having defined 𝜌 and 𝑐, we now solve equation (3.13) with a fixed point argument. We define the operator

ℳ[𝜌] : 𝑋𝑛 → 𝑋*
𝑛, ⟨ℳ[𝜌]v,w⟩ :=

∫︁
Ω

𝜌v ·w d𝑥, v,w ∈ 𝑋𝑛.

This operator ([27]) ℳ[𝜌] is invertible, and⃦⃦
ℳ−1[𝜌]

⃦⃦
ℒ(𝑋*𝑛;𝑋𝑛)

≤ 1
infΩ 𝜌

,
⃦⃦
ℳ−1[𝜌1]−ℳ−1[𝜌2]

⃦⃦
ℒ(𝑋*𝑛;𝑋𝑛)

≤ 𝐶(𝑛, 𝜌)‖𝜌1 − 𝜌2‖𝐿1(Ω), (3.21)

for any 𝜌1, 𝜌2 ≥ 𝜌. Finally, equation (3.13) can be reformulated as

v𝑛(𝑡) = ℳ−1[𝜌(𝑡)]
(︂
m*

0 +
∫︁ 𝑡

0

𝒩 [v𝑛(𝑠), 𝜌(𝑠), 𝑐(𝑠)] d𝑠
)︂
, (3.22)

with
⟨m*

0, 𝜂⟩ =
∫︁

Ω

m0 · 𝜂 d𝑥,

and

⟨𝒩 [v𝑛, 𝜌, 𝑐], 𝜂⟩ =
∫︁

Ω

(︁
𝜌v𝑛 ⊗ v𝑛 − T− 𝛾

2
|∇𝑐|2I + 𝛾∇𝑐⊗∇𝑐

)︁
: ∇𝜂 + 𝑝(𝜌, 𝑐)div(𝜂)

− (𝜀∇v𝑛∇𝜌+ 𝜅(𝜌, 𝑐)v𝑛) · 𝜂 d𝑥.

To prove that equation (3.22) has a solution, we apply Schauder’s fixed-point theorem in a short time interval
[0, 𝑇 (𝑛)]. Then, we need uniform estimates to iterate the procedure.

Lemma 3.9 (Schauder fixed point theorem). Let 𝑋 be a Hausdorff topological vector space and 𝑆 be a closed,
bounded, convex, and non-empty subset of 𝑋. Then, any compact operator 𝐴 : 𝑆 → 𝑆 has at least one fixed
point.

With notation of the Lemma 3.9, we call 𝐴 the operator from equation (3.22) and 𝑆 = 𝐵(u0,𝑛) the unit ball
with center u0,𝑛 in 𝐶([0, 𝑇 ];𝑋𝑛), u0,𝑛 is defined by∫︁

Ω

𝜌0u0,𝑛 · 𝜂 d𝑥 =
∫︁

Ω

m0 · 𝜂 d𝑥, ∀𝜂 ∈ 𝑋𝑛.

More precisely, we consider

𝐴 :𝑆 → 𝐶([0, 𝑇 ];𝑋𝑛),

u ↦→ ℳ−1[𝜌(𝑡)]
(︂
m*

0 +
∫︁ 𝑡

0

𝒩 [u(𝑠), 𝜌(𝑠), 𝑐(𝑠)] d𝑠
)︂
.
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Lemma 3.10. There exists a time 𝑇 = 𝑇 (𝑛) small enough such that the operator 𝐴 maps 𝑆 into itself. More-
over, the mapping is continuous.

Proof. By definition of 𝐴 and m*
0, we need to prove that ‖ℳ−1[𝜌(𝑡)]

∫︀ 𝑡
0
𝒩 (𝑠) d𝑠‖𝐶(0,𝑇 ;𝑋𝑛) ≤ 1. With proper-

ties (3.21), it is sufficient to prove that there exists a final time 𝑇 small enough such that⃦⃦⃦⃦∫︁ 𝑡

0

𝑁(𝑠) d𝑠
⃦⃦⃦⃦
𝐶(0,𝑇 ;𝑋*𝑛)

≤ inf
Ω𝑇

𝜌.

Note that the infimum of 𝜌 needs to be taken over the set Ω𝑇 = (0, 𝑇 )×Ω as 𝜌 depends on time. But, since we
only consider small times, using Lemma 3.5 we see that this infimum is bounded by below. More precisely, for
every 𝑇0, there exists 𝐶(𝑇0) > 0 such that for every 𝑇 ≤ 𝑇0, infΩ𝑇

𝜌 ≥ 𝐶(𝑇0). We recall that 𝑋𝑛 ⊂ 𝐶2
(︀
Ω; R3

)︀
is

finite-dimensional. With the definition of the tensor T and the pressure 𝑝(𝜌, 𝑐) given by (3.11)–(2.3) we estimate
by Hölder’s inequality:∫︁ 𝑡

0

∫︁
Ω

(︁
𝜌u⊗ u− T− 𝛾

2
|∇𝑐|2I + 𝛾∇𝑐⊗∇𝑐

)︁
: ∇𝜂 + 𝑝(𝜌, 𝑐)div(𝜂)− (𝜀∇u∇𝜌+ 𝜅(𝜌, 𝑐)u) · 𝜂 d𝑥d𝑠

≤ 𝐶
(︁√

𝑇 + 𝑇
)︁

(‖𝜂‖𝑋𝑛
+ ‖∇𝜂‖𝑋𝑛

)
(︀
‖𝜌‖𝐿∞‖u‖2𝐿∞ + 𝐶‖𝜈(𝑐)‖𝐿2‖∇u‖𝐿∞ + 𝐶‖∇𝑐‖2𝐿4 + ‖𝜌‖𝑎𝐿∞

+‖𝜌‖𝐿∞‖𝐻(𝑐)‖𝐿∞ + 𝜀‖u‖𝑋𝑛
‖∇𝜌‖𝐿∞ + ‖u‖𝐿∞‖𝜅(𝜌, 𝑐)‖𝐿2).

Using assumptions of the Section 2.1 and Propositions 3.4–3.6, we prove that all the quantities on the right-hand
side are bounded, with a bound that may depend on 𝑛, except ‖∇𝑐‖𝐿4 which needs an argument. Note that
from (3.17), we deduce ∇𝑐 is bounded in 𝐿2

(︀
0, 𝑇 ;𝐻2(Ω)

)︀
∩ 𝐿∞

(︀
0, 𝑇 ;𝐿2(Ω)

)︀
(by a constant which depends

on 𝜌, and also on ‖u‖𝐿∞ , ‖∇u‖𝐿∞). By Sobolev embedding with 𝑑 = 3, ∇𝑐 is bounded in 𝐿2(0, 𝑇 ;𝐿∞(Ω)) ∩
𝐿∞(0, 𝑇 ;𝐿2(Ω)). By Hölder inequality (or interpolation), we obtain an 𝐿4

(︀
0, 𝑇 ;𝐿4(Ω)

)︀
bound: ‖∇𝑐‖4𝐿4𝐿4 ≤

‖∇𝑐‖2𝐿∞𝐿2‖∇𝑐‖2𝐿2𝐿∞ . With the previous estimates, and for 𝑇 small enough, we obtain the result. �

Lemma 3.11. The image of 𝑆 under 𝐴 is in fact a compact subset of 𝑆. Therefore, 𝐴 admits a fixed point.

Proof. We want to apply the Arzelà-Ascoli theorem to deduce the relative compactness of 𝐴(𝑆). From the
previous computation, and using the fact that 𝑋𝑛 is finite-dimensional, we can prove that 𝐴(𝑆) is point-
wise relatively compact. It remains to prove its equicontinuity. We want to estimate for 𝑡′ ≤ 𝑡 the 𝑋𝑛 norm
of ℳ−1[𝜌(𝑡)]

(︁
m*

0 +
∫︀ 𝑡
0
𝒩 [u(𝑠), 𝜌(𝑠), 𝑐(𝑠)] d𝑠

)︁
−ℳ−1[𝜌(𝑡′)]

(︁
m*

0 +
∫︀ 𝑡′
0
𝒩 [u(𝑠), 𝜌(𝑠), 𝑐(𝑠)] d𝑠

)︁
. For simplicity, we

write 𝒩 (𝑠) := 𝒩 [u(𝑠), 𝜌(𝑠), 𝑐(𝑠)], and rewrite the previous difference as

ℳ−1[𝜌(𝑡)− 𝜌(𝑡′)]
(︂
𝑚*

0 +
∫︁ 𝑡

0

𝒩 (𝑠) d𝑠
)︂

+ℳ−1[𝜌(𝑡′)]
(︂
𝑚*

0 +
∫︁ 𝑡

𝑡′
𝒩 (𝑠) d𝑠

)︂
.

For the first term, we use (3.21) and the Hölder continuity of 𝜌 given by Proposition 3.4. For the second term,
we repeat the computations in the proof of Lemma 3.10. This ends the result. �

We have the existence of a small interval [0, 𝑇 (𝑛)]. To iterate the procedure in order to prove that 𝑇 (𝑛) = 𝑇 ,
it remains to find a bound on v𝑛 independent of 𝑇 (𝑛).

Lemma 3.12. v𝑛 is bounded in 𝑋𝑛 independently of 𝑇 (𝑛).

Proof. Note that we do not ask for a bound independent of 𝑛 but only of 𝑇 (𝑛) since we use in the proof
the fact that 𝑋𝑛 is finite-dimensional. The proof uses the energy structure of the equation. We differentiate
equation (3.13) in time and take 𝜂 = v𝑛 as a test function. This yields

d
d𝑡

∫︁
Ω

𝜌
|v𝑛|2

2
d𝑥+

1
2

∫︁
Ω

(𝜕𝑡𝜌+ div(𝜌v𝑛))|v𝑛|2 d𝑥−
∫︁

Ω

𝑝(𝜌, 𝑐)div(v𝑛) d𝑥− 𝜀

2

∫︁
Ω

∆𝜌|v𝑛|2 d𝑥
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+
∫︁

Ω

T : ∇v𝑛 d𝑥+ 𝛾

∫︁
Ω

(︂
1
2
|∇𝑐|2I− (∇𝑐⊗∇𝑐)

)︂
: ∇v𝑛 d𝑥+

∫︁
Ω

𝜅(𝜌, 𝑐)|v𝑛|2 d𝑥 = 0. (3.23)

Here we used ∫︁
Ω

𝜕𝑡(𝜌v𝑛) · v𝑛 =
1
2

d
d𝑡

∫︁
Ω

𝜌|v𝑛|2 d𝑥+
1
2

∫︁
Ω

𝜕𝑡𝜌|v𝑛|2 d𝑥,∫︁
Ω

div(𝜌v𝑛 ⊗ v𝑛) · v𝑛 d𝑥 =
1
2

∫︁
Ω

div(𝜌v𝑛)|v𝑛|2 d𝑥,

𝜀

∫︁
Ω

(∇v𝑛∇𝜌) · v𝑛 d𝑥 = −𝜀
2

∫︁
Ω

∆𝜌|v𝑛|2 d𝑥.

With (3.12), we see that (3.23) reads

d
d𝑡

∫︁
Ω

𝜌
|v𝑛|2

2
d𝑥−

∫︁
Ω

𝑝(𝜌, 𝑐)div(v𝑛) d𝑥+
∫︁

Ω

T : ∇v𝑛 d𝑥

+ 𝛾

∫︁
Ω

(︂
1
2
|∇𝑐|2I− (∇𝑐⊗∇𝑐)

)︂
: ∇v𝑛 d𝑥+

∫︁
Ω

𝜅(𝜌, 𝑐)|v𝑛|2 d𝑥 = 0. (3.24)

Now as in (3.10), we obtain with the artificial viscosity

𝜕𝑡(𝜌𝜓0) + div(𝜌𝜓0v𝑛) + 𝑝div(v𝑛)− 𝜓0𝜀∆𝜌− 𝜀𝜌
𝜕𝜓0

𝜕𝜌
∆𝜌 = div(𝑏(𝑐)∇𝜇)𝜇

+ div(𝜕𝑡𝑐∇𝑐)− 𝜕𝑡

(︂
|∇𝑐|2

2

)︂
+ 𝛾∆𝑐v𝑛 · ∇𝑐+ 𝜇𝐹𝑐.

Integrating this equation in space, and summing with (3.24), we obtain

d
d𝑡

∫︁
Ω

𝜌

(︂
|v𝑛|2

2
+ 𝜓0

)︂
+ 𝛾

|∇𝑐|2

2
d𝑥+ 𝜀

∫︁
Ω

∇
(︂
𝜓0 + 𝜌

𝜕𝜓0

𝜕𝜌

)︂
· ∇𝜌d𝑥

+
∫︁

Ω

T : ∇v𝑛 d𝑥+
∫︁

Ω

𝑏(𝑐)|∇𝜇|2 d𝑥+
∫︁

Ω

𝜅(𝜌, 𝑐)|v𝑛|2 d𝑥 =
∫︁

Ω

𝜇𝐹𝑐 d𝑥. (3.25)

By definition of 𝜓0, we obtain

𝜀

∫︁
Ω

∇
(︂
𝜓0 + 𝜌

𝜕𝜓0

𝜕𝜌

)︂
· ∇𝜌d𝑥 = 𝜀

∫︁
Ω

(︂
((𝑎− 1) + (𝑎− 1)2)𝜌𝑎−2 +

𝐻(𝑐)
𝜌

)︂
|∇𝜌|2 d𝑥

+ 𝜀

∫︁
Ω

(𝐻 ′(𝑐)(log(𝜌) + 1) +𝑄′(𝑐))∇𝑐 · ∇𝜌d𝑥.

Therefore, the energy reads

d
d𝑡

∫︁
Ω

𝜌

(︂
|v𝑛|2

2
+ 𝜓0

)︂
+ 𝛾

|∇𝑐|2

2
d𝑥+ 𝜀

∫︁
Ω

(︂
((𝑎− 1) + (𝑎− 1)2)𝜌𝑎−2 +

𝐻(𝑐)
𝜌

)︂
|∇𝜌|2 d𝑥

+
∫︁

Ω

T : ∇v𝑛 d𝑥+
∫︁

Ω

𝑏(𝑐)|∇𝜇|2 d𝑥+
∫︁

Ω

𝜅(𝜌, 𝑐)|v𝑛|2 d𝑥 =
∫︁

Ω

𝜇𝐹𝑐 d𝑥

− 𝜀

∫︁
Ω

(𝐻 ′(𝑐)(log(𝜌) + 1) +𝑄′(𝑐))∇𝑐 · ∇𝜌d𝑥. (3.26)

We need to prove that the right-hand side can be controlled in term of the left-hand side to obtain estimates.
For the first term on the right-hand side, we treat it as in the proof of Proposition 3.1. For the second term, we
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know by assumption on 𝐻 and 𝑄, and the fact that (log(𝜌)+1)2 is bounded by a constant times 1
𝜌 +(𝑎−1)𝜌𝑎−2

that it can be bounded in terms of the left-hand side. Note that we used the hypothesis |𝑄′(𝑐)| ≤ 𝐶. This
is based on the fact that 𝑄 is in fact 𝑄𝜀𝑄

so that we have |𝑄′(𝑐)| ≤ 𝐶
(︁

1
𝜀𝑄

)︁
with a constant that blows up

when 𝜀𝑄 is sent to 0. As we intend to send 𝜀𝑄 → 0 in the next step, it is important to notice that we can
still manage to have this energy inequality since in fact the term 𝜀

∫︀
Ω
𝑄′(𝑐)∇𝑐 · ∇𝜌d𝑥 can be estimated by

𝜀
4

∫︀
Ω

(︁(︀
(𝑎− 1) + (𝑎− 1)2

)︀
𝜌𝑎−2 + 𝐻(𝑐)

𝜌

)︁
|∇𝜌|2 d𝑥 and

∫︀
Ω
𝜀𝐶
(︁

1
𝜀𝑄

)︁
|∇𝑐|2 d𝑥. Since 𝜀 will be sent to 0 before 𝜀𝑄, the

energy inequality will still hold independently of 𝜀𝑄 in the limit 𝜀→ 0. With Gronwall’s lemma, and properties of
the tensor T, we deduce that v𝑛 is bounded in 𝐿2

(︀
0, 𝑇 (𝑛);𝐻1

(︀
Ω; R3

)︀)︀
independently of 𝑇 (𝑛). Also, the previous

bounds do not depend on 𝑛. Since all the norms are equivalent, it is also bounded in 𝐿1
(︀
0, 𝑇 (𝑛);𝑊 1,∞(︀Ω,R3

)︀)︀
.

Therefore, we can apply the maximum principle stated in Lemma 3.5, and obtain that the density 𝜌 is bounded
from below by a constant independent of 𝑇 (𝑛). Then, using once again the energy inequality, we obtain that
v𝑛 is bounded uniformly in time in 𝐿2

(︀
Ω; R3

)︀
. This procedure can be repeated for every final time 𝑇 . �

Finally, we are left with the following proposition

Proposition 3.13. For any fixed 𝑛 and 𝑇 , there exists a solution (𝜌, 𝑐,v𝑛) defined on (0, 𝑇 ) (with appropriate
regularity) to (3.12)–(3.14) subject to boundary conditions (3.15) and initial conditions (3.12). Moreover, this
solution satisfies the energy dissipation inequality

𝐸(𝑡) + 𝜀

∫︁
Ω𝑡

(︂
(𝑎+ 𝑎2)𝜌𝑎−1 +

𝐻(𝑐)
𝜌

)︂
|∇𝜌|2 d𝑥d𝑡

+
∫︁

Ω𝑡

T : ∇v𝑛 d𝑥d𝑡+
∫︁

Ω𝑡

𝑏(𝑐)|∇𝜇|2 d𝑥d𝑡+
∫︁

Ω𝑡

𝜅(𝜌, 𝑐)|v𝑛|2 d𝑥 d𝑡 ≤ 𝐶 + 𝐶𝐸(0), (3.27)

where

𝐸(𝑡) =
∫︁

Ω

𝜌

(︂
|v𝑛|2

2
+ 𝜓0

)︂
+ 𝛾

|∇𝑐|2

2
d𝑥,

and with a constant 𝐶 = 𝐶
(︁

1, 𝜀
𝜀𝑄

)︁
that does not depend on 𝑛.

Now, we need to find estimates, independent of 𝑛, to pass to the limit 𝑛 → ∞. Since 𝜌 and 𝑐 depend on 𝑛,
we write 𝜌𝑛 and 𝑐𝑛 from now on.

Proposition 3.14. We have the following estimates uniformly in 𝑛 and 𝜀:

(A1) {𝜌𝑛𝜓0} in 𝐿∞
(︀
0, 𝑇 ;𝐿1(Ω)

)︀
,

(A2) {𝜌𝑛} in 𝐿∞(0, 𝑇 ;𝐿𝑎(Ω)),
(A3) {T : ∇v𝑛} in 𝐿1

(︀
0, 𝑇 ;𝐿1(Ω)

)︀
,

(A4) {√𝜌𝑛v𝑛} in 𝐿∞
(︀
0, 𝑇 ;𝐿2(Ω; R3)

)︀
,

(A5) {
√︀
𝑏(𝑐𝑛)∇𝜇𝑛} in 𝐿2

(︀
0, 𝑇 ;𝐿2

(︀
Ω; R3

)︀)︀
,

(A6) {v𝑛} in 𝐿2
(︀
0, 𝑇 ;𝐻1

0 (Ω; R3)
)︀
,

(A7) {
√
𝜀∇𝜌𝑛} in 𝐿2

(︀
0, 𝑇 ;𝐿2(Ω)

)︀
,

(A8) {𝑐𝑛} in 𝐿∞
(︀
0, 𝑇 ;𝐻1(Ω)

)︀
,

(A9) {𝜌𝑛𝜕𝑐𝜓0} in 𝐿∞(0, 𝑇 ;𝐿𝑟(Ω)) for 𝑟 < 6𝑎
6+𝑎 ,

(A10) {𝜇𝑛} in 𝐿2
(︀
0, 𝑇 ;𝐻1(Ω)

)︀
,

(A11) {𝜌𝑛𝜇𝑛} in 𝐿2
(︀
0, 𝑇 ;𝐿6𝑎/(6+𝑎)

)︀
,

(A12) {𝑐𝑛} in 𝐿2
(︀
0, 𝑇 ;𝑊 2,𝑟(Ω)

)︀
∩ 𝐿2+𝜈

(︀
0, 𝑇 ;𝑊 1,2+𝜈

)︀
for some 𝜈 > 0,

(A13) {𝜌𝑛𝑐𝑛} in 𝐿∞
(︁

0, 𝑇 ;𝐿
6𝑎

6+𝑎 (Ω)
)︁
,

(A14) {𝜌𝑛𝑐𝑛v𝑛} in 𝐿2
(︁

0, 𝑇 ;𝐿
6𝑎

3+4𝑎 (Ω)
)︁
,
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(A15) {𝑝(𝜌𝑛, 𝑐𝑛)} in 𝐿1+𝜈((0, 𝑇 )× Ω)) for some 𝜈 > 0.

Proof. Estimates (A1)–(A5) follow immediately from the energy equality (3.27). Estimate (A6) is the result of
Lemma 3.8 and estimates (A2)–(A4). To obtain estimate (A7), we multiply equation (3.12) by 𝜌𝑛, and using
integration by parts, we obtain

2𝜀
∫︁ 𝑇

0

∫︁
Ω

|∇𝜌𝑛|2 d𝑥d𝑡 ≤ ‖𝜌0‖2𝐿2(Ω) + ‖𝜌𝑛‖2𝐿∞(0,𝑇 ;𝐿2(Ω)) + ‖𝜌𝑛‖2𝐿2(0,𝑇 ;𝐿4(Ω))‖∇v𝑛‖𝐿2(0,𝑇 ;𝐿2(Ω)𝑑).

Using (A2) and (A6), we deduce (A7). To prove estimate (A8), we first notice that equality (3.27) provides
the uniform bound on {∇𝑐𝑛} in 𝐿2

(︀
0, 𝑇 ;𝐿2(Ω)

)︀
. To conclude with Lemma 3.7, we need to bound

∫︀
Ω
𝜌𝑛𝑐𝑛.

Combining equations (3.12)–(3.14), we obtain

𝜕𝑡(𝜌𝑛𝑐𝑛) + div(𝜌𝑛𝑐𝑛v𝑛) = −𝜀𝑐∆𝜌+ div(𝑏(𝑐)∇𝜇) + 𝐹𝑐.

Integrating in space, using the boundary conditions, and estimate (A7), the 𝐿2 bound on {∇𝑐𝑛}, assump-
tion (2.5) yields {

∫︀
Ω
𝜌𝑛𝑐𝑛} is in 𝐿∞(0, 𝑇 ). We deduce estimate (A8). Estimate (A9) follows from the definition

of 𝜓0 and estimate (A1). Estimate (A10) follows from estimates (A5)–(A9) and Lemma 3.7. Estimate (A11)
follows from estimates (A2)–(A10). Estimate (A12) is a consequence of equation (1.3), the previous estimates
and interpolation. The two next estimates are a consequence of the other estimates and Sobolev embeddings.
Finally, the last estimate on the pressure can be adapted from Section 2.5 of [21]. This estimate is useful when
we obtain the convergence a.e. of 𝜌𝑛 and 𝑐𝑛 so we can obtain strong convergence of 𝑝(𝜌𝑛, 𝑐𝑛) in 𝐿1 by Vitali’s
convergence theorem. �

From [27], we also obtain the following proposition

Proposition 3.15. There exists 𝑟 > 1 and 𝑝 > 2 such that

𝜕𝑡𝜌𝑛,∆𝜌𝑛 are bounded in 𝐿𝑟((0, 𝑇 )× Ω),
∇𝜌𝑛 is bounded in 𝐿𝑝(0, 𝑇 ;𝐿2(Ω,R3)),

independently of 𝑛 (but not independently of 𝜀).

With all the previous bound, we can pass to the limit when 𝑛 → ∞ and obtain the different equation and
energy estimates in a weak formulation. Since the passage to the limit 𝑛→∞ is simpler than the next passage
𝜀 → 0, we only detail the latter. Indeed, as 𝑛 → ∞ we can obtain easily strong convergence of 𝜌 which helps
a lot in the different limits. So we assume that we can pass to the limit and that the bounds obtained in
Proposition 3.14 still hold independently of 𝜀. It remains now to send 𝜀 to 0.

We recall the equations that we want to pass to the limit into:

𝜕𝑡𝜌𝜀 + div(𝜌𝜀v𝜀) = 𝜀∆𝜌𝜀, (3.28)
𝜕𝑡(𝜌𝜀𝑐𝜀) + div(𝜌𝜀𝑐𝜀v𝜀) = −𝜀𝑐𝜀∆𝜌𝜀 + div(𝑏(𝑐𝜀)∇𝜇𝜀) + 𝐹𝑐𝜀 , (3.29)

and for every 𝜂 (sufficiently regular)∫︁
Ω

𝜌𝜀v𝜀(𝑡) · 𝜂 d𝑥−
∫︁

Ω

m0 · 𝜂 d𝑥−
∫︁ 𝑡

0

∫︁
Ω

𝜌𝜀v𝜀 ⊗ v𝜀 : ∇𝑥𝜂 d𝑥 d𝑠−
∫︁ 𝑡

0

∫︁
Ω

𝑝(𝜌𝜀, 𝑐𝜀)div(𝜂) d𝑥d𝑠

+ 𝜀

∫︁ 𝑡

0

∫︁
Ω

(∇v𝜀∇𝜌𝜀) · 𝜂 d𝑥d𝑠+
∫︁ 𝑡

0

∫︁
Ω

T𝜀 : ∇𝜂 d𝑥d𝑠+ 𝛾

∫︁ 𝑡

0

∫︁
Ω

(︂
1
2
|∇𝑐𝜀|2I− (∇𝑐𝜀 ⊗∇𝑐𝜀)

)︂
: ∇𝜂 d𝑥d𝑠

+
∫︁

Ω

∫︁ 𝑡

0

𝜅(𝑐𝜀)v𝜀 · 𝜂 d𝑥d𝑠 = 0. (3.30)
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Using Proposition 3.14, which yields uniform estimates in 𝜀, we pass to the limit in the previous equations.
The difficult terms are the one involving nonlinear combinations. Indeed, it is not clear that we can obtain
strong convergence of 𝜌𝜀 as we have no estimates on higher order derivatives. We use the following lemma,
see [48].

Lemma 3.16. Let 𝑔𝑛, ℎ𝑛 converge weakly to 𝑔, ℎ respectively in 𝐿𝑝1(0, 𝑇 ;𝐿𝑝2(Ω)), 𝐿𝑞1(0, 𝑇 ;𝐿𝑞2(Ω)) where
1 ≤ 𝑝1, 𝑝2 ≤ +∞ and

1
𝑝1

+
1
𝑞1

=
1
𝑝2

+
1
𝑞2

= 1.

We assume in addition that

𝜕𝑔𝑛
𝜕𝑡

is bounded in 𝐿1
(︀
0, 𝑇 ;𝑊−𝑚,1(Ω)

)︀
for some 𝑚 ≥ 0 independent of 𝑛, (3.31)

and
‖ℎ𝑛 − ℎ𝑛(𝑡, ·+ 𝜉)‖𝐿𝑞1 (0,𝑇 ;𝐿𝑞2 (Ω)) → 0 as |𝜉| → 0, uniformly in 𝑛. (3.32)

Then, 𝑔𝑛ℎ𝑛 converges to 𝑔ℎ in the sense of distributions.

Remark 3.17. This lemma admits many variants, and it is possible to identify the weak limit of the products
with lower regularity, we refer for instance to [54].

We want to apply the previous lemma to the terms 𝜌𝜀v𝜀, 𝜌𝜀𝑐𝜀, 𝜌𝜀𝜇𝜀, 𝜌𝜀𝑐2𝜀, 𝜌𝜀v𝜀, 𝜌𝜀v𝜀⊗v𝜀, 𝜌𝜀v𝜀𝑐𝜀. We admit
that 𝜕𝜌𝜀

𝜕𝑡 , 𝜕𝜌𝜀v𝜀

𝜕𝑡 and 𝜕𝜌𝜀𝑐𝜀

𝜕𝑡 satisfy (3.31) by using Proposition 3.14 and equations (3.28)–(3.30). The compactness
in space required in (3.32) also uses Proposition 3.14. We refer also to Section 3.1 from [21] for similar results.
The terms 𝜀𝑐𝜀∆𝜌𝜀 and 𝜀

∫︀ 𝑡
0

∫︀
Ω

(∇v𝜀∇𝜌) · 𝜂 d𝑥 d𝑠 converge to 0 (the first one in the distributional sense) thanks
to estimates (A7) and (A8).

It remains to pass to the limit in (i.e. identifying the weak limits)

𝑝(𝜌𝜀, 𝑐𝜀),
1
2
|∇𝑐𝜀|2, ∇𝑐𝜀 ⊗∇𝑐𝜀,

𝑏(𝑐𝜀)∇𝜇𝜀, 𝐹𝑐𝜀
(𝜌𝜀, 𝑐𝜀), 𝜌𝜀𝜕𝑐𝜓0.

The convergence of the last term is used to identify 𝜌𝜇. To prove the previous convergences, we need to prove
strong compactness in 𝐿2 of 𝑐𝜀,∇𝑐𝜀 and convergence a.e. of 𝜌𝜀 to use Vitali’s convergence theorem. But they
follow from the arguments in [3] and Sections 3.3 and 3.4 of [21]. We obtain

Lemma 3.18. Up to a subsequence (not relabeled),

𝜌𝜀 → 𝜌 a.e. (3.33)
𝑐𝜀 → 𝑐 a.e. and strongly in 𝐿2

(︀
0, 𝑇 ;𝐿2(Ω)

)︀
(3.34)

∇𝑐𝜀 → ∇𝑐 a.e. and strongly in 𝐿2
(︀
0, 𝑇 ;𝐿2(Ω)

)︀
(3.35)

Altogether, we can pass to the limit in every term of the equations:

– 𝑝(𝜌𝜀, 𝑐𝜀): we use (3.33), (3.34) and (A15)
– 1

2 |∇𝑐𝜀|
2 and ∇𝑐𝜀 ⊗∇𝑐𝜀: (3.35)

– 𝑏(𝑐𝜀)∇𝜇𝜀: (3.34) and (A10)
– 𝐹𝑐𝜀

(𝜌𝜀, 𝑐𝜀): (3.33), (3.34) and (2.5)
– 𝜌𝜀𝜕𝑐𝜓0: (3.33), (3.34) and (A9).

This concludes the argument.
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3.3. Sending 𝜀𝑄 → 0

The last step in our proof is to let 𝜀𝑄 vanishes and recover the existence of weak solutions for the double
well potential 𝑄(𝑐) = 1

4𝑐
2(1− 𝑐)2. Since we have the energy estimates from before, that still hold by properties

of the weak convergence, the work is essentially the same but we have to be careful about two points. The first
one is to indeed have an energy estimate independent of 𝜀𝑄. We discussed this point after equation (3.26) and,
hence, we do not repeat it here. The second point are the estimates obtained in Proposition 3.14. However, the
estimates are essentially the same, except for estimate (A9) (that is the only one containing 𝑄) which becomes

{𝜌𝜕𝑐𝜓0} in 𝐿∞
(︁

0, 𝑇 ;𝐿
2𝑎

𝑎+2 (Ω)
)︁
. (3.36)

This can be proved knowing that, when 𝜀𝑄 ≈ 0, we have that for 𝑐 large 𝜌𝑄′𝜀𝑄
(𝑐) ≈ 𝜌𝑐3, and we use esti-

mates (A2)–(A8). Altogether, the reasoning to pass to the limit is the same and we conclude.

4. Numerical scheme for the G-NSCH model

We propose a numerical scheme for the G-NSCH model (1.1)–(1.4) subjected to periodic boundary conditions.
We combine ideas from the numerical scheme for the variant of the compressible NSCH system in [37] and fast

structure-preserving scheme for degenerate parabolic equations [40, 42]. Namely, we adapt the relaxation [44]
of the Navier-stokes part as used in [37]. The part of the scheme for the Cahn–Hilliard part of the system is
designed using the GSAV method. More precisely, a variant used for degenerate parabolic models that preserves
the physical bounds of the solution [40,42].

Indeed, we expect that the volume fraction 𝑐 remains within the physically (or biologically) relevant bounds
𝑐 ∈ (0, 1). Thus, following [40, 42], we construct the invertible mapping 𝑇 : R → (0, 1), with 𝑐 = 𝑇 (𝑣),
transforming equations (1.2)–(1.3) into

𝜌(𝜕𝑡𝑣 + (v · ∇)𝑣) =
1

𝑇 ′(𝑣)
(div(𝑏(𝑐)∇𝜇) + 𝐹𝑐),

𝜌𝜇 = −𝛾𝑇 ′(𝑣)∆𝑣 − 𝛾𝑇 ′′(𝑣)|∇𝑣|2 + 𝜌
𝜕𝜓0

𝜕𝑐
·

(4.1)

Following [40,42], we can choose

𝑇 (𝑣) =
1
2

tanh(𝑣) +
1
2
, or 𝑇 (𝑣) =

1
1 + exp(−𝑣)

,

thus, preserving the bounds 𝑐 ∈ (0, 1).
The SAV method allows to solve efficiently (and also linearly) the nonlinear Cahn–Hilliard part while pre-

serving the dissipation of a modified energy. In the following, we assume that it exists a positive constant 𝐶
such that the energy associated with the Cahn–Hilliard part, i.e.

𝐸[𝑡](𝜌, 𝑐) =
∫︁

Ω

𝛾

2
|∇𝑐|2 + 𝜌𝜓0(𝜌, 𝑐) = 𝐸0[𝑡] + 𝐸1[𝑡],

with 𝐸1 the nonlinear part of the energy, and 𝐸0 the linear part, is bounded from below, i.e. 𝐸1 + 𝐶 ≥ 1
We define

𝑟(𝑡) = 𝐸(𝑡) + 𝐶0, with 𝐶0 = 2𝐶 +
⃦⃦
𝐸(𝜌0, 𝑐0)

⃦⃦
𝐿∞(Ω)

,

and apply the SAV method. System (4.1) becomes

𝜌(𝜕𝑡𝑣 + (v · ∇)𝑣) =
1

𝑇 ′(𝑣)
(div(𝑏(𝑐)∇𝜇) + 𝐹𝑐),

𝜌𝜇 = −𝛾𝑇 ′(𝑣)∆𝑣 − 𝛾𝑇 ′′(𝑣)|∇𝑣|2 + 𝜌
𝜕𝜓0

𝜕𝑐
,

d𝑟
d𝑡

= − 𝑟(𝑡)
𝐸[𝑡] + 𝐶0

∫︁
Ω

𝑏(𝑐)|∇𝜇|2 − 𝜇𝐹𝑐 d𝑥,

(4.2)
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One can easily see that the previous modifications do not change our system at the continuous level.

4.1. One-dimensional scheme

We consider our problem in a one-dimensional domain Ω = (0, 𝐿). Even though v is now a scalar, we still
denote it in bold font to not make the confusion with 𝑣 from the transformation 𝑐 = 𝑇 (𝑣). As mentioned
previously, we relax the Navier–Stokes part of our system. Namely, we introduce a relaxation parameter 𝜄 ≥ 0
and write 𝑈 = (𝜌, 𝜌v). We rewrite equation (1.4) as{︃

𝜕𝑡𝑈 + 𝜕𝑥𝑉 = 𝐺(𝑈),
𝜕𝑡𝑉 +𝐴𝜕𝑥𝑈 = − 1

𝜄 (𝑉 − 𝐹 (𝑈)),
(4.3)

in which 𝐺(𝑈) = (0,−𝜅v), 𝐹 (𝑈) = (𝜌v, 𝜌v2 + 𝑝−
(︀

4
3𝜈(𝑐) + 𝜂(𝑐)

)︀
𝜕𝑥v + 𝛾

2 |𝜕𝑥𝑐|
2) and 𝐴 = diag(𝑎1, 𝑎2) satisfying

Liu’s subcharacteristic condition
𝐴 ≥ 𝐹 ′(𝑈), ∀𝑈.

In what follows, and following [37], we use

𝑎1 = 𝑎2 = max
{︂

sup
(︁
v +

√︀
𝜕𝜌𝑝
)︁2

, sup
(︁
v −

√︀
𝜕𝜌𝑝
)︁2
}︂
.

We discretize the domain using a set of 𝑁𝑥 nodes located at the center of control volumes of size ∆𝑥 such that
Ω =

⋃︀
𝑗=0,...,𝑁𝑥−1

[︁
𝑥𝑗− 1

2
, 𝑥𝑗+ 1

2

]︁
.

Our scheme follows the discrete set of equations

𝑈*𝑗 = 𝑈𝑛𝑗 , (4.4)

𝑉 *𝑗 = 𝑉 𝑛𝑗 −
∆𝑡
𝜄

(︀
𝑉 *𝑗 − 𝐹 (𝑈*𝑗 )

)︀
, (4.5)

𝑈𝑛+1
𝑗 = 𝑈*𝑗 −

∆𝑡
∆𝑥

(︁
𝑉 *𝑗+ 1

2
− 𝑉 *𝑗− 1

2

)︁
+ ∆𝑡𝐺(𝑈𝑛+1

𝑗 ), (4.6)

𝑉 𝑛+1
𝑗 = 𝑉 *𝑗 −

∆𝑡
∆𝑥

𝐴
(︁
𝑈*𝑗+ 1

2
− 𝑈*𝑗− 1

2

)︁
, (4.7)

𝜌𝑛+1
𝑗 𝑇 ′(𝑣𝑛𝑗 )

(︂
𝑣𝑛+1
𝑗 − 𝑣𝑛𝑗

∆𝑡
+ v𝑛+1

𝑗 ·
(︀
∇𝑣𝑛+1

)︀
𝑗

)︂
= 𝑔(𝑐𝑛, 𝜇𝑛+1, 𝜌𝑛+1)𝑗 , (4.8)

𝑔(𝑐𝑛, 𝜇𝑛+1, 𝜌𝑛+1)𝑗 =
(︂

1
∆𝑥

(︁(︀
𝑏(𝑐𝑛)∇𝜇𝑛+1

)︀
𝑗+ 1

2
−
(︀
𝑏(𝑐𝑛)∇𝜇𝑛+1

)︀
𝑗− 1

2

)︁)︂
+ 𝐹𝑐

(︀
𝜌𝑛𝑗 , 𝑐

𝑛
𝑗

)︀
, (4.9)

𝜌𝑛+1
𝑗 𝜇𝑛+1

𝑗 =
(︁
−𝛾𝑇 ′

(︀
𝑣𝑛𝑗
)︀(︀

∆𝑣𝑛+1
)︀
𝑗
− 𝛾𝑇 ′′

(︀
𝑣𝑛𝑗
)︀
(∇𝑣𝑛)𝑗 ·

(︀
∇𝑣𝑛+1

)︀
𝑗

)︁
+ 𝜌𝑛+1

𝑗

(︂
𝜕𝜓0

𝜕𝑐

)︂𝑛
𝑗

, (4.10)

∑︁
𝑗

∆𝑥𝑇 (𝜆𝑣𝑛+1
𝑗 ) =

∑︁
𝑗

∆𝑥𝑐0 +
𝑛∑︁
𝑟=1

∆𝑡
∑︁
𝑗

∆𝑥𝐹𝑐
(︀
𝜌𝑟𝑗 , 𝑐

𝑟
𝑗

)︀
, (4.11)

𝑐𝑛+1 = 𝑇
(︀
𝜆𝑣𝑛+1

)︀
, (4.12)

1
∆𝑡
(︀
𝑟𝑛+1 − 𝑟𝑛

)︀
= − 𝑟𝑛+1

𝐸(𝑐𝑛+1) + 𝐶0
∆𝑥
∑︁
𝑗

𝑏(𝑐𝑛+1
𝑗 )|

(︀
∇𝜇𝑛+1

)︀
𝑗
|2

+
𝑟𝑛+1

𝐸(𝑐𝑛+1) + 𝐶0
∆𝑥
∑︁
𝑗

𝜇𝑛+1
𝑗 𝐹𝑐

(︀
𝜌𝑛+1
𝑗 , 𝑐𝑛+1

𝑗

)︀
, (4.13)

𝜉𝑛+1 =
𝑟𝑛+1

𝐸
(︀
𝑐𝑛+1

)︀
+ 𝐶0

, (4.14)
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𝑐𝑛+1
𝑗 = 𝜈𝑛+1𝑐𝑛+1

𝑗 , with 𝜈𝑛+1 = 1−
(︀
1− 𝜉𝑛+1

)︀2
, (4.15)

𝑣𝑛+1
𝑗 = 𝜆𝜈𝑛+1𝑣𝑛+1

𝑗 . (4.16)

Remark 4.1 (Computation of interface values). To obtain the interface values 𝑈*
𝑗+ 1

2
, 𝑈*

𝑗− 1
2

and 𝑉 *
𝑗+ 1

2
, 𝑉 *
𝑗− 1

2
, we

use the upwind method, i.e.

𝑈𝑗+ 1
2

=
1
2

(𝑈𝑗 + 𝑈𝑗+1)−
√
𝑎1

2
(𝑉𝑗+1 − 𝑉𝑗), 𝑉𝑗+ 1

2
=

1
2

(𝑉𝑗 + 𝑉𝑗+1)− 1
2
√
𝑎2

(𝑈𝑗+1 − 𝑈𝑗).

We also mention that similarly to [37], one can implement a MUSCL scheme (see e.g. [46]) to obtain a higher
order reconstruction. The upwind method permits to rewrite equations (4.6) and (4.7) as

𝑈𝑛+1
𝑗 = 𝑈*𝑗 −

∆𝑡
2∆𝑥

(𝑉 *𝑗+1 − 𝑉 *𝑗−1) +
∆𝑡

2∆𝑥
√
𝑎(𝛿2𝑥𝑈

*
𝑗 ) + ∆𝑡𝐺(𝑈𝑛+1

𝑗 ), (4.17)

𝑉 𝑛+1
𝑗 = 𝑉 *𝑗 −

𝑎∆𝑡
2∆𝑥

(𝑈*𝑗+1 − 𝑈*𝑗−1) +
∆𝑡

2∆𝑥
√
𝑎(𝛿2𝑥𝑉

*
𝑗 ), (4.18)

where we used the notation 𝛿2𝑥𝑈 = 𝑈𝑗+1 − 2𝑈𝑗 + 𝑈𝑗−1. In equations (4.17) and (4.18), we emphasize that
𝑈* = 𝑈𝑛 and 𝑉 * = 𝑉 𝑛 − Δ𝑡

𝜄 (𝑉 * − 𝐹 (𝑈𝑛)).

Remark 4.2 (Algorithm to compute the solution of the discrete equations’ system). Equations (4.4)–(4.7)
are solved from equations (4.17) and (4.18), hence, a solution (𝑈𝑛+1, 𝑉 𝑛+1) is computed just from vector
computations. The coupling between equations (4.8) and (4.10) is also linear (nonlinear terms are taken at the
previous time step to linearize the equations). We solve this coupled system using the GMRES algorithm but we
emphasize that other iterative solver could work as long as they allow the matrix of the linear system to be non-
symmetric. The coefficient 𝜆 is computed using an iterative method. Then, the discrete solution (𝑣𝑛+1, 𝜇𝑛+1),
together with the coefficient 𝜆, is used in equation (4.13) to find 𝑟𝑛+1 and, in equation (4.14), 𝜉𝑛+1. At this
point, we solve equations (4.15) and (4.16) from the previous steps.

In the following, we use the notations,

⟨𝑈, 𝑉 ⟩ = ∆𝑥
∑︁
𝑗

𝑈𝑗𝑉𝑗 , and ‖𝑈‖2 = ⟨𝑈,𝑈⟩.

We also use ∆0,𝑥𝑈 := 1
2 (𝑈𝑗+1 − 𝑈𝑗−1).

Our numerical scheme possesses the following important properties:

Proposition 4.3 (Energy stability, bounds and mass preserving). Assuming the CFL-like condition Δ𝑡
Δ𝑥

√
𝑎1 ≤ 1

and the condition
∆𝑡 ≤ 𝐶

𝐶0

𝐸[𝑐𝑛]
, (4.19)

our numerical scheme satisfies the energy dissipation-like inequality⃦⃦√
𝑎𝑈𝑛+1

⃦⃦2
+
⃦⃦
𝑉 𝑛+1

⃦⃦2
+ 𝑟𝑛+1 ≤

⃦⃦√
𝑎𝑈𝑛

⃦⃦2 + ‖𝑉 ⋆‖2 + 𝐶𝑛+1𝑟𝑛, (4.20)

where 𝑟𝑛+1 ≥ 0 and

𝐶𝑛+1 =
1

1 + Δ𝑡
𝐸(𝑐𝑛+1)+𝐶0

∑︀𝑁𝑥

𝑗=1 𝑏
(︀
𝑐𝑛+1
𝑗

)︀
|∇𝜇𝑛+1

𝑗 |2 − 𝜇𝑛+1
𝑗 𝐹𝑐

(︀
𝜌𝑛+1
𝑗 , 𝑐𝑛+1

𝑗

)︀ ·
The previous constant can be estimated only in terms of 𝐸[𝑐𝑛] and therefore do not depend on the step 𝑛 + 1.
Furthermore, the numerical scheme preserves the physically relevant bounds of the mass fraction, i.e.

0 < 𝑐𝑛+1 < 1.
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Remark 4.4. Note that the constant 𝐶𝑛+1 is smaller than 1 whenever the nonnegative part of the dissipation
of the energy is greater than the increase of energy induced by the source term 𝐹𝑐. This is of course satisfied
when we have 𝐹𝑐 = 0 for instance.

Proof. We start with equation (4.17), and using the definition of the function 𝐺
(︀
𝑈𝑛+1
𝑗

)︀
as well as assuming

𝜅(𝑐) ≥ 0 (for 𝑐 ∈ R), after taking the square on both sides, multiplying by ∆𝑥 and summing over the nodes
𝑗 = 0, . . . , 𝑁𝑥, we have

⃦⃦
𝑈𝑛+1

⃦⃦2 ≤ ‖𝑈𝑛‖2 +
(︂

∆𝑡
2∆𝑥

)︂2

‖∆0,𝑥𝑉
⋆‖2 +

(︂
∆𝑡
√
𝑎

2∆𝑥

)︂2⃦⃦
𝛿2𝑥𝑈

𝑛
⃦⃦2 − ∆𝑡

∆𝑥
⟨∆0,𝑥𝑉

*, 𝑈𝑛⟩

+
∆𝑡
√
𝑎

∆𝑥
⟨𝑈𝑛, 𝛿2𝑥𝑈𝑛⟩ −

√
𝑎∆𝑡2

2∆𝑥2 ⟨∆0,𝑥𝑉
⋆, 𝛿2𝑥𝑈

𝑛⟩.

Repeating the same computations for equation (4.18), we have

⃦⃦
𝑉 𝑛+1

⃦⃦2 ≤ ‖𝑉 𝑛‖2 +
(︂
𝑎∆𝑡
2∆𝑥

)︂2

‖∆0,𝑥𝑈
𝑛‖2 +

(︂
∆𝑡
√
𝑎

2∆𝑥

)︂2⃦⃦
𝛿2𝑥𝑉

⋆
⃦⃦2 − 𝑎∆𝑡

∆𝑥
⟨∆0,𝑥𝑈

𝑛, 𝑉 ⋆⟩

+
∆𝑡
√
𝑎

∆𝑥
⟨𝑈⋆, 𝛿2𝑥𝑉 ⋆⟩ −

𝑎
3
2 ∆𝑡2

2∆𝑥2 ⟨∆0,𝑥𝑈
𝑛, 𝛿2𝑥𝑉

⋆⟩.

At this point, the proof is similar to the proof of Theorem 4.1 from [37] (these steps use the periodic boundary
conditions and the summation by parts formula to cancel some terms when summing both of the previous
equations together), to obtain for a constant 𝐶 > 0,⃦⃦√

𝑎𝑈𝑛+1
⃦⃦2

+
⃦⃦
𝑉 𝑛+1

⃦⃦2 ≤ 𝐶
(︁⃦⃦√

𝑎𝑈𝑛
⃦⃦2 + ‖𝑉 *‖2

)︁
.

Then, for the Cahn–Hilliard part, we easily obtain from equation (4.13)

𝑟𝑛+1

(︃
1 + ∆𝑡

∆𝑥
∑︀
𝑗 𝑏
(︀
𝑐𝑛+1
𝑗

)︀
|
(︀
∇𝜇𝑛+1

)︀
𝑗
|2 − 𝜇𝑛+1

𝑗 𝐹𝑐
(︀
𝜌𝑛+1
𝑗 , 𝑐𝑛+1

𝑗

)︀
𝐸
[︀
𝑐𝑛+1

]︀
+ 𝐶0

)︃
= 𝑟𝑛.

Therefore, as long as

𝐸
(︀
𝑐𝑛+1

)︀
+ 𝐶0 + ∆𝑡

⎛⎝∆𝑥
∑︁
𝑗

𝑏
(︀
𝑐𝑗
𝑛+1
)︀
|
(︀
∇𝜇𝑛+1

)︀
𝑗
|2 − 𝜇𝑛+1

𝑗 𝐹𝑐
(︀
𝜌𝑛+1
𝑗 , 𝑐𝑛+1

𝑗

)︀⎞⎠ ≥ 0,

so does 𝑟𝑛+1. Assuming ‖𝐹𝑐‖𝐿∞ < 𝐶, it remains to control the discrete 𝐿1 norm of 𝜇𝑛+1. Performing the same
computations as in the proof of Proposition 3.1 in continuous case, it follows that⃒⃒⃒⃒

⃒⃒∆𝑥∑︁
𝑗

𝜇𝑛+1
𝑗 𝐹𝑐(𝜌𝑛+1

𝑗 , 𝑐𝑛+1
𝑗 )

⃒⃒⃒⃒
⃒⃒ ≤ 𝐶 + 𝐶𝐸[𝑐𝑛] +

1
2

∆𝑥
∑︁
𝑗

𝑏(𝑐𝑛+1
𝑗 )|(∇𝜇𝑛+1)𝑗 |2.

Of course, one first needs to prove that a discrete version of Lemma 3.7 holds. At the continuous level, this
theorem is proved by contradiction using Rellich’s theorem. Hence, a similar proof can be obtained at the
discrete level, in the spirit of the Poincaré-Wirtinger inequality, see Lemma 3.8, Remark 3.16 from [26]. Based
on these evidences we use a discrete version of Lemma 3.7 to conclude that there exists 𝐶 a universal constant
such that provided 𝑟𝑛 ≥ 0 and

∆𝑡 ≤ 𝐶
𝐶0

𝐸[𝑐𝑛]
,
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so does 𝑟𝑛+1 ≥ 0, and (4.20) follows.
Finally, from the definition of 𝜉𝑛+1 and 𝐶0, we have

0 < 𝜉𝑛+1 <
𝑟0

𝐸(𝑐𝑛+1) + 𝐶0
≤ 2.

The bounds for the mass fraction 𝑐 are ensured by the transformation 𝑇 (𝑣). This finishes the proof. �

Remark 4.5. We observe during numerical simulations that the condition (4.19) is obtained for reasonably
small ∆𝑡. We also note that if we do not consider any source term, i.e. 𝐹𝑐 = 0, the scheme satisfies the dissipation
relation ⃦⃦√

𝑎𝑈𝑛+1
⃦⃦

2 +
⃦⃦
𝑉 𝑛+1

⃦⃦
2 + 𝑟𝑛+1 ≤ 𝐶

(︀⃦⃦√
𝑎𝑈𝑛

⃦⃦
2 + ‖𝑉 ⋆‖2

)︀
+ 𝑟𝑛,

with the stability condition
∆𝑡
∆𝑥

√
𝑎1 ≤ 1.

5. Numerical experiments

In this section, we use the assumptions on the functionals stated in the “Framework for numerical simulations”
paragraph in Section 2.1. Throughout this section we use the double-well logarithmic potential

𝜓mix =
1
2

(𝛼1(1− 𝑐) log(𝜌(1− 𝑐)) + 𝛼2𝑐 log(𝜌𝑐))− 𝜃

2

(︂
𝑐− 1

2

)︂2

+ 𝑘,

with 𝑘 = 100, and 𝜃 = 4 (𝛼1 and 𝛼2 are specified later). We also use a degenerate mobility, i.e.

𝑏(𝑐) = 𝑐(1− 𝑐).

We start by using the one-dimensional scheme (4.4)–(4.16) with no exchange term and friction, i.e. 𝜅(𝜌, 𝑐) = 0
and 𝐹𝑐(𝜌, 𝑐) = 0, and we verify that the scheme preserves all the properties stated in Proposition 4.3. We then
use a non-zero exchange term and we compare the solution with same friction forces for the two phases or
contrast of friction forces. Then, we perform two-dimensional simulations with friction forces contrast.

Finally, we verify the spatial and temporal convergence orders of the scheme.

Remark 5.1 (Implementation details). All numerical schemes are implemented using Python 3 and the Numpy
and Scipy modules. The linear system for the Cahn–Hilliard part of the model is solved using the Generalized
Minimal RESidual iteration (GMRES) iterative solver (function available in the scipy.sparse.linalg module).
The tolerance on the convergence of the residual is indicated in each of the following subsections. To find the 𝜆
that allows to compute the correct mass, we use the function fsolve of the scipy.optimize module which uses a
modification of the Powell’s conjugate direction method.

5.1. One dimensional numerical test cases

Comparison between matching and non-matching densities. We start with a one-dimensional test cases
to show the spatiotemporal evolution of the density, mass fraction, and velocity. We also verify numerically the
properties stated in Proposition 4.3. We compare numerical results for matching and non-matching densities
for the phases of the fluid. For this comparison, we set 𝜅(𝜌, 𝑐) = 0 and 𝐹𝑐(𝜌, 𝑐) = 0.

We use the computational domain Ω = (0, 1) discretized in 𝑁𝑥 = 128 cells. We take 𝑇 = 0.5 (this has been
chosen because the system reaches a meta-stable state by that time) and use the initial time step ∆𝑡 = 1×10−5

(this time step size is adapted from the CFL-like condition stated in Proposition 4.3).
We choose the width of the diffuse interface to be 𝛾 = 1/600, the viscosity to be constant 𝜈(𝑐) = 1 × 10−2,

and 𝜂 = 2 × 10−2, the relaxation parameter to be 𝜄 = 1 × 10−5, and the exponent for the barotropic pressure
equals to 𝑎 = 3.
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To model matching densities for the two phases of the fluid, we choose 𝛼1 = 𝛼2 = 1. To represent non-
matching densities for the two phases, we can choose 𝛼1 ̸= 𝛼2. This allows us to model a fluid for which the
phase denoted by the index 1 is denser compared to the phase indicated by the index 2. Indeed, this can been
seen on the effect of the values 𝛼1 and 𝛼2 on the potential. Taking 𝛼1 < 𝛼2 shifts the well corresponding to
phase 1 very close to 0 compared to the other phase. This models the fact that the fluid 1 is in fact more
compressible and thus aggregates of pure phase 1 appear denser.

We choose constant initial conditions for the density and the pressure, i.e.

𝜌0
𝑗 = 0.8, v0

𝑗 = 0.5, 𝑗 = 0, . . . , 𝑁𝑥 − 1.

The initial mass fraction is assumed to be a constant with a small random noise, i.e.

𝑐0𝑗 = 𝑐+ 0.05𝑟𝑗 , 𝑗 = 0, . . . , 𝑁𝑥 − 1,

with 𝑐 = 0.5 and 𝑟 is a vector of random values between 0 and 1 given by the uniform distribution.
We choose a tolerance for the convergence of the residual for the GMRES algorithm of rtol = 10−10.
Figure 1 compares the results obtained for matching and non-matching densities for the two phases of the

fluid. For the two cases, we report the evolution of the density 𝜌, the mass fraction 𝑐, the velocity v and
the pressure 𝑝 at different times. We observe that, for both cases, after an initial regularization of the initial
condition, the separation of the two phases of the fluid occurs and small aggregates appear (see first and second
columns of Fig. 1). Then, the coarsening of the small aggregates into larger ones occurs. We arrive at the end of
the simulation to the solution depicted in the two figures on the last column of Figure 1. Hence, we can conclude
that our numerical scheme catches well the spinodal decomposition of the binary fluid while it is transported
to the right (since the velocity v is positive during these simulations).

A difference between the two simulations is observed on the densities and pressures. Indeed, for matching
densities, we observe that 𝜌 organizes such that it is equal in aggregates of each phases and drops at the interfaces
between the aggregates. We also observe a drop of pressure 𝑝 at the interface, probably explained by capillary
effects. For non-matching densities, as expected, there is a density difference between aggregates of phase 1 and
2. Indeed, selecting 𝛼1 < 𝛼2 makes the aggregates of phase 1 denser compared to aggregates of phase 2. Our
explanation is that, due to the fact that attractive effects are stronger in phase 1, more mass is allowed to move
inside aggregates of phase 1. However, as the pressure function accounts for the difference 𝛼1 ̸= 𝛼2, the pressure
equilibrates to a field similar to the matching density case (i.e. 𝑝 varies from an equilibrium value and depicts
a drop at the interface between the aggregates of the different phases).

Figure 2 shows that, for both cases (i.e. matching and non-matching densities), our numerical scheme pre-
served the properties presented in Proposition 4.3. We defined the discrete dissipation of energy

d𝐸
d𝑡

=
⃦⃦√

𝑎𝑈𝑛+1
⃦⃦2

+
⃦⃦
𝑉 𝑛+1

⃦⃦2
+ 𝑟𝑛+1 −

[︁⃦⃦√
𝑎𝑈𝑛

⃦⃦2 + ‖𝑉 *‖2 + 𝐶𝑛+1𝑟𝑛
]︁
. (5.1)

We emphasize that as no exchange term was present in the previous simulation 𝐶𝑛+1 is bounded from above by
1, hence we used 𝐶𝑛+1 = 1 for the simulations in this paragraph. Figure 2 presents the temporal evolution of
the dissipation d𝐸

d𝑡 , the mass
∫︀
Ω
𝜌𝑐d𝑥, the minimum and maximum values of 𝑐, and the value of 𝜉. We observe

for both cases that the dissipation (5.1) is strictly negative, as expected by Proposition 4.3. The mass of fluid
1 is preserved up to a small numerical error (we emphasize that the error on the initial mass at the end of the
simulation is less than 10−9 for both simulations). This latter result is expected as we set 𝐹𝑐(𝜌, 𝑐) = 0 for these
simulations. We observe that the physical bounds of the mass fraction are ensured, i.e. maximum and minimum
values for 𝑐 lie the interval (0, 1). The scalar variable is very close to 1 (up to an error of order 10−5) as observed
in Figure 2c. This verifies that the modified energy 𝑟𝑛+1 and the real energy of the Cahn–Hilliard part of the
model

𝐸𝑛+1 = ∆𝑥
∑︁
𝑗

𝛾

2
|(∇𝑐)𝑗 |2 + 𝜌𝑛+1

(︂
𝜕𝜓0

𝜕𝑐𝑛+1

)︂
𝑗

,
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Figure 1. Simulation of compressible Navier–Stokes–Cahn–Hilliard model (with 𝜅 = 𝐹𝑐 = 0).
Matching densities (top row) and non-matching densities (bottom row) for the two phases of the
fluid. (a) 𝑇 = 0. (b) 𝑇 = 0.03. (c) 𝑇 = 0.1. (d) 𝑇 = 0.5. (e) 𝑇 = 0. (f) 𝑇 = 0.03. (g) 𝑇 = 0.1.
(h) 𝑇 = 0.5.

are close.
Mass exchange and contrast of friction forces. In this test case, we consider mass exchange between the
two phases and friction effects. We choose

𝐹𝑐(𝜌, 𝑐) = 𝑟trans𝜌𝑐(1− 𝑐/𝑐max), 𝜅(𝜌, 𝑐) = 𝜌𝑐𝜅1 + 𝜌(1− 𝑐)𝜅2,

where 0 < 𝑐max < 1 denotes the mass fraction at which we have an equilibrium for exchange of mass and 𝑟trans

is the rate of mass exchange. In this test case, we use 𝑐max = 0.9, and 𝑟trans = 1. We compare the solution
obtained with no contrast of friction effect, i.e. 𝜅1 = 𝜅2 = 10, and the solution obtained with 𝜅1 = 0, 𝜅2 = 10.
To study the long time behavior of the numerical simulations, we set 𝑇 = 5. The rest of the parameters and the
initial conditions are chosen as for the previous non-matching densities test case.

Figure 3 compares the solutions for the two cases. In both cases, we observe that the separation of the
two phases occurs and that the velocity decreases in time due to friction effects. Furthermore, as time passes,
phase 1 of the fluid increases due to the exchange term 𝐹𝑐(𝜌, 𝑐) ̸= 0 and, hence, zones of mass fraction close
to the value 1 enlarge. At the end of both simulations, there is one large aggregate of fluid 1. The difference
between the two simulations appears clearly at time 𝑡 = 0.1. When the friction forces are stronger in phase two
compared to phase 1, i.e. 𝜅2 > 𝜅1, zones of larger density appear destabilized, i.e. the shape of the aggregates
is not symmetric (compare the solution for Figs. 3b and 3f). For each aggregate of fluid 1, the density at the
right of the aggregate is larger compared to the left. We conclude that the contrast in friction forces is captured
well by the model as simulations depict a contrast of velocity for the two phases of the fluid and leading to
less regular patterns for the densities. Furthermore, we emphasize that even with non-zero mass exchange and
friction forces, the numerical scheme ensures the properties stated in Proposition 4.3 as observed in Figure 4.
We emphasize that compared to the simulation without source in which 𝜉 seems to converge to a constant value,
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Figure 2. Temporal evolution of the dissipation of the energy d𝐸
d𝑡 , mass of the fluid 1 given by∫︀

Ω
𝜌𝑐 d𝑥, scalar variable 𝜉, and of the minimum and maximal values of the mass fraction 𝑐 for

matching densities (solid lines) and non-matching densities (dash-dotted lines). (a) Dissipation
d𝐸
d𝑡 . The value of the dissipation remains negative ensuring that Inequality (4.20) is satisfied at

the discrete level. (b) Mass
∫︀
𝛺
𝜌𝑐d𝑥 of fluid 1. Difference of initial mass is due to the random

initial conditions for the two simulations. (c) Scalar variable 𝜉. The value remains close to 1
(error is of order 10−5), ensuring that the modified energy 𝑟𝑛+1 is close to the real energy 𝐸𝑛+1.
(d) Minimum and maximum of 𝑐. The mass fraction lies in the physically relevant interval (0, 1)
throughout the simulation.
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Figure 3. Simulation of compressible Navier–Stokes–Cahn–Hilliard model nonmatching den-
sities, exchange term (𝐹𝑐(𝜌, 𝑐) ̸= 0), same friction effects for both fluids (top row) and contrast
of friction forces (bottom row). (a) 𝑡 = 0. (b) 𝑡 = 0.1. (c) 𝑡 = 1. (d) 𝑡 = 5. (e) 𝑡 = 0. (f) 𝑡 = 0.1.
(g) 𝑡 = 1. (h) 𝑡 = 5.

Figure 4. Temporal evolution of the dissipation of the energy d𝐸
d𝑡 , mass of the fluid 1 given by∫︀

Ω
𝜌𝑐 d𝑥, scalar variable 𝜉, and of the minimum and maximal values of the mass fraction 𝑐 for

matching densities (solid lines) and non-matching densities (dash-dotted lines). (a) Dissipation
d𝐸
d𝑡 . (b) Total mass

∫︀
𝛺
𝜌d𝑥. (c) Scalar variable 𝜉. (d) min 𝑐 and max 𝑐.

the variable 𝜉 increases slightly with time (compare Figs. 2c and 4c). A possible remedy to this issue is discussed
in the conclusion of this article.
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5.2. Two-dimensional numerical test cases

We now simulate the G-NSCH system (1.1)–(1.4) in two dimensions. Details about the two-dimensional
numerical scheme can be found in Appendix C.

Phase separation with non-matching densities and contrast of friction strengths. We use 𝑁𝑥 = 𝑁𝑦 =
64 cells in each direction. We fix the final time at 𝑇 = 1. We set up two simulations, both with no exchange
terms 𝐹𝑐(𝜌, 𝑐) = 0. For the first, we consider no contrast of friction effects, i.e. 𝜅1 = 𝜅2 = 10, 𝜈1 = 𝜈2 = 0.01,
and 𝜂1 = 𝜂2 = 0.02. For the second simulation, we take 𝜅1 = 0, 𝜅2 = 10, 𝜈1 = 𝜈2 = 0.01, and 𝜂1 = 𝜂2 = 0.02.
Hence, fluid 2 has stronger friction effects.

The other parameters are 𝛾 = 1
800 , 𝜃 = 4, 𝛼1 = 0.8, 𝛼2 = 1.2, 𝜄 = 10−4, 𝐶0 = 100, 𝑎 = 1.5. The tolerance of

GMRES solver is set to 𝑡𝑜𝑙 = 10−10.
The initial velocities in both directions are constants in space v0

𝑥 = 0.5 and v0
𝑦 = 0.5. The initial density is

also constant in space 𝜌0 = 0.8. The initial mass fraction is set to a perturbed constant 𝑐0 = 0.3− 0.05𝑟, with
𝑟 a random uniform number for each cell center.

Figure 5 compares the temporal evolution of the density of fluid 1 given by 𝜌𝑐 for both cases. We observe
that both solutions depict phase separation and progressive coarsening of small aggregates into larger ones. This
phenomenon occurs as the fluid is transported to the top right corner (we recall that we implemented periodic
boundary conditions). Careful inspection of the relative density 𝜌𝑐 distribution inside each aggregates reveals
the effect of the contrast of friction between the two solutions. Indeed, as the fluid 1 encounters a resistance
when transported by the flow (because it pushes a fluid that experiences more friction), the mass of fluid 1
seems to concentrate in the top right corner of each aggregate. This can be observed inspecting the level lines
depicted on Figure 6. Indeed on this figure, we see that the top of each aggregate is not localized in the center
of the aggregates but is shifted to the top-right. This indicates that the 2D scheme captures correctly the effect
seen with the 1D numerical scheme when contrast of friction between the two phases is considered.

5.3. Convergence tests

We study the numerical convergence of the one dimensional scheme (4.4)–(4.16) with 𝜅(𝜌, 𝑐) = 0 and
𝐹𝑐(𝜌, 𝑐) = 0. The computational domain is Ω = (0, 1). The final time is 𝑇 = 0.05. The other parameters
𝛾, 𝛽, 𝜂, 𝜈, 𝑎, 𝛼1, 𝛼2 are chosen as for the previous 1D test case with non-matching densities (see Sect. 5.1). The
initial condition for the mass fraction is given by

𝑐0 = 0.4 + 0.01 cos(6𝜋𝑥).

The initial conditions for the velocity and the total density are chosen as in the previous 1D test cases.
We set the tolerance rtol of the GMRES algorithm to rtol = 10−6 for the spatial convergence test and

rtol = 10−10 for the temporal convergence test.

5.3.1. Convergence in space

We fix the time step to ∆𝑡 = 1 × 10−5 and we vary the grid size. We choose an increasing number of cells
𝑁𝑥 = {64, 128, 256, 512, 1024, 2048}. For each quantity 𝑐,v, 𝜌, we compute the discrete errors

error(𝜌Δ𝑥, 𝜌Δ𝑥/2) = ‖𝜌Δ𝑥 − 𝜌Δ𝑥/2‖𝐿∞(0,𝑇 ;𝐿𝑎(Ω)),

error(𝑐Δ𝑥, 𝑐Δ𝑥/2) = ‖𝑐Δ𝑥 − 𝑐Δ𝑥/2‖𝐿2(0,𝑇 ;𝐿2(Ω)),

error(vΔ𝑥,vΔ𝑥/2) = ‖vΔ𝑥 − vΔ𝑥/2‖𝐿2(0,𝑇 ;𝐿2(Ω)),

(5.2)

where (𝜌Δ𝑥/2, 𝑐Δ𝑥/2,vΔ𝑥/2) denotes the solution computed using twice the number of cells of the simulation
that computes the solution (𝜌Δ𝑥, 𝑐Δ𝑥,vΔ𝑥).
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Figure 5. Two dimensional simulations of compressible Navier–Stokes–Cahn–Hilliard model
with nonmatching densities, same friction effects for both fluids (top row) and contrast of
friction (bottom row). (a) 𝑡 = 0. (b) 𝑡 = 0.1. (c) 𝑡 = 0.5. (d) 𝑡 = 1. (e) 𝑡 = 0. (f) 𝑡 = 0.1. (g)
𝑡 = 1. (h) 𝑡 = 5.

Figure 6. Relative density of fluid 1 at time 𝑡 = 0.25 considering a contrast of friction strengths
between the two fluids. The black circles represent the level 𝜌𝑐 = max(𝜌𝑐) − 0.03. This cor-
responds to the tops of each aggregate. (a) No contrast of friction strengths. (b) Contrast of
friction strengths.
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Figure 7. Convergence in space for the total density 𝜌, the mass fraction 𝑐 and the velocity v.
The orange dashed line represents the slope 1. (a) Spatial convergence of density 𝜌. (b) Spatial
convergence of mass fraction 𝑐. (c) Spatial convergence of velocity v.

To compute the discrete norms, we save the solution every ∆𝑡save = 0.001. The norms in (5.2) are computed
following

‖𝜌Δ𝑥 − 𝜌Δ𝑥/2‖𝐿∞(0,𝑇 ;𝐿𝑎(Ω)) = max
𝑡save

⎛⎝∆𝑥
2

𝑁𝑥∑︁
𝑗=1

(︀
𝜌Δ𝑥(𝑥𝑗)− 𝜌Δ𝑥/2(𝑥𝑗)

)︀𝑎⎞⎠1/𝑎

,

‖𝑐Δ𝑥 − 𝑐Δ𝑥/2‖𝐿2(0,𝑇 ;𝐿2(Ω)) =

⎛⎜⎝∑︁
𝑡save

∆𝑡save

⎛⎜⎝
⎛⎝∆𝑥

2

𝑁𝑥∑︁
𝑗=1

(︀
𝑐Δ𝑥(𝑥𝑗)− 𝑐Δ𝑥/2(𝑥𝑗)

)︀2⎞⎠1/2
⎞⎟⎠

2⎞⎟⎠
1/2

,

‖vΔ𝑥 − vΔ𝑥/2‖𝐿2(0,𝑇 ;𝐿2(Ω)) =

⎛⎜⎝∑︁
𝑡save

∆𝑡save

⎛⎜⎝
⎛⎝∆𝑥

2

𝑁𝑥∑︁
𝑗=1

(︀
vΔ𝑥(𝑥𝑗)− vΔ𝑥/2(𝑥𝑗)

)︀2⎞⎠1/2
⎞⎟⎠

2⎞⎟⎠
1/2

,

with 𝑁𝑥 the number of points on the ∆𝑥/2 grid, and 𝑡save the array of times at which snapshots of the solutions
have been taken. Hence, the solution on the coarse grid ∆𝑥 is extended on the fine grid ∆𝑥/2 using the nearest
solution from the coarse grid.

We arrive at the results given in Figure 7. As expected by the upwind scheme, the spatial order of convergence
is a little less than 1 for the total density 𝜌 (see Fig. 7a) and the velocity v (see Fig. 7c). We recover first order
for the mass fraction.

5.3.2. Convergence in time

We here fix the grid size and select 𝑁𝑥 = 128 points. We choose ∆𝑡 = 1 × 10−4, and decrease the time
steps according to ∆𝑡array =

{︀
∆𝑡, Δ𝑡

2 ,
Δ𝑡
4 ,

Δ𝑡
8 ,

Δ𝑡
16 ,

Δ𝑡
32 ,

Δ𝑡
64

}︀
. We deactivate the time step adaptive strategy from

the CFL condition. The other parameters and initial conditions are chosen as in the spatial convergence test
(see Sect. 5.3.1). To check the convergence in time of our scheme, we compute the errors between two solutions
computed with two time steps ∆𝑡 that differ only from a factor 1

2 . We denote these two different solutions by
(𝜌Δ𝑡, 𝑐Δ𝑡,vΔ𝑡) and (𝜌Δ𝑡/2, 𝑐Δ𝑡/2,vΔ𝑡/2). We use the same method as for the spatial convergence computations,
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Figure 8. Convergence in time for the total density 𝜌, the mass fraction 𝑐 and the velocity
v. The orange dashed line represents the slope 1. (a) Temporal convergence of density 𝜌. (b)
Temporal convergence of mass fraction 𝑐. (c) Temporal convergence of velocity v.

we save the solutions every ∆𝑡save = 0.001. We compute the norms

error(𝜌Δ𝑡, 𝜌Δ𝑡/2) = ‖𝜌Δ𝑡 − 𝜌Δ𝑡/2‖𝐿∞(0,𝑇 ;𝐿𝑎(Ω)),

error(𝑐Δ𝑡, 𝑐Δ𝑡/2) = ‖𝑐Δ𝑡 − 𝑐Δ𝑡/2‖𝐿2(0,𝑇 ;𝐿2(Ω)),

error(vΔ𝑡,vΔ𝑡/2) = ‖vΔ𝑡 − vΔ𝑡/2‖𝐿2(0,𝑇 ;𝐿2(Ω)).

(5.3)

with

‖𝜌Δ𝑡 − 𝜌Δ𝑡/2‖𝐿∞(0,𝑇 ;𝐿𝑎(Ω)) = max
𝑡save

⎛⎝∆𝑥
𝑁𝑥∑︁
𝑗=1

(︀
𝜌Δ𝑡(𝑥𝑗)− 𝜌Δ𝑡/2(𝑥𝑗)

)︀𝑎⎞⎠1/𝑎

,

‖𝑐Δ𝑡 − 𝑐Δ𝑡/2‖𝐿2(0,𝑇 ;𝐿2(Ω)) =

⎛⎜⎝∑︁
𝑡save

∆𝑡save

⎛⎜⎝
⎛⎝∆𝑥

𝑁𝑥∑︁
𝑗=1

(︀
𝑐Δ𝑡(𝑥𝑗)− 𝑐Δ𝑡/2(𝑥𝑗)

)︀2⎞⎠1/2
⎞⎟⎠

2⎞⎟⎠
1/2

,

‖vΔ𝑡 − vΔ𝑡/2‖𝐿2(0,𝑇 ;𝐿2(Ω)) =

⎛⎜⎝∑︁
𝑡save

∆𝑡save

⎛⎜⎝
⎛⎝∆𝑥

𝑁𝑥∑︁
𝑗=1

(︀
vΔ𝑡(𝑥𝑗)− vΔ𝑡/2(𝑥𝑗)

)︀2⎞⎠1/2
⎞⎟⎠

2⎞⎟⎠
1/2

,

We obtain the results depicted in Figure 8. We observe that the order of convergence in time for our scheme is
exactly 1 for the three quantities.

6. Conclusion and perspectives

We presented a generalized model of diphasic compressible fluid termed G-NSCH, that comprises possi-
ble mass transfer between the two phases and friction effects. Under simplifying assumptions, summarized in
Section 2.1, we proved the existence of weak solutions of the G-NSCH system. We also proposed a numerical
scheme and prove, under the same simplifying assumptions, that it is stable and structure preserving (i.e. it
ensures the physically relevant bounds for the mass fraction 𝑐, and it satisfies an energy dissipation inequal-
ity). For the numerical simulations, we chose relevant functionals, thus, relaxing the simplifying assumptions
that were necessary for the analysis. We presented numerical simulations showing that our numerical scheme
possesses the robustness found analytically. The numerical simulations allowed us to show the ability of our
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model to represent diphasic fluids with matching or non-matching densities for the two phases. Furthermore,
we computed numerically the spatial and temporal convergence rates of our numerical scheme.

Our model and numerical scheme allow to use physically relevant choice of functional and to consider con-
trast of properties between the two phases of the fluid. Our aim is to perform efficient simulation of general
compressible diphasic fluids while being able to capture instabilities that could emerge considering contrasts of
properties such as Saffman-Taylor or Rayleigh-Taylor instabilities. However, we emphasize that to achieve this
latter goal, we have to be able to capture accurately the possible fine structures appearing during the numerical
simulations. We plan to improve our numerical scheme in several ways. First, we plan to adapt the Relaxed
version of the Generalized SAV method. Indeed, we observed during our numerical simulation that the variable
𝜉 is between 10−5 and 10−3. However, with the transfer term 𝐹𝑐(𝜌, 𝑐) ̸= 0, as the simulation progresses, the gap
between 𝑟 and the real energy increases, i.e. 𝜉 becomes larger. As shown in [66], this problem is solved with the
relaxed G-SAV method and the use of this method is one of our further developments. In the same work [66],
it is mentioned that this relaxed method works well even when an external force is comprised in the model. In
our case, this external force will take the form of a mass transfer or mass source term. The second improvement
concerns the accuracy of our scheme. As shown in our work, the temporal and spatial orders of our scheme do not
exceed 1. Thus, we will aim to design a high-order finite element scheme for the generalized compressible NSCH
system that will remain structure preserving taking advantage of the flexibility of the relaxed GSAV method.
On another aspect, we plan to use the reduced version of the G-NSCH model presented in the Appendix B to
represent tumor growth while removing non-necessary effects such as inertia. Our goal is to present a model
and numerical simulations capturing Saffman-Taylor-like instabilities depicted by the protrusions of the tumor
in the healthy tissue and commonly observed in the context of, e.g. skin cancer [19]. Furthermore, analytical
aspects of this work can also be improved. This direction is challenging because as pointed out in the present
work, necessary tools to perform the solutions’ existence proof do not work with physically or biologically rele-
vant potentials or mobility functions. In fact, singular potentials, degenerate mobilities and degenerate viscosity
functions are not allowed. One possible solution is to derive a Bresch-Desjardins entropy estimate [13, 14] for
the compressible NSCH as it has been done recently by Vasseur and Yu [64], and Bresch et al. [15], for the
compressible Navier–Stokes model with degenerate viscosities.

To conclude, we emphasize that the G-NSCH model is the basis of a reduced system that takes into account
only biologically relevant physical effects that play a role in tumor evolution (presented in the present article in
Appendix B as Problem 2 ). Therefore, this work has to be seen as the first part. In a subsequent work, relying
heavily on the present one, we will focus on numerical simulations, and sensitivity analysis of the reduced model.

Appendix A. Derivation of the model

In this Appendix, we present the rigourous derivation of our G-NSCH model.

A.1. Notation and definitions

We formulate our problem in Eulerian coordinates and in a smooth bounded domain Ω ⊂ R𝑑 (where 𝑑 =
{1, 2, 3} is the dimension). The balance laws derived in the following sections are in local form.

We have two fluids in the model where 𝜌1, 𝜌2 are the relative densities of respectively fluid 1 and 2. Thus, 𝜌𝑖
represents the mass 𝑀𝑖 of the fluid per volume occupied by the 𝑖th phase 𝑉𝑖, i.e.

𝜌𝑖 =
𝑀𝑖

𝑉𝑖
·

Then, we define the volume fractions 𝜙1, 𝜙2 which are defined by the volume occupied by the 𝑖th phase over
the total volume of the mixture

𝜙𝑖 =
𝑉𝑖
𝑉
·
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Therefore, the mass density of population 𝑖 which is the mass of population 𝑖 in volume 𝑉 is given by

𝜑𝑖 = 𝜌𝑖𝜙𝑖.

We further assume that the fluid is saturated, i.e.

𝜙1 + 𝜙2 = 1.

The total density of the mixture is then given by

𝜌 = 𝜑1 + 𝜑2.

We also introduce the mass fractions 𝑐𝑖 = 𝑀𝑖/𝑀 and we have the relations

𝜌𝑐𝑖 = 𝜑𝑖, and 𝑐1 = (1− 𝑐2). (A.1)

We denote by 𝑝 the pressure inside the mixture and v1,v2 are the velocities of the different phases. We use a
mass-average mixture velocity

v =
1
𝜌

(𝜑1v1 + 𝜑2v2). (A.2)

We define the material derivative for a generic function 𝑔 (scalar or vector-valued) by

D𝑔
D𝑡

=
𝜕𝑔

𝜕𝑡
+ v · ∇𝑔, (A.3)

and indicate the definition of the differential operator

v · ∇𝑔 =
𝑑∑︁
𝑗=1

v𝑗
𝜕𝑔

𝜕𝑥𝑗
·

In the following, we denote vectors by bold roman letters and we use bold Greek letters to denote second-order
tensors.

A.2. Mass balance equations

We have the mass balance equations{︃
𝜕𝜑1
𝜕𝑡 + div(𝜑1v1) = 𝐹1(𝜌, 𝑐1, 𝑐2),
𝜕𝜑2
𝜕𝑡 + div(𝜑2v2) = 𝐹2(𝜌, 𝑐1, 𝑐2).

(A.4)

The functions 𝐹𝑖(𝜌, 𝑐1, 𝑐2) (𝑖 = 1, 2) act as source or exchange terms of mass.
Summing the two equations, we obtain the continuity equation for the total density of the mixture, using

𝑐 = 𝑐1, and the relations (A.1), we obtain the balance equation for the total density of the mixture

𝜕𝜌

𝜕𝑡
+ div(𝜌v) = 𝐹1 + 𝐹2 =: 𝐹𝜌. (A.5)

To obtain a system analogous to (A.4), we rewrite the first equation of (A.4) using the definition of the mass
fraction (A.1) to obtain

𝜕𝜌𝑐

𝜕𝑡
+ div(𝜌𝑐v1) = 𝐹1(𝜌, 𝑐, 1− 𝑐) =: 𝐹𝑐. (A.6)

The mass of the component 1 is transported by the average velocity v and the remaining diffusive flux J1 =
𝜌𝑐(v − v1). Therefore, we can replace the previous equation by

𝜕𝜌𝑐

𝜕𝑡
+ div(𝜌𝑐v) = div(J1) + 𝐹𝑐.
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Then, using the definition of the material derivative (A.3) and the mass balance equation for the total mixture
(A.5), the left-hand side of the previous equation reads

𝜕𝜌𝑐

𝜕𝑡
+ div(𝜌𝑐v) = 𝜌

D𝑐
D𝑡

+ 𝑐

[︂
𝜕𝜌

𝜕𝑡
+ div(𝜌v)

]︂
= 𝜌

D𝑐
D𝑡

+ 𝑐𝐹𝜌.

Altogether, we obtain the balance equation for the mass fraction of the component 1

𝜌
D𝑐
D𝑡

= div(J1) + 𝐹𝑐 − 𝑐𝐹𝜌. (A.7)

Since 𝑐2 = 1 − 𝑐, solving the equations (A.5) and (A.7) is equivalent to solving the system (A.4). In the
following, we refer to 𝑐 as the order parameter (terminology often used in the framework of the Cahn–Hilliard
model [17,18]).

A.3. Balance of linear momentum

We write the balance of linear momentum [23], which describes the evolution of the velocity v due to internal
stresses and external forces. Following continuum mechanics, the Cauchy stress tensor gives the stresses acting
inside the mixture due to viscous and non-viscous effects. An additional stress must be taken into account to
represent the effect of concentration gradients [25]. Altogether, we assume that the stress tensor is a function
of the total density 𝜌, the order parameter 𝑐 (i.e. the mass fraction of fluid 1), its gradient ∇𝑐, and the total
velocity of the mixture v, i.e.

𝜎𝜎𝜎 = 𝜎𝜎𝜎(𝜌, 𝑐,∇𝑐,v).

The friction around the pores of the medium is modeled by a drag term in the balance equation [56] with a
permeability coefficient 𝜅(𝜌, 𝑐) = 𝜅1(𝜌, 𝑐) + 𝜅2(𝜌, 𝑐) (the sum of the two friction coefficients for each component
of the mixture). The permeability coefficient relates the properties of the fluid and the porous medium.

For each dimension (for example if 𝑑 = 3, then 𝑗 = {𝑥, 𝑦, 𝑧}), the balance of linear momentum reads [23]

𝜕𝜌v𝑗
𝜕𝑡

+ div(𝜌v𝑗v) = div(𝜎𝜎𝜎)𝑗 − 𝜅(𝜌, 𝑐)v𝑗 + 𝐹v𝑗
,

where 𝐹v𝑗
(v𝑗 , 𝜌) represents the gain or loss of velocity in the 𝑗th direction from different effects such as external

forces. Then, using the continuity equation (A.5), we can rearrange the left-hand side to obtain

𝜕𝜌v𝑗
𝜕𝑡

+ div(𝜌v𝑗v) = 𝜌
Dv𝑗
D𝑡

+ v𝑗

[︂
𝜕𝜌

𝜕𝑡
+ div(𝜌v)

]︂
= 𝜌

Dv𝑗
D𝑡

+ v𝑗𝐹𝜌 + 𝐹v𝑗
.

Therefore, we have

𝜌
Dv𝑗
D𝑡

= div(𝜎𝜎𝜎)𝑗 − (𝜅(𝜌, 𝑐) + 𝐹𝜌)v𝑗 + 𝐹v𝑗
.

We can rewrite the balance of linear momentum in a more compact form

𝜌
Dv
D𝑡

= div(𝜎𝜎𝜎)− (𝜅(𝜌, 𝑐) + 𝐹𝜌)v + 𝐹v, (A.8)

where 𝐹v(v, 𝜌) is the vector of coordinates 𝐹v𝑗
.

A.4. Energy balance

The total energy of the mixture is the sum of the kinetic energy 𝜌 1
2 |v|

2 and of the internal energy 𝜌𝑢, where
𝑢 = 𝑢(𝜌, 𝑐,∇𝑐) is a specific internal energy. Compared to the classical conservation law for the total energy,
we have an additional energy flux 𝜏𝜏𝜏 D𝑐

D𝑡 . Indeed, due to the interface region, surface effects must be taken into
account. Following this direction, Gurtin [34] proposed to include in the second law of thermodynamics, the
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effect of an additional force called the microscopic-stress which is related to forces acting at the microscopic
scale. We denote this supplementary stress by 𝜏𝜏𝜏 .

Since we assume that the system is maintained in an isothermal state, the balance equation for the energy is
given by Eck et al. [23]

𝜕

𝜕𝑡

(︂
𝜌

1
2
|v|2 + 𝜌𝑢

)︂
+ div

(︂
𝜌

(︂
1
2
|v|2 + 𝑢

)︂
v
)︂

= div
(︀
𝜎𝜎𝜎𝑇v

)︀
+ div

(︂
𝜏𝜏𝜏

D𝑐
D𝑡

)︂
− div(q) + 𝜌𝑔 + 𝑐𝜌𝐹𝜌 + 𝑐𝑐𝐹𝑐 + 𝑐v𝐹v,

(A.9)

where q is the heat flux and 𝜌𝑔 is the density of heat sources to maintain the temperature constant. The
last three terms in equation (A.9) account for the energy supply coming from the mass and velocity sources
(see e.g. [36, 45]). The prefactors 𝑐𝜌, 𝑐𝑐, 𝑐v will be determined later to satisfy the free energy imbalance. Then,
repeating the same calculations on the left-hand side to use the balance of mass (A.5), we have

𝜕

𝜕𝑡

(︂
𝜌

1
2
|v|2 + 𝜌𝑢

)︂
+ div

(︂
𝜌

(︂
1
2
|v|2 + 𝑢

)︂
v
)︂

= 𝜌

[︂
D
D𝑡

(︂
1
2
|v|2 + 𝑢

)︂]︂
+
(︂

1
2
|v|2 + 𝑢

)︂
𝐹𝜌.

Applying the chain rule to the kinetic part, we obtain

𝜌
D
D𝑡

(︂
1
2
|v|2

)︂
= 𝜌v · Dv

D𝑡
,

and using the balance of linear momentum (A.8), we arrive to

𝜌v · Dv
D𝑡

= v · div(𝜎𝜎𝜎)− (𝜅(𝜌, 𝑐) + 𝐹𝜌)|v|2 + 𝐹v · v.

Using these previous equations inside (A.9), we obtain the balance equation for the internal energy

𝜌
D𝑢
D𝑡

= div
(︀
𝜎𝜎𝜎𝑇v

)︀
− v · div(𝜎𝜎𝜎) + div

(︂
𝜏𝜏𝜏

D𝑐
D𝑡

)︂
+ (𝜅(𝜌, 𝑐) + 𝐹𝜌)|v|2 − 𝐹𝑣v

− div(q) + 𝜌𝑔 −
(︂

1
2
|v|2 + 𝑢

)︂
𝐹𝜌 + 𝑐𝜌𝐹𝜌 + 𝑐𝑐𝐹𝑐 + 𝑐v𝐹v.

However, since
v · (div(𝜎𝜎𝜎))− div

(︀
𝜎𝜎𝜎𝑇v

)︀
= −𝜎𝜎𝜎 ..∇v,

where ∇v =
(︀
𝜕𝑥𝑗

v𝑖
)︀
𝑖,𝑗=1,...,𝑑

is the Jacobi matrix and, we have 𝐴 .. 𝐵 =
∑︀
𝑖,𝑗 𝐴𝑖𝑗𝐵𝑖𝑗 , for two matrices 𝐴,𝐵.

Altogether, we have the balance equation for the internal energy

𝜌
D𝑢
D𝑡

= 𝜎𝜎𝜎 ..∇v + div
(︂
𝜏𝜏𝜏

D𝑐
D𝑡

)︂
+ (𝜅(𝜌, 𝑐) + 𝐹𝜌)|v|2 − 𝐹𝑣v

− div(q) + 𝜌𝑔 −
(︂

1
2
|v|2 + 𝑢

)︂
𝐹𝜌 + 𝑐𝜌𝐹𝜌 + 𝑐𝑐𝐹𝑐 + 𝑐v𝐹v.

(A.10)

A.5. Entropy balance and Clausius–Duhem inequality

We aim to apply the second law of thermodynamics. To do so, we define the entropy 𝑠 = 𝑠(𝜌, 𝑐,∇𝑐) and the
Helmholtz free energy ℱ = ℱ(𝜌, 𝑐,∇𝑐), both related through the equation

ℱ = 𝑢− 𝑇𝑠, (A.11)
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where 𝑇 denotes the temperature.
From the mass balance equation (A.5), we have the entropy balance equation

𝜕𝜌𝑠

𝜕𝑡
+ div(𝑠𝜌v) = 𝜌

D𝑠
D𝑡

+ 𝑠

[︂
𝜕𝜌

𝜕𝑡
+ div(𝜌v)

]︂
= 𝜌

D𝑠
D𝑡

+ 𝑠𝐹𝜌. (A.12)

Then, using the definition of the Helmholtz free energy (A.11) and the balance of energy (A.10), we obtain

𝜌
D𝑠
D𝑡

= − 𝜌

𝑇

Dℱ
D𝑡

+
𝜌

𝑇

D𝑢
D𝑡

= − 𝜌

𝑇

Dℱ
D𝑡

+
1
𝑇

[︂
𝜎𝜎𝜎 ..∇v + div

(︂
𝜏𝜏𝜏

D𝑐
D𝑡

)︂
+ (𝜅(𝜌, 𝑐) + 𝐹𝜌)|v|2 − 𝐹𝑣v

− div(q) + 𝜌𝑔 −
(︂

1
2
|v|2 + 𝑢

)︂
𝐹𝜌 + 𝑐𝜌𝐹𝜌 + 𝑐𝑐𝐹𝑐 + 𝑐v𝐹v

]︂
,

(A.13)

where we have replaced the material derivative of the internal energy using its balance equation (A.10).
The constitutive relations for the functions constituting the Navier–Stokes–Cahn–Hilliard model are often

derived to satisfy the Clausius–Duhem inequality (Coleman–Noll Procedure) [23]. Indeed, this inequality pro-
vides a set of restrictions for the dissipative mechanisms occurring in the system. However, in our case, due to
the presence of source terms, we can not ensure that this inequality holds without some assumptions on the
proliferation and friction of the fluid around the pores. Therefore, we use here a different method: the Lagrange
multipliers method. Indeed, the Liu [50] and Müller [55] method is based on using Lagrange multipliers to derive
a set of restrictions on the constitutive relations that can be applied even in the presence of source terms.

Following classical Thermodynamics [55], we state the second law as an entropy inequality, i.e. , the Clausius–
Duhem inequality in the local form [23]

𝜌
D𝑠
D𝑡

≥ −div
(︁q
𝑇

)︁
+
𝜌𝑔

𝑇
+ div(𝒥 ), (A.14)

where 𝒥 is the entropy flux. The inequality (A.14) results from the fact that the entropy of the mixture can
only increase. Using the equation (A.13), we obtain

𝜌

𝑇

𝐷ℱ
𝐷𝑡

− 1
𝑇

[︂
𝜎𝜎𝜎 ..∇v + div

(︂
𝜏𝜏𝜏

D𝑐
D𝑡

)︂
+ (𝜅(𝜌, 𝑐) + 𝐹𝜌)|v|2

− 𝐹𝑣v −
(︂

1
2
|v|2 + 𝑢

)︂
𝐹𝜌 + 𝑐𝜌𝐹𝜌 + 𝑐𝑐𝐹𝑐 + 𝑐v𝐹v

]︂
+ div(𝒥 ) ≤ 0.

(A.15)

Then, using the chain rule
𝐷ℱ
𝐷𝑡

=
𝐷𝜌

𝐷𝑡

𝜕ℱ
𝜕𝜌

+
𝐷𝑐

𝐷𝑡

𝜕ℱ
𝜕𝑐

+
𝐷∇𝑐
𝐷𝑡

· 𝜕ℱ
𝜕∇𝑐

,

and
𝐷∇𝑐
𝐷𝑡

= ∇
[︂
𝐷𝑐

𝐷𝑡

]︂
− (∇v)𝑇∇𝑐, D𝜌

D𝑡
= −𝜌div(v) + 𝐹𝜌,

in the entropy inequality (A.15), we obtain

𝜌

[︂
(−𝜌div(v) + 𝐹𝜌)

𝜕ℱ
𝜕𝜌

+
D𝑐
D𝑡

𝜕ℱ
𝜕𝑐

+
(︂
∇
[︂
𝐷𝑐

𝐷𝑡

]︂
− (∇v)𝑇∇𝑐

)︂
· 𝜕ℱ
𝜕∇𝑐

]︂
− div

(︂
𝜏𝜏𝜏

D𝑐
D𝑡

)︂
− 𝜎𝜎𝜎 : ∇v

−
[︂
(𝜅(𝜌, 𝑐) + 𝐹𝜌)|v|2 − 𝐹𝑣v −

(︂
1
2
|v|2 + 𝑢

)︂
𝐹𝜌 + 𝑐𝜌𝐹𝜌 + 𝑐𝑐𝐹𝑐 + 𝑐v𝐹v

]︂
+ 𝑇div(𝒥 ) ≤ 0.

(A.16)
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By the chain rule, we have

div
(︂
𝜏𝜏𝜏

D𝑐
D𝑡

)︂
= 𝜏𝜏𝜏∇

[︂
𝐷𝑐

𝐷𝑡

]︂
+

D𝑐
D𝑡

div(𝜏𝜏𝜏).

Furthermore, we know that

−𝜌2div(v)
𝜕ℱ
𝜕𝜌

= −𝜌2 𝜕ℱ
𝜕𝜌

I ..∇v,

and

−𝜌
(︁

(∇v)𝑇∇𝑐
)︁
· 𝜕ℱ
𝜕∇𝑐

= −𝜌
(︂
∇𝑐⊗ 𝜕ℱ

𝜕∇𝑐

)︂
..∇v.

Gathering the previous three relations and reorganizing the terms of (A.16), we obtain(︂
−𝜌2 𝜕ℱ

𝜕𝜌
I− 𝜌∇𝑐⊗ 𝜕ℱ

𝜕∇𝑐
− 𝜎𝜎𝜎

)︂
.
.∇v +

(︂
𝜌
𝜕ℱ
𝜕𝑐

− div(𝜏𝜏𝜏)
)︂

D𝑐
D𝑡

+
(︂
𝜌
𝜕ℱ
𝜕∇𝑐

− 𝜏𝜏𝜏
)︂
∇
[︂

D𝑐
D𝑡

]︂
+ 𝑇div(𝒥 )

−
[︂
(𝜅(𝜌, 𝑐) + 𝐹𝜌)|v|2 − 𝐹𝑣v −

(︂
1
2
|v|2 + 𝑢− 𝜌

𝜕ℱ
𝜕𝜌

)︂
𝐹𝜌 + 𝑐𝜌𝐹𝜌 + 𝑐𝑐𝐹𝑐 + 𝑐v𝐹v

]︂
≤ 0.

(A.17)

Then, we use Liu’s Lagrange multipliers method [50]. We denote by 𝐿𝑐 the Lagrange multiplier associated with
the mass fraction equation (A.7). The method of Lagrange multipliers consists in setting the following local
dissipation inequality that has to hold for arbitrary values of (𝜌, 𝑐,∇𝜌,∇𝑐,v, 𝑝)

−𝐷iss :=
(︂
−𝜌2 𝜕ℱ

𝜕𝜌
I− 𝜌∇𝑐⊗ 𝜕ℱ

𝜕∇𝑐
− 𝜎𝜎𝜎

)︂
.
.∇v

+
(︂
𝜌
𝜕ℱ
𝜕𝑐

− div(𝜏𝜏𝜏)
)︂

D𝑐
D𝑡

+
(︂
𝜌
𝜕ℱ
𝜕∇𝑐

− 𝜏𝜏𝜏
)︂
∇
[︂

D𝑐
D𝑡

]︂
+ 𝑇div(𝒥 )

−
[︂
(𝜅(𝜌, 𝑐) + 𝐹𝜌)|v|2 − 𝐹𝑣v −

(︂
1
2
|v|2 + 𝑢− 𝜌

𝜕ℱ
𝜕𝜌

)︂
𝐹𝜌 + 𝑐𝜌𝐹𝜌 + 𝑐𝑐𝐹𝑐 + 𝑐v𝐹v

]︂
− 𝐿𝑐

(︂
𝜌

D𝑐
D𝑡

− div(J1)− 𝐹𝑐 − 𝑐𝐹𝜌

)︂
≤ 0.

(A.18)

Since,
div(𝐿𝑐J1) = 𝐿𝑐div(J1) +∇𝐿𝑐 · J1,

we reorganize the terms of (A.18) to obtain

−𝐷iss :=
(︂
−𝜌2 𝜕ℱ

𝜕𝜌
I− 𝜌∇𝑐⊗ 𝜕ℱ

𝜕∇𝑐
− 𝜎𝜎𝜎

)︂
.
.∇v

+
(︂
𝜌
𝜕ℱ
𝜕𝑐

− div(𝜏𝜏𝜏)− 𝜌𝐿𝑐

)︂
D𝑐
D𝑡

+
(︂
𝜌
𝜕ℱ
𝜕∇𝑐

− 𝜏𝜏𝜏
)︂
∇
[︂

D𝑐
D𝑡

]︂
+ div(𝑇𝒥 + 𝐿𝑐J1)−∇𝐿𝑐 · J1 (A.19)

−
[︂
(𝜅(𝜌, 𝑐) + 𝐹𝜌)|v|2 − 𝐹𝑣v −

(︂
1
2
|v|2 + 𝑢− 𝜌

𝜕ℱ
𝜕𝜌

)︂
𝐹𝜌 + 𝑐𝜌𝐹𝜌 + 𝑐𝑐𝐹𝑐 + 𝑐v𝐹v − 𝐿𝑐(𝐹𝑐 + 𝑐𝐹𝜌)

]︂
≤ 0.

A.6. Constitutive assumptions and model equations

First of all, we assume that the free energy density ℱ is of Ginzburg-Landau type and has the following form
[17,18]

ℱ(𝜌, 𝑐,∇𝑐) := 𝜓0(𝜌, 𝑐) +
𝛾

2
|∇𝑐|2, (A.20)
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where 𝜓0 is the homogeneous free energy accounting for the processes of phase separation and the gradient
term 𝛾

2 |∇𝑐|
2 represents the surface tension between the two phases. This free energy is the basis of the Cahn–

Hilliard model which describes the phase separation occurring in binary mixtures. Furthermore, as obtained in
Wise et al. [65], the adhesion energy between different cell species is indeed well represented by such a choice
of the free energy functional.

To satisfy the inequality (A.19), we first choose

𝜏𝜏𝜏 := 𝜌
𝜕ℱ
𝜕∇𝑐

= 𝛾𝜌∇𝑐.

Then, we define the chemical potential 𝜇(𝜌, 𝑐,∇𝑐) by

𝜇 :=
𝜕ℱ
𝜕𝑐

− 1
𝜌

div(𝜏𝜏𝜏) =
𝜕ℱ
𝜕𝑐

− 1
𝜌

div
(︂
𝜌
𝜕ℱ
𝜕∇𝑐

)︂
=
𝜕𝜓0

𝜕𝑐
− 𝛾

𝜌
div(𝜌∇𝑐),

which in turn gives a condition for the Lagrange multiplier

𝐿𝑐 = 𝜇. (A.21)

Using these previous constitutive relations, we have already canceled some terms in the entropy inequality, i.e.(︂
𝜌
𝜕ℱ
𝜕𝑐

− div(𝜏𝜏𝜏)− 𝜌𝐿𝑐

)︂
D𝑐
D𝑡

+
(︂
𝜌
𝜕ℱ
𝜕∇𝑐

− 𝜏𝜏𝜏
)︂
∇
[︂

D𝑐
D𝑡

]︂
= 0.

Then, using classical results on isothermal diffusion [23,51], we have

𝒥 := −𝜇J1

𝑇
, (A.22)

and, using a generalized Fick’s law, we have

J1 := 𝑏(𝑐)∇𝜇, (A.23)

where 𝑏(𝑐) is a nonnegative mobility function that we will specify in the following. The two constitutive relations
for the diffusive fluxes (A.22) and (A.23) together with (A.21), we obtain

div(𝑇𝒥 + 𝐿𝑐J1)−∇𝐿𝑐 · J1 = −𝑏(𝑐)|∇𝜇|2 ≤ 0.

Following [3, 51], we define the pressure inside the mixture

𝑝 := 𝜌2 𝜕𝜓0

𝜕𝜌
· (A.24)

From standard rheology, we assume that the fluid satisfies Newton’s rheological laws. The stress tensor is
composed of two parts for the viscous P̃ and non-viscous P contributions of stress

𝜎𝜎𝜎 := P + P̃, (A.25)

and we have by standard continuum mechanics (see e.g. [3, 10,23])⎧⎨⎩P = −
(︁
𝑝− 𝛾

2 |∇𝑐|
2
)︁
I− 𝛾𝜌∇𝑐⊗∇𝑐,

P̃ = 𝜈(𝑐)
(︀
∇v +∇v𝑇

)︀
+ 𝜆(𝑐)div(v)I.

(A.26)
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In (A.26), 𝜈(𝑐) denotes the shear viscosity and 𝜆(𝑐) = 𝜂(𝑐)− 2
3𝜈(𝑐) where 𝜂(𝑐) is the dilatational viscosity that

encodes the response of the fluid to volume changes. The second term in the non-viscous part of the stress
(namely −𝛾(𝜌∇𝑐⊗∇𝑐)) represents capillary stresses that act at the interface of the two populations.

Using (A.26), we can cancel terms in (A.19)(︂
−𝜌2 𝜕ℱ

𝜕𝜌
I− 𝜌∇𝑐⊗ 𝜕ℱ

𝜕∇𝑐
− 𝜎𝜎𝜎

)︂
..∇v = 0.

The remaining terms of the entropy inequality are the ones associated with proliferation and friction. The last
step to satisfy the entropy inequality is to choose arbitrarily a value for 𝑐𝜌, such that

−
[︂
(𝜅(𝜌, 𝑐) + 𝐹𝜌)|v|2 − 𝐹𝑣v −

(︂
1
2
|v|2 + 𝑢− 𝜌

𝜕ℱ
𝜕𝜌

)︂
𝐹𝜌 + 𝑐𝜌𝐹𝜌 + 𝑐𝑐𝐹𝑐 + 𝑐v𝐹v − 𝐿𝑐(𝐹𝑐 + 𝑐𝐹𝜌)

]︂
≤ 0.

Reorganizing the terms we have

−𝜅(𝜌, 𝑐)|v|2 − 𝐹𝜌

[︂
𝑐𝜌 + |v|2 −

(︂
1
2
|v|2 + 𝑢− 𝜌

𝜕ℱ
𝜕𝜌

)︂
− 𝜇𝑐

]︂
− 𝐹v[𝑐v − v]− 𝐹𝑐[𝑐𝑐 − 𝜇] ≤ 0.

The obvious choices are ⎧⎪⎨⎪⎩
𝑐𝜌 = −|v|2 +

(︁
1
2 |v|

2 + 𝑢− 𝜌𝜕ℱ𝜕𝜌

)︁
+ 𝜇𝑐,

𝑐v = v,
𝑐𝑐 = 𝜇.

From the previous constitutive relations, we satisfy the dissipation inequality (A.19).

A.7. Summary of the model’s equations

Using the previous constitutive relations our general model is the following compressible Navier–Stokes–
Cahn–Hilliard system

𝜕𝜌

𝜕𝑡
= −div(𝜌v) + 𝐹𝜌,

𝜌
D𝑐
D𝑡

= div(𝑏(𝑐)∇𝜇) + 𝐹𝑐 − 𝑐𝐹𝜌,

𝜌𝜇 = −𝛾div(𝜌∇𝑐) + 𝜌
𝜕𝜓0

𝜕𝑐
,

𝜌
Dv
D𝑡

= − [∇𝑝+ 𝛾div(𝜌∇𝑐⊗∇𝑐)] + div
(︀
𝜈(𝑐)

(︀
∇v +∇v𝑇

)︀)︀
− 2

3
div(𝜈(𝑐)div(v)I) + div(𝜂(𝑐)div(v)I)− (𝜅(𝜌, 𝑐) + 𝐹𝜌)v + 𝐹v,

(A.27)

with 𝑝 defined in (A.24).

Appendix B. Model reductions, general assumptions and biologically
relevant choices of the model’s functions

B.1. Specific choices of functionals and model reductions

Problem 1: general compressible NSCH with friction term and mass transfer. Assuming no creation
of mass nor transfer of mass from the exterior of the system we have

𝐹𝑐 = −𝐹1−𝑐, (B.1)
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leading to mass conservation
𝐹𝜌 = 0. (B.2)

Furthermore, we assume no external source of velocity and energy, leading to

𝐹v = 0, and 𝐹𝑢 = 0. (B.3)

Furthermore, using the same simplifying assumption as in Abels and Feireisl [3] to avoid vacuum zones, our
final reduced system of equations is

𝜕𝜌

𝜕𝑡
+ div(𝜌v) = 0, (B.4)

𝜕𝜌𝑐

𝜕𝑡
+ div(𝜌𝑐v) = div(𝑏(𝑐)∇𝜇) + 𝐹𝑐, (B.5)

𝜌𝜇 = −𝛾∆𝑐+ 𝜌
𝜕𝜓0

𝜕𝑐
, (B.6)

𝜕𝜌v
𝜕𝑡

+ div(𝜌v ⊗ v) = −
[︂
∇𝑝+ 𝛾div

(︂
∇𝑐⊗∇𝑐− 1

2
|∇𝑐|2I

)︂]︂
+ div

(︀
𝜈(𝑐)

(︀
∇v +∇v𝑇

)︀)︀
− 2

3
div(𝜈(𝑐)div(v)I) + div(𝜂(𝑐)div(v)I)− 𝜅(𝜌, 𝑐)v, (B.7)

Problem 2: biologically relevant variant of the system. We here refer to the two phases of the mixture
as cell populations and not fluids. For this variant of the system, we assume the production of mass and neglect
certain effects. Namely, we neglect inertia effects, and the viscosity of the fluid, and assume no external source
of velocity. This leads to the momentum equation

∇𝑝+ 𝜅(𝜌, 𝑐)v = −𝛾div
(︂
∇𝑐⊗∇𝑐− 1

2
|∇𝑐|2I

)︂
− 𝐹𝜌v.

Assuming that one cell population proliferates while the other does not leads to

𝐹𝑐 = 𝐹𝜌 = 𝜌𝑐𝑃𝑐(𝑝), and 𝐹1−𝑐 = 0,

with a pressure-dependent proliferation rate 𝑃𝑐(𝑝) ≥ 0. The growth function 𝑃𝑐(𝑝) is used to represent the
capacity of cells to divide accordingly to the pressure exerted on them. It is well known that cells are able to
divide as long as the pressure is not too large. Once a certain pressure 𝑝max is reached cells enter a quiescent
state. Therefore, we assume that

𝑃 ′𝑐(𝑝) ≤ 0, and 𝑃𝑐(𝑝) = 0 for 𝑝 > 𝑝max. (B.8)

Combining these changes, the model becomes⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝜕𝜌
𝜕𝑡 + div(𝜌v) = 𝜌𝑐𝑃𝑐(𝑝),
𝜕𝜌𝑐
𝜕𝑡 + div(𝜌𝑐v) = div(𝑏(𝑐)∇𝜇) + 𝜌𝑐𝑃𝑐(𝑝),

𝜌𝜇 = −𝛾∆𝑐+ 𝜌𝜕𝜓0
𝜕𝑐 ,

∇𝑝+ 𝜅(𝜌, 𝑐)v = −𝛾div
(︁
∇𝑐⊗∇𝑐− 1

2 |∇𝑐|
2I
)︁
− 𝜌𝑐𝑃𝑐(𝑝)v.

(B.9)

B.2. Biologically consistent choices of functions

As said in the derivation of the model, the free energy density ℱ is the sum of two terms: 𝛾
2 |∇𝑐|

2 taking
into account the surface tension effects existing between the phases of the mixture and the potential 𝜓0(𝜌, 𝑐)
representing the cell-cell interactions and pressure. Thus, we choose

𝜓0(𝜌, 𝑐) = 𝜓𝑒(𝜌) + 𝜓mix(𝜌, 𝑐), (B.10)
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with 𝜓mix(𝜌, 𝑐) = 𝐻(𝑐) log 𝜌+𝑄(𝑐). Then, using the constitutive relation for the pressure we have

𝑝(𝜌, 𝑐) = 𝜌2 𝜕𝜓0

𝜕𝜌
= 𝑝𝑒(𝜌) + 𝜌𝐻(𝑐). (B.11)

The function 𝑏(𝑐) is the active mobility of the cells.
Let us explain how the choices of functions for the free energy density and mobility are motivated by biological

observations.
To satisfy the conditions (2.7), we propose to choose

𝑏(𝑐) = 𝐶𝑏𝑐(1− 𝑐)𝛼, 𝛼 ≥ 1, (B.12)

where 𝐶𝑏 is a positive constant.
We use for the pressure a power law such that

𝑝𝑒(𝜌) =
1

𝑎− 1
𝜌𝑎−1. (B.13)

For 𝐻(𝑐) and 𝐺(𝑐), two choices can be considered depending on the behavior of the cells we want to represent.
If the two cell populations exert attractive forces when they recognize cells of the same type and repulsion with
the other type, the potential has to take a form of a double-well for which the two stable phases are located
at the bottom of the two wells (see e.g. Fig. B.1a). This is a situation close to the phase separation in binary
fluids. Thermodynamically consistent potentials are of Ginzburg-Landau type with the presence of logarithmic
terms. An example of double-well potential is given by

𝜓mix =
1
2

(𝛼1(1− 𝑐) log(𝜌(1− 𝑐)) + 𝛼2𝑐 log(𝜌𝑐))− 𝜃

2

(︂
𝑐− 1

2

)︂2

+ 𝑘, (B.14)

thus giving

𝐻(𝑐) =
1
2

(𝛼1(1− 𝑐) + 𝛼2𝑐), 𝑄(𝑐) =
1
2

(𝛼1(1− 𝑐) log(1− 𝑐) + 𝛼2𝑐 log(𝑐))− 𝜃

2

(︂
𝑐− 1

2

)︂2

+ 𝑘,

where 𝜃 > 1, and 𝑘, 𝛼1, 𝛼2 > 0 are an arbitrary constants.
To meet the phenomenological observations of the interaction between cells when the mixture is composed

of only one cell population, a single-well potential seems more appropriate [16,20].
Indeed, when the distance between cells falls below a certain value (i.e. if the cell density is large enough),

cells are attracted to each other. Then, it exists a threshold value called the mechanical equilibrium for which
𝜕𝑐𝜓0 = 0 i.e. there is an equilibrium between attractive and repulsive forces. For larger cell densities, cells are
packed too close to each other, they thus experience a repulsive force. When cells are so packed that they fill
the whole control volume, then the repulsive force becomes infinite due to the pressure. The representation of
such functional is depicted in Figure B.1b. A typical example of single-well potential which has been used for
the modeling of living tissue and cancer [7, 20] is

𝜓mix(𝜌, 𝑐) = −(1− 𝑐𝑒) log(𝜌(1− 𝑐))− 𝑐3

3
− (1− 𝑐𝑒)

𝑐2

2
− (1− 𝑐𝑒)𝑐+ 𝑘, (B.15)

thus giving

𝐻(𝑐) = −(1− 𝑐𝑒), 𝑄(𝑐) = −(1− 𝑐𝑒) log(1− 𝑐)− 𝑐3

3
− (1− 𝑐𝑒)

𝑐2

2
− (1− 𝑐𝑒)𝑐+ 𝑘, (B.16)

where 𝑘 is an arbitrary constant.
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Figure B.1. For both figures 𝜌 = 1. Double-well logarithmic potential (left) with 𝛼1 = 1.2 and
𝛼2 = 0.8 and single-well logarithmic potential (right). (a) Double-well potential. (b) Single-well
potential.

Appendix C. Description of the two-dimensional numerical scheme

We describe the two-dimensional scheme. This scheme possesses the same properties as the one-dimensional
scheme.

We write the velocity field v = (𝑢𝑥, 𝑢𝑦). System (1.1)–(1.4) with the transformation proposed at the beginning
of this section, reads

𝜕𝑡𝜌+ 𝜕𝑥(𝜌𝑢𝑥) + 𝜕𝑦(𝜌𝑢𝑦) = 0, (C.1)

𝜕𝑡

(︂
𝜌

[︂
𝑢𝑥
𝑢𝑦

]︂)︂
+

[︃
𝜕𝑥(𝜌𝑢2

𝑥 + 𝑝)

𝜕𝑦(𝜌𝑢2
𝑦 + 𝑝)

]︃
+
[︂
𝜕𝑦(𝜌𝑢𝑥𝑢𝑦)
𝜕𝑥(𝜌𝑢𝑥𝑢𝑦)

]︂
= 2
[︂
𝜕𝑥(𝜈(𝑐)𝜕𝑥𝑢𝑥)
𝜕𝑦(𝜈(𝑐)𝜕𝑦𝑢𝑦)

]︂
+
[︂
𝜕𝑦(𝜈(𝑐)(𝜕𝑦𝑢𝑥 + 𝜕𝑥𝑢𝑦))
𝜕𝑥(𝜈(𝑐)(𝜕𝑦𝑢𝑥 + 𝜕𝑥𝑢𝑦))

]︂

+

[︃
𝜕𝑥
(︀(︀
𝜂(𝑐)− 2

3𝜈(𝑐)
)︀
(𝜕𝑥𝑢𝑥 + 𝜕𝑦𝑢𝑦)

)︀
𝜕𝑦
(︀(︀
𝜂(𝑐)− 2

3𝜈(𝑐)
)︀
(𝜕𝑥𝑢𝑥 + 𝜕𝑦𝑢𝑦)

)︀]︃− 𝛾

2

[︃
𝜕𝑥((𝜕𝑥𝑐)2 − (𝜕𝑦𝑐)2)

𝜕𝑦((𝜕𝑦𝑐)2 − (𝜕𝑥𝑐)2)

]︃
− 𝛾

[︂
𝜕𝑦(𝜕𝑥𝑐𝜕𝑦𝑐)
𝜕𝑥(𝜕𝑥𝑐𝜕𝑦𝑐)

]︂
− 𝜅(𝜌, 𝑐)

[︂
𝑢𝑥
𝑢𝑦

]︂
,

(C.2)

𝜌(𝜕𝑡𝑣 + 𝑢𝑥𝜕𝑥𝑣 + 𝑢𝑦𝜕𝑦𝑣) =
1

𝑇 ′(𝑣)
(𝜕𝑥(𝑏(𝑐)𝜕𝑥𝜇) + 𝜕𝑦(𝑏(𝑐)𝜕𝑦𝜇)) +

1
𝑇 ′(𝑣)

𝐹𝑐, (C.3)

𝜌𝜇 = −𝛾𝑇 ′(𝑣)(𝜕𝑥𝑥𝑐+ 𝜕𝑦𝑦𝑐)− 𝛾𝑇 ′′(𝑣)
(︀
(𝜕𝑥𝑣)2 + (𝜕𝑦𝑣)2

)︀
+ 𝜌

𝜕𝜓0

𝜕𝑐
, (C.4)

d𝑟
d𝑡

= − 𝑟(𝑡)
𝐸[𝑡] + 𝐶0

∫︁
Ω

𝑏(𝑐)|∇𝜇|2 − 𝜇𝐹𝑐 d𝑥. (C.5)
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We introduce the notations 𝑈 = (𝜌, 𝜌𝑢𝑥, 𝜌𝑢𝑦), 𝐺(𝑈) = (0,−𝜅𝑢𝑥,−𝜅𝑢𝑦) and

𝐹 (𝑈) = (𝜌𝑢𝑥, 𝜌𝑢2
𝑥 + 𝑝− 2𝜈(𝑐)𝜕𝑥𝑢𝑥 +

(︂
2
3
𝜈(𝑐)− 𝜂(𝑐)

)︂
(𝜕𝑥𝑢𝑥 + 𝜕𝑦𝑢𝑦) +

1
2
𝛾
(︀
(𝜕𝑥𝑐)2 − (𝜕𝑦𝑐)2

)︀
,

𝜌𝑢𝑥𝑢𝑦 − 𝜈(𝑐)(𝜕𝑦𝑢𝑥 + 𝜕𝑥𝑢𝑦) + 𝛾𝜕𝑥𝑐𝜕𝑦𝑐),
𝐾(𝑈) = (𝜌𝑢𝑦, 𝜌𝑢𝑥𝑢𝑦 − 𝜈(𝑐)(𝜕𝑦𝑢𝑥 + 𝜕𝑥𝑢𝑦) + 𝛾𝜕𝑥𝑐𝜕𝑦𝑐,

𝜌𝑢2
𝑦 + 𝑝− 2𝜈(𝑐)𝜕𝑦𝑢𝑦 +

(︂
2
3
𝜈(𝑐)− 𝜂(𝑐)

)︂
(𝜕𝑥𝑢𝑥 + 𝜕𝑦𝑢𝑦) +

1
2
𝛾
(︀
(𝜕𝑦𝑐)2 − (𝜕𝑥𝑐)2

)︀
).

The stabilization (see [37,44]) of the Navier–Stokes part of our system reads, with 𝜄 > 0 the relaxation parameter,⎧⎪⎨⎪⎩
𝜕𝑡𝑈 + 𝜕𝑥𝑉 + 𝜕𝑦𝑊 = 𝐺(𝑈),

𝜕𝑡𝑉 +𝐴𝜕𝑥𝑈 = − 1
𝜄 (𝑉 − 𝐹 (𝑈)),

𝜕𝑡𝑊 +𝐵𝜕𝑦𝑈 = − 1
𝜄 (𝑊 −𝐾(𝑈)),

(C.6)

in which 𝐴 = diag(𝑎1, 𝑎2, 𝑎3) and 𝐵 = diag(𝑏1, 𝑏2, 𝑏3). In the following, we choose

𝑎1 = 𝑎2 = 𝑎3 = max
{︂

sup
(︁
𝑢𝑥 +

√︀
𝜕𝜌𝑝
)︁2

, sup𝑢2
𝑥, sup

(︁
𝑢𝑥 −

√︀
𝜕𝜌𝑝
)︁2
}︂
,

𝑏1 = 𝑏2 = 𝑏3 = max
{︂

sup
(︁
𝑢𝑦 +

√︀
𝜕𝜌𝑝
)︁2

, sup𝑢2
𝑦, sup

(︁
𝑢𝑦 −

√︀
𝜕𝜌𝑝
)︁2
}︂
.

We assume that our two-dimensional domain is a square [0, 𝐿] × [0, 𝐿]. We discretize the domain using square
control volumes of size ∆𝑥×∆𝑦. The cell centers are located at positions (𝑥𝑗 , 𝑦𝑗), and we approximate the value
of a variable at the cell center by its mean, e.g.

𝜌𝑗,𝑖 =
1

∆𝑥∆𝑦

∫︁ 𝑥
𝑗+ 1

2

𝑥
𝑗− 1

2

∫︁ 𝑦
𝑗+ 1

2

𝑦
𝑗− 1

2

𝜌(x, 𝑡) dx.

Simply employing a first-order time discretization, the numerical scheme becomes

𝑈*𝑗,𝑖 = 𝑈𝑛𝑗,𝑖, (C.7)

𝑉 *𝑗,𝑖 = 𝑉 𝑛𝑗,𝑖 −
∆𝑡
𝜂

(︀
𝑉 *𝑗,𝑖 − 𝐹 (𝑈*𝑗,𝑖)

)︀
, (C.8)

𝑊 *
𝑗,𝑖 = 𝑊𝑛

𝑗,𝑖 −
∆𝑡
𝜂

(︀
𝑊 *
𝑗,𝑖 −𝐾(𝑈*𝑗,𝑖)

)︀
, (C.9)

𝑈𝑛+1
𝑗,𝑖 = 𝑈*𝑗,𝑖 −

∆𝑡
∆𝑥

(︁
𝑉 *𝑗+ 1

2 ,𝑖
− 𝑉 *𝑗− 1

2 ,𝑖

)︁
− ∆𝑡

∆𝑦

(︁
𝑊 *
𝑗,𝑖+ 1

2
−𝑊 *

𝑗,𝑖− 1
2

)︁
+ ∆𝑡𝐺

(︀
𝑈𝑛+1
𝑖,𝑗

)︀
, (C.10)

𝑉 𝑛+1
𝑗,𝑖 = 𝑉 *𝑗,𝑖 −

∆𝑡
∆𝑥

𝐴
(︁
𝑈*𝑗+ 1

2 ,𝑖
− 𝑈*𝑗− 1

2 ,𝑖

)︁
, (C.11)

𝑊𝑛+1
𝑗,𝑖 = 𝑊 *

𝑗,𝑖 −
∆𝑡
∆𝑦

𝐵
(︁
𝑈*𝑗,𝑖+ 1

2
− 𝑈*𝑗,𝑖− 1

2

)︁
, (C.12)

𝑣𝑛+1
𝑗,𝑖 − 𝑣𝑛𝑗,𝑖

∆𝑡
+ v𝑛+1

𝑗,𝑖 · (∇𝑣𝑛+1)𝑗,𝑖 = 𝑔
(︀
𝑐𝑛, 𝜇𝑛+1, 𝜌𝑛+1

)︀
𝑗,𝑖
, (C.13)

𝑔
(︀
𝑐𝑛, 𝜇𝑛+1, 𝜌𝑛+1

)︀
𝑗,𝑖

=

1
𝑇 ′(𝑣𝑛𝑗,𝑖)𝜌

𝑛+1
𝑗,𝑖 ∆𝑥

(︁(︀
𝑏(𝑐𝑛)∇𝜇𝑛+1

)︀
𝑗+ 1

2 ,𝑖
−
(︀
𝑏(𝑐𝑛)∇𝜇𝑛+1

)︀
𝑗− 1

2 ,𝑖

)︁
+

1
𝑇 ′(𝑣𝑛𝑗,𝑖)𝜌

𝑛+1
𝑗,𝑖 ∆𝑦

(︁
(𝑏(𝑐𝑛)∇𝜇𝑛+1)𝑗,𝑖+ 1

2
− (𝑏(𝑐𝑛)∇𝜇𝑛+1)𝑗,𝑖− 1

2

)︁
+
𝐹𝑐(𝜌𝑛𝑗,𝑖, 𝑐

𝑛
𝑗,𝑖)

𝑇 ′(𝑣𝑛𝑗,𝑖)𝜌
𝑛+1
𝑗,𝑖

,

(C.14)
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𝜇𝑛+1
𝑗,𝑖 =

1
𝜌𝑛𝑗,𝑖

(︁
−𝛾𝑇 ′

(︀
𝑣𝑛𝑗,𝑖
)︀(︀

∆𝑣𝑛+1
)︀
𝑗,𝑖
− 𝛾𝑇 ′′

(︀
𝑣𝑛𝑗,𝑖
)︀
|(∇𝑣𝑛)𝑗,𝑖|2

)︁
+
(︂
𝜕𝜓0

𝜕𝑐

)︂𝑛
𝑗,𝑖

, (C.15)∫︁
Ω

𝑇 (𝜆𝑣𝑛+1) d𝑥 =
∫︁

Ω

𝑐𝑛 + ∆𝑡𝐹𝑐 d𝑥, (C.16)

𝑐𝑛+1
𝑗,𝑖 = 𝑇 (𝜆𝑗𝑣𝑛+1

𝑗,𝑖 ), (C.17)

1
∆𝑡
(︀
𝑟𝑛+1 − 𝑟𝑛

)︀
= − 𝑟𝑛+1

𝐸(𝑐𝑛+1) + 𝐶0

∫︁
Ω

𝑏(𝑐𝑛+1)|∇𝜇𝑛+1|2 dx+

+
𝑟𝑛+1

𝐸
(︀
𝑐𝑛+1

)︀
+ 𝐶0

∫︁
Ω

𝜇𝑛+1𝐹𝑐(𝜌𝑛+1, 𝑐𝑛+1) dx, (C.18)

𝜉𝑛+1 =
𝑟𝑛+1

𝐸
(︀
𝑐𝑛+1

)︀
+ 𝐶0

, (C.19)

𝑐𝑛+1
𝑗,𝑖 = 𝜈𝑛+1𝑐𝑛+1

𝑗,𝑖 , with 𝜈𝑛+1 = 1−
(︀
1− 𝜉𝑛+1

)︀2
, (C.20)

𝑣𝑛+1
𝑗,𝑖 = 𝜈𝑛+1𝑣𝑛+1

𝑗,𝑖 . (C.21)
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[35] M.E. Gurtin, D. Polignone and J. Viñals, Two-phase binary fluids and immiscible fluids described by an order
parameter. Math. Models Methods Appl. Sci. 6 (1996) 815–831.

[36] M.E. Gurtin, E. Fried and L. Anand, The Mechanics and Thermodynamics of Continua. Cambridge University
Press, Cambridge (2010).

[37] Q. He and X. Shi, Numerical study of compressible Navier–Stokes-Cahn–Hilliard system. Commun. Math. Sci. 18
(2020) 571–591.

[38] P.C. Hohenberg and B.I. Halperin, Theory of dynamic critical phenomena. Rev. Mod. Phys. 49 (1977) 435–479.
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