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• Neural network architecture relying on at-
tention to bridge the semantic gap.

• Tested on both ACDC and an in-house 
dataset containing 271 patients.

• Generalization capabilities assessed by 
testing on out-of-distribution data.

• Comparison between training on all car-
diac phases or only on ED and ES frames.

• State of the art performance and accurate 
volumetric indices are obtained.
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Context: Deep learning algorithms have been widely used for cardiac image segmentation. However, most 
of these architectures rely on convolutions that hardly model long-range dependencies, limiting their 
ability to extract contextual information. Moreover, the traditional U-net architecture suffers from the 
difference of semantic information between feature maps of the encoder and decoder (also known as the 
semantic gap).
Material and method: To address this issue, a new network architecture relying on attention mechanism 
was introduced. Swin Filtering Blocks (SFB), that use Swin Transformer blocks in a cross-attention 
manner, were added between the encoder and the decoder to filter information coming from the encoder 
based on the feature map from the decoder. Attention was also employed at the lowest resolution in the 
form of a transformer layer to increase the receptive field of the network.
We conducted experiments to assess both generalization capability and to evaluate how training on 
all frames of the cardiac cycle rather than only the end-diastole and end-systole impacts strain and 
segmentation performances.
Results and conclusion: Visual inspection of feature maps suggested that Swin Filtering Blocks contribute 
to the reduction of the semantic gap. Performing attention between all patches using a transformer layer 
brought higher performance than convolutions. Training the model with all phases of the cardiac cycle 
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resulted in slightly more accurate segmentations while leading to a more noticeable improvement for 
strain estimation. A limited decrease in performance was observed when testing on out-of-distribution 
data, but the gap widens for the most apical slices.
© 2024 AGBM. Published by Elsevier Masson SAS. This is an open access article under the CC BY-NC-ND 

license (http://creativecommons .org /licenses /by-nc -nd /4 .0/).
1. Introduction

According to the World Health Organization, an estimated 17.9 
million people died from CVDs in 2019, representing 32% of all 
global deaths. Of these deaths, 85% were due to heart attack and 
stroke.2 To more easily diagnose these pathologies, segmentation 
of cardiac structures on cardiovascular images gives crucial infor-
mation as it allows to accurately delineate heart structures tar-
geted by the disease and assess their remodeling. Magnetic res-
onance imaging (MRI) is a useful non-invasive and non-radiating 
imaging modality to detect such diseases throughout cine and tis-
sue characterization images with their high contrast, resolution, 
and anatomical coverage [1]. Nowadays, many segmentation al-
gorithms rely on deep learning methods as they achieved good 
results on computer vision tasks. The U-net architecture [2] is 
often used in practice as it proved to be an effective design to 
perform semantic segmentation. This architecture consists of an 
encoder to aggregate contextual information, a symmetric decoder 
to enable precise localization, and skip connections between the 
encoder and the decoder to exploit local information contained in 
high-resolution feature maps. This design effectively fuses the en-
coder high-resolution information with the decoder semantically-
rich features. However, a simple concatenation of feature maps 
originating from the encoder and the decoder has been shown 
to be suboptimal [3,4]. Indeed, the encoder feature maps, though 
containing very fine-grained local details, carry less semantically 
rich features than the decoder feature maps. This phenomenon is 
known as the semantic gap. Traditionally, convolutions have been 
used to try to bridge such semantic gap [5] as they allow to gradu-
ally increase the receptive field. Some gating mechanisms have also 
been implemented to filter features being passed to the decoder, 
based on features originating from all levels [6] of the encoder.

More recently, attention mechanisms have been shown to be 
effective in improving neural network performances. Following a 
previous work [7] transformer blocks were used at the bottom of 
the U-net networks either in a 2D or a 3D configuration, improving 
the performance of medical image segmentation algorithms [8,9]. 
Convolutions were used to reduce the spatial resolution of feature 
maps allowing to subsequently incorporate self-attention at higher 
levels in the encoder [10]. A window and shifted window atten-
tion mechanisms were introduced to reduce the computational 
complexity of traditional transformer blocks while improving per-
formances [11]. As a result, these blocks have been applied suc-
cessfully to both 2D [12] and 3D [13] medical image segmentation. 
Attention has also been used to address the semantic gap issue.

However, most methods that specifically attempted to reduce 
the semantic gap either still use convolutions or rely on self-
attention. The few methods that use cross-attention either rely on 
entire transformer blocks [14] or use full spatial attention [15], 
both of which are computationally expensive.

Accordingly, this work focuses on the design of a new network 
architecture capable of better managing the semantic gap between 
encoder and decoder data. Recent work [14,15] has shown that 
cross-attention mechanisms appear to be the ideal solution for 

2 https://www.who .int /news -room /fact -sheets /detail /cardiovascular-diseases -
(cvds).
2

determining, from semantically rich decoder data, where to pay at-
tention for precise localization information in encoder data. How-
ever, these methods are very expensive in terms of number of 
parameters, and are therefore prone to poor generalization when 
the number of data is limited. The proposed architecture over-
comes this problem and improves the segmentation performance 
evaluated on public and private datasets by performing attention 
in smaller windows. In order to assess the strengths and weak-
nesses of the method, we have carried out a detailed study of 
segmentation results. On the clinical side, we show that the pro-
posed method also improves the accuracy of volumetric quanti-
tative indices necessary to diagnose cardiovascular diseases. We 
also studied the generalizability of the algorithm on new databases 
(out-of-distribution data) to verify that the method could be used 
in different centers, without requiring re-learning.

The first part of this study presents the network architecture 
and includes a detailed explanation of the Swin Filtering Block 
(SFB) used to bridge the semantic gap. This section also outlines 
the data characteristics and the protocol followed for the experi-
ments. Then, results obtained with this network architecture are 
presented, with an ablation study, comparison with literature as 
well as generalization performance and influence of training only 
with ED and ES phases. Finally, we discuss our findings in a third 
section before concluding.

2. Materials and methods

This section details the databases used in this article and 
presents the proposed network architecture. Our main contribu-
tions, the used dataset and the performed validations are summa-
rized in Fig. 1 as a block diagram.

Fig. 1. Block Diagram of the proposed approach. Our network is tested on two 
datasets and we assess the consequences of training only with the ED and ES frames 
compared to all frames of the cardiac cycle. SFB: Swin Filtering Block.

http://creativecommons.org/licenses/by-nc-nd/4.0/
https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds)
https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds)
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2.1. Study population and MRI data

Study data comprised the public Automated Cardiac Diagnosis 
Challenge (ACDC) dataset [16], which was fully anonymized and 
handled within the regulations set by the local ethics committee, 
as well as an in-house dataset (Quorum study, NCT03715998 [17]) 
where all participants gave their written informed consent for the 
initial protocol and for ancillary use of their data. The study proto-
col was approved by the local ethics committee. Procedures carried 
out on these subjects were in accordance with the declaration of 
Helsinki.

The ACDC dataset [16] comprised 100 subjects divided into 5 
equal-sized groups according to specific heart conditions (healthy, 
hypertrophic cardiomyopathy, dilated cardiomyopathy, abnormal 
right ventricle and myocardial infarction). Short-axis images cover-
ing the heart from its base to its apex were acquired using either 
a 1.5 or 3 Tesla Siemens MRI scanner with a pixel size between 
0.7 and 1.92 mm2 (mean pixel size 1.51 mm2) and a slice thick-
ness between 5 and 10 mm (mean slice thickness 9.34 mm). 1902 
labeled 2D slices are present in the dataset. Ground truth segmen-
tation annotations were drawn manually by two cardiologists with 
more than 10 years of experience each. The left ventricle (LV), my-
ocardium (MYO) and right ventricle (RV) were manually labelled 
at end-systole (ES) and end-diastole (ED) and from base to apex. 
More details regarding the annotation process can be found in [16]

The in-house dataset is a multi-center and multi-vendor dataset 
which includes patients who had an acute myocardial infarction 
(MI) with varying degree of severity. Images were acquired in 24 
different centers and using MRI scanners from 3 different manu-
facturers (Siemens, General Electric and Philips). Short-axis images 
covering the heart from its base to its apex were acquired during 
the acute phase of the MI using either a 1.5 or 3 Tesla MRI scanner 
with a pixel size ranging between 0.68 and 2.34 mm2 (mean pixel 
size 1.43 mm2) and a slice thickness between 6 and 8 mm (mean 
slice thickness 7.4 mm).

The in-house dataset is used both for assessing the impact of 
training on all phases of the cardiac cycle and for evaluating the 
generalization performance of our model when applied to a differ-
ent dataset.

In the first case, ground truth segmentation labels of 271 pa-
tients were obtained for all phases of the cardiac cycle using 
the CardioTrack software ([18], Laboratoire d’Imagerie Biomédicale, 
Sorbonne Université, INSERM, CNRS). This software uses a feature 
tracking algorithm to automatically track a manually initialized 
contour on the ES frame of the sequence. Segmentation labels 
are generated for each frame based on these contour points. Most 
annotations were provided only for 3 slices in the volume, repre-
senting a total of 34452 2D slices. For these slices, the software 
was also used to obtain ground truth radial and circumferential 
strain. ED and ES volumes of 195 of these 271 patients were also 
manually annotated using a commercial software (QMass, Medis, 
Leiden, The Netherlands, version 4.0.24.4). Annotations are gener-
ated automatically by the software and modified, if necessary, by a 
clinical expert. All slices of the volumes were annotated, represent-
ing 4072 2D slices. Annotated cardiac structures in the in-house 
dataset are the same as those in the ACDC dataset.

2.2. Model architecture

The proposed network called SFB-net (Swin Filtering Block net-
work), is based on the U-net architecture [2] with an encoder, a 
decoder and skip-connections in-between, as illustrated in Fig. 2. 
Convolutional blocks, depicted in blue, were used throughout the 
network and doubled in the encoder as compared to the decoder 
to improve the model encoding ability [19]. These blocks contained 
2 convolutions, each followed by a batch normalization layer and 
3

a Gaussian Error Linear Unit (gelu) [20] activation. We use Gelu 
rather than Relu throughout the network to stay consistent with 
the transformer layer which is generally implemented with the for-
mer activation function. Moreover, Gelu does not suffer from the 
“dying Relu” effect where the activation always yields zero out-
puts for negative inputs, preventing the network from adjusting its 
weights [21,22]. The number of filters was doubled at each encoder 
layer and halved for the corresponding decoder layers. Moreover, 
we propose to use strided convolutions instead of pooling layers to 
down-sample feature maps as it allows the network to more flexi-
bly perform this operation using learnable parameters. The number 
of down-sampling was limited resulting in a feature map at the 
bottleneck 8 times smaller than the input image size. Up-sampling 
was carried out using 2D transposed convolutions. To compensate 
for the resulting shallowness of the network, which may reduce 
its receptive field, we introduce a conventional transformer layer 
at the bottleneck (depicted in purple). This enabled the network to 
take advantage of global contextual information. Note that trans-
former blocks were not used in the encoder and decoder since 
keeping convolutions at higher resolutions was shown to result 
in higher performances [10,23,24]. Indeed, convolutions generalize 
better to unseen images than transformers and extract local infor-
mation found at higher resolutions more effectively. A Summary of 
our network architecture can be found in supplementary materials.

Deep supervision was applied at each stage of the decoder. 
More precisely, ground truth segmentations were down-sampled 
to match the size of the network’s outputs. The loss weights, 
αi∀ i ∈ {0,1,2} for each resolution, were halved when the im-
age size is reduced and normalized so that the sum of weights 
equals 1. The final loss was the weighted sum of successive stages 
losses and was defined as:

L = α1 ×L{H,W } + α2 ×L{
H
2 , W

2

} + α3 ×L{
H
4 , W

4

} (1)

Where H and W represent the height and width of the input image 
respectively.

With:

αi =
1
2i∑2

j=0 α j

∀i ∈ {0,1,2} (2)

For fair comparison with previous studies [13,25], a combination 
of cross-entropy and Dice loss was used to compute each individ-
ual L.

2.3. Swin filtering blocks (SFB)

We also propose to introduce a filtering mechanism in the skip 
connection paths between the encoder and the decoder, as illus-
trated by the yellow blocks in Fig. 2 and described with more 
details in Fig. 3. The goal was to enable the decoder to filter out ir-
relevant information originating from the encoder. More precisely, 
the encoder’s feature maps contained noise that should be dis-
carded before concatenation with the decoder feature maps. To 
do so, local information contained in the encoder high-resolution 
feature maps and located in areas underlined by semantically-rich 
feature maps of the decoder were emphasized, while response 
in the remaining noisy areas were toned down. Multi-Head-Self-
Attention (MHSA), [26] was used in this process, where window 
and shifted window versions of MHSA [11] were preferred for 
their lower computational load, reducing training time and mem-
ory consumption. Windowed Multi Head Self Attention (W-MHSA) 
performed attention in windows of M by M sized patches. When 
performing Shifted Window Multi-Head Self Attention (SW-MHSA), 
windows were shifted by 

⌊ M ⌋
both in the x and y direction so that 
2
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Fig. 2. Representation of SFB-net. Deep supervision is used in the decoder. Convolutional blocks are represented in blue, Swin Filtering Blocks (SFB) in yellow, and the 
conventional transformer layer in purple.

Fig. 3. Schematic representation of the Swin Filtering Blocks (SFB) used between the encoder and the decoder. W is the set of computed weights used to rescale the encoder 
feature map. W-MHSA: Window Multi Head Self Attention, SW-MHSA: Shifted Window Multi Head Self Attention.
attention can be conducted between patches belonging to different 
windows. W-MHSA was described as:

W − MHSA (Q , K , V ) = Sof tmax

(
Q K T

√
d

+ B

)
V (3)

where Q , K and V ∈ RM2×d are the query, key and value respec-
tively, d is the query, key and value dimension and B ∈ RM2× M2

the learnable relative position bias added to each head which en-
code the relative position between patches. Q , K and V are ten-
sors generated using separate linear layers from a feature map F
as:

Q F = F AT
Q + bQ

K F = F AT
K + bK

V F = F AT
V + bV

(4)

with bi ∈ Rd the bias and Ai ∈ Rd×d a weight matrix ∀i ∈
{Q , K , V }. Q F , K F and V F are the query, key and value generated 
4

from feature map F . W-MHSA and SW-MHSA blocks were favor-
ably used to perform cross-attention between the encoder and the 
decoder’s feature maps. Cross-attention used the same process as 
self-attention but with key, query and value originating from dif-
ferent feature maps. Since feature maps coming from the encoder 
were rescaled based on those of the decoder, values were chosen 
to come from the encoder while both query and key should come 
from the decoder:

C Aout = SW − MHSA
(
W − MHSA

(
Q Fdec , K Fdec , V Fenc

))
(5)

Where Fdec and Fenc are the feature maps coming from the de-
coder and encoder respectively. The result was passed to a sigmoid 
function to generate weights w ranging between 0 and 1 used to 
rescale the encoder feature map.

w = σ (conv (C Aout)) (6)
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Table 1
Number of patients and images in the training, validation and test set for ACDC 
and the in-house dataset. For ACDC the average number of 2D slices per fold is 
reported.

Train 
(# 2D slices)

Validation 
(# 2D slices)

Test 
(# 2D slices)

ACDC (1 fold) 80 (1521.6) . 20 (380.4)
In-house (195 patients) 124 (2629) 32 (663) 39 (780)
In-house (271 patients) 174 (22743) 43 (5334) 54 (6375)

where σ (x) = 1
1+e−x is the sigmoid function and conv is a standard 

convolution with 1 by 1 kernel followed by batch normalization. 
Finally, the rescaled encoder feature map Fout was obtained by 
applying the Hadamard product � between computed weights w
and the original encoder feature map:

Fout = Fenc � w (7)

2.4. Implementation details

For the ACDC dataset, a 5-folds cross-validation was used to 
evaluate the model’s performances. For the in-house dataset, we 
use 80% of patients for training and 20% for testing. 20% of patients 
of the training set are used for validation. The number of patients 
in the training and test set is provided in Table 1.

SFB-net was implemented with Pytorch and trained using a 
16GB Tesla v100 SXM2. The nnU-net [25] framework was used as a 
starting point for this work. AdamW optimizer and cosine anneal-
ing scheduler were used for training. The initial learning rate and 
weight decay were both set to 0.0001. For fair comparison with 
other studies [13,25], the number of training epochs was set to 
1000. Each epoch was made up of 250 iterations (random sam-
Table 2
Ablation study performed on the ACDC dataset. Dice score
metric Surface Distance (ASSD) and Hausdorff Distance (H
reported as mean ± standard deviation. Bold values corre
ture. RV = right ventricular cavity, MYO = myocardium, LV 
= deep supervision. Reported p-values refer to the comparis
rent line. They are computed using the Wilcoxon signed ran

Models Average

Dice

SFB-net 92.45 ± 3.15
SFB-net w/o SFBs 92.42 ± 3.31

p=0.1140
SFB-net w/o transformer 92.26 ± 3.35

p=0.0159
SFB-net w/o d-s 92.41 ± 3.22

p=0.3236

IOU

SFB-net 86.36 ± 4.98
SFB-net w/o SFBs 86.29 ± 5.16

p=0.1093
SFB-net w/o transformer 86.04 ± 5.28

p=0.0147
SFB-net w/o d-s 86.26 ± 5.11

p=0.3165

ASSD (mm)

SFB-net 0.55 ± 0.49
SFB-net w/o SFBs 0.56 ± 0.55

p=0.1357
SFB-net w/o transformer 0.60 ± 0.51

p=0.0128
SFB-net w/o d-s 0.58 ± 0.56

p=0.0928

Hausdorff 
distance (mm)

SFB-net 9.24 ± 6.29
SFB-net w/o SFBs 10.22 ± 8.13

p=0.1037
SFB-net w/o transformer 11.49 ± 10.9

p=0.0350
SFB-net w/o d-s 10.55 ± 8.91

p=0.0586

5

pling of training images to form a batch. 250 is the default value 
of the nnU-net framework). Batch size was 10 for ACDC and 6 for 
the in-house dataset. Weights of the model after the last epoch are 
selected for inference.

We kept nnU-net pre-processing steps: before training, all vol-
umes were resampled to have a voxel size equal to the median 
voxel size of the dataset. Since we use a 2D network, in our case, 
no resampling is performed along the z axis of the volume.

2D Images are center-cropped to size 224x224 for ACDC and 
288x288 for the in-house dataset. Before passing them to the net-
work we normalize them so that they have a mean of 0 and 
standard deviation of 1.

A wide range of data augmentations was applied on the fly 
during training for both the ACDC and in-house dataset.: rotation, 
scaling, gamma adjustment, brightness adjustment, mirroring, con-
trast modification, low-resolution simulation, noise, and blur. More 
information on data augmentation can be found in the supplemen-
tary materials. Test-time data augmentation was used as it is the 
default setting of nnU-net. The maximum number of filters at the 
bottleneck of the network was 512. Training and validation losses 
as well as validation accuracy in terms of Dice score for each class 
are available in supplementary materials.

3. Results

The proposed network yields segmentation performances higher 
on average than state-of-the-art networks, volume prediction 
highly correlated to ground truth measurements (r > 0.9) and sat-
isfying generalization capabilities (performances drop < 5% in Dice 
score on cross-dataset evaluation). The transformer layer used at 
the lowest resolution brought statistically significant performance 
improvements. Generalization performance on out-of-distribution 
s, Intersection over Union (IOU) scores, Average Sym-
D) are obtained before post-processing on 5 folds and 
spond to the highest performance for the heart struc-
= left ventricular cavity, SFB = Swin Filtering Block, d-s 
on of the baseline SBF-net and the method of the cur-
k test.

RV MYO LV

91.50 ± 6.45 90.83 ± 2.99 95.04 ± 4.29
91.63 ± 6.47 90.77 ± 2.90 94.86 ± 4.65
p=0.3008 p=0.2114 p=0.1224
91.41 ± 6.47 90.62 ± 3.20 94.75 ± 4.62
p=0.3870 p=0.0011 p=0.0825
91.75 ± 5.86 90.73 ± 3.12 94.74 ± 4.86
p=0.8544 p=0.8079 p=0.2544

84.91 ± 9.80 83.33 ± 4.86 90.83 ± 6.96
85.12 ± 9.70 83.22 ± 4.72 90.54 ± 7.37
p=0.3031 p=0.1966 p=0.1195
84.77 ± 9.91 82.99 ± 5.17 90.35 ± 7.34
p=0.3783 p=0.0012 p=0.0845
85.25 ± 9.09 83.18 ± 5.06 90.35 ± 7.69
p=0.8649 p=0.8041 p=0.2565

0.76 ± 1.00 0.43 ± 0.30 0.46 ± 0.75
0.72 ± 0.99 0.45 ± 0.35 0.51 ± 0.84
p=0.5231 p=0.0986 p=0.4581
0.76 ± 0.98 0.50 ± 0.47 0.54 ± 0.72
p=0.3964 p=0.0006 p=0.0718
0.70 ± 0.85 0.48 ± 0.46 0.55 ± 0.93
p=0.2721 p=0.3147 p=0.3230

12.99 ± 11.04 7.99 ± 8.02 6.73 ± 7.48
14.23 ± 13.96 8.66 ± 9.44 7.78 ± 9.78
p=0.4159 p=0.2332 p=0.2465

6 13.78 ± 11.63 11.51 ± 17.66 9.18 ± 14.15
p=0.0755 p=0.0176 p=0.0419
14.30 ± 13.93 9.21 ± 11.32 8.13 ± 10.66
p=0.0209 p=0.3231 p=0.0945
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Fig. 4. (a) Image passed as input to the network. (b) and (c) feature maps originating from the encoder before and after being rescaled by the SFB respectively. The feature 
map was extracted at the highest resolution and averaged over the filter dimension.
data was solid, except for the most apical slices. Using all frames 
of the cardiac cycle during training resulted in a notable gain in 
strain estimation compared to using only the ED and ES frames.

3.1. Results and ablation study

Results in terms of Dice score, Intersection over Union (IOU), 
Hausdorff Distance (HD) and Average Symmetric Surface Distance 
(ASSD) for the ACDC dataset are presented in Table 2. Results on 
this specific dataset are obtained using 5-fold cross-validation. We 
also conducted an ablation study to further assess the effectiveness 
of the different components of the SFB-net approach. SFB-net was 
compared to its three variants:

• SFB-net w/o SFBs: SFB-net without SFBs.
• SFB-net w/o transformer: SFB-net where the transformer 

layer at the bottleneck is replaced by a convolution.
• SFB-net w/o d-s: SFB-net without deep supervision.
All the three ablation variants have around 21 million of pa-

rameters. Such ablation study showed that for most variants, small 
decline in performances was found although they did not reach 
statistical significance, as revealed by the slight increase in ASSD 
and HD and small decrease in Dice score and IOU when compared 
to SFB-Net. Fig. 4 illustrates an example of a feature map coming 
from the encoder before and after being rescaled by the weights 
computed by the SFB. The feature map was taken at the highest 
resolution in the network and averaged along the feature dimen-
sion. Finally, when replacing the transformer at the bottleneck by 
a single convolution the deterioration was significant as revealed 
by a more noticeable increase in ASSD and HD and notable de-
crease in Dice scores and IOU when compared to SFB-Net. Fig. 5
illustrates segmentation results of SFB-net and SFB-net with the 
bottleneck transformer layer replaced by one convolution before 
post processing.

Fig. 6 shows ASSD distribution through slice level within the 
heart volume for each heart structure. The number of slices with 
an ASSD > 5 mm was low and similar for the LV and myocardium 
but higher for the RV especially in the most basal slices. The worst 
segmented slices on ACDC are also illustrated in Fig. 6. These slices 
represent the most basal sections of the volume and exhibit com-
mon patterns. The network struggles to determine whether the 
right ventricular cavity should be segmented.

3.2. Comparison with literature

Table 3 provides the results of the comparison on the ACDC 
dataset between our SFB-net approach and 6 recent methods of 
the literature (namely nnU-net, 2021 [25]; �-net, 2018 [27]; Tran-
sUnet, 2021 [8]; SwinUnet, 2022 [12]; Unetr, 2022 [9]; nnFormer, 
2021 [13]).
6

Fig. 5. Comparison of segmentation results between SFB-net and SFB-net w/o trans-
former on ACDC. (a) native image to be segmented, (b) ground truth segmentation, 
(c) SFB-net predictions, (d) SFB-net w/o transformer predictions.

Reported results came from respective literature manuscripts. 
Such comparisons revealed that the SFB-net approach achieved the 
highest overall Dice score (92.49%), as well as the highest Dice 
score for the myocardium (90.85%), while Dice scores of the LV 
(95.08%, 5th / 7) and RV (91.53%, 2nd / 7) cavities were slightly 
lower than literature findings.
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Fig. 6. ASSD per slice location within the heart volume on ACDC data. (a): illustration of suboptimal segmentations identified by their high ASSD, where ground truth contours 
are in green, predictions in red. (b): ASSD against slice level in the heart volume expressed in percentage (0% are most basal slice, 100% most apical slice).
Table 3
Comparison with literature on the ACDC dataset. The 
metric used is the Dice score. Only nnU-net and SFB-net 
results were re-computed. Other results are taken from 
the author’s manuscript. Bold values correspond to the 
highest performance for the considered heart structure. 
RV = right ventricular cavity, MYO = myocardium, LV = 
left ventricular cavity.

Methods Average RV MYO LV

nnU-net [25] 91.75 90.67 90.18 94.40
�-net [27] 92.16 92.00 89.10 95.40
TransUnet [8] 89.71 88.86 84.54 95.73
SwinUnet [12] 90.00 88.55 85.62 95.83
Unetr [9] 88.61 85.29 86.52 94.02
nnFormer [13] 92.06 90.94 89.58 95.65

SFB-net 92.49 91.53 90.85 95.08

3.3. Volumetric quantitative indices

The associations between predicted and ground truth volumet-
ric indices for each cardiac structure of the ACDC dataset are sum-
marized in Table 4, along with Bland-Altman statistics. Ground 
truth values were computed from segmentation labels. Correlations 
between the predicted and ground truth measures were high (ρ > 
7

0.9) for all measurements and low Bland-Altman biases (< 1% ex-
cept for the RV stroke volume: bias = -2.27%) and narrow limits of 
agreements were found.

3.4. Generalization performance

Table 5 compares performances of our model trained and tested 
either on the in-house dataset or ACDC and some qualitative ex-
amples are shown in Fig. 7.

Note that, the ACDC dataset contains basal slices where the RV 
appears in two parts as can be seen in Fig. 8. These slices do not 
exist in our in-house dataset. Therefore, in order to avoid abnor-
mally low RV results on these slices, RV metrics when testing on 
ACDC were computed without considering the 2 most basal slices. 
Models tested on the same dataset they were trained on exhib-
ited better results than other models. The reduction in Dice score 
was more pronounced for the RV than other structures (the model 
trained on ACDC achieved a Dice score 5.12, 4.25 and 1.44 points 
lower on the RV, MYO and LV respectively when testing on the 
in-house dataset than when testing on the ACDC dataset). Fig. 9
(a) shows the cumulative frequency plot of each model. Around 
20% of volumes had a Dice score below 92 for models trained and 
tested on the same dataset, against around 60% for others. The 
main reason for this gap in performance between cross-dataset 
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Table 4
Associations between predicted and ground truth volumetric quantitative indices on ACDC. Correlation 
coefficients and Bland-Altman mean bias and limits of agreement estimated between predicted and ground 
truth quantitative indices on the 40 patients of the testing set of the in-house dataset. RV = right ventricular 
cavity, MYO = myocardium, LV = left ventricular cavity. Relative mean biases are reported as a percent of 
the corresponding ground truth value. P-values are computed using the Wilcoxon Signed Rank test between 
predicted and ground truth values.

parameter ρ Relative mean bias (%) Absolute mean bias [Loa] p-value

LV end diastole volume (ml) 1.0 -0.96 -1.585 [-11.295, 8.126] 0.0034
LV end systole volume (ml) 1.0 -1.26 -1.249 [-14.675, 12.177] 0.0908
LV Ejection Fraction (%) 0.98 0.26 0.122 [-7.439, 7.683] 0.9347
LV Stroke Volume (ml) 0.96 -0.51 -0.335 [-14.101, 13.430] 0.2471

MYO end diastole mass (g) 0.99 1.04 1.358 [-15.034, 17.751] 0.2542
MYO end systole mass (g) 0.99 0.44 0.657 [-17.546, 18.859] 0.4023

RV end diastole volume (ml) 0.98 -1.05 -1.607 [-20.574, 17.361] 0.0709
RV end systole volume (ml) 0.97 -0.10 -0.083 [-26.639, 26.473] 0.3153
RV Ejection Fraction (%) 0.90 -0.59 -0.276 [-15.597, 15.045] 0.5274
RV Stroke Volume (ml) 0.89 -2.27 -1.523 [-28.548, 25.501] 0.2726

Table 5
Generalization performance. Dice scores, IOUs, ASSDs and HDs are reported as mean ± standard deviation 
(in mm). RV = right ventricular cavity, MYO = myocardium, LV = left ventricular cavity. P-values are com-
puted between the model trained on the in-house dataset and tested on ACDC, and the model both trained 
and tested on ACDC (third and fourth line for each metric). The Wilcoxon Signed Rank test is used to com-
pute these p-values. When testing on ACDC, RV results for the 2 most basal slices were not considered.

train test Average RV MYO LV

Dice

ACDC In-house 88.99 ± 4.44 86.75 ± 6.72 86.59 ± 5.25 93.64 ± 3.56
In-house In-house 92.14 ± 3.69 92.08 ± 3.95 89.22 ± 5.33 95.12 ± 3.10
ACDC ACDC 92.60 ± 2.94 91.87 ± 5.89 90.84 ± 2.98 95.08 ± 4.17
In-house ACDC 89.66 ± 4.03 87.90 ± 8.10 87.33 ± 4.23 93.76 ± 4.87

<0.0001 <0.0001 <0.0001 <0.0001

IOU

ACDC In-house 80.71 ± 6.62 77.19 ± 9.96 76.69 ± 7.40 88.24 ± 5.94
In-house In-house 85.76 ± 5.77 85.55 ± 6.47 80.90 ± 7.71 90.84 ± 5.31
ACDC ACDC 86.57 ± 4.62 85.44 ± 8.82 83.36 ± 4.85 90.90 ± 6.78
In-house ACDC 81.87 ± 5.96 79.24 ± 11.53 77.75 ± 6.29 88.61 ± 7.82

<0.0001 <0.0001 <0.0001 <0.0001

ASSD (mm)

ACDC In-house 0.71 ± 0.42 1.03 ± 0.88 0.60 ± 0.31 0.51 ± 0.33
In-house In-house 0.42 ± 0.25 0.44 ± 0.27 0.44 ± 0.28 0.37 ± 0.29
ACDC ACDC 0.43 ± 0.38 0.45 ± 0.71 0.42 ± 0.25 0.42 ± 0.58
In-house ACDC 0.70 ± 0.57 0.74 ± 0.86 0.75 ± 0.78 0.62 ± 0.73

<0.0001 <0.0001 <0.0001 <0.0001

HD (mm)

ACDC In-house 9.79 ± 3.25 14.43 ± 7.12 8.75 ± 3.69 6.02 ± 2.01
In-house In-house 7.08 ± 2.17 9.49 ± 4.75 6.73 ± 2.95 5.00 ± 1.91
ACDC ACDC 8.20 ± 4.19 11.42 ± 8.44 7.14 ± 4.81 6.04 ± 4.39
In-house ACDC 10.37 ± 5.21 12.41 ± 7.09 11.44 ± 9.74 7.26 ± 5.18

<0.0001 0.0288 <0.0001 <0.0001
models and other models is presented in Fig. 9 (b) where Dice 
score of 2D slices relative to their depth in volumes is shown. 
It can be seen that the gap in performance was within 5 Dice 
points for basal and mid slices in volumes. However, the difference 
in performance was more pronounced for apical slices, especially 
when testing on the in-house dataset. Indeed, for this test set, the 
model trained on ACDC had a Dice score 30 points lower than 
the model trained on the in-house dataset for the most apical 
slices.

3.5. Effect of training only on the end-diastole and end-systole frames

In Table 6 results of our model when trained on all frames of 
the in-house dataset are compared with the performance of the 
same model but trained only on the ED and ES frame. The model 
trained only on ED and ES frames exhibited a small deterioration of 
performance for all segmentation metrics (average Dice: -0.23, av-
erage ASSD: +0,01 mm, average HD: +0,15 mm). However, training 
8

only with ED and ES frames had a more pronounced impact on LV 
radial and circumferential strain metrics as well as RV circumferen-
tial strain metrics. Indeed, correlations were respectively 0.63, 0.76 
and 0.12 against 0.72, 0.84 and 0.57 for the model trained on all 
phases. For the strain peak index, the impact was less noticeable 
with the same LV radial correlation and a LV (RV) circumferen-
tial correlation of 0.88 (0.87) against 0.90 (0.82) when training 
on all phases. Regarding the RV circumferential strain peak values, 
training only with ED and ES frames resulted in more outliers as 
indicated by the wider limits of agreement ([-34.91; 33.41] against 
[-13.03; 11.54] for the model trained with all frames). Fig. 10 dis-
plays Dice scores of both algorithms against phase number in the 
cardiac cycle. Frames were sorted starting with the ED one and re-
sults were interpolated over the maximum number of phases in 
the testing set. It can be seen that, on average, there was a gap 
of 0.2 Dice points for frames near ED or ES, while the drop was 
around 0.5 Dice points for frames that were the most distant from 
ED or ES (for example around phases number 35 to 38).
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Fig. 7. Example of segmented slices from the 3 worst performing volumes in terms of Dice score on the ACDC dataset. RV contours are in red, myocardium contours in green 
and left ventricular cavity in blue. (a) Ground truth annotations, (b) predictions of the model trained on ACDC and (c) predictions of the model trained on the in-house 
dataset.
Fig. 8. Problematic basal slice in ACDC (Red: RV annotation, blue: LV, green: my-
ocardium). (a): ACDC volumes contain basal slices with the RV appearing broken 
into two distinct parts. (b) In the in-house dataset, these slices did not exist. In-
stead, the RV in the most basal slices exhibited a less visible separation which did 
not result in the removal of the annotation.

4. Discussion

Although our Swin Filtering Blocks seem to be able to reduce 
the semantic gap visually, it did not materialize in a significant 
increase in segmentation performance. However, the transformer 
layer at the bottleneck, which, as SFB, also relies on attention, 
brought a significant increase in performance compared to using a 
convolution, demonstrating that attention mechanisms can indeed 
contribute to improving segmentation performance. Moreover, the 
proposed network architecture can be used to predict accurate 
clinical volumetric quantitative indices and generalizes well to data 
9

coming from different centers and manufacturers. Finally, training 
only on the ED and ES frames led to a small decrease in segmen-
tation performance, but the impact on radial and circumferential 
strain was more noticeable.

When using the transformer layer at the bottleneck rather than 
a convolution, the network seemed less likely to provide inco-
herent segmentation such as a heart structures at two different 
positions. This may result from the larger receptive field of these 
layers which allowed to benefit from larger contextual informa-
tion. This finding was also in line with a previous study [28] which 
showed that transformer architectures better preserved input spa-
tial information throughout the network than Convolutional Neural 
Network (CNN). The ability to segment the heart structures as one 
single connected component also confirmed that transformers, as 
humans, relied more on shapes to make decisions, unlike convolu-
tions which mainly used textures [29]. Looking at the SFB-rescaled 
feature maps, it can be noticed that noisy responses in non-cardiac 
structures were reduced while important areas were highlighted, 
suggesting that SFBs helped to reduce the semantic gap. Interest-
ingly, in these maps, the area of the left ventricular cavity was 
not as bright as other areas of the heart. This may come from 
the fact that, since the left ventricular cavity is enclosed in the 
myocardium, the network only needed to learn to delineate the 
myocardium and could then infer the shape of the left ventricular 
cavity.

The ASSD graph against slice level indicated that performance 
dropped for slices near the heart base or apex, especially for the 
right ventricular cavity. Although results for this structure were 
lower throughout the volume, the increase in ASSD was more 
pronounced and appeared earlier towards the apex, which may 
stem from the structure size reducing quicker and its complex 
and individually-variable geometry, thus making it more difficult 
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Fig. 9. Generalization performance analysis for models trained/tested on ACDC or the in-house dataset. (a) Cumulative frequency plot of Dice scores; (b) Dice scores of 
individual slices against relative depth in volumes. Results were interpolated over the maximum number of slices in a volume. 0% is the most basal slice and 100% the most 
apical one.

Table 6
Effect of training only on the end-diastole and end-systole frame. The model trained on all phases of the cardiac 
cycle of the in-house dataset is compared with the same model but trained only on the ED and ES frames. Dice 
scores, ASSDs and HDs are reported as mean ± standard deviation (in mm). RV = right ventricular cavity, MYO = 
myocardium, LV = left ventricular cavity.

Metric All Phases Only ED and ES

Segmentation

Mean Dice 93.21 ± 1.58 92.98 ± 1.70
Mean IOU 87.46 ± 2.63 87.08 ± 2.81
Mean ASSD (mm) 0.14 ± 0.08 0.15 ± 0.09
Mean HD (mm) 4.12 ± 1.20 4.27 ± 1.21

LV Radial strain

ES peak value correlation 0.72 0.63
ES peak value mean bias [LoA] 1.22 [-28.75; 31.16] 6.317 [-29.35; 41.99]
ES peak value relative mean bias (%) 1.97 10.19
ES peak index correlation 0.84 0.84
ES peak index mean bias [LoA] 0.07 [-3.49; 3.64] 0.21 [-3.41; 3.82]
ES peak index relative mean bias (%) 0.54 1.52

LV Circumferential strain

ES peak value correlation 0.84 0.76
ES peak value mean bias [LoA] -0.273 [-4.00; 3.45] -0.663 [-5.14; 3.81]
ES peak value relative mean bias (%) 1.45 3.52
ES peak index correlation 0.90 0.88
ES peak index mean bias [LoA] -0.10 [-3.01; 2.82] -0.01 [-3.16; 3.14]
ES peak index relative mean bias (%) -0.70 -0.09

RV Circumferential strain

ES peak value correlation 0.57 0.12
ES peak value mean bias [LoA] -0.74 [-13.03; 11.54] -0.75 [-34.91; 33.41]
ES peak value relative mean bias (%) 4.92 4.97
ES peak index correlation 0.82 0.87
ES peak index mean bias [LoA] -0.17 [-6.18; 5.84] 0.34 [-4.93; 5.62]
ES peak index relative mean bias (%) -1.17 2.34
to segment for the network. This result aligns with the findings of 
[16] who identified similar challenges with slices located at both 
ends of volumes, noting that this issue also occurs for clinical ex-
perts. When it came to basal slices, segmentation errors were again 
mainly present for the right ventricular cavity, where the anno-
tations for the right ventricular cavity may seem inconsistent to 
the network, because of the presence of other structures such as 
out-flow tract. Acquisitions, being conventionally aligned on the 
LV axis, slice obliquity for the RV and the presence of the pul-
monary artery may lead to a right ventricle in two parts fusing 
in lower slices. This may have led to difficulties for the network 
to identify the first slice in the stack from which the right ven-
tricular cavity should be segmented. This was also confirmed by 
visual results of worst segmented slices since most of them were 
10
located near the base with a right ventricular cavity often appear-
ing half broken and as a result not annotated by the expert for 
being too basal. This was also reflected in computed correlations 
for the RV ejection fraction and stroke volume which were lower 
than for other structures. Other clinical quantitative indices were 
in the same range as those previously reported in the literature 
[30].

Generalization performance was satisfying with a limited de-
crease in performance when testing on a different dataset the 
model was trained on. Indeed, the model trained on ACDC showed 
a small decrease in performance when tested on the in-house 
dataset with an increase in the average and maximum distance 
between predicted and ground truth contours of less than a pixel 
(increase in ASSD and HD of 0.22 mm and 1.19 mm respectively 
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Fig. 10. Average Dice score against the phase in the cardiac cycle for our model 
trained on all phases and our model trained only with the ED and ES frames. Results 
are interpolated over the maximum length of a sequence in the testing set.

with average pixel size of 1.43 mm2). The model trained on the 
in-house dataset demonstrated satisfactory segmentation perfor-
mance on the ACDC dataset. However, for this model, the predicted 
label for the RV was larger than both the ground truth and the pre-
diction from the model trained on ACDC. This discrepancy may re-
sult from different annotation conventions for this cavity between 
the two datasets. Performance on out-of-distribution data was ro-
bust for most slices in volumes but decreased in the most apical 
slices, which is consistent with [31,32]. This can also be explained 
by the difference in annotation conventions since the ACDC dataset 
contains apical slices with no annotation for all classes while our 
in-house dataset always contains at least one class.

When it comes to performance across the cardiac cycle, our 
model trained only on the ED and ES frames performed only 
slightly worse than the model trained on all frames. However, 
the gap in Dice scores between the two models seems to widen 
as the distance relative to the ED and ES frame increases. This 
shows that while the drop in performance is limited, only train-
ing with the ED and ES frames yields lower results than training 
with all frames, especially as the distance relative to these two 
frames increases. It is worth noting, however, that the drop in per-
formance affects all frames of the cardiac cycle, suggesting that 
training with more frames improves performance for all phases 
of the cardiac cycle. This likely results from the increased diver-
sity in the training data. As manually annotating each slice of the 
cardiac cycle is time-consuming, our findings encourage the use of 
automatic or semi-automatic software able to provide ground truth 
segmentation across the cardiac cycle. Besides, the most noticeable 
consequences on strain metrics indicate that average segmentation 
metrics are limited in the ability to convey the practical clinical 
useability of an algorithm.

4.1. Limitations

Our method has some limitations. First, the dataset used to 
compare performances of the model trained on all frames and the 
model trained only with the ED and ES frames contains segmenta-
tion labels only for 3 slices in the volume. As a result, it was not 
possible to compute volumetric indices for the whole cardiac cycle. 
Moreover, these two models were not trained with any temporal 
information and were applied to each frame of the cardiac cycle 
independently at inference. Therefore, there is likely room for im-
provement, especially for strain metrics.
11
Another limitation revolved around the segmentation of the 
most basal or apical slices. For the most basal slices, this might be 
linked to the right ventricle shape which differs strongly from its 
shape in intermediate slices, while in the most apical slices, some 
structures might be absent leading to important distance values if 
the network predicted their presence. Of note, in the ACDC dataset, 
the heart was completely absent in some slices and would proba-
bly have been excluded from the analysis in a clinical setting.

Finally, although the network showed satisfying results when 
generalizing to other datasets, no explicit domain adaptation tech-
nique was used. This could be explored in future work.

5. Conclusion

A new deep learning network architecture relying on spatial 
attention was introduced to segment the cardiac structures from 
short-axis cine-MRI on two different datasets. The model showed 
satisfying generalization ability although there is still room for 
improvement for the most apical slices. Computed volumetric in-
dices were close to ground truth indices and in line with literature 
showing the algorithm could be used in a medical context for as-
sisted diagnosis. Using all phases of the cardiac cycle rather than 
only the ED and ES ones leads to an important jump in strain ac-
curacy and slight gain in segmentation performance, encouraging 
the use of tools able to provide ground truth annotations for the 
whole cardiac cycles.
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