
HAL Id: hal-04747016
https://hal.science/hal-04747016v1

Preprint submitted on 21 Oct 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Biom3d, a modular framework to host and develop 3D
segmentation methods

Guillaume Mougeot, Sami Safarbati, Hervé Alégot, Pierre Pouchin, Nadine
Field, Sébastien Almagro, Émilie Pery, Aline Probst, Christophe Tatout,

David Evans, et al.

To cite this version:
Guillaume Mougeot, Sami Safarbati, Hervé Alégot, Pierre Pouchin, Nadine Field, et al.. Biom3d, a
modular framework to host and develop 3D segmentation methods. 2024. �hal-04747016�

https://hal.science/hal-04747016v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Biom3d, a modular framework to host and develop 3D 1

segmentation methods 2

Guillaume Mougeot (1), Sami Safarbati (2), Hervé Alégot (2), Pierre Pouchin (2), Nadine 3

Field (4), Sébastien Almagro (5), Émilie Pery (3), Aline Probst (2), Christophe Tatout (2), 4

David E. Evans (4), Katja Graumann (4), Frédéric Chausse (3), Sophie Desset (2) 5

(1) Aarhus University (Department of Ecoscience, Biodiversity and Conservation, C.F. 6

Møllers Allé 8, Building 1110, 8000 Aarhus C, Denmark) 7

(2) iGReD - Génétique, Reproduction et Développement, UCA - Université Clermont 8

Auvergne, CNRS - Centre National de la Recherche Scientifique UMR6293, INSERM - 9

Institut National de la Santé et de la Recherche Médicale U1103, (Facultés de Médecine et de 10

Pharmacie, TSA 50400, 28 Place Henri Dunant, 63001 Clermont-Ferrand - France) 11

(3) IP - Institut Pascal, UCA - Université Clermont Auvergne, CNRS - Centre National de la 12

Recherche Scientifique UMR6602 (Campus Universitaire des Cézeaux, 4 avenue Blaise 13

Pascal, TSA 60026 / CS 60026, 63178 Aubière Cedex - France) 14

(4) Oxford Brookes University, (Department for Biological and Medical Sciences, 15

Headington Campus, Gipsy Lane, Oxford OX3 0BP, UK - Royaume-Uni) 16

(5) Université de Reims Champagne-Ardenne, CNRS, MEDYC, Reims, France 17

 18

U-Net is a convolutional neural network model developed in 2015 and has proven to be 19

one of the most inspiring deep-learning models for image segmentation. Numerous U-Net-20

based applications have since emerged, constituting a heterogeneous set of tools that 21

illustrate the current reproducibility crisis in the deep-learning field. Here we propose a 22

solution in the form of Biom3d, a modular framework for deep learning facilitating the 23

integration and development of novel models, metrics, or training schemes for 3D image 24

segmentation. The new development philosophy of Biom3D provides an improved code 25

sustainability and reproducibility in line with the FAIR principles and is available as a 26

graphical user interface and an open-source deep-learning framework to target a large 27

community of users, from end users to deep learning developers. 28

 29

Introduction 30

The biomedical field produces many three-dimensional images (3D), whether to follow the fate 31

of a tumor in an organ or to measure shape properties of cells, nuclei or other organelles. Such 32

properties can be extracted using a method in image analysis called semantic segmentation. 33

Semantic segmentation classifies each pixel from an image as belonging to the object of interest 34

or to the background and thus produces a binary mask of the image. The increased massification 35

of data has led to the development of innovative solutions to automate segmentation. While 36

these solutions present some challenges, especially when it comes to 3D biomedical images, 37

they offer great potential. The variability in imaging modalities, noise-to-signal ratio, size, 38

voxel spacing or volume distribution of the objects to segment presents exciting opportunities 39

for further development. This is where deep learning methods come into play, being both 40

performant and flexible on a broad range of applications, from denoising1 to image 41

segmentation2, and of modalities, from microscopy to medical imaging, both for 2D and 3D 42

images. 43

U-Net, a convolutional neural network model developed in 20153, has been demonstrated to be 44

one of the most effective deep-learning models for 3D semantic segmentation. Numerous U-45

Net-based applications2 have since emerged but are still not routinely used for biomedical image 46

analysis. This can be attributed, in part, to the difficulty encountered by non-programmers in 47

mastering such tools. Furthermore, there is a lack of evidence to demonstrate the superiority of 48

deep learning methods in comparison with conventional ones. Some methods, such as 49

CellPose4,5, StarDist6 and DeepImageJ7, are ready to use, with the necessary code, 50

documentation, and information about the computing environment2. Unfortunately, they have 51

lost some of their flexibility, and adaptation to other datasets. Their possibility of new training, 52

especially for 3D images, is not always straightforward or even possible. On the other hand, 53

nnU-Net8, with its ability to auto-configure itself on training sets, performs well for many image 54

acquisition modalities, but is not accessible to users without programming experience. At the 55

other end of the skills spectrum, deep learning developers have at their disposal a bank of 56

perfectly documented and up-to-date functions thanks to MONAI9, but without an assembly 57

plan, such as proposed for 2D images by OpenMMLab10, development of any innovation is a 58

time-consuming process, and there is currently no available method for evaluating them in a 59

timely manner. The objective of this article is to present the development of a deep learning 60

segmentation framework that combines the ease of use of DeepImageJ with the flexibility of 61

nnU-Net, while also serving as a development base for improving methods for developers in 62

the style of OpenMMLab. 63

In this work, in addition to performance, flexibility and reusability, we propose a new prism 64

through which to evaluate a deep learning method: sustainability. Our definition of method 65

sustainability encapsulates two main objectives: method accessibility and adaptability. Method 66

accessibility relates to the range of users concerned with the tool. Increasing this range would 67

not only result in an enlarged user community, but would also facilitate the emergence of 68

multidisciplinary interactions, a goal that is shared by numerous researchers11. This is 69

particularly true for software inherited from fundamental research, which attempts to reach 70

applied research. Involving end-users will ensure that the software meets the needs of an 71

external community and has concrete applications, giving it both meaning and feedback for 72

improvements. Involving external developers will attract novel ideas while strengthening a 73

community of maintainers. Method adaptability relates to this last community of developers 74

and is the ability of a tool to quickly evolve, especially in the fast-moving world of deep 75

learning. It can be reasonably assumed that the more adaptable a tool is, and the broader its user 76

community, the longer it should last. 77

Following this, we defined a new code development philosophy. To reach a wider audience, our 78

aim is to create a series of tools that bridge the gap between end-users and developers in a gentle 79

way, meaning that end-users wishing to deepen their understanding of the method right down 80

to the lines of code need to be able to do this in small steps only. For each user profile, the 81

objective is thus to substantially reduce the time required to invest in using a deep learning 82

method, while simultaneously expanding the scope of accessible functions (Figure 1). The 83

intention is to prioritize usability to the same extent as functionality. Current state-of-the-art 84

methods usually target only one of these user profiles: nnU-Net8, Cellpose5 or StarDist6 target 85

Python Programmers, while ZeroCostDL4Mic12 or DeepImageJ7 are mainly addressed to Non-86

Programmers (Figure 1). Moreover, during the code implementation, the emphasis should be 87

made on code clarity, which implies that the code should remain comprehensible from its 88

overall architecture to its individual lines by, for example, being presented in a hierarchical, 89

tree-like structure. This approach starts with high-level, general functions and progressively 90

delves into more granular details and functionalities, facilitating a gradual and systematic 91

comprehension of the code. 92

Such a method can also be made adaptive to novel innovations by incorporating an additional 93

objective into the development process: code modularity. Code modularity means that 94

components should be as self-contained and independent as possible (Figure 1). In computer 95

science, this concept is also known as code cohesion and is opposed to code coupling13. This 96

approach allows programmers to seamlessly incorporate or remove specific code components 97

without causing undue disruptions to the overall system. 98

Following all these sustainability constraints, we developed a series of open-access tools called 99

Biom3d. By default, it is optimized to segment 3D images potentially having multiple channels 100

or simultaneously presenting objects from different classes. These volumetric images can 101

originate from CT-scan, MRI, confocal, X-ray or electron microscope. Biom3d integrates 102

offline and online interfaces (GUI, CLI, and API), automated configuration processes, editable 103

configuration files and a modular deep learning framework facilitating the choice of models, 104

metrics, data loaders or training routines. 105

 106

Results 107

Biom3D flexibility and performance. Biom3d was first benchmarked with medical datasets 108

using part of the Medical Segmentation Decathlon (MSD)14 and the Multi-organ Abdominal 109

challenge (often called BTCV)15. These datasets have served to develop the flexibility of nnU-110

Net and constitutes thus the primary goal of Biom3d performance (Figure 2). On both datasets, 111

Biom3d automatically adjusts its training configuration, resulting in Dice scores on the test sets 112

exceeding those of nnU-Net (Figure 3). To demonstrate its performance against conventional 113

methods, Biom3d was compared with NucleusJ16, a method specialized in 3D segmentation of 114

individual nuclei. A custom dataset of 93 images of individual plant nuclei of various shapes 115

and fluorescence intensity captured with a structured illumination microscope was created17. In 116

this case, in addition to nnU-Net and NucleusJ, Biom3d could also be compared to methods 117

designed for 3D nucleus segmentation in fluorescent images like DeepCell18, QCANet19, 118

Cellpose5 and StarDist6 (Figure 3). While being slightly better than nnU-Net, Biom3d 119

significantly outperforms the other methods, even the conventional method NucleusJ. Our 120

hypothesis is that the pretraining of Cellpose, DeepCell and QCANet and the star-convex 121

polyhedron constraint of StarDist introduce strong biases and prevent the model from 122

appropriately fitting to the strong variation of intensity within the nuclei. To further assess its 123

capabilities, Biom3d was also evaluated with other modalities (Figure 2). For electron 124

microscope (EM) images, Biom3d achieved a Dice score of 92% when evaluated with the two 125

3D images from EPFL public database20 (Figure 3). Finally, Biom3d was applied to an EM 126

image of plant root nuclei, to synchrotron images of aortic lamellae and to segment nonconvex 127

objects such as membranes of epithelial cells. In all these cases, Biom3d successfully 128

segmented the objects of interest (Figure 2). 129

A modular architecture. During Biom3d development, a significant amount of effort was 130

dedicated to ensuring code modularity. It would be beneficial for programmers to have the 131

opportunity to experiment with a broad degree of freedom in the deep learning hyper-132

parameters by altering the type of deep learning model, the learning rate, or the data loading 133

process. These challenges are tackled with the modular structure of Biom3d, which first core 134

components are Configuration Files. The Configuration Files of Biom3d depart from those of 135

OpenMMLab being both simplified and completed. They include the definition of two types of 136

hyper-parameters. First, stand-alone hyper-parameters can be integers, float numbers, or lists. 137

They include parameters defined in the Graphical User Interface (patch size, number of epochs 138

etc.) as well as many additional stand-alone hyper-parameters such as the initial learning rate 139

or whether to use half-precision float-point format or not. Second, module hyper-parameters 140

are key-value dictionaries. In this dictionary, the first key-value pair precises the name of the 141

module being used, and the second key-value pair defines the parameters of this module. For 142

example, “UNet3DVGGDeep” is the name of the 3D U-Net model in Biom3d, and its set of 143

parameters is the number of pooling layers of the model and the number of classes of objects 144

in the images (Figure 4). 145

The second modularity component of Biom3d is the Module Register. Modules are code 146

components classified in eight categories (Figure 4): Preprocessors, preparing the datasets 147

before training, Datasets, loading the datasets during training, Models, defining the deep 148

learning models, Metrics, defining the loss functions for model performance assessment, 149

Trainers, defining the training and validation loops, Predictors, defining the prediction loops, 150

Postprocessors, processing the model output before saving and Callbacks, decoupling all 151

recurrent events such as model saving, learning rate updates, logs printing and saving, or loss 152

updates from the training loop (Figure 4). We expect that such a paradigm will simulate a 153

significant number of deep learning methods, with a broader application spectrum than just 154

image segmentation. Except for Callbacks which are defined in the Builder (see below), all 155

available Modules in Biom3d are named and listed in the Module Register. While editing the 156

Configuration File, a user can thus select from the Register the modules that fit the most to the 157

expected task. As modules are Python classes or functions, if the user does not find the 158

appropriate modules, new modules can be easily integrated into Biom3d by importing them and 159

adding a new entry to the Register. It must be noticed that Biom3d accepts Pytorch modules 160

from any origin if they respect the expected inputs and outputs of the surrounding modules. For 161

example, if intending to add a new Metric to the default Biom3d configuration, the user must 162

only make sure that it includes a few arguments like a name, a value and an average value. Once 163

added to the Register, the new Module can directly be incorporated in Biom3d workflow by 164

simply editing the Configuration File. 165

If Modules are the organs of Biom3d, the Builder is its skeleton, providing a general structure 166

for the Module to properly work together. The Builder reads the Configuration File, retrieves 167

and instantiates the selected modules from the Register, and prepares them for training or 168

prediction. Once a Builder is instantiated with a Configuration File, the user can then easily 169

start the training or prediction process by calling a single function. The Builder stores its 170

configuration and the training status (training curves, etc.) which can then be reused to carry on 171

interrupted training or to fine-tune models with a new Configuration File. 172

An easy-to-use tool. Biom3d integrates one local Graphical User Interface (GUI) and one 173

online GUI in the form of a Google Colab notebook. An important innovation with Biom3d 174

interfaces is the “auto-configuration” button. Once the dataset folders path has been entered and 175

this button pressed, Biom3d proceeds to a cascade of hidden operations (Supplementary Figure 176

1). The dataset is first scanned to check its quality and to retrieve its characteristics, such as the 177

median image size or the median sampling. Biom3d is flexible on the input image format, as it 178

works with most medical formats (Nifti, DICOM etc.) and works with TIFF format, largely 179

used for microscopy data. Biom3d data scanning process is equipped with many safeguards to 180

automatically correct most user annotator mistakes, which seems to be decisive in avoiding the 181

"first-click abandonment" phenomenon. These data characteristics are then used to normalize 182

the images and to automatically configure the training process of the deep learning model. 183

The result of this automated training configuration, including the definition of the patch size or 184

the batch size, is stored in a YAML file, is partially displayed in the interface, and is left editable 185

in its entirety if needed. Finally, pressing on “start” initiates the training process. The local 186

interface can also be employed in conjunction with a remote server, where computing resources 187

are installed, and with OMERO21, a hosting platform for microscopy images. While the training 188

proceeds, all relevant information, such as the training curves or the trained model, is 189

periodically stored. Once trained, a model can be either fine-tuned on another dataset, or used 190

for prediction. The prediction process is straightforward for the end user (Supplementary Figure 191

1): the training configuration file is used to load the pretrained model, to normalize the new 192

dataset, and to execute the prediction workflow. 193

A toolbox for bioimage analysts. Biom3d has been packaged as an easy-to-use Python library 194

that can serve as an Application Programming Interface (API) and integrates a Command Line 195

Interface (CLI). Exploiting the CLI enlarges Biom3d potentialities. Users may for instance 196

execute Biom3d on a High-Performance Computing (HPC) resource in a batch process while 197

applying it on a large variety of datasets. They could also isolate individual processes such as 198

data preprocessing, auto-configuration, or model training. Moreover, to fuse capabilities of 199

multiple models trained on different datasets or with different configurations, Biom3d allows 200

multi-model predictions. This last capability is particularly important to assemble the work of 201

different teams across the world, working under different conditions. All these CLI options are 202

directly accessible after installation of Biom3d Package, referenced in the Python Package 203

Index (PyPI). 204

Python programmers may also be interested in exploiting the potential of the Configuration File 205

and the eight types of modules. Configuration Files of Biom3d allows fine-tuning of more 206

hyper-parameter settings more precisely than is feasible through the GUI alone, without the 207

need to delve into Biom3d code. Biom3d modularity allows for rapid experimentation with 208

different configurations to identify the optimal setup for specific tasks or datasets. For example, 209

the default deep learning model of Biom3d, which corresponds to the dynamic 3D U-Net 210

available in nnU-Net framework, can easily be changed for another one. As a result, we 211

demonstrated that a 3D EfficientU-Net model can outperform the 3D U-Net on the Pancreas 212

dataset (Figure 3). Additionally, Biom3d is compatible with MONAI9, public library integrating 213

the latest biomedical models for multidimensional images, which enable quick use cutting-edge 214

models. 215

A framework for developers. Biom3d has also been meticulously crafted at a granular code 216

level, allowing deep learning programmers, well-versed in working with libraries like PyTorch 217

or TensorFlow, to easily understand, edit, remove, or add code components. It is also worth 218

noting that Biom3d plays an important role in the process of comparing old and new code 219

segments when creating new code based on existing works. This development strategy was, for 220

instance, exploited to entirely redesign the original Dataset Module of nnU-Net. As Biom3d 221

easily accepts alien code incorporation, the entire and original “Dataset Module” of nnU-Net 222

was integrated as a Biom3d Module. Following this integration, a series of intermediate and 223

hybrid Dataset Modules were developed and tested. Comparisons between old and new Dataset 224

Modules could easily be done by editing a single line in the Configuration File. The weak points 225

of the prototype Dataset Module were rapidly spotted and improved. The final Dataset Module, 226

which relies on the TorchIO library22, is likely the reason why Biom3d outperforms nnU-Net 227

on multiple tasks (Figure 3). This development strategy can be followed for all Biom3d 228

Modules. Last, as each piece of Biom3d code can be isolated from the others, they can easily 229

be extracted and reused for another independent project. This is particularly true not only for 230

Biom3d Modules but even for individual functions such as the auto-configuration or the image 231

loading and saving. 232

Discussion 233

Biom3d is a new, high-performing, and flexible set of tools applicable to various 3D 234

segmentation problems, with numerous biological and medical applications. It surpasses in 235

accuracy specialized tools, such as NucleusJ, while demonstrating state-of-the-art results on a 236

wide variety of new problems, such as plant chromocenter segmentation or aorta lamella 237

segmentation. It responds to the needs of end users through easy to install and easy to use 238

interfaces, enabling auto-configuration of the deep learning model training, and compatible 239

with several image formats and with OMERO software21. To make Biom3d an even bigger part 240

of the landscape of tools now available to biologist users, it will be made compatible with 241

Napari23, ZeroCostDL4Mic12,24 and DeepImageJ7. In line with FAIR principles for AI25, future 242

models will then be shared online in Open Neural Network Exchange (ONNX)26 format, on 243

website such as HuggingFace.co or Bioimage.io, and future developments streamlined on 244

MLflow (https://mlflow.org). To broaden Biom3d's spectrum of applications, further 245

developments should include instance segmentation, object tracking, image denoising as well 246

as processing images in proprietary formats or with large N-dimension such as light sheet 247

images and to offer the possibility of using images stored with the next generation file formats 248

(NGFF) such as OME-Zarr28. 249

The implementation of all these developments will be facilitated by the modular code 250

architecture of Biom3d. Biom3d has been designed as a sandbox, within which developers are 251

strongly encouraged to integrate new code elements. It is coded in the Python programming 252

language and based primarily on the Pytorch29 deep learning framework. This language and 253

framework were chosen for their current popularity in the field of deep learning, so code 254

implemented with them, such as MONAI, can be added to Biom3d with little to no effort. These 255

constraints may yet pose some integration challenges for developers using other programming 256

languages or deep learning libraries, such as TensorFlow30, with which StarDist was created, or 257

JAX31, an emerging framework. While being highly modular, Biom3d code remains coupled to 258

some extent. This occurs because it is needed in some instances to improve efficiency, by using 259

shared internal functions across different components. It is minimized however to keep the 260

advantages of modularity as interconnection can make the codebase more sensitive to changes 261

as alterations to one section of the code might unintentionally impact other areas, complicating 262

maintenance, and updates. The development of Biom3d represents a significant advance in the 263

modularity of deep learning code, while maintaining performance and avoiding code 264

redundancy. While further increases in modularity are possible, they may necessitate a 265

significant additional investment of time and resources. 266

Finally, through the benchmarking performed on nucleus images in this article, we have 267

pinpointed one of the main remaining limitations of deep learning methods: they depend on 268

large, manually annotated datasets. While conventional image analysis tools can help provide 269

partial annotations, manual interventions are inevitable, which also impedes the spread of deep 270

learning methods. The modular code of Biom3d could be exploited to reduce this time-271

consuming process, by including methods such as active learning32, generative methods33, 272

weakly supervised learning34, and self-supervised learning35,36. Biom3d has, for instance, 273

successfully performed self-supervision for 3D images, which involved both image 274

classification and image segmentation. 275

Most importantly, we hope that the intuitive design of Biom3d, from its graphical interfaces to 276

its modular code architecture, will foster collaboration among diverse communities, including 277

biologists, radiologists, microscopists, image analysts and developers, and will render it both 278

reusable and sustainable. 279

Online content 280

Biom3d is available at https://github.com/GuillaumeMougeot/biom3d and as a notebook at 281

https://colab.research.google.com/github/GuillaumeMougeot/biom3d/blob/master/docs/biom3282

d_colab.ipynb. 283

References 284

1. Buchholz, T. O. et al. Content-aware image restoration for electron microscopy. 285

Methods Cell Biol. 152, 277–289 (2019). 286

2. Mougeot, G. et al. Deep learning -– promises for 3D nuclear imaging: a guide for 287

biologists. J. Cell Sci. 135, jcs258986 (2022). 288

3. Ronneberger, O., Fischer, P. & Brox, T. U-net: Convolutional networks for biomedical 289

image segmentation. Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. 290

Intell. Lect. Notes Bioinformatics) 9351, 234–241 (2015). 291

4. Stringer, C., Wang, T., Michaelos, M. & Pachitariu, M. Cellpose: a generalist 292

algorithm for cellular segmentation. Nat. Methods 18, 100–106 (2021). 293

5. Pachitariu, M. & Stringer, C. Cellpose 2.0: how to train your own model. Nat. Methods 294

19, 1634–1641 (2022). 295

6. Weigert, M., Schmidt, U., Haase, R., Sugawara, K. & Myers, G. Star-convex polyhedra 296

for 3D object detection and segmentation in microscopy. Proc. - 2020 IEEE Winter 297

Conf. Appl. Comput. Vision, WACV 2020 3655–3662 (2020). 298

doi:10.1109/WACV45572.2020.9093435 299

7. Gómez-de-Mariscal, E. et al. DeepImageJ: A user-friendly environment to run deep 300

learning models in ImageJ. Nat. Methods 18, 1192–1195 (2021). 301

8. Isensee, F., Jaeger, P. F., Kohl, S. A. A., Petersen, J. & Maier-Hein, K. H. nnU-Net: a 302

self-configuring method for deep learning-based biomedical image segmentation. Nat. 303

Methods 18, 203–211 (2021). 304

9. MONAI Consortium. MONAI: Medical Open Network for AI. (2023). 305

doi:https://doi.org/10.5281/zenodo.4323058 306

10. MMSegmentation. Available at: https://github.com/open-mmlab/mmsegmentation. 307

11. Nogare, D. D., Hartley, M., Deschamps, J., Ellenberg, J. & Jug, F. Using AI in 308

bioimage analysis to elevate the rate of scientific discovery as a community. Nat. 309

Methods 20, 973–975 (2023). 310

12. Chamier, L. von et al. ZeroCostDL4Mic: An open platform to use deep-learning in 311

microscopy. bioRxiv 2020.03.20.000133 (2020). doi:10.1101/2020.03.20.000133 312

13. Gamma, E., Helm, R., Johnson, R. & Vlissides, J. Design Patterns: Elements of 313

Reusable Software. Addison-Wesley Professional Computing Series (Addison-Wesley 314

Longman Publishing Co., Inc., 1996). 315

14. Antonelli, M. et al. The Medical Segmentation Decathlon. Nat. Commun. 13, 4128 316

(2022). 317

15. Gibson, E. et al. Multi-organ Abdominal CT Reference Standard Segmentations. 318

Zenodo, 22-Feb-2018 26, 1–7 (2018). 319

16. Dubos, T. et al. Automated 3D bio-imaging analysis of nuclear organization by 320

NucleusJ 2.0. Nucleus 11, 315–329 (2020). 321

17. iGReD, U. C. A. Dataset of individual plant nuclei. Available at: 322

https://omero.bio.fsu.edu/webclient/?show=project-5001. 323

18. Greenwald, N. F. et al. Whole-cell segmentation of tissue images with human-level 324

performance using large-scale data annotation and deep learning. Nat. Biotechnol. 325

2021.03.01.431313 (2021). doi:10.1038/s41587-021-01094-0 326

19. Tokuoka, Y. et al. 3D convolutional neural networks-based segmentation to acquire 327

quantitative criteria of the nucleus during mouse embryogenesis. npj Syst. Biol. Appl. 6, 328

1–12 (2020). 329

20. Lucchi, A., Li, Y. & Fua, P. Learning for structured prediction using approximate 330

subgradient descent with working sets. Proc. IEEE Comput. Soc. Conf. Comput. Vis. 331

Pattern Recognit. 1987–1994 (2013). doi:10.1109/CVPR.2013.259 332

21. Allan, C. et al. OMERO: Flexible, model-driven data management for experimental 333

biology. Nat. Methods 9, 245–253 (2012). 334

22. Pérez-García, F., Sparks, R. & Ourselin, S. TorchIO: A Python library for efficient 335

loading, preprocessing, augmentation and patch-based sampling of medical images in 336

deep learning. Comput. Methods Programs Biomed. 208, 106236 (2021). 337

23. Sofroniew, N. et al. napari. (2022). doi:10.5281/zenodo.5848842 338

24. Hidalgo-Cenalmor, I. et al. DL4MicEverywhere: Deep learning for microscopy made 339

flexible, shareable, and reproducible. bioRxiv (2023). doi:10.1101/2023.11.19.567606 340

25. Huerta, E. A. et al. FAIR for AI: An interdisciplinary and international community 341

building perspective. Sci. Data 10, 487 (2023). 342

26. Bai, J., Lu, F. & Zhang, K. ONNX: Open Neural Network Exchange. GitHub 343

repository (2019). 344

27. MLflow: An Open Source Platform for Machine Learning. (2024). 345

28. Miles, A. et al. zarr-developers/zarr-python: v2.17.1. (2024). 346

doi:10.5281/zenodo.10790679 347

29. Paszke, A. et al. PyTorch: An imperative style, high-performance deep learning library. 348

arXiv 32, (2019). 349

30. Abadi, M. et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous 350

Distributed Systems. (2016). 351

31. Bradbury, J., Frostig, R., Hawkins, P., Johnson, M., Leary, C., Maclaurin, D., Necula, 352

G., Paszke, A., Vanderplas, J., WandermanMilne, S., Zhang, Q. JAX: composable 353

transformations of Python + NumPy programs. 1–8 (2018). 354

32. Budd, S., Robinson, E. C. & Kainz, B. A survey on active learning and human-in-the-355

loop deep learning for medical image analysis. Medical Image Analysis 71, 102062 356

(2021). 357

33. Fu, C. et al. Three dimensional fluorescence microscopy image synthesis and 358

segmentation. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. Work. 2018–359

June, 2302–2310 (2018). 360

34. Zhao, Z. et al. Deep Learning Based Instance Segmentation in 3D Biomedical Images 361

Using Weak Annotation BT - Medical Image Computing and Computer Assisted 362

Intervention – MICCAI 2018. in (eds. Frangi, A. F., Schnabel, J. A., Davatzikos, C., 363

Alberola-López, C. & Fichtinger, G.) 352–360 (Springer International Publishing, 364

2018). 365

35. Sahasrabudhe, M. et al. Self-supervised Nuclei Segmentation in Histopathological 366

Images Using Attention BT - Medical Image Computing and Computer Assisted 367

Intervention – MICCAI 2020. in (eds. Martel, A. L. et al.) 393–402 (Springer 368

International Publishing, 2020). 369

36. Kirillov, A. et al. Segment Anything. (2023). 370

 371

 372

 373

Figure 1 – Method accessibility for different user profiles. a, Fulfilling the needs of a 374

continuum of user profiles. In the abscissa are conjointly represented the skills and needs of 375

deep learning users while in the ordinate is represented the estimated time required for them to 376

use the method and fulfil their needs. On the left, non-programmers may expect easy-to-use 377

software with graphical user interfaces and better segmentation results than with non-deep 378

learning methods, without the need for delving into deep learning theory. In the middle, Python 379

programmers may look for a command line interface or a Python package as well as a 380

performant, flexible and easily reconfigurable deep learning tool. On the right, deep learning 381

developers may be interested in a well-documented and modular deep learning framework, 382

where pieces of code can easily be changed, removed, or added. Most of the state-of-the-art 383

methods are only targeting one user profile, noticeably omitting deep learning developers. b, 384

Difference between a modular code and a coupled code. Each piece of code represents a node 385

in these graphs. Each edge is an interaction between two distinct pieces of code. A modular 386

code (top) means that the few code components are clearly isolated and have few clearly defined 387

links. A coupled code (bottom) has code components with a low internal cohesion and are 388

strongly intertwined. 389

 390

Figure 2 – Samples of Biom3d predictions over medical datasets (top row) and biological 391

datasets (bottom row). All views originate from testing images, unseen during the training of 392

Biom3d default model. a-d and f originate from public datasets while the rest are custom 393

datasets. For each example, a 3D view is depicted on top of a 2D z-slice, both representing an 394

overlay of the segmentation result and the raw image. The rendering was done by Napari. a, 395

Multi-organ abdominal challenge (BTCV) representing thirteen segmented organs in CT-scan. 396

b, Three brain tumor sub-regions in MRI. c, A pancreas (red) and a tumor (blue) in CT-scan. d, 397

A lung tumor in CT-scan. e, An aortic lamella in a synchrotron microscope. f, EPFL dataset of 398

mitochondria in an electron microscope. g, Plants cell nuclei in an electron microscope. h, A 399

plant cell nucleus and its chromocenters in a structured illumination microscope. i, Nuclei of a 400

mouse embryo in a confocal microscope. To help the model separate nuclei clusters, frontier 401

regions between nuclei have been segmented (blue). j, An epithelial cell of a Drosophila 402

embryo. Both the inner cell and cell membranes have been segmented. 403

 404

 405

Figure 3 – Biom3d performances. a, Biom3d reaches similar Dice scores as nnU-Net on 406

various 3D segmentation datasets. The Dice score, when applied to 3D segmentations, measures 407

similarity by calculating twice the volume of intersection divided by the total volume of both 408

the ground truth mask and the prediction. The higher the Dice score is, the better. The images 409

in these datasets were captured with CT-scan (BTCV, Lung tumor, Pancreas tumor), MRI (Brain 410

tumor), fluorescent microscope (Nuclei), and electron microscope (EPFL mitochondria). Public 411

datasets from medical segmentation challenges (BTCV, Brain tumor, Lung tumor, and Pancreas 412

tumor) were selected for their diversity in the number of object classes to segment. These 413

datasets were split in two, with the first half of the images and masks used for training and the 414

second half for testing. For the custom dataset Nuclei, 65 images and masks were used for 415

training, while the remaining 28 were used for testing. The EPFL dataset has only one publicly 416

available training image and one testing image. Training and testing images were identically 417

chosen for Biom3d and nnU-Net. b, Benchmark of 7 segmentation methods on a custom dataset 418

of 3D plant nuclei. NucleusJ is a non-deep learning method specialized in 3D nucleus 419

segmentation. Only Biom3d, nnU-Net and StarDist provided the requirement to train a new 3D 420

segmentation model. Without a way to retrain them, Cellpose, QCANet and DeepCell could 421

only be tested with their pretrained models. Only Biom3d and nnU-Net exceeded the average 422

Dice score obtained with NucleusJ. c, Example of Biom3d application to obtain biological 423

insights. The volume of relative heterochromatin fraction (RHF) refers to the ratio between the 424

volume of voxels located in chromocenter regions and of voxels located elsewhere in the 425

nucleus. The box plots represent samples of A. thaliana nuclei sorted between guard cells (top) 426

and pavement cells (bottom). Biom3d is compared to NODeJ, a non-deep learning add-on of 427

NucleusJ, on the task of segmenting chromocenters in Col0 and in H1 mutant nuclei. While 428

obtaining similar results on pavement cells, Biom3d predicted a shift in the volume distribution 429

inverse to that predicted by NODeJ. The validity of this prediction was manually verified by 430

experts. This result illustrates the importance of precise segmentations when assessing a 431

biological hypothesis. 432

 433

 434

Figure 4 – Configuration File, Builder and Module Register. (Left) The Configuration File 435

lists the names of existing Modules appearing in the Module Register and defines their 436

parameters (Greek letters). (Middle) The Builder reads parameters and Module names in the 437

Configuration File. It then retrieves the corresponding modules from the Module Register and 438

builds them with their parameters. The Builder can then be used to train a Model with a Dataset, 439

a Trainer, and a Metric. Once trained, the Model can be used by the Builder to predict the 440

segmentation masks of some raw images using a Preprocessor, a Predictor, and a Postprocessor. 441

(Right) The Module Register lists all existing modules of Biom3d, except for Callbacks which 442

are built in the Builder. There are currently seven different types of modules in the Register, 443

and each type has different variants (colour shades). 444

 445

 446

Figure 5 – Code modularity of Biom3d. a, Representation of Biom3d code architecture. Each 447

node in this directed acyclic graph is one Python script in Biom3d. Each directed edge is one 448

call of one script by another. This graph was automatically generated by pydeps, a Python 449

dependency visualizer, and by calling the default training workflow of Biom3d (bottom left 450

node). The training process instantiates a Builder which then consults the Register to instantiate 451

requested modules from the Configuration file. b, Representation of nnU-Net code architecture. 452

For comparison with Biom3d, this graph was also generated by pydeps and depicts the nnU-453

Net training workflow. This graph is more coupled than Biom3d graph, indicating that nnU-Net 454

code will probably be harder to understand or modify. c, Exploiting modularity to benchmark 455

model architectures. Once new model architectures have been added to Biom3d, a benchmark 456

experiment can be conducted by only changing the model’s name in the configuration files, 457

while leaving the rest of the training hyper-parameters untouched. The default U-Net model in 458

Biom3d is here compared to an EfficientU-Net and a HRNet, both being integrated into 459

Biom3d. These model architectures are trained and tested on the Pancreas tumor dataset. The 460

results of this experiment indicate that, despite being slower, the EfficientU-Net model is more 461

appropriate for this dataset than the others. 462

 463

 464

Methods 465

Requirements. Biom3d is a Python3 package essentially relying on numpy and Pytorch 466

packages. Image reading and saving is ensured via scikit-image, SimpleITK and tifffile. Deep 467

learning computation can be either executed on a CPU or a GPU. GPU execution requires the 468

installation of CUDA and CuDNN libraries compatible with the Pytorch library as well as a 469

GPU having at least 10 Gb of VRAM for training and 4 Gb for prediction. 470

Graphical User Interfaces. The online interface is based on Google Colab and thus does not 471

require accessing a local GPU. Its use requires the connection to a Google account. The training 472

and prediction datasets must be uploaded to a Google Drive accessible via the interface. The 473

code of the online interface is hidden for ergonomic reasons, but is accessible, and it has been 474

made as simple as possible, exclusively using Biom3d framework. The online interface allows 475

to preprocess a training dataset, to auto-configure a training process, to execute the training and 476

to make prediction with a trained model. To take advantage of Biom3d modularity, the 477

Configuration file is directly editable in Google Colab. While requiring access to a computing 478

GPU, the local interface allows a higher degree of flexibility (Supplementary Figure 1 and 479

Supplementary Figure 2). The user can start training or predicting on a local computer or on a 480

private remote Linux server. In both cases, the interface is dynamic depending on user choices. 481

If the user has a trained model and intends to fine-tune it, the interface displays a field for the 482

path of the trained model and a field for the new dataset. If the user has a preprocessed dataset, 483

only the configuration path will be asked. During prediction, if the user has access to an 484

OMERO server (Supplementary Figure 3), the interface will ask for the user credentials and the 485

OMERO dataset number. The OMERO dataset is then downloaded on the computing server, 486

used for prediction, and the resulting images are eventually uploaded to a new OMERO dataset. 487

For the remote interface, the user is additionally asked to provide a name to the training dataset 488

which will automatically be sent to the computing server. After prediction, resulting images can 489

either be downloaded locally or sent to an OMERO server. 490

Preprocessing. Preprocessing consists in adapting a dataset to the training workflow and, 491

inversely, adapting the training workflow to the dataset. The default preprocessing methodology 492

has been designed and tested for 3D image segmentation. In the following explanation, masks 493

are manually segmented images. The default preprocessing in Biom3d is a four-step process: 494

(1) data reading and scanning to extract the data characteristics, (2) auto-configuration to create 495

a Configuration file adapted to the data characteristics, (3) data normalization to uniformize 496

image and mask dimensions and intensities, and (4) data splitting to separate training and 497

validation sets. Preprocessing is illustrated in Supplementary Figure 4. 498

Data scanning. For any processing requiring image reading (data-scanning, data-loading, 499

preprocessing, etc.), Biom3d adaptively reads 3D images stored in NumPy format (.npy), in 500

TIFF format (.tif or .tiff) or in any other medical formats read by SimpleITK library (see list of 501

available format on https://simpleitk.readthedocs.io/en/master/IO.html), such as Nifti format. 502

After preprocessing or prediction, Biom3d saves 3D images or masks along with necessary 503

meta-data. While compressed formats are appropriate for long term storage (such as Nifti or 504

TIFF format), fast reading formats are preferred for deep learning applications (such as NumPy 505

format). After preprocessing, training images and masks are thus stored in NumPy format. After 506

prediction, Biom3d stores the resulting masks using the input image format and meta-data. As 507

TIFF tagging system is unrestrictive regarding meta-data formatting, Biom3d image reader 508

might not properly read meta-data originating from some proprietary formats, except if TIFF 509

images have successfully been processed with Bio-format. The current image reader of Biom3d 510

does not support proprietary formats, such as CZI. Once read, Biom3d extracts the dataset 511

fingerprint from the images. This fingerprint includes the median image size, the mean and 512

standard deviation of the image voxel intensities within the mask, the 5% and 95% percentiles 513

of these intensities, and, if available, the median sampling, which represents the voxel 514

dimensions in meters. 515

Auto-configuration. The auto-configuration process of Biom3d mainly consists in finding the 516

best patch size and batch size to provide to the deep learning model, as well as the number and 517

dimensions of the successive pooling layers occurring in the U-Net model. Biom3d heuristics 518

produce similar results as nnU-Net ones, yet they have been simplified. Biom3d auto-519

configuration process only uses the median size of the input images. The ideal patch size is set 520

to respect the median size proportions, while the product of its dimensions is smaller than a 521

maximum patch size, by default defined as �128,128,128� = �	
∗, 	�∗ , 	
∗�, a value chosen for 522

being adapted to GPUs with less than 10 Gb of VRAM. More formally, the goal is to find the 523

exponents �� in ∏ ���
����� = ∏ 	�∗� ��
���
 , where � = 3 is the number of dimensions, ��, 	� =524

���
����� and 	�∗ are the �-th dimension of the median size, the patch size and the maximum patch 525

size respectively, and � is a small number typically equal to 10�
. If all exponents �� were 526

assumed to be identical, their ideal value is �∗ =

� !"�
��� ∑ log '��

(�∗
)���
 . This value would 527

ensure the preservation of the median size proportions. Yet, for large and strongly anisotropic 528

images, this may cause some dimensions of the ideal patch size to be set smaller than 1. To 529

prevent this, an upper bound *� on ��’s values is set to be 	� = ���
����� ≥ 1 ⟺ �� ≤ !"����
 !"�
��� =530

*�. If . = /� ∈ ⟦1, �⟧, �� > *�4 ≠ ∅, then ∀� ∈ ., �� = *�, and ∀� ∉ ., �� =

��|:| ���∗ −531

∑ *��∈: �, so to preserve ∑ �� = ��∗. This process is reiterated until . = ∅. The final values of 532

�� can then be used to obtain 	� = ���
�����, the patch size. For each dimension, the number of 533

the 2-pooling in the U-Net model is then defined by <� = max @0, A�� @Blog� @ (�
CDE� �(�∗�F +534

<∗H , <∗FF , where <∗ is the user-defined maximum number of 2-pooling, by default set to 5. To 535

prevent features maps having non-integer dimensions after dimension reduction during 2-536

pooling, the patch size dimensions 	� are readjusted one last time to the closest multiple of 2I�. 537

The batch is set to 2 and eventually increased if the GPU VRAM allows it. The auto-538

configuration results are stored in a new Configuration file in Python format, based on the 539

default Configuration file included in Biom3d. 540

Data normalization. Data normalization encompasses image reshaping and resizing and voxel 541

intensity normalizing (Supplementary Figure 5). Images are automatically reshaped to conform 542

to the standard (channel, height, width, depth) dimensions. Biom3d accepts a wide range of 543

dimension variants, even within the same dataset. If not specified by the user, Biom3d 544

automatically detects the location of the channel dimension in 4-dimensional images. For each 545

mask, a series of check-ups are performed to automatically spot and, eventually, correct 546

annotation mistakes. For instance, within the same dataset, it can be found manual annotations 547

with an inconsistent number or order of dimensions. If annotating with levels of grey, users 548

could also mistakenly decide to use inconsistent levels of grey or more levels of grey than 549

existing classes of objects. Depending on the mistake, Biom3d either corrects or warns the user. 550

For instance, if two classes of object are expected and more than two were found in the mask, 551

Biom3d automatically applies a threshold by considering as background the most recurrent 552

class. In case where three or more classes are expected and even more classes are found in the 553

mask, Biom3d displays an error. Biom3d is compatible with masks having 4 or 3 dimensions. 554

Image intensities are then Z-normalized using either the mean and standard deviation of the 555

image voxel intensities, or, if available, using the median mean and standard deviation of the 556

dataset voxel intensities retrieved during data scanning. If the median sampling could be 557

retrieved, images and masks are resized to all match the media sampling. Images are resized 558

with trilinear interpolation while masks with nearest neighborhood. Finally, for each object 559

class in mask, a random sampling is performed to extract some foreground locations. These 560

values will be used during data loading to rapidly locate foreground regions during image patch 561

cropping. Once preprocessed, the images, masks and foreground location are stored in 562

automatically created output folders. The output folder paths are added to the Configuration 563

file. 564

Data splitting. Following the cross-validation strategy, the dataset is by default split into 5 565

subsets called folds (Supplementary Figure 5). More formally, each image filename is 566

associated with a random integer between 0 and 4. During training, if fold 0 is selected, images 567

associated with 0 will be considered as validation images while remaining images will be 568

considered as training images. If less than 10 images are present in the dataset, Biom3d reduces 569

the number of folds to max JKL
�M , 2N, where N is the number of images in the dataset. If only 570

one image is found in the dataset, Biom3d split the image and mask in two along the largest 571

image dimension – 80% of the image will be used for training and 20% for validation. 572

Filenames with associated fold indices are stored in a CSV file that will be loaded during 573

training. The CSV file path is added to the Configuration file. 574

Data loading. Data loading consists in loading a batch of preprocessed data into computer 575

memory and eventually performing data augmentation, for it to be prepared for the training 576

workflow (Supplementary Figure 6). Several data loading modules for 3D image segmentation 577

are available in Biom3d: one based on nnU-Net batchgenerators package, one based on TorchIO 578

SubjectsDataset, and one based on Pytorch Dataset. The latter one is the default and will be 579

detailed here (Supplementary Figure 6). The data loading module initialization first loads the 580

image and mask filenames of training and validation sets using the CSV file created during data 581

splitting. To fasten data loading, images and masks can be, on demand, loaded into computer 582

memory. The initialization then creates the data augmentation transformations used during 583

training with TorchIO package: random cropping, random affine transform, random anisotropy, 584

random flipping, random intensity variation, random blurring, random noise, random patch 585

swapping, and random contrast variation. The axes of the rotation in the random affine 586

transform and of the random anisotropy depends on the patch size anisotropy. By default, 587

anisotropy transforms, and rotation transforms are applied to every axis. If any patch size 588

dimensions are bigger than three times the smallest patch size dimension, then only these 589

dimensions are considered as valid axes to apply random anisotropy. In this scenario, only the 590

smallest dimension is considered a valid axis for rotation transforms. Once this initialization is 591

completed, the data loader is ready to use. During training data loading, a batch of foreground 592

locations, images and masks are loaded into computer memory. The image and mask are then 593

randomly cropped using the patch size. To do so, several constraints are considered. First, if 594

rotation transforms are applied, the patch size is temporally enlarged beforehand to avoid empty 595

corners appearing in images and masks once rotated. The enlarged patch size is set to be cubic 596

and its dimensions equal to the largest diagonal of the patch. Second, foreground locations are 597

used to crop one image and mask pair out of three in the batch. Among the list of possible 598

foreground locations, one is selected to be the location of the center of the patch. Third, if the 599

cropped image and mask are smaller than the patch size, then they are padded with zeros equally 600

in all three dimensions. Once cropped, the images and masks are transformed with the rest of 601

the data augmentations before being output. During validation data loading, only the random 602

cropping is performed without any other form of data augmentation. 603

Dynamic models. Biom3d includes several deep learning model definitions. The default deep 604

learning model is a standard 3D U-Net model for semantic segmentation1. It has been 605

implemented in a modular fashion, meaning that the encoder, the decoder and the 606

c1onvolutional blocks can work independently. More specifically, the default VGG encoder2 607

can straightforwardly serve as an independent classification model or can be replaced by any 608

other encoder in the 3D U-Net model, such as the 3D EfficientNet3 included in Biom3d, the 609

MONAI models, or any Pytorch model compatible with 3D images. The default 3D U-Net 610

model architecture is dynamic and depends on the number <� of successive pooling layers found 611

for each dimension during the auto-configuration. The maximum number of 2-pooling along a 612

given dimension O is determined by min�<R, maxS <��. For each case where <R < max� <�, there 613

will be max� <� − <R 1-pooling layers, evenly distributed between the head and tail of the 614

encoder. For instance, if the auto-configuration sets the ideal number of successive pooling 615

layers to be �3,5,5�, the pooling layers of the 3D U-Net will have the following list of kernel 616

dimensions: ��1,2,2�, �2,2,2�, �2,2,2�, �2,2,2�, �1,2,2��. The definition of the rest of the model 617

layers follows the original U-Net architecture. 618

Training. Losses, metrics, callbacks as well as training and validation routines are all 619

independent modules in Biom3d, the default ones being designed for 3D semantic 620

segmentation. The default training loss is the sum of the class Dice score and the cross-entropy 621

between the predicted and annotated masks. Default validation metrics include the Dice score 622

and the intersection over union between the predicted and annotated masks. Even if the default 623

behavior of these metrics requires the 3D annotated masks to be formatted such that each pixel 624

value of the mask represent a single object class (0, 1, 2, etc.), Biom3d metrics are also 625

compatible with 4D annotated masks formatted with an additional channel dimension 626

representing each individual object class. In such setup, Biom3d metrics accept input pixel to 627

be associated with multiple object classes. The default optimizer is the stochastic gradient 628

descent with a Nesterov momentum of 0.99 and a weight decay of 3e-5. The default training 629

routine uses the data loader to get a batch of data, passes it to the model then to the loss, 630

computes the gradients and clips their norms, before updating the model parameters using the 631

optimizer. The training routine periodically calls the callbacks (Supplementary Figure 7) to 632

update the learning rate with cosine annealing, to print and store information about the training 633

and validation, and to store the model parameters of the best performing model. Training and 634

validation stored information includes the training and validation losses per epoch and 635

prediction snapshot on the validation set. After loading the Configuration file, the Builder 636

oversees the instantiation of the losses, metrics, callbacks and optimizer before executing the 637

training and validation routines. This execution can be done using mixed precision and in 638

parallel on multiple GPUs. For reproducibility reasons, once the training is finished, the output 639

folder includes the Configuration file and the data splitting file, in addition to all the other 640

information stored by the training callbacks. If interrupted, training can thus be restarted by 641

solely using this output folder. Biom3d also allows to perform model finetuning or retraining 642

by instantiating a new Builder using both an output folder and a new Configuration file. 643

Predicting. Predicting with Biom3d encompasses three steps: (1) pre-processing, by default 644

including image reading and normalization, (2) predicting, by default involving tiling the 645

images and passing the tiles to the model, and (3) post-processing, by default implying 646

discretizing model outputs, removing noise and saving the predicted masks. Each of these steps 647

is an isolated Biom3d module. The modularity of Biom3d allows to reuse the exact same 648

function for pre-processing as the one used to normalize training data. Before being passed to 649

the deep learning model, input images are tiled with TorchIO grid sampler. For one input image, 650

this function creates a series of patches equally distributed and overlapping by an overlap equal 651

to half of the patch dimensions. To respect these two tiling constraints, the input image is 652

eventually padded with zeros. Batch of patches are constituted and given to the model. To 653

increase the prediction accuracy, each batch is augmented by flipping along the seven possible 654

combinations of (x, y, z)-axis. Augmented predictions are then flipped back before being 655

averaged. Predicted tiles are then aggregated using Hann filtering to reduce edge artefacts in 656

patch overlapping regions. As data pre-processing involved data resampling, the aggregated 657

prediction is finally resized back to the original image dimensions. As Biom3d framework is 658

compatible with ensemble learning, it is also possible to aggregate predictions coming from 659

different models. If such case, model outputs are simply averaged before being post-processed. 660

Post-processing then starts by discretizing the prediction. For 4D masks, discretizing means to 661

apply a threshold of 0.5 to the output of the sigmoid function applied to the model output. For 662

3D masks, discretizing means to retrieve the argmax of the output of the SoftMax function 663

applied to the model output. On user request, two distinct noise removal strategies can then be 664

applied to remove too small, segmented regions. Connected components can thus be computed 665

to retrieve either the biggest segmented object or objects which volumes are higher than an Otsu 666

threshold determined using the volume distribution of all connected components. Finally, the 667

post-processed prediction is automatically saved along with input image metadata. 668

Evaluation. Controlling the quality of a trained model can be done with Biom3d by either using 669

the local graphical user interface or the application programming interface. For 3D 670

segmentation, one folder containing 3D ground truth masks of images different from the 671

training set and another folder with the corresponding predictions can be passed to Biom3d to 672

retrieve the average Dice score on this set. To fasten experiments and benchmarking, Biom3d 673

also includes scripts that allow the preprocessing, training, prediction, and evaluation of a new 674

deep learning model on a new dataset to be executed with a single command 675

Data availability 676

All public datasets displayed on Figure 2 or used to benchmark Biom3d in Figure 3 can be 677

accessed via their respective website: Beyond The Cranial Vault (BTCV)-Abdomen, 678

https://www.synapse.org/Synapse:syn3193805; the Medical Segmentation Decathlon (Brain 679

tumor, Lung tumor and Pancreas tumor), http://medicaldecathlon.com; EPFL electron 680

microscopy dataset, https://www.epfl.ch/labs/cvlab/data/data-em. The rest of the data created 681

in the frame of this work is hosted by Mésocentre UCA on a public OMERO server 682

https://omero.mesocentre.uca.fr/webclient/userdata/?experimenter=352. Trained models and 683

predictions created by Biom3d on the public datasets can be found in the following OMERO 684

project: https://omero.mesocentre.uca.fr/webclient/?show=project-2005. Trained models and 685

custom training datasets used to create the illustration in Figure 2 for the X-ray microscopy 686

image of aorta, for the electron microscopy image of plant root nuclei, for the confocal 687

microscopy images of the mouse embryo and the Drosophila embryo can be found in the 688

following OMERO project: https://omero.mesocentre.uca.fr/webclient/?show=project-2007. 689

For all custom datasets, the specific images and predictions represented on Figure 2 have been 690

set aside in the following OMERO project: 691

https://omero.mesocentre.uca.fr/webclient/?show=project-2006. The plant nucleus dataset 692

used to benchmark the nucleus segmentation methods in Figure 3 can be found in the 693

following OMERO project: https://omero.mesocentre.uca.fr/webclient/?show=project-2002. 694

For the previous dataset, the training data and the trained model of Biom3d can be found in 695

the following OMERO project: https://omero.mesocentre.uca.fr/webclient/?show=project-696

2001. The plant chromocenter dataset used to benchmark Biom3d and NODeJ in Figure 3 can 697

be found in the following OMERO project: 698

https://omero.mesocentre.uca.fr/webclient/?show=project-2004. For the previous dataset, the 699

training data and the trained model of Biom3d can be found in the following OMERO project: 700

https://omero.mesocentre.uca.fr/webclient/?show=project-2003. 701

Code availability 702

Biom3d is a public python package referenced in the Python Package Index 703

(https://pypi.org/project/biom3d/). The latest version of the code and documentation of Biom3d 704

can be found on GitHub (https://github.com/GuillaumeMougeot/biom3d). 705

References 706

1. Ronneberger, O., Fischer, P. & Brox, T. U-net: Convolutional networks for biomedical 707

image segmentation. Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. 708

Intell. Lect. Notes Bioinformatics) 9351, 234–241 (2015). 709

2. Simonyan, K. & Zisserman, A. Very Deep Convolutional Networks for Large-Scale 710

Image Recognition. CoRR abs/1409.1, (2014). 711

3. Tan, M. & Le, Q. V. EfficientNet: Rethinking model scaling for convolutional neural 712

networks. 36th Int. Conf. Mach. Learn. ICML 2019 2019–June, 10691–10700 (2019). 713

Acknowledgements 714

We would like to thank Adama Nana for his support with benchmarking nucleus segmentation 715

methods, the bioinformatics core facility of the Au-Bi (Mesocentre UCA) and the iGReD CLIC 716

microscopy facilities. This work was partially achieved using HPC resources from GENCI–717

IDRIS (Grant 2022-AD011013709) on the supercomputer Jean Zay's A100 partition. We thank 718

Dr. Fredy Barneche (CNRS, IPBS Sorbonne) and Sara Farrona (University of Galway, Ireland) 719

for providing us with seeds; Xiaowen Liang (Université de Reims Champagne Ardenne) for 720

providing us with annotated images of rat aorta; Cynthia Dennis (iGReD) for providing us with 721

an annotated dataset of epithelial cells of drosophila ovaries and Nicolas Allègre (iGReD) for 722

stained mouse embryos. Students in the Master 1 Bioinformatics program (UCA) have 723

contributed to the annotation of nuclei images and the drafting of documentation for biologists 724

(graduating classes 2023-2024 and 2025). 725

This work was supported by Agence Nationale de la Recherche of the French government 726

through the programme ‘Investissements d'Avenir’ (16-IDEX-0001 CAP 20-25), ‘Dynam’Het’ 727

ANR-11 JSV2 009 01 and ‘SINUDYN’ ANR-12 ISV6 000; Oxford Brookes University, 728

Université Clermont Auvergne, Centre National de la Recherche Scientifique, Institut National 729

de la Recherche et de la Santé, the Université Reims Champagne Ardenne, the European 730

Regional Development Fund (FEDER), EMERGENCE (16-IDEX-0001 CAP 20-25) and the 731

trainee grants funding GDR IMABIO (France). A.P., C.T., D.E.E., K.G. and S.D. are part of the 732

International Plant Nucleus Consortium (IPNC; https://radar.brookes.ac.uk) and the European 733

Cooperation in Science and Technology COST-Action CA16212 (INDEPTH; 734

https://indepth.brookes.ac.uk/). The authors acknowledge Synchrotron SOLEIL to have 735

provided beamtime for Figure 2 under project no. 20211303. ANATOMIX is an Equipment of 736

Excellence (EQUIPEX) funded by the Investments for the Future program of the French 737

National Research Agency (ANR), project NanoimagesX, grant no. ANR-11-EQPX-0031. 738

Author contributions 739

G.M. conceptualized the coding philosophy and undertook most of the programming work and 740

experiments. D.E.E., F.C., C.T., E.P. and S.D. provided ideas for the project and obtained 741

funding. S.S. helped debug and improve the user interface. G.M. and S.D. wrote the manuscript 742

with input from C.T., F.C., D.E.E. and E.P. 743

G.M. and S.D. performed data analysis and prepared the figures. A.P., H.A., P.P., S.D., S.A. and 744

N.F. provided annotated images and were beta testers of Biom3d. 745

Competing interests 746

The authors declare no competing or financial interests. 747

 748

 749

 750

Supplementary Figure 1 – Training workflow of Biom3d in the local graphical interface. 751

(Left) Training tab of the local graphical interface. The user specifies the path to the folders 752

containing training images and annotations, then defines a name for the Configuration file and 753

the future trained model, and the auto-configuration can start. Automatically defined parameters 754

can be adjusted manually, if needed, before starting the training. (Right) Backend workflow. 755

Once the “Auto-configuration” button is pressed, the data-preprocessing starts. The dataset key 756

elements (median shape etc.) are extracted and used to normalize all the images and to define 757

training configuration (patch size etc.). If the “Start” button is pressed, a deep learning model 758

will be trained and saved along with the pre-processing methodology (data-fingerprint). 759

 760

 761

Supplementary Figure 2 – Prediction workflow. (Left) Prediction tab of the graphical 762

interface. The user chooses a folder containing raw images, the path to a trained model and a 763

folder for the future predictions. The predictions start when the “Start” button is pressed. 764

(Right) Backend workflow. The raw images are normalized using the data-fingerprint of the 765

training dataset. The trained model is then loaded and used to compute predictions. 766

 767

 768

Supplementary Figure 3 – Remote access and OMERO access to Biom3d. Remote access 769

and OMERO access can work together or independently. A combined use case is represented. 770

The local interface (left) allows the access to a remote server remote (middle) running Biom3d 771

training or prediction workflows. If used in combination with an OMERO server (right), the 772

remote server will download raw images from an OMERO dataset and upload them back in a 773

new OMERO dataset. 774

 775

 776

Supplementary Figure 4 – Auto-configuration and Preprocessing of training dataset for 777

3D segmentation. Image and mask folders (red, left) are scanned to extract their data-778

fingerprint. The data-fingerprint is used to preprocess the images and masks and to 779

automatically configure the future training (yellow, centre). The outputs of these two steps 780

(green, right) are: a CSV file (folds.csv) describing which files will be used for training or 781

validation, a Configuration file, the pre-processed images (images_out) and masks 782

(masks_out), and the location of the foreground voxels (fg_out). 783

784

 785

Supplementary Figure 5 – Training data normalization and splitting for 3D segmentation. 786

The preprocessing starts (purple box, initialization) by (1) creating the three output folders 787

(fg_out, images_out, masks_out), (2) optionally splitting single image/mask and (3) splitting 788

the dataset into training and validation folds (folds.csv). Afterwards, each image and mask 789

(blue box) are read (Read File), independently of their format, reshaped (Reshape) so to have 790

exactly 4 dimensions in (channel, depth, heigh, width) format, z-normalized for images and 791

uniformized for masks (Normalize), and resized (Resize) so all images and masks have the 792

same sampling. Finally, the locations of foreground voxels are extracted and stored in the 793

appropriate output folder (fg_out). 794

795

 796

Supplementary Figure 6 – Biom3d default Dataset Module for 3D segmentation. In the 797

__init__ class function (purple), the CSV file is used to sort training images from validation 798

images and the patch size is used to determine the parameters of the rotation transformation 799

(rotation angle and rotation patch size, yellow). In the __getitem__ class function (blue), one 800

image and one mask are loaded into computer memory from their local folder. Those are then 801

cropped in regions where foreground objects are located. If rotation augmentation is active, 802

then the foreground crop is performed with a larger patch size before being cropped a second 803

time to discard unwanted empty regions in the image corners. Another series of 804

augmentations is finally applied to obtain a ready to use pair of image and mask patches. 805

 806

 807

Supplementary Figure 7 – Callback Module principle. The whole training (top row, orange) 808

is divided into epochs (green) themselves divided into batches (red). Callbacks are Python 809

classes that can have one or more class-functions, each representing one of 6 different time 810

points (middle row). Biom3d currently has 7 types of Callback Modules (bottom row). 811

 812

