Automated Hierarchical Conflict Reduction for Crowdsourced Annotation Tasks using Belief Functions - Archive ouverte HAL
Communication Dans Un Congrès Année : 2024

Automated Hierarchical Conflict Reduction for Crowdsourced Annotation Tasks using Belief Functions

Résumé

A typical crowdsourcing task is concept labeling, where participants annotate e.g. images using a list of predefined concepts. Recent popular campaigns for environmental bird monitoring even use hierarchies of concepts (taxonomies of species) to obtain the most precise labeling of bird images. But in most applications, volunteer opinions are isolated from each other, and decision is taken upon majority voting. In this work we propose a new iterative labeling process where participants express their opinions together, on ascending levels of the taxonomy. Level changes are performed to minimize opinion conflict, according to the belief function theory. This complex task is orchestrated by a finite state automaton driven by conflict measures.
Fichier principal
Vignette du fichier
BELIEF_2024-6.pdf (284.89 Ko) Télécharger le fichier
history.pdf (59.54 Ko) Télécharger le fichier
img/Bird_taxonomy.png (45.78 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04746967 , version 1 (21-10-2024)

Identifiants

  • HAL Id : hal-04746967 , version 1

Citer

Constance Thierry, David Gross-Amblard, Yolande Le Gall, Jean-Christophe Dubois. Automated Hierarchical Conflict Reduction for Crowdsourced Annotation Tasks using Belief Functions. 8th International Conference on Belief Functions (BEFLIEF), Sep 2024, Belfast, United Kingdom. ⟨hal-04746967⟩
4 Consultations
4 Téléchargements

Partager

More