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ADAPTIVE AND OPTIMAL ESTIMATION UNDER SHAPE AND

SMOOTHNESS CONSTRAINTS

MATHIEU SART

Abstract. We consider the problem of estimating the density f of a real valued random variable.
We present a fully adaptive procedure based on a wavelet series expansion of f . We study the L1

risk of our estimator when f satisfies a mild smoothness condition on R, i.e f belongs to a (weak)
Besov class. Its tails are assumed to be s-monotone and may decay as a power law. We show the
importance of considering the negative resolutions of the wavelet expansion to optimally estimate
a fat tailed density. We also reveal new minimax rates. In particular, we explain when the shape
constraint improves the estimation rate of a smooth density.

1. Introduction

We observe n independent and identically distributed real valued random variables X1, . . . , Xn.
We suppose that these variables admit a density f with respect to the Lebesgue measure on R.
The aim of this paper is to estimate f under shape and smoothness constraints. More precisely,
we suppose that f is smooth on R and its tails are s-monotone.

We recall that a 1-monotone function is a non-increasing function on (0,+∞). When s ≥ 2,
a function f is said to be s-monotone if it admits derivatives up to order s − 2 with the follow-
ing properties: for all ℓ ∈ {0, . . . , s − 2}, (−1)ℓf (ℓ) is non-negative, non-decreasing, and convex

on (0,+∞). In this sentence, f (ℓ) denotes the ℓth derivative of f (with the convention f (0) = f).
It is more common in the literature to speak of “k-monotone function”. We prefer to choose the
symbol s in place of k to keep this letter for later.

The problem of estimating a s-monotone density with support in [0,+∞) can be solved using
the maximum likelihood method. When s = 1, it leads to the so-called Grenander estimator. We
refer to the book [GJ14] for its properties and for numerous bibliographical references. Results for
density estimation under a condition of s-monotony with s ≥ 2 can be found in [Bal04, Gao08,
GW09, BFW13], see also the references therein.

The simplest solution to generalize the concept of s-monotony when supp f ̸⊂ [0,+∞) is probably
to assume that f is unimodal and to put the constraint on either side of the mode. Difficulties
arise when the mode is unknown because maximizing the likelihood leads to singularities. We
refer to [Weg70, Wan95, BF96, Bir97] for some examples of techniques that address this issue. It
should be noted, however, that the larger s, the more severe the constraint. When s ≥ 2, such a
function is necessarily irregular in the vicinity of the mode, which is rarely the case for the “usual”
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distributions. This is why we prefer to put the shape constraint on the tails of f . More formally,
we suppose that there are a and b such that f(a− ·) and f(b+ ·) are s-monotone on (0,+∞).

We supplement this assumption by supposing that f satisfies a smoothness constraint on the
whole line R. The only properties of f that are assumed on [a, b] are therefore properties of
regularity. The conditions on the tails, on the other hand, are stronger: they are both regular and
s-monotone. Note that we can always assume a = b so that the two assumptions apply to R, but
this is not necessary.

The smoothness condition we consider is very mild and allows, for example, the regularity of f
to be spatially inhomogeneous. These last words mean that f is globally smooth, but strong local
variations, discontinuities or even singularities are possible. More formally, we suppose that f
belongs to a Besov ball Bα

p,∞(R), a strong Besov class Bαp,∞(R) or a weak Besov class WBαp,∞(R).
The parameter α indicates the global regularity and p the way it is measured. Roughly speaking,
the smaller p is, the more spatially inhomogeneous the regularity can be. By way of example,
the functions in these sets are Hölder continuous with exponent α when p = ∞ and α is not an
integer. Conversely, these sets contain densities with discontinuities, and this even when α is large
if p is sufficiently small (p ≤ 1/α works). In the present paper, we may deal with all values of α, p
satisfying p > 0 and α ∈ ((1/p− 1)+, τ). In this interval, τ denotes a parameter only depending on
the wavelets. This restriction on α, p is very weak and, in some sense, unavoidable. It allows f to
be unbounded and to satisfy infq≥q0 ∥f∥q = +∞ for some q0 > 1 possibly close to 1. The definitions
of the above Besov sets may be found in Section 3.1. More details on the notion of inhomogeneous
spatial regularity are given in Section 3.2.

We may estimate a smooth density on R by using a Kernel or a wavelet estimator. In the first
case, the whole point is to determine the bandwidth. A fixed bandwidth can be obtained by using
a global Lepski rule [Lep15]. If we want the estimator to adapt to the irregularities of f , it is more
interesting to let the bandwidth vary with x. A local Lepski rule can then be used, see [GL14, LW19].
As for the wavelet methods, the difficulty lies in deciding which coefficients to keep. Different
methods exist in the literature, and we refer to [DJKP96, DJ96, KPT96, HKP98, JLL04, CC05,
RBRTM11, HKPT12, Sar24b] for more details. It is beyond the scope of this introduction to
describe all the procedures and all the theoretical results of the literature. We simply mention here
that convergence rates have been established for Kernel and wavelet estimators when f lies in one
the Besov sets above. They are, however, often proved under additional assumptions (such as f
compactly supported, f bounded or on α, p) and often involve undesirable logs factors. A summary
of the optimal rates (up to logs) in the compact case can be found in [Sar21]. For the non-compact
case, we rather refer to [GL14, Lep15] for Kernel estimators and [JLL04, RBRTM11, Sar24b] for
wavelets estimators.

Although we have made a distinction between shape and smoothness constraints, these are not
unrelated. For instance, a function of bounded variation lies in B1

1,∞(R) if R is suitably chosen, see

Lemma 9.2 of [DL93]. A unimodal density f necessarily belongs to WBαp,∞(R) if it is s-monotone
on both sides of the mode (for some values of p, α,R, and if it satisfies ∥f∥q < ∞ for some q > 1,
see our Proposition 3 below). We may therefore see the shape constraints as a special case of our
regularity assumptions. However, as we will explain later, the results in the two cases do not always
coincide.
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In the literature, several authors have addressed the issue of estimating a smooth unimodal
function. Among the solutions proposed are the possibility of regularizing a shape constrained
estimator, or optimizing over a class of shape constrained densities a smoothed version of a classical
criterion (such as the log likelihood or the least squares). For more details on these two ideas, we
refer to [HH02, VDVVDL03, HK05, LM17]. Alternatively, we may construct a spline estimator
that automatically fulfils the shape constraint. This point is supported by the works of [BF96,
Mey12, Che20]. The papers we have just mentioned only concern density estimation. We refer
to the nice review paper [DL18] for a description of what is done in literature in other statistical
frameworks.

An interesting question is whether or not combining the two types of constraint can result in
faster convergence rates than those achievable under these same constraints, but not mixed. A
theoretical study for the Hellinger loss was carried out in [Sar24a] on this subject. In the compact
case, the estimation rate of a smooth function with exponent α > 1 cannot be improved by assuming
it to be unimodal. The situation is reversed when the density is fat tailed: a faster convergence
rate can always be obtained by combining the two assumptions. Things can be more complex for
other losses though. In the present paper, we solve this question for the L1 loss. The superiority of
this loss function over the other Lq losses is due to the fact that f may have an infinite Lq norm.

To sum up, we model the properties of f through three conditions. We describe them in a
rigorous way in Section 3. Here is a rough version.

1. The first condition requires f to be in a strong or weak Besov class Bαp,∞(R) or WBαp,∞(R).
2. The second condition assumes that f(a− ·) and f(b+ ·) are s-monotone on (0,+∞).

3. The third condition supposes that f is fat-tailed, that is f(x) is at most of the order of |x|−1/θ

for some θ ∈ (0, 1) when x ̸∈ [a, b].

The above parameters p, α, s, θ, a, b, R are not assumed to be known.

We propose to use a wavelet estimator to estimate f . For each resolution, we rely on the selection
rule of [Sar24b] to determine the coefficients to estimate. The others are set to zero. The main
advantage of this rule is that it eliminates log factors in the convergence rates in almost all cases.

In [Sar24b], but this is also true in many preceding papers, the thresholding rule is only applied
to non-negative resolutions. We show here that such a strategy necessarily leads to a non-optimal
estimator when the three conditions above are met and when θ is large enough, that is when the
tails of f tend too slowly to 0. We circumvent this difficulty by thresholding some coefficients in
the negative resolutions. All this is explained in detail in Section 2.

We study the global L1 risk of the resulting estimator f̂ under the previous three conditions and
compare it to a minimax lower bound. We carry out these new results in Section 4. Here is an
overview.

When the shape level s is smaller than the smoothness index α, the rate we get depends on the
values of α, s, p, θ. We show that it is possible to split the set {(p, θ), p ∈ (1/(α+1),+∞], θ ∈ (0, 1)}
into several parts. In some of these parts, the optimal convergence rate is the same with or without
shape constraint. In other, however, the convergence rate of f̂ is faster than the minimax rate
without the shape constraint. The gain can be very substantial. By way of example, we may
make the optimal estimation rate without the shape constraint arbitrarily slow by choosing θ close
enough to 1. This phenomenon does not occur when the shape constraint is assumed. So, depending
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on the values of p, θ, s, α, a shape constraint may, or may not, improve the estimation rate of a
smooth density. It should be noted, however, that our rates are always faster than n−s/(2s+1).
Consequently, a smoothness condition of level α > s improves the expected estimation rate of a
shape constrained density.

We are also interested in the opposite case s ≥ α. We then show that our estimator attains
the standard estimation rate n−α/(2α+1), and this, whatever θ ∈ (0, 1). The interest of the shape
constraint here is that it makes it possible to achieve the estimation rate of the compact case, even
when the tails of f tend very slowly to 0.

Finally, we assume f unimodal and set the shape constraint on either side of the mode. We then
show that our smoothness assumption is automatically fulfilled with α = s if f belongs to Lq for
some q ∈ (1,+∞]. The above therefore applies and leads to the convergence rate n−s/(2s+1) for f̂ ,
and this, whatever θ ∈ (0, 1).

Throughout the paper, we suppose n ≥ 3 and denote by |A| the size of a finite set A. The
letters c, C, c1, . . . denote quantities that may change from line to line.

2. Estimation procedure

2.1. Wavelet estimators. We consider τ ∈ N⋆ and a bi-orthogonal wavelet basis with the fol-
lowing properties:

• The father wavelet is ϕ = 1[0,1].
• The mother wavelet ψ is piecewise constant.
• The duals ϕ̄ and ψ̄ of ϕ and ψ are compactly supported.
• The duals ϕ̄ and ψ̄ are Hölder continuous with exponent τ .
• The mother wavelet ψ satisfies

∫
R x

kψ(x) dx = 0 for all k ∈ {0, . . . , τ − 1}.

We refer to [CDF92] for a construction of such a basis.

We then have the following expansion of f : for all J0 ∈ Z,

f =
∑
k∈Z

αJ0,kϕ̄J0,k +

∞∑
j=J0

∑
k∈Z

βj,kψ̄j,k,(1)

where for any j ≥ J0 and k ∈ Z,

αJ0,k =

∫
f(x)ϕJ0,k(x) dx, βj,k =

∫
f(x)ψj,k(x) dx,

and where for any x ∈ R,

ϕJ0,k(x) = 2J0/2ϕ(2J0x− k), ψj,k(x) = 2j/2ψ(2jx− k),

ϕ̄J0,k(x) = 2J0/2ϕ̄(2J0x− k), ψ̄j,k(x) = 2j/2ψ̄(2jx− k).

This formula may serve as a starting point for defining a wavelet estimator. The idea is to replace
part of the unknown coefficients αJ0,k, and βj,k by their empirical versions:

α̂J0,k =
1

n

n∑
i=1

ϕJ0,k(Xi) and β̂j,k =
1

n

n∑
i=1

ψj,k(Xi).
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The others are treated differently to reduce the variance of the estimator. For simplicity, they are
systematically set to zero in this paper. We therefore only focus on estimators of the form

f̂ =
∑

k∈K̂J0,α

α̂J0,kϕ̄0,k +
∞∑
j=J0

∑
k∈K̂j,β

β̂j,kψ̄j,k,(2)

where K̂J0,α and K̂j,β are finite sets. Determining these sets adequately, using only the data and
as little information as possible on f is a difficult problem. But as we will see in the upcoming
section, the choice of J0 should not be overlooked either.

2.2. About the initial level. The classical solution to assess the quality of a wavelet estimator
is to study its risk under the assumption that the target is smooth. This notion of “smoothness”
generally corresponds to the condition “f belongs to a Besov ball Bα

p,∞(R)” (see Section 3.1 for
its definition). The latter imposes a constraint on the size of the coefficients α0,k and βj,k, j ≥ 0,
k ∈ Z. Many of them are therefore small (in absolute value) and smaller than the estimation error
we would make if we estimated them. It is then best not to estimate them.

It is worth noticing that this constraint only relates to non-negative indexes j. It is therefore
natural to start the expansion of f at the level J0 = 0. However, other assumptions, such as some
about the shape of the density, give information about all the coefficients βj,k, not just those for
which j ≥ 0. Not taking this information into account can lead to a non-optimal estimator.

More precisely, the proposition below gives a lower bound on the risk of a wavelet estimator
when J0 = 0. It applies regardless of the method used to select the coefficients, i.e. to define the

sets K̂0,α, K̂j,β. It is proved in Section 5.1.

Proposition 1. Let K̂0,α be a (possibly random) subset of Z, and for each j ≥ 0, K̂j,β be a (possibly
random) subset of Z. Consider k0 ∈ N⋆ and suppose that f satisfies

c1|k|−1/θ ≤ f(x) ≤ c2|k|−1/θ(3)

for all |k| ≥ k0, x ∈ [k − 1/2, k + 1/2] and some θ ∈ (0, 1), c1, c2 > 0.

Then, the estimator f̂ defined by (2) with J0 = 0 satisfies for all n large enough,

E
[
d1(f, f̂)

]
≥ c3n

−(1−θ),(4)

where c3 is positive and only depends on c1, c2, θ.

The rate n−(1−θ) therefore appears to be an absolute limit for the wavelet methods when J0 = 0.
This bound applies for densities satisfying (3), that is for densities f for which f(x) is of the order

of |x|−1/θ when |x| is large.
Unfortunately, the optimal rate of convergence under shape and smoothness constraints may be

much faster than n−(1−θ). For instance, the estimator we propose in this paper estimates f at
the rate νnn

−min{α/(2α+1),(α+θ)/(α+θ+2αθ+2)} when f is, moreover, unimodal and Hölder continuous
with exponent α > 1. In this formula, νn = 1 if θ ̸= α/(2α + 1). We refer to Theorem 6 for more

details. This rate is faster than n−(1−θ) when θ is close enough to 1 and more precisely when θ > θ′

where θ′ ∈ (1/2, 2/3) is defined by

θ′ =
(
α+ (α2 + 12α+ 12)1/2 − 2

)
/(2(2α+ 1)).
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2.3. Selecting the coefficients. We consider two integers Ĵ0 and Ĵ1 to be specified later on.
They indicate the first and last scale levels. Compared to the previous sections, we have added a
hat on J0 because this parameter may depend on the data.

For each j ∈ {Ĵ0, . . . , Ĵ1}, we apply the method of [Sar24b] to determine which coefficients are
estimated and which are not. We recall the basic ideas. We define for all k ∈ Z,

σ̂2j,k =
1

n

n∑
i=1

ψ2(2jXi − k).

We gather all the k ∈ Z for which σ̂2j,k ̸= 0 in the set

Ẑj =
{
k ∈ Z, σ̂2j,k > 0

}
.(5)

Note that β̂j,k = 0 when k ̸∈ Ẑj . We may therefore only focus on the k in Ẑj to determine the
coefficients to estimate.

We define the criterion critj(·) for all Kj ⊂ Ẑj by

critj(Kj) = −2−j/2
∑
k∈Kj

|β̂j,k|+ κÊj(Kj),(6)

where κ and Êj(Kj) are to be specified. The first term in this inequality stands for the L1 norm
of the estimated coefficients (up to the minus sign). The more coefficients we estimate, the smaller
this term is. The second term represents (an upper bound on) the estimation error of all these
coefficients and works in the opposite direction.

We then select the set K̂j that achieves the best compromise between these two terms. More

precisely, we define K̂j as any subset of Ẑj such that

critj(K̂j) = min
Kj⊂Ẑj

critj(Kj).(7)

This set K̂j does exist as Ẑj is finite.

We finally consider the estimator

f̂ =
∑
k∈Z

α̂
Ĵ0,k

ϕ̄
Ĵ0,k

+

Ĵ1∑
j=Ĵ0

∑
k∈K̂j

β̂j,kψ̄j,k(8)

of f .

2.4. Bounding the error. The preceding criterion depends heavily on the choice we make

for Êj(Kj). We define it here.

We consider ς > 0 to be specified later on. We define for all j ∈ Z, the largest integer r̄n,j ≥ 0
such that 2−r̄n,j ≥ min{1, ς log(n(|j|+ 1))/n}. We consider for all r ≥ 0,

Ẑj,r,− =
{
k ∈ Z, σ̂2j,k > ∥ψ∥2∞2−r

}
Ẑj,r =

{
k ∈ Z, ∥ψ∥2∞2−r < σ̂2j,k ≤ ∥ψ∥2∞2−r+1

}
Ẑ′
j,r =

{
k ∈ Z, ∥ψ∥2∞2−r−2 < σ̂2j,k ≤ ∥ψ∥2∞2−r+3

}
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and put

λ̂j,r =

min
{
|Ẑ′
j,r|, 2r

}
if r ≤ r̄n,j

min
{
|Ẑj |+ log((1 + |j|)n), 2r

}
if r > r̄n,j

where Ẑj is given by (5).

We introduce the maps Êj,r,+(·) and Êj,r(·) for x ≥ 0 by

Êj,r,+(x) =
√
x

n
+

√
log((|j|+ 1)(1 + r)) + log n

n

Êj,r(x) = x

√√√√2−r log+

(
|λ̂j,r|/x

)
n

+ x
log+

(
|λ̂j,r|/x

)
n

+

√
x
2−r log((|j|+ 1)(1 + r)n)

n
+

log((|j|+ 1)(1 + r)n)

n
.

In these formulas, the notation log+(·) = log(e+ ·) and the convention 0× log+(·/0) = 0 apply. We

finally set for all Kj ⊂ Ẑj ,

Êj(Kj) = inf
rj≥0

Êj,rj ,−(|Kj ∩ Ẑj,rj ,−|) +
∞∑

r=rj+1

Êj,r(|Kj ∩ Ẑj,r|)

 .(9)

The differences between this formula and that of [Sar24b] are mainly due to the fact that j can be
negative here.

We would like to mention that the infimum is actually taken over a finite number of integers,

and the same thing holds true for the sum. This comes from the fact that Ẑj,r = Ẑcj when r is too

large. Moreover, finding the set K̂j using (7) and (9) is not computationally difficult. We refer to
Section 3.5 of [Sar24b] for more details on this aspect.

2.5. First and last resolution. We now turn our attention to Ĵ0 and Ĵ1.

Since we estimate all the coefficients associated with the father wavelet, we propose to define Ĵ0
small enough so that all the α̂

Ĵ0,k
are zero except for a small number of them. Very precisely, we

consider ϱ > 0 and set

Ẑj(α) = {k ∈ Z, α̂j,k ̸= 0} .(10)

We then put

Ĵ0 = max
{
j ≤ 0, |Ẑj(α)| ≤ ϱ log((1 + |j|)n)

}
.(11)

Note that Ĵ0 is well defined as the cardinal of Ẑj(α) is at most of the order of n.

The value of Ĵ1 is defined as in [Sar24b]. We introduce an integer Lwav ∈ N⋆ so that [−Lwav, Lwav]
contains the support of the four wavelets ϕ, ϕ̄, ψ, ψ̄. We sort the sample X(1) < · · · < X(n) in
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increasing order and define Ĵ1 ≥ 0 as

Ĵ1 = min
J≥0

{
min

1≤i≤n−1

(
X(i+1) −X(i)

)
≥ Lwav2

1−J
}
.(12)

The heuristic behind this definition is that the estimators of βj,k are based on at most one data

when j ≥ Ĵ1 + 1 and are therefore likely poor.

The definition of our estimator f̂ is now complete. It still depends on the three parameters ς, ϱ, κ.
They will be specified in Section 4.

3. Classes of functions

We carry out in this section several classes of functions to model our assumptions on the density.
There are three kind of conditions we wish to consider. The first one is to guarantee the regularity
of f on the real line. The second ensures a particular shape of its tails (they may be monotone,
convex. . . ). The last that they are dominated by the inverse of a polynomial function.

3.1. Smoothness condition. We define for p ∈ (0,+∞] and α ∈ ((1/p − 1)+, τ) the Besov

space Bαp,∞ as the set of functions f ∈ Lmax{p,1}(R) satisfying ∥f∥Bα
p,∞ <∞ where

∥f∥Bα
p,∞ = ∥α0,·∥p + sup

j≥0

{
2j(α+1/2−1/p)∥βj,·∥p

}
.(13)

The classical Besov ball Bα
p,∞(R) is then defined for R > 0 by

Bα
p,∞(R) =

{
f ∈ Bαp,∞, ∥f∥Bα

p,∞ ≤ R
}
.

When p < 1, the (quasi) Lp norm of f is smaller than ∥f∥Bα
p,∞ , up to a multiplicative factor.

In particular, a density whose tails are of the order of |x|−1/θ does not belong to Bα
p,∞(R) when

θ ≥ p, even if it is very regular. So when we say that f ∈ Bα
p,∞(R), we are not just saying that f

is smooth. We also put a condition on its tails.

A solution to decouple the smoothness condition from the tail constraint is not to take into
account the coefficients associated with the father wavelet. This brings us to the notion of strong
Besov class:

Bαp,∞(R) =
{
f ∈ L1(R), ∀j ≥ 0, ∥βj,·∥p ≤ R2−j(α+1/2−1/p)

}
.

This set Bαp,∞(R) is most useful when p < 1. In this case, Bαp,∞(R) contains densities that are not
in Bα

p,∞(R). When p ≥ 1, the double inequality ∥α0,·∥p ≤ ∥α0,·∥1 ≤ c∥f∥1 holds true, where c is a
term only depending on the wavelets. The densities of Bαp,∞(R) then also belong to Bα

p,∞(c′ +R).

It is possible to weaken the condition f ∈ Bαp,∞(R) by replacing the ℓp (quasi) norm ∥ · ∥p by its
weak version ∥ · ∥p,∞. The latter is defined for p ∈ (0,+∞) and x = (xk)k∈Z by

∥x∥p,∞ = sup
t>0

t

(∑
k∈Z

1|xk|≥t

)1/p

.
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When p = ∞, ∥x∥p,∞ = ∥x∥∞. We recall that ∥x∥p,∞ ≤ ∥x∥p for all x ∈ RZ. The weak Besov class
then corresponds to

WBαp,∞(R) =
{
f ∈ L1(R), ∀j ≥ 0, ∥βj,·∥p,∞ ≤ R2−j(α+1/2−1/p)

}
.

3.2. Some examples. For pedagogical reasons, we present here a few basic results on Besov
classes. We recall in particular their interest in modelling inhomogeneous spatial regularities and
justify why we allow p to be very small in our results.

Firstly, Hölder’s inequality implies ∥βj,·∥p,∞ ≤ c2j(1/p−1/p′)∥βj,·∥p′,∞ for all (α + 1)−1 < p ≤ p′

and all compactly supported function f on [0, 1]. The factor c only depends on p, p′ and the wavelet
basis. We deduce, {

f ∈ WBαp′,∞(R), suppf ⊂ [0, 1]
}
⊂ WBαp,∞

(
cR
)
.

This inclusion roughly means that the condition “f belongs to a Besov class” is milder the smaller p
is when we work with compactly supported densities. This claim no longer holds in the non-compact
case (see, for example, the minimax rates in Figure 1: they tend to be faster when p is small).

Secondly, a few isolated singularities have no impact on the global smoothness exponent α when p
is small enough. This point is stressed by the proposition below. It works for both compactly and
non-compactly supported densities and is proved in Section 5.2.

Proposition 2. Let p ∈ (0,+∞), u ≥ 1, m1 < · · · < mu, α ∈ (1/p−1, 1/p)∩(0, τ), r be the largest
integer smaller than α, and f be an integrable map on R. Suppose that f admits r derivatives on
R \ {m1, . . . ,mu}. Moreover, there is some A > 0 such that∣∣∣f (r)(y)− f (r)(x)

∣∣∣ ≤ A|x−mℓ|−1/p|y − x|α−r

for all ℓ ∈ {1, . . . , u} and x, y ∈ (mℓ,mℓ+1) such that y ≥ x (using the convention mu+1 = +∞).
We suppose that this inequality also holds true with ℓ = 1 for all x, y < m1 such that y ≤ x.
Moreover, we assume f(x) ≤ A|x −mℓ|−(1/p−α) for all x ∈ [mℓ − ε,mℓ + ε], ℓ ∈ {1, . . . , u}, and
some ε ∈ (0,min1≤ℓ≤u−1(mℓ+1 −mℓ)) (this last condition reduces to ε > 0 when u = 1). Then, f
belongs to WBαp,∞(R) where R = c(A+∥f∥1) and where c only depends on α, p, u, ε and the wavelets.

An interesting point about this proposition is that it can be combined with the forthcoming
Theorems 6 and 8 to guarantee a fast estimation rate for the “usual” distributions. We shall go
into a little more detail on this aspect later when f is defined for q > 1, θ ∈ (0, 1), π1, π2, π3 > 0,
and x ∈ R by

f(x) =


0 if x ≤ 0

π1x
−1/q if x ∈ (0, 1]

π2 if x ∈ (1, 2]

π3x
−1/θ if x > 2.

(14)

Above, π1, π2, π3 must be such that f is a density. Note merely here that f ∈ WBαp,∞(R) for all
p ∈ (q/(1+qτ), q), α = 1/p−1/q, and some R only depending on p, q, θ, π1, π2, π3 and the wavelets.
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3.3. Shape constraint. We consider a positive integer s and introduce a condition of s-monotony
on the tails of f . We define for b ≥ a,

Ms(a, b) = {f ∈ D, f(a− ·) and f(b+ ·) are s-monotone on (0,+∞)} ,

where D designs the set of densities on R. In the particular case where s = 1, saying that f ∈
Ms(a, b) is equivalent to saying that f is non-decreasing on (−∞, a) and non-increasing on (b,+∞).
If now s = 2, f ∈ Ms(a, b) amounts to assuming that f is convex on (−∞, a) and on (b,+∞). The
condition f ∈ Ms(a, b) becomes more stringent as s grows.

Note that this condition does not imply anything about the restriction of f to [a, b]. We may
therefore work with densities that do not have the same properties on [a, b] and on R \ [a, b]. We
like to say that the core of the distribution is in [a, b]. What is outside then corresponds to the
tails of f . Saying that f ∈ Ms(a, b) amounts to saying that we put a shape constraint on its tails.
Such an interpretation can nevertheless be a bit misleading because it suggests that the probability
P (X ∈ [a, b]) is close to 1. This will never be assumed in the sequel.

Naturally, any compactly supported density belongs to Ms(a, b) if a and b are far enough away.
But the same holds true for most of the “usual” densities with infinite support (such as the Gauss-
ian, Gamma, Inverse Gamma, Cauchy, Log-logistic distributions to name but a few). By way of
illustration, suppose that f admits an expression of the form

f(x) =
P (x)

Q(x)
eR(x)(15)

when x is large enough. In this formula, P,Q and R are signomials and Q(x) ̸= 0 when x is large
enough (R may be the zero function). The first s-derivatives of f cannot change sign on (b,+∞)
if b is large enough. This property implies that f(b+ ·) is s-monotone on (0,+∞) as f is a density.
Note that the s-monotony of the left-hand tails of f can be guarantee if we suppose, for example,
equality (15) but for f(−x) in place of f(x).

The choice of a, b is up to the statistician and we may take a = b. A function f ∈ Ms(a, b)
is then unimodal. It satisfies a shape constraint of level s on each side of the mode. It is also
smooth in the sense that it belongs to a Besov class as the next proposition shows. It is proved in
Section 5.3.

Proposition 3. Consider s ≥ 1, τ ≥ s, m0 ∈ R and a density f ∈ Ms(a, b) with a = b = m0.
Suppose that f satisfies for all x ̸= m0,

f(x) ≤ L1+1/q|x−m0|−1/q,(16)

where L > 0 and q ∈ (1,+∞]. Then, f belongs to Bsp,∞(R) for all p ∈ (1/(s + 1), 1/(s + 1/q)),

R = cL(1+1/q)(s−1/p+1)/(1−1/q) and c only depending on the wavelet basis, p, q, s. When q = ∞, (16)
amounts to assuming that f is bounded from above by L.

In this proposition, the aim of (16) is to control the behaviour of f at the vicinity of x = m0. The
closer q is to 1, the faster f can tend to infinity. When q = ∞, there is no longer any singularity,
but f may not be continuous.

Note that the assumptions we put on f are not sufficient to ensure that f ∈ Bs
p,∞(R) or f ∈

Bsp,∞(R) with p ≥ 1. The function f may not belong to Bsp,∞(R) or Bs
p,∞(R) when p ≥ 1 and sp > 1
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merely because the densities in these sets are continuous. As to the case p < 1, f is in Bs
p,∞(R)

only if a condition on its tails is added (see the preceding section).

3.4. Tail dominance condition. We consider j, k ∈ Z, and define for any non-negative and
integrable function f ,

Fj,k(f) =

∫ 2−j(k+1/2)

2−j(k−1/2)
f(x) dx.

We then consider b ≥ a, θ ∈ [0, 1], M > 0, and the set WT θ(a, b,M) composed of non-negative
and integrable functions f satisfying

|{k ∈ Zj(a, b), Fj,k(f) ≥ t}| ≤Mt−θ2j(1−θ)(17)

for all j ≥ 0 and t > 0. In this inequality,

Zj(a, b) = Z ∩
(
(−∞,−1/2 + 2ja] ∪ [1/2 + 2jb,+∞)

)
.

As for Ms(a, b), the condition f ∈ WT θ(a, b,M) actually concerns the restriction of f to R\ [a, b]
and therefore the “tails of f”. The aim of (17) is to control the number of coefficients Fj,k(f) that
are large and to put a dominance constraint on them. Roughly speaking, the smaller θ,M, are,
the smaller Fj,k(f) must be and the smaller the tails of f should be. The extreme cases for θ are
θ = 0 and θ = 1. In the first case, WT 0(a, b,M) only contains compactly supported functions. In
the second case, the constraint disappears: any density belongs to WT 1(a, b, 1).

We may also replace the set Zj(a, b) in (17) by Z. The resulting class is denoted by WT θ(M).
Following [Sar24b], we say that the “weak tail dominance condition” is met when f ∈ WT θ(M).
This terminology can, a priori, lead to confusion as the entire function is considered for WT θ(M).
However, the inclusion WT θ(M) ⊂ WT θ(a, b,M) is always true. Conversely, we show in Sec-
tion 5.4:

Proposition 4. Consider θ ∈ [0, 1), b ≥ a, M > 0 and a density f . If f ∈ WT θ(a, b,M), then
f ∈ WT θ((b− a+ 2)1−θ +M).

It is therefore the behaviour of the tails of f that determines whether f lies in WT θ(M) or not.
The two sets, WT θ(M) and WT θ(a, b,M), essentially model the same thing. Nonetheless, as we
also work with densities of Ms(a, b), it seems more natural to consider WT θ(a, b,M). From a
mathematical point of view, the interest of using different values for a and b lies in the fact that
this can reduce M .

We now present a version of Proposition 3.1 of [Sar24a] adapted to our tail condition. A sketch
of its proof is given in Section 5.5.

Proposition 5. Let θ ∈ (0, 1), b ≥ a, M ≥ 1 and f be a density.

1. Suppose that f satisfies for all x ̸∈ [a, b],

f(x) ≤M1/θ
[
(x− b)−1/θ1x>b + (a− x)−1/θ1x<a

]
.(18)

Then, f belongs to WT θ(a, b, 2M + 2).
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2. Suppose that f ∈ WT θ(a, b,M) ∩M1(a, b). Then, f satisfies

f(x) ≤ (2M)1/θ
[
(x− b)−1/θ1x>b + (a− x)−1/θ1x<a

]
(19)

for all x ̸∈ [a, b].

The interest of this result is that it relates the assumption f ∈ WT θ(a, b,M) to a more tangible

condition: f is bounded by a map decreasing as |x|−1/θ outside the interval [a, b]. These notions
are equivalent under an additional shape constraint, but not otherwise. Consider indeed α, β > 0
and

f(x) = π
∞∑
d=1

1[2αd,2αd+2−βd](x).(20)

Above, π > 0 is defined so that f is a density. We show in Section 5.6 that f belongs to WT θ(M)
for all θ ∈ (0, 1) and someM only depending on α, β, θ. However, (18) is never true uniformly for all
x ̸∈ [a, b], whatever a, b, θ,M . This example is perhaps a little artificial. This is due to the fact that
it cannot be monotone at infinity since then Proposition 5 would apply. Despite this, it is smooth
in the sense that it belongs to the Besov spaces Bαp,∞ when p < 1 and α ∈ (1/p− 1,min{1/p, τ}).

4. Main results

We study in this section the theoretical properties of our estimator f̂ . We recall that f̂ is defined

by (8) where K̂j gathers the coefficients we keep at scale 2j . They are obtained by minimizing the

criterion critj(·) defined by (6) in which Êj(Kj) is defined via (9). This procedure is applied to all

levels j between Ĵ0 and Ĵ1 where Ĵ0 is given by (11) and Ĵ1 by (12).

We consider the assumptions described in the preceding section. We suppose that f is smooth and
its tails are dominated with a certain shape. In Section 4.1 below, the level of the shape constraint
is assumed to be smaller than the smoothness index. The reverse case is dealt in Section 4.2.

4.1. When smoothness prevails. We consider p ∈ (0,+∞], s ≥ 1, α ∈ (max{1/p − 1, s}, τ),
θ ∈ (0, 1), R > 0, M1,M2 ≥ 1, b ≥ a and

Fα,s
p,θ (a, b, R,M1,M2) =

{
WBαp,∞(R) ∩WT θ(M1) ∩WT θ(a, b,M2) ∩Ms(a, b) if p ̸= 1

Bαp,∞(R) ∩WT θ(M1) ∩WT θ(a, b,M2) ∩Ms(a, b) if p = 1.

A function f in this class satisfies the three preceding constraints with s < α.
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We need the following notations:

θ0 =
α

2α+ 1− 1/p

γ =


α

2α+ 1
if θ ≤ θ0

α− sθ/p− αθ + sθ + αsθ

1− θ/p+ α+ s− 2sθ/p+ sθ + 2αsθ
if θ > θ0

νn =


log2γ n if θ = 1/2 and p = 1

log n if θ = θ0 and θ ̸= 1/2

1 otherwise

β1 =


1

2α+ 1
if θ ≤ θ0

(s+ 1)(1− θ)

1− θ/p+ α+ s− 2sθ/p+ sθ + 2αsθ
if θ > θ0

β2 =


α+ 1− 1/p

(1− θ)(2α+ 1)
if θ ≤ θ0

(s+ 1)(1 + α− 1/p)

1− θ/p+ α+ s− 2sθ/p+ sθ + 2αsθ
if θ > θ0

M =

{
M1 if θ ≤ θ0

M2 if θ > θ0.

The theorem below gives an upper-bound of the maximal risk of our estimator when f lies
in Fα,s

p,θ (a, b, R,M1,M2). It is proved in Section 6.

Theorem 6. Let s ≥ 1, p ∈ (0,+∞], α ∈ (max{1/p− 1, s}, τ), θ ∈ (0, 1), R > 0, M1,M2 ≥ 1 and
b ≥ a. Then, there exist ς0, ϱ0, κ0, and n0 such that for all n ≥ n0, κ ≥ κ0, ϱ ≥ ϱ0, ς ≥ ς0,

sup
f∈Fα,s

p,θ (a,b,R,M1,M2)

E
[
d1(f, f̂)

]
≤ c

[
Rβ1Mβ2νnn

−γ +M
(s+1)/(2sθ+1)
2 n−(sθ+1−θ)/(2sθ+1)

]
.(21)

Moreover, ς0, ϱ0, κ0 only depends on the wavelet basis. The term c only depends on p, s, α, θ, κ, ϱ, ς
and the wavelet basis, and n0 only depends on p, α, θ, s, κ, ϱ, ς, R,M1,M2, b − a and the wavelet
basis.

Before discussing the result, let us note that this theorem provides the (theoretical) values
of ς, ϱ, κ. An important point is that they do not depend on the parameters α, p, s, θ, R,M1,M2, a, b
that appear in the definition of the class Fα,s

p,θ (a, b, R,M1,M2). The latter can therefore be unknown

to the statistician, and our estimator is adaptive.

We would also like to point out that the conditions on p, α are very mild. The parameter p may
be smaller than 1 and the condition α > 1/p−1 is essentially minimal, see Proposition 4 of [Sar24b]
for more details. In particular, we may estimate densities f that possess quite severe singularities
(see Propositions 2 or 3).

For information, the proof of this theorem involves an approximation result on s-monotone
functions (Lemma 2) that may be of independent interest.
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We now propose to use the minimax approach to assess the relevance of (21). We define for all
class F of functions, the minimax risk R(F) by

R(F) = inf
f̃

sup
f∈F

E
[
d1(f, f̃)

]
,

where the infimum is taken over all estimators f̃ .

The preceding theorem gives an (asymptotic) upper-bound on R(Fα,s
p,θ (a, b, R,M1,M2)). It may

be compared to the following lower bound (to be proved in Section 7).

Proposition 7. Consider s ≥ 1, p ∈ (0,+∞], α > max{1/p − 1, s}, θ ∈ (0, 1), τ large enough,
R > 0, M1,M2 ≥ 1 and b > a. Then, there exist R0,M0 and n0 such that: for all R ≥ R0,
M1 ≥M0, M2 ≥M0, and n ≥ n0,

R(Fα,s
p,θ (a, b, R,M,M)) ≥ cRβ1Mβ2n−γ .(22)

Moreover, c is positive and only depends on p, s, α, θ and the wavelet basis.

This proposition shows that our estimator is rate optimal except possibly when θ = θ0 and
(sθ + 1 − θ)/(2sθ + 1) < γ. If we exclude these two cases, we see that we do not lose any log
factors, even when the smoothness condition is very mild. This is a very attractive property as
many competing procedures are known to involve undesirable log factors in the results. For more
information on this subject, we refer to [Sar24b]. The gap when θ = θ0 and (sθ+1−θ)/(2sθ+1) < γ
may be due to inequality (22) not being sufficiently accurate. For example, there is a log factor in the
lower bound when θ = θ0 if we remove the shape constraint as shown by Proposition 3 of [Sar24b].
There is also little hope of significantly improving our convergence rate when (sθ+1−θ)/(2sθ+1) <
γ. Indeed, the proof of the proposition actually shows the following inequality: under the conditions
of Proposition 7, we have for all R ≥ R0, M1 ≥M0, M2 ≥M0, and n ≥ n0,

R(Fα,s
p,θ (a, b, R,M,M)) ≥ Cn−γ2 ,(23)

where

γ2 = (α− sθ/p− αθ + sθ + αsθ)/(1− θ/p+ α+ s− 2sθ/p+ sθ + 2αsθ),

where C is positive and only depends on p, s, α, θ,M1,M2, R and the wavelet basis. The major
difference between this result and (22) lies in the fact that we may use the formula for γ when θ > θ0
even when θ ≤ θ0. Elementary albeit cumbersome computations show that (sθ+1−θ)/(2sθ+1) < γ
implies 1− θ/p+ sθ < 0 (see also the figure below). When this last inequality is fulfilled, the map
α 7→ γ2 is non-increasing and tends to (sθ+ 1− θ)/(2sθ+ 1) when α→ +∞. As the minimax risk
does not increase when α increases, we deduce that for all ε > 0, and τ, n large enough,

R(Fα,s
p,θ (a, b, R,M,M)) ≥ Cεn

−(sθ+1−θ)/(2sθ+1)−ε,

where Cε > 0 only depends on ε, p, s, α, θ,M1,M2, R and the wavelet basis.

In Theorem 6 and Proposition 7, the parameters a and b can be as close or as far away as we
wish. It is noteworthy that our asymptotic bounds do not depend on them, except through M2

(roughly speaking, M2 can always be taken not larger than M1, and the further apart a, b are, the
smaller M2 is). The condition b ̸= a that appears in the proposition is important as it guarantees
Fα,s
p,θ (a, b, R,M,M) ̸= ∅. Think, for example, of a density f of M2(0, 0). It is not differentiable

at 0 and does not therefore belong to Bα∞,∞(R) if α > 1.
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We now introduce the minimax risk R(Fα
p,θ(R,M)) on

Fα
p,θ(R,M) =

{
WBαp,∞(R) ∩WT θ(M) if p ̸= 1

Bαp,∞(R) ∩WT θ(M) if p = 1.

The main difference between Fα,s
p,θ (a, b, R,M1,M2) and Fα

p,θ(R,M) is that we have deleted the

shape constraint for the second set. We can then compare the two minimax risks to measure the
impact of this condition on the optimal rates of convergence.

The following result is proved in [Sar24b]: for all p ∈ (0,+∞], α ∈ (1/p− 1, τ), θ ∈ (0, p], R > 0,
M ≥ 1, and n large enough,

R
(
Fα
p,θ(R,M)

)
≤ c

[
Rβ1,sMβ2,sνnn

−γs +Mn−(1−θ)
]
,

where

γs =

{
α/(2α+ 1) if θ ≤ θ0

α(1− θ)/(α+ 1− θ/p) if θ > θ0,

where β1,s, β2,s only depend on α, p, θ (β1 = β1,s and β2 = β2,s when θ ≤ θ0). The reverse inequality
also holds true, at least when M and R are large enough. Although the assumption θ ≤ p appears
in [Sar24b], the latter is actually not necessary and the above remains true even when θ ∈ [p, 1)
(the arguments are the same).

We present two graphs below to compare the minimax rates more easily. The graph on the
left refers to Fα,s

p,θ (a, b, R,M1,M2) and the one on the right to Fα
p,θ(R,M). The parameter p is

placed on the x-axis and θ on the y-axis. The dotted area in the graph on the left indicates
that the optimal rate is at least as fast as that shown (up to log factors at the junction point
θ = θ0 = (α+1)/(2α− s+1)). Everywhere else, the formula corresponds to the minimax rate (up
to logs when θ = θ0).

Figure 1. Comparison of the rates of convergence with and without shape con-
straint on the tails of the distribution

The first thing to note is that a large green area is common to both graphs. Inside this zone, the
optimal rate is the standard one n−α/(2α+1). The shape assumption adds nothing here.
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There is also a green area on the left which is red on the right. This region corresponds to the
set

A = {(p, θ) ∈ (0,+∞]× (0, 1), α > 1/p− 1, θ > (α+ 1)/(2α+ 1),

θ < min {α/(2α+ 1− 1/p), (α+ 1)/(2α− s+ 1)}} .

When (p, θ) ∈ A, the shape assumption allows to recover the classical rate of convergence n−α/(2α+1).
Without it, the minimax rate is much slower. This rate is recovered even when s = 1, i.e. when f
is monotone before a and after b. The parameter s still has a role to play, since the larger it is, the
wider the zone A.

Colours other than green never match between the two graphs. When the rate is not the standard
one, taking into account the shape constraint hence leads to an improvement in the estimation of f .
This improvement can be very significant: for example, the rate can be made arbitrarily slow by
choosing θ very close to 1 in the graph on the right. This phenomenon does not occur when there
is the shape constraint: the rate gets closer to n−s/(2s+1) when θ → 1. It is therefore easier, in
some sense, to estimate shape constrained tails than smooth tails.

When a = b, the entire distribution satisfies a shape and smoothness constraint. It is worth
asking whether our approach might not lead to better results in this case than those we would have
under a pure shape constraint that would ignore its regularity. The answer is positive: wherever
we look on the graph on the left, the rate is always in the range [n−α/(2α+1), n−s/(2s+1)). This
exponent s/(2s + 1) corresponds to the expected rate of convergence of a bounded compactly
supported density f ∈ Ms(0, 0). More details on the estimation of a s-monotone function under
the global L1 loss can be found in [Bir89, DL12]. Hellinger results are to be found in [Gao08, GW09].

The estimation of a density f of Bα
p,∞(R) when p < 1 may also be improved by assuming a shape

constraint on its tails. We recall in this respect that the weak tail dominance condition is satisfied
with θ = p and M of the order of Rp when f ∈ Bα

p,∞(R) and p < 1. This point has been shown in
Proposition 1 of [Sar24b]. Consequently: for all s ≥ 1, p ∈ (0, 1), α ∈ (max{1/p− 1, s}, τ), R ≥ 1,
b ≥ a, and n large enough,

sup
f∈Bα

p,∞(R)∩Ms([a,b])
E
[
d1(f, f̂)

]
≤ cRβνnn

−γ .

The terms νn and γ can here be written as

γ =


α

2α+ 1
if p ∈ (0, 1/2] or α < α0

1− p+
sp(2p− 1) (α− α0)

α− s+ sp(2α+ 1)
if p ∈ (1/2, 1) and α ≥ α0

νn =

{
log n if p ∈ (1/2, 1) and α = α0

1 otherwise

and α0 = (1− p)/(2p− 1). Besides,

β =


αp

(2α+ 1)(1− p)
if p ∈ (0, 1/2] or α < α0

αp(s+ 1)

α− s+ sp(2α+ 1)
if p ∈ (1/2, 1) and α ≥ α0.
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This result can be compared with (16) in [Sar24b] where there is no shape constraints. The
conclusion is that we obtain a better rate of convergence when p ∈ (1/2, 1) and α > α0 (and the
same otherwise).

4.2. Higher degree of shape. In the previous section, we assumed that the shape degree s was
smaller than the smoothness index α. We now turn to the other case s ≥ α. We take M1 = M2

and denote these two numbers by M . We then set

Fα,s
p,θ (a, b, R,M) = Fα,s

p,θ (a, b, R,M,M)

=

{
WBαp,∞(R) ∩WT θ(M) ∩Ms(a, b) if p ̸= 1

Bαp,∞(R) ∩WT θ(M) ∩Ms(a, b) if p = 1.

The theorem below is proved in Section 6 and gives an upper-bound on the (asymptotic) maximal
risk of our estimator when f lies in Fα,s

p,θ (a, b, R,M).

Theorem 8. Let p ∈ (0,+∞], α ∈ ((1/p − 1)+, τ), s ∈ [α, τ), θ ∈ (0, 1), R > 0,M ≥ 1, b ≥ a.
Suppose b ̸= a if s > α. Then, there exist ς0, ϱ0, κ0, and n0 such that for all n ≥ n0, κ ≥ κ0,
ϱ ≥ ϱ0, ς ≥ ς0,

sup
f∈Fα,s

p,θ (a,b,R,M)

E
[
d1(f, f̂)

]
≤ Cn−α/(2α+1),(24)

where

C =

{
cR1/(2α+1)(b− a)(α+1−1/p)/(2α+1) if s > α

c
[
R1/(2α+1)(b− a)(α+1−1/p)/(2α+1) + log+(R) + log+(M)

]
if s = α,

and where c only depends on p, s, α, θ, κ, ϱ, ς and the wavelet basis. Moreover, ς0, ϱ0, κ0 only depends
on the wavelet basis and n0 only depends on p, α, θ, s, κ, ϱ, ς, R,M, b− a and the wavelet basis.

We thus recover the estimation rate of a compactly supported density of smoothness α. How-
ever, f is not supposed to be compactly supported. The parameter θ can even be arbitrarily close
to 1. The whole point of this theorem lies in the fact that it applies to densities whose tails tend
very slowly to 0. As Proposition 1 shows, such a result is beyond the reach of wavelet methods
that only deal with non-negative resolutions as soon as θ > (α+ 1)/(2α+ 1).

The term R1/(2α+1)(b−a)(α+1−1/p)/(2α+1) in the factor in front of n−α/(2α+1) corresponds to what
one would expect when estimating a compactly supported density f ∈ Bαp,∞(R) on [a, b]. The sum
log+(R) + log+(M) when α = s can be seen as the price to pay for estimating its tails.

We now illustrate this theorem by applying it to the density f defined by (14). Consider τ ≥ 2,
α = τ −1, and set 1/p = α+1/q. Note that f lies in Fα,α

p,θ (0, 2, R,M) for some R,M . We therefore

get the estimation rate n−α/(2α+1) = n−(τ−1)/(2τ−1). In particular, if we choose a large value of τ ,
the exponent in the rate can be made as close as 1/2 as we wish. This estimation rate can thus be
very fast, even if f has a peak at 0, and that its tails tend very slowly to 0.
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It is also possible to deal with pure shape constraints. Consider indeed q ∈ (1,+∞], θ ∈ (0, 1),
L,M ≥ 1, s ∈ [1, τ), m0 ∈ R, and

Ssq,θ(m0, L,M) =
{
f ∈ Ms(m0,m0), ∀x ̸= m0,

f(x) ≤ min
{
L1+1/q|x−m0|−1/q,M1/θ|x−m0|−1/θ

}}
.

A function f in Ssq,θ(m0, L,M) therefore satisfies the assumption of s-monotony. More precisely,

f(m0 + ·) and f(m0 − ·) are s-monotone on (0,+∞). At the junction point m0, f may admit a

singularity up to the order 1/q. Its tails decreases as |x|−1/θ.

We deduce from Propositions 3 and 5,

Ssq,θ(m0, L,M) ⊂ F s,s
p,θ (m0,m0, R,M

′),

where p ∈ (1/(s + 1), 1/(s + 1/q)), where R is of the order of L(1+1/q)(s−1/p+1)/(1−1/q), and

where M ′ is of the order of M . The above theorem therefore ensures that f̂ estimates the densities
of Ssq,θ(m0, L,M) at the rate n−s/(2s+1). More precisely: for all n large enough,

sup
f∈Ss

q,θ(m0,L,M)
E
[
d1(f, f̂)

]
≤ c

[
log+ L+ log+M

]
n−s/(2s+1),(25)

where c only depends on q, s, θ, κ, ϱ, ς and the wavelet basis.

It may be interesting to compare the performance of our estimator with that of an estimator
dedicated to shape constraints, such as that of Grenander. The latter is perfectly suited to estimat-
ing unimodal densities (with known mode), which corresponds in our paper to a shape constraint
of level s = 1. Naturally, the Grenander estimator does not have the same versatility as ours, and
can be a disaster if the assumed shape constraint is not true. Risk bounds for the L1 loss can
nevertheless be established when f is unimodal. The following result is due to [Bir89]: for all n

large enough, the Grenander estimator f̂gre of a unimodal density with mode at 0 satisfies

sup
f∈S1

∞,0(0,L,M)

E
[
d1(f, f̂gre)

]
≤ c (log(1 + LM))1/3 n−1/3,

where

S1
∞,0(0, L,M) =

{
f ∈ M1(0, 0), ∥f∥∞ ≤ L, supp f ⊂ [−M,M ]

}
.

This risk bound for the Grenander estimator is therefore similar to ours. The rate is the same.
In both cases, L and M contribute logarithmically to the factor in front of n−1/3. More surprising
is that the exponent on this log factor is not the same.

There are three possible explanations for this difference. The first is that our underlying calcu-
lations are not sufficiently accurate. The second is that our estimator is worse than the Grenander
estimator. The third is more involved. A careful analysis of the proofs of Theorems 6 and 8 indi-
cates that (21) and (24) remain true when we replace E[d1(f, f̂)] by E[∥f − f̂∥B0

1,1
]. In other terms,

we may replace the L1 loss by a suitable Besov norm (see Section 3.2 of [Sar24b] for instance for its
definition). We have ∥f∥1 ≤ ∥f∥B0

1,1
but the reverse inequality is not true in general. A difference

in the minimax results is therefore possible.
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5. Proofs of Sections 2 and 3

5.1. Proof of Proposition 1. The result relies on the following lemma:

Lemma 1. Let K̂0,α be a (possibly random) subset of Z, and for each j ≥ 0, K̂j,β be a (possibly

random) subset of Z. Then, the estimator f̂ defined by (2) satisfies

E
[
d1(f, f̂)

]
≥ (4/27)

∑
k∈Z

α0,k≤1/n

α0,k.

As f satisfies (3), we have

c1k
−1/θ ≤ α0,k ≤ c2k

−1/θ

for all k ≥ k0, up to a modification of c1, c2. We deduce from the lemma that for all n large enough,

E
[
d1(f, f̂)

]
≥ (4c1/27)

∑
k≥(c2n)θ

k−1/θ ≥ c3n
−(1−θ).

□

Proof of Lemma 1. We first observe that for all k, k′ ∈ Z and j ≥ 0,∫
ψ̄j,k(x)1[k′,k′+1](x) dx = 0(26) ∫

ϕ̄0,k(x)1[k′,k′+1](x) dx = 1k=k′(27)

as the basis is bi-orthogonal with ϕ = 1[0,1].

Consider now the set

A =
⋃
k∈Z

α̂0,k1k∈K̂0,α
≥α0,k

[k, k + 1].

We deduce from (1) with J0 = 0, and from (26), (27),

d1(f, f̂) ≥
∣∣∣∣∫
A
f̂ −

∫
A
f

∣∣∣∣
≥
∑
k∈Z

(
α̂0,k1k∈K̂0,α

− α0,k

)
+
.

The same argument with

A =
⋃
k∈Z

α̂0,k1k∈K̂0,α
≤α0,k

[k, k + 1]

leads to

d1(f, f̂) ≥
∑
k∈Z

(
α0,k − α̂0,k1k∈K̂0,α

)
+
.



20 MATHIEU SART

By putting the two inequalities together,

2d1(f, f̂) ≥
∑

k∈K̂0,α

|α̂0,k − α0,k|+
∑

k ̸∈K̂0,α

α0,k.

In particular,

2d1(f, f̂) ≥
∑
k∈Z

α0,k≤1/n

α0,k1α̂0,k=0.

Therefore,

2E
[
d1(f, f̂)

]
≥

∑
k∈Z

α0,k≤1/n

α0,k (1− α0,k)
n

≥ (8/27)
∑
k∈Z

α0,k≤1/n

α0,k

when n ≥ 3 (which is assumed throughout the paper). □

5.2. Proof of Proposition 2. Consider j ≥ 0, k ∈ Z, ℓ ∈ {1, . . . , u}, Ij,k = [2−j(k−Lwav), 2
−j(k+

Lwav)], Kj,ℓ = [Lwav + 2jmℓ + 1,−Lwav + 2jmℓ+1 − 1] with the convention mu+1 = +∞.

Suppose r ≥ 1 and k ∈ Kj,ℓ. We deduce from Taylor’s theorem that there exists a polynomial
expansion Q of order r − 1 satisfying

f(x)−Q(x) =
1

(r − 1)!

∫ x

2−j(k−Lwav)
(x− t)r−1 f (r)(t) dt

when x ∈ Ij,k. The polynomial function

P (x) = Q(x) +
f (r)

(
2−j(k − Lwav)

)
(r − 1)!

∫ x

2−j(k−Lwav)
(x− t)r−1 dt

is of degree at most r ≤ τ − 1. It satisfies for all x ∈ Ij,k,

|f(x)− P (x)|

≤ A [(r − 1)!]−1 [2−j(k − Lwav)−mℓ

]−1/p
∫ x

2−j(k−Lwav)
(x− t)r−1 [t− 2−j(k − Lwav)

]α−r
dt.

In particular,

sup
x∈Ij,k

|f(x)− P (x)| ≤ c1A2
−j(α−1/p)

∣∣k − Lwav − 2jmℓ

∣∣−1/p
.

This last inequality also holds true when r = 0 by choosing suitably P . Moreover,

|βj,k| ≤ c22
j/2

∫ 2−j(k+Lwav)

2−j(k−Lwav)
|f(x)− P (x)| dx

≤ c32
−j/2 sup

x∈Ij,k
|f(x)− P (x)|

≤ c4A2
−j(α+1/2−1/p)

∣∣k − Lwav − 2jmℓ

∣∣−1/p
.
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We deduce from all of this: for all ℓ ∈ {1, . . . , u} and k ∈ Kj,ℓ,

|βj,k|p ≤ c5A
p2−jp(α+1/2−1/p)

∣∣k − Lwav − 2jmℓ

∣∣−1
.

By doing a similar reasoning: for all k ≤ −Lwav + 2jm1 − 1,

|βj,k|p ≤ c6A
p2−jp(α+1/2−1/p)

∣∣k + Lwav − 2jm1

∣∣−1
.

When k ∈ [−Lwav + 2jmℓ − 1, Lwav + 2jmℓ + 1] and j large enough to ensure 2−j(2Lwav + 1) ≤ ε,

|βj,k|p ≤ c7A
p2jp/2

(∫ 2−j(2Lwav+1)

−2−j(2Lwav+1)
|x|−1/p+α dx

)p
≤ c8A

p2−jp(α+1/2−1/p).

When 2−j(2Lwav + 1) > ε, we merely say that

|βj,k|p ≤ c92
jp/2∥f∥p1 ≤ c10∥f∥p12

−jp(α+1/2−1/p).

Gathering all these inequalities yields

∥βj,·∥pp,∞ ≤ c11(1 + ∥f∥p1)2
−jp(α+1/2−1/p)

as wished. □

5.3. Proof of Proposition 3.

5.3.1. An approximation lemma. The following lemma is an essential result that is not only
used in the proof of Proposition 3, but also, later, in the proofs of Lemma 12 and Proposition 9.

Lemma 2. Suppose that f ∈ Ms([a, b]) with b ≥ a, s ≥ 1, τ ≥ s and m ∈ R. Then, for all ℓ ≥ 1
and all k0 ≥ 3Lwav + (s− 1)ℓ+ b2j,∑

k≥k0

2−j/2|βj,k| ≤ cℓ1−sfj,k0−(s−1)ℓ−2Lwav
.

Moreover, for all k0 ≤ −3Lwav − (s− 1)ℓ+ a2j,∑
k≤k0

2−j/2|βj,k| ≤ cℓ1−sfj,k0+(s−1)ℓ+2Lwav
,

Above, c only depends on s and the wavelet basis, fj,k is defined by (35) and we recall that Lwav ∈ N⋆
is defined so that [−Lwav, Lwav] contains the support of ϕ, ϕ̄, ψ, ψ̄.

Its proof is based on the elementary result below whose proof is postponed at the end of the
section.

Lemma 3. Let a < b, s ≥ 2 and f be a s− 2 times differentiable function on [a, b] such that f (s−2)

is either convex or concave. Then, there is a polynomial function of degree at most s− 1 such that∫ b

a
|f(x)− P (x)| dx ≤ c(b− a)s

∣∣f (s−1)
l (b)− f (s−1)

r (a)
∣∣.

In this inequality, c only depends on s and f
(s−1)
l , f

(s−1)
r denote the left and right derivatives

of f (s−2).
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Proof of Lemma 2. The proof when s = 1 is almost the same as the proof of Lemma 9 of [Sar24a]
and is therefore skipped. We suppose from now on that s ≥ 2. We moreover assume that s is even,
the case s odd can be treated similarly.

Consider k ≥ k0 and apply Lemma 3. There is a polynomial function Pk of degree at most s− 1
such that∫ 2−j(k+Lwav)

2−j(k−Lwav)
|f(x)− Pk(x)|dx ≤ c12

−js [f (s−1)(2−j(k + Lwav))− f (s−1)(2−j(k − Lwav))
]
.

In this formula, f (s−1) may denote either the left or right derivative of f (s−2) according to the
reader’s wishes. In particular,

2−j/2|βj,k| = 2−j/2
∣∣∣∣∫ (f(x)− Pk(x))ψj,k(x) dx

∣∣∣∣
≤ c2

∫ 2−j(k+Lwav)

2−j(k−Lwav)
|f(x)− Pk(x)| dx

≤ c32
−js [f (s−1)(2−j(k + Lwav))− f (s−1)(2−j(k − Lwav))

]
.

Therefore, ∑
k≥k0

2−j/2|βj,k| ≤ c42
−js|f (s−1)(2−j(k0 − Lwav))|.(28)

The assumption of s-monotony implies:

|f (s−j+1)(2−j(k − Lwav))| ≤ 2jℓ−1
[
|f (s−j)(2−j(k − Lwav − ℓ))| − |f (s−j)(2−j(k − Lwav))|

]
≤ 2jℓ−1|f (s−j)(2−j(k − Lwav − ℓ))|.

Therefore, by induction,

|f (s−1)(2−j(k − Lwav))| ≤ (2jℓ−1)s−1f(2−j(k − Lwav − (s− 1)ℓ)).

Let us now observe that supp ψ ⊃ [L1, L2] for some L1, L2 ∈ R such that −Lwav ≤ L1 < L2 ≤
Lwav. For all k ∈ Z such that k ≥ 2jb+ 2Lwav − L1,

fj,k−2Lwav ≥ c52
−jf(2−j(k + L2 − 2Lwav)) ≥ c52

−jf(2−j(k − Lwav)).

Therefore, if k satisfies k ≥ 2jb+ 3Lwav + (s− 1)ℓ ≥ 2jb+ 2Lwav − L1 + (s− 1)ℓ,

|f (s−1)(2−j(k − Lwav))| ≤ c62
jsℓ−(s−1)fj,k−(s−1)ℓ−2Lwav

.

We conclude using (28). □

Proof of Lemma 3. Depending on the parity of s, f (s−2) is either convex or concave. We suppose
throughout the proof that f (s−2) is convex, the proof in the other case is similar. We set

υ =
f (s−2)(b)− f (s−2)(a)

b− a
,

and define for all x ∈ [a, b],

g1(x) = f (s−2)(a) + υ(x− a)

g2(x) = f (s−2)(a) + f (s−1)
r (a)(x− a).
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Note that
g2(x) ≤ f (s−2)(x) ≤ g1(x)

for all x ∈ [a, b]. We set P = g1 when s = 2 and

P (x) =

s−3∑
k=0

f (k)(a)(x− a)k

k!
+

∫ x

a

g1(t)

(s− 3)!
(x− t)s−3 dt

when s ≥ 3. In both cases, P is a polynomial function of degree at most s − 1. Moreover,
f(x) ≤ P (x) for all x ∈ [a, b]. When s ≥ 3, we have:

P (x)− f(x) ≤
∫ x

a

g1(t)− g2(t)

(s− 3)!
(x− t)s−3 dt

≤ ((s− 3)!)−1
[
υ − f (s−1)

r (a)
] ∫ x

a
(x− t)s−3 (t− a) dt

≤
(
(s− 3)!× (s2 − 3s+ 2)

)−1
[
υ − f (s−1)

r (a)
]
(x− a)s−1.

≤ c
[
f
(s−1)
l (b)− f (s−1)

r (a)
]
(x− a)s−1,

where c only depends on s. This last inequality also holds true when s = 2. The result then follows
from integration. □

5.3.2. Proof of Proposition 3. We define

Żj,r,− =
{
k ∈ Z, fj,k > 2−r

}
,

where fj,k is given by (35). We begin by showing:

Lemma 4. Under the assumptions of Proposition 3, we have when q <∞: for all j ∈ Z and r > 0,

|Żj,r,−| ≤ c
[
1 + L1+q2rq+j(1−q)

]
,

where c only depends on q and the wavelet basis.

Proof of Lemma 4. We have for all k ≥ Lwav + 2jm0 + 1,

fj,k ≤
∫ 2−j(k+Lwav)

2−j(k−Lwav)
L1+1/q|x−m0|−1/q dx

≤ c1L
1+1/q2−j(1−1/q)

[
k − Lwav − 2jm0

]−1/q
.

Therefore, the number of k ≥ Lwav+2jm0+1 such that fj,k > 2−r is not larger than c2L
1+q2rq+j(1−q).

The same reasoning applies when k ≤ −Lwav + 2jm0 − 1. The number of k ∈ Z satisfying this
inequality is therefore not larger than c3[1 + L1+q2rq+j(1−q)]. □

Proof of Proposition 3. We consider for j, r ≥ 1,

zj,r =

{
1 + min

{
L1+q2rq+j(1−q), 2r

}
if q <∞

1 + 2r if q = ∞.

We define cs ≥ s + 2Lwav large enough so that |Żj,r,−| ≤ cszj,r. The existence of cs is guaran-
teed by the above lemma and by the fact that f is a density. We define rj ≥ 1 when q < ∞
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and L1+q2j(1−q) < 1 as the smallest number satisfying L1+q2rjq+j(1−q) ≥ 1. When q = ∞ or
L1+q2j(1−q) ≥ 1, rj = 1. Note that zj,rj = 3 when q = ∞ and zj,rj ∈ [1, 1 + 2q] otherwise.

We define for all r ≥ rj the smallest integer k̄j,r satisfying

k̄j,r ≥ Lwav + 2jm0 + cs

r∑
r′=1

zj,r′

and the largest integer kj,r such that

kj,r ≤ −Lwav + 2jm0 − cs

r∑
r′=1

zj,r′ .

As f is unimodal with mode at m0, fj,k ≤ 2−r for all k ≥ k̄j,r or k ≤ kj,r. Moreover, as f
satisfies (16), we have for all k ∈ Z,

fj,k ≤ L1+1/q sup
t∈R

∫ t+21−jLwav

t
|x|−1/q dx

≤ c1L
1+1/q2−j(1−1/q).

Note that for all r ≥ rj ,

k̄j,r+1 − k̄j,r ≥ 2Lwav + (s− 1)zj,r+1

kj,r − kj,r+1 ≥ 2Lwav + (s− 1)zj,r+1

as cs ≥ s+ 2Lwav and zj,r+1 ≥ 1. We apply Lemma 2 with ℓ defined as the integer part of zj,r+1.
As ℓ ≥ zj,r+1/2, we have

2−j/2
∑

k≥k̄j,r+1

k≤kj,r+1

|βj,k| ≤ c2z
1−s
j,r+1min

{
2−r, L1+1/q2−j(1−1/q)

}
.

Suppose q <∞ and apply Hölder’s inequality:

∞∑
r=rj+1

∑
k∈[k̄j,r,k̄j,r+1]

or k∈[kj,r+1,kj,r]

|βj,k|p

≤ c3

∞∑
r=rj+1

z1−psj,r+12
jp/22−rp

≤ c4

∞∑
r=rj+1

2jp/2min

{
2−rp(1+s−1/p),

(
L1+q2j(1−q)

)1−ps
2rqp(1/p−s−1/q)

}
≤ c5L

p(1+1/q)(s−1/p+1)/(1−1/q)2−jp(s+1/2−1/p).(29)
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When q = ∞, we rather have

∞∑
r=rj+1

∑
k∈[k̄j,r,k̄j,r+1]

or k∈[kj,r+1,kj,r]

|βj,k|p ≤ c6

∞∑
r=rj+1

2r(1−ps)2jp/2min
{
2−rp, Lp(1+1/q)2−jp(1−1/q)

}

≤ c7L
p(1+1/q)(s−1/p+1)/(1−1/q)2−jp(s+1/2−1/p).(30)

Observe now that the number of k ∈ Z in the interval [kj,rj+1, k̄j,rj+1] can be bounded from above
by a term only depending on the wavelets and q, s. Therefore,∑

k∈[kj,rj+1,k̄j,rj+1]

|βj,k|p ≤ c8 sup
k∈[kj,rj+1,k̄j,rj+1]

|βj,k|p

≤ c92
jp/2 sup

k∈[kj,rj+1,k̄j,rj+1]

fpj,k.

≤ c10min
{
2jp/2, Lp(1+1/q)2−jp(1/2−1/q)

}
≤ c11L

p(1+1/q)(s−1/p+1)/(1−1/q)2−jp(s+1/2−1/p).(31)

Inequalities (29), (30) and (31) ensure that f belongs to the Besov class. □

5.4. Proof of Proposition 4. For all t > 0,

|{k ∈ Z, Fj,k(f) ≥ t}| ≤ t−θ
∑

k∈(2ja−1/2,2jb+1/2)

F θj,k(f) + |{k ∈ Zj(a, b), Fj,k(f) ≥ t}| .

Now,

∑
k∈(2ja−1/2,2jb+1/2)

F θj,k(f) ≤

 ∑
k∈(2ja−1/2,2jb+1/2)

Fj,k(f)

θ (
(b− a)2j + 2

)1−θ
≤ (b− a+ 2)1−θ2j(1−θ).

This ends the proof. □

5.5. Sketch of the proof of Proposition 5. For all k ≥ 1/2 + 2jb,

Fj,k(f) ≤M1/θ

∫ 2−j(k+1/2)

2−j(k−1/2)
(x− b)−1/θ dx

≤M1/θ2−j
(
2−j(k − 1/2)− b

)−1/θ
.

As Fj,k(f) ≤ 1, we only need to control the number of k such that Fj,k(f) ≥ t where t ∈ (0, 1].

Besides, the number of k ≥ 1/2 + 2jb such that Fj,k(f) ≥ t is bounded by M2j(1−θ)t−θ + 1 ≤
(1+M)2j(1−θ)t−θ. We do the same reasoning when k ≤ −1/2+ 2ja to get f ∈ WT θ(a, b, 2M +2).

As to (19), we do as in the proof of Proposition 3.1 of [Sar24a]. Consider t > 0 and x > b such
that f(x) ≥ t. The proof of [Sar24a] ensures that x must satisfy x < b + 2Mt−θ. In particular,
f(b+ 2Mt−θ) ≤ t for all t > 0. This gives (19) when x > b. The proof when x < a is similar. □
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5.6. Proof of the counter-example in Section 3.4. We show here the assertion below Propo-
sition 5.

We have for all j, k ∈ Z,

Fj,k

(
1[2αd,2αd+2−βd]

)
≤ min

{
2−βd, 2−j

}
.

The left-hand side is even zero when 2αd ≥ 2−j(k + 1/2) or 2αd + 2−βd ≤ 2−j(k − 1/2). We now
define

A =
∑
k ̸=0

F θj,k(f)

where f is given by (20). As f is a density,∑
k∈Z

F θj,k(f) ≤ 1 +A.

Moreover,

A ≤ πθ
∑
k ̸=0

∑
d≥1

F θj,k

(
1[2αd,2αd+2−βd]

)
≤ πθ

∑
k ̸=0

∑
d≥1

min
{
2−βdθ, 2−jθ

}
12αd+j−1/2≤k≤2αd+j+2−βd+j+1/2

≤ πθ
∑
d≥1

min
{
2−βdθ, 2−jθ

}(
2−βd+j + 2

)
≤ c2j(1−θ).

□

6. Proofs of Theorems 6 and 8

We suppose throughout this section that f lies in the set Fα,s
p,θ (a, b, R,M1,M2). The proof of

Theorem 6 corresponds to the case s < α. The proof of Theorem 8 corresponds to the case s ≥ α,
M1 =M2 =M .

6.1. Preliminary results. We gather here preliminary results that are needed to show the the-
orems. Their proofs are deferred to Section 6.3. The first lemma can be deduced from Lemma 12
of [Sar24b] plus a union bound.

Lemma 5. For all ξ > 0 and probability 1− e−ξ: for all j ∈ Z,

|Ẑj(α)| ≤ c
[
E[|Ẑj(α)|] + log(1 + |j|) + ξ

]
,(32)

where c is universal and where we recall that Ẑj(α) is defined by (10).

We now need:
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Lemma 6. For all j ∈ Z, t > 0∣∣∣{k ∈ Z, αj,k ≥ t2j/2
}∣∣∣ ≤ c1

[
1 + (b− a)2j +M22

j(1−θ)t−θ
]
.(33)

Likewise,

|{k ∈ Z, fj,k ≥ t}| ≤ c2

[
1 + (b− a)2j +M22

j(1−θ)t−θ
]
,(34)

where

fj,k =

∫
f(x)1supp ψj,k

(x) dx.(35)

Moreover, for all q ≥ 1,

|{k ∈ Z, fj,k ≥ t}| ≤ c3∥f∥qqt−q2−j(q−1).(36)

Above, c1, c2 only depend on θ and the wavelet basis, and c3 only depends on q and the wavelet
basis. Moreover, c3 increases when q grows up.

The lemma below follows from the arguments developed in the proofs of Lemmas 22 and 23
of [Sar24b].

Lemma 7. For all j ∈ Z,

E
[
|Ẑj(α)|

]
≤ c

[
1 + (b− a)2j +M2n

θ2j(1−θ)
]
,(37)

where c only depends on θ.

We now carry out a more involved result that gives the values of ς0 and κ0 that appear in the
theorems. In this lemma,

σ2j,k =

∫
f(x)ψ2(2jx− k) dx

for all j, k ∈ Z.

Lemma 8. There exists ς0 > 0 only depending on the wavelets such that: for all ς ≥ ς0 there exists
an event A of probability 1 − n−4 on which the following holds true: for all j ∈ Z, r ≤ r̄n,j, and

k ∈ Ẑj,r,−,
σ2j,k
2

≤ σ̂2j,k ≤ 2σ2j,k.(38)

Besides, for all Kj ⊂ Z,

Ej(α,Kj) ≤ c

[√
|Kj |
n

+

√
log((1 + |j|)n)

n

]
,(39)

where

Ej(α,Kj) = 2−j/2
∑
k∈Kj

|α̂j,k − αj,k|,(40)

and where c only depends on the wavelet basis. Moreover, for all Kj ⊂ Ẑj,

Ej(Kj) ≤ (κ0/2)Êj(Kj),(41)
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where

Ej(Kj) = 2−j/2
∑
k∈Kj

|β̂j,k − βj,k|,

and where κ0 only depends on the wavelet basis.

We are now interested in the thinnest and coarsest resolutions Ĵ1 and Ĵ0. Lemmas 9 and 10
below roughly say that Ĵ1 and |Ĵ0| are of the order of log n. Lemma 10 also provides the value of ϱ0
that appears in Theorems 6 and 8. The proof of Lemma 9 is omitted as it follows from Lemmas 17
and 25 of [Sar24b].

Lemma 9. We have E
[
Ĵ2
1

]
≤ c log2 n where c only depends on α, p,R and the wavelets.

Lemma 10. There exists ϱ0 such that if ϱ ≥ ϱ0,

|Ĵ0| ≤ c1

[
log+(b− a) + log+

(
M2n

θ
)]

(42)

with probability 1− n−4. We also have

E
[
Ĵ2
0

]
≤ c2

[
log2+(b− a) + log2+

(
M2n

θ
)]

(43)

Above, c1, c2 only depend on θ, ϱ and the wavelets.

The lemma below deals with the estimation errors associated with the father wavelet.

Lemma 11. We have,

E
[
E
Ĵ0
(α,Z)

]
≤ c

√ log
[
n
(
log+

(
b− a

)
+ log+

(
M2nθ

))]
n

+
log2

[
n
(
log+

(
b− a

)
+ log+

(
M2n

θ
))]

n

]
,(44)

where c only depends on ϱ.

The quantities

T̂ =

Ĵ1∑
j=0

2−j/2
∑

k∈Z\Ẑj,r̄n,j ,−

|βj,k|+
∞∑

j=Ĵ1+1

2−j/2
∑
k∈Z

|βj,k|(45)

̂̄T =
−1∑
j=Ĵ0

2−j/2
∑

k∈Z\Ẑj,r̄n,j ,−

|βj,k|(46)

are involved in our analysis. We present below a lemma to bound them.
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Lemma 12. On the event A on which the results of Lemmas 8 and 10 hold true,

T̂ ≤ c
[
R1/(1+α)(b− a+ 1)(1+α−1/p)/(α+1)

(
log n+ log+ log+R

)α/(1+α)
n−α/(1+α)(47)

+(b− a+ 1)(log n+ log+ log+R)n
−1 + (log2 n+ log2+R)n

−1
]

̂̄T ≤ c

(
b− a+ log+(M2n

θ)
)
log
[
n
(
log+(b− a) + log+(M2n

θ)
)]

n
(48)

where c only depends on α, p, θ, ς, ϱ and the wavelets.

We define for j ∈ Z, and Kj ⊂ Ẑj ,

Uj(Kj) = Bj(Kj) + κÊj(Kj)

Bj(Kj) = 2−j/2
∑

k∈Ẑj,r̄n,j ,−\Kj

|βj,k|.

We then put

Uj = inf
Kj⊂Ẑj,r̄n,j ,−

Uj(Kj).(49)

The last proposition of this section is designed to provide a bound on Uj when f is in Fα,s
p,θ (a, b, R,M1,M2).

It is lengthy because many cases have to be considered.

Proposition 9. The following points hold true on the event A on which the results of Lemmas 8
and 10 are valid. In these inequalities,

uj = (log n)
log((|j|+ 1)n)

n1/2
,

and vj , wj are non-negative numbers satisfying

∞∑
j=0

vj ≤ R1/(2α+1)M
(1+α−1/p)/((2α+1)(1−θ))
1 n−α/(2α+1)

∞∑
j=0

wj ≤ R1/(2α+1)(b− a)(1+α−1/p)/(2α+1))n−α/(2α+1).

Besides, c only depends on α, p, θ, s, ϱ, ς, κ and the wavelets.

1. If θ ≤ 1/2 and j ≤ −1,

Uj ≤ c
[{

1 + (b− a)2j +M22
j(1−θ) (1 + (log n)1θ=1/2

)}
n−1/2 + uj

]
.(50)

2. If θ > 1/2 and j ≤ −1 such that 22js(1−θ) ≤ nM−2s
2 ,

Uj ≤ c
[
M

(s+1)/(2sθ+1)
2 n(θ−sθ−1)/(2sθ+1)2j(1−θ)(s+1)/(2sθ+1)(51)

+
(
1 + (b− a)2j

)
n−1/2 + uj

]
.

3. If θ ≤ 1/2, and j ≥ 0,

Uj ≤ c
[
M

1/(2(1−θ))
1

(
1 + (log n)1θ=1/2

)
2j/2n−1/2 + uj

]
.(52)
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4. If θ = 1/2, p = 1, and j ≥ 0,

Uj ≤ c
[
R2−jα + uj

]
.(53)

5a. If θ ≥ 1/2, p < 1, and j ≥ 0 such that

M
(1−2/p)/(1−θ)
1 R2n ≥ 2j(2α+1),

then

Uj ≤ c
{
R−(2θ−1)/(1−2θ/p)M

(1−1/p)/(1−2θ/p)
1 n−θ(1/p−1)/(2θ/p−1)2−j(θ−α−θ/p+2αθ)/(2θ/p−1)

×
(
1 + log+

(
M

1−2/p
1 Rn1/22−j(α+1/2)

)
1θ=1/2

)
+ uj + vj

}
.(54)

The same inequality is true when θ < 1/2, p ≥ 1 and j ≥ 0 such that

2j(2α+1) ≥ R2M
(1−2/p)/(1−θ)
1 n.

5b. If θ > 1/2, p < 1, and j ≥ 0 such that

M
(1−2θ/p)/(1−θ)
1 M

−2/p
2 R2n ≥ 2j(2α+1),

then

Uj ≤ c
{
R−(2θ−1)/(1−2θ/p)M

(1−1/p)/(1−2θ/p)
2 n−θ(1/p−1)/(2θ/p−1)2−j(θ−α−θ/p+2αθ)/(2θ/p−1)

× log+

(
(b− a)(2θ−p)/(pθ)R−2M

1/θ
2 n−12j(2α+1)

)
+M

−1/(2(1−θ))
1 (b− a)2j/2n−1/2 + uj + vj

}
.(55)

5c. If θ < 1/2, p ≥ 1, and j ≥ 0 such that

2j(2α+1) ≥ R2M
(1−2θ/p)/(1−θ)
1 M

−2/p
2 n,

then

Uj ≤ c
[
R−(2θ−1)/(1−2θ/p)M

(1−1/p)/(1−2θ/p)
2 n−θ(1/p−1)/(2θ/p−1)2−j(θ−α−θ/p+2αθ)/(2θ/p−1)(56)

+R(b− a)1−1/p2−jα + (b− a)M
−1/(p−2θ)
2 Rp/(p−2θ)nθ/(p−2θ)2−j(θ+αp)/(p−2θ)

+uj + vj ] .

6. If p < 1 and j ≥ 0,

Uj ≤ c
[
RpM

−(1−p)/(2(1−θ))
1 n−(1−p)/22−jp(α+1/2−1/(2p))(57)

× log+

(
M

−(p−2)/(2(1−θ))
1 R−pn−p/22jp(α+1/2)

)
+ uj + vj

]
.

7a. If θ > 1/2 and j ≥ 0 such that 22j(1−θ)s ≤ nM−2s
2 ,

Uj ≤ c
[
M

(s+1)/(2sθ+1)
2 n(θ−sθ−1)/(2sθ+1)2j(1−θ)(s+1)/(2sθ+1)(58)

+
(
2−j + (b− a)

)
M

−1/(2(1−θ))
1 log+

(
M

1/(1−θ)
1 2j

)
log+

(
M1/(1−θ)2j

1 + (b− a)2j

)
2j/2n−1/2

+uj + vj + wj ] .
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7b. If θ > 1/2 and j ≥ 0 such that 22j(1−θ)s ≤ nM−2s
1 ,

Uj ≤ c
[
M

(s+1)/(2sθ+1)
1 n(θ−sθ−1)/(2sθ+1)2j(1−θ)(s+1)/(2sθ+1) + uj + wj

]
.(59)

7c. If j ≥ 0 is such that 2−2j(q−1)s ≤ nA−2qs
q , where q ≥ 1 and Aq are such that Aq ≥ ∥f∥q, then

Uj ≤ cq

[
Aq(s+1)/(2sq+1)
q 2−j(s+1)(q−1)/(2qs+1)n−(1+sq−q)/(2sq+1) + uj + wj

]
.(60)

Here, cq only depends on α, p, q, s, ϱ, ς and the wavelets. It does not depend on q if q ∈ [1, 2].

7d. If θ = 1/2, p > 1, and j ≥ 0 such that 2js ≤ nM−2s
2 and

22j(α−1/(2p)+1) ≥ R2M
−2/p
2 n,

then

Uj ≤ c
[
M22

j/2n−1/2 log+

(
R2(s+1)M

−2(s+1/p)
2 n2+s−1/p2−j(2−2s/p+2α+3s+2αs−1/p)

)
(61)

+ R log+
(
R−2M

2/p
2 n−122j(α−1/(2p)+1)

) (
2−j(α+1−1/p) + (b− a)1−1/p2−jα

)
+
(
2−j + (b− a)

)
2−j(2αp+1)/(2(p−1))Rp/(p−1)M

−1/(p−1)
2 n1/(2(p−1))

× log+

(
R−2p/(p−1)M

2/(p−1)
2 22jp(α−1/(2p)+1)/(p−1)n−p/(p−1)

1 + (b− a)2j

)
+uj + vj + wj ] .

8. If p ≥ 1 and j ≥ 0 such that 2j(1−θ/p+α−s+sθ) ≥ RM
s−1/p
2 ,

Uj ≤ c
[
R(sθ−θ+1)/(1−θ/p+sθ)M

(1−1/p)/(1−θ/p+sθ)
2 2−j(α−sθ/p−αθ+sθ+αsθ)/(1−θ/p+sθ)(62)

+R
(
(b− a)1−1/p2−jα + 2−j(α+1−1/p)

)
log+

(
2j(1−θ/p+α−s+sθ)R−1M

1/p−s
2

)
+uj + vj + wj ] .

6.2. Proofs of Theorems 6 and 8. The proposition below establishes a general risk bound for
our estimator. It involves the notations introduced in Section 6.1. It is proved at the end of the
section.

Proposition 10. Suppose that f ∈ Fα,s
p,θ (a, b, R,M1,M2) for some p ∈ (0,+∞], s ∈ [1, τ), α ∈

((1/p − 1)+, τ), θ ∈ (0, 1), R > 0, M1,M2 ≥ 1, b ≥ a. Let f̂ be the estimator defined by (8) for
some ς ≥ ς0, κ ≥ κ0, where ς0, κ0 are given by Lemma 8 and where ϱ0 is given by Lemma 10. Then,

E
[
d1
(
f, f̂

)]
≤ c

E

 Ĵ1∑
j=Ĵ0

Uj1A

+ E
[(
T̂ + ̂̄T)1A]+ E

[
E
Ĵ0
(α,Z)1A

]
+ C(log n)/n2

 ,(63)

where A is an event on which the results of Lemmas 8 and 10 are true, where T̂ and ̂̄T are given
by (45) and (46), where Uj is defined by (49), and where the error term E

Ĵ0
(α,Z) is defined by (40).

Moreover, c only depends on the wavelets. As to C, it only depends on α, p, θ, ρ,R,M1,M2, b − a
and the wavelets.
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Thereby, we only need to control the right-hand side of (63) to show the theorem. We apply
Lemmas 11 and 12 to get a suitable bound on

E
[(
T̂ + ̂̄T)1A]+ E

[
E
Ĵ0
(α,Z)1A

]
.

We now use Proposition 9 to deal with

E

 Ĵ1∑
j=Ĵ0

Uj1A

 .
Observe that the sum

∑∞
j=0 vj that appears in this proposition is not larger than the right-hand

side of (21). We also have the rough upper-bound,

E

 Ĵ1∑
j=Ĵ0

uj1A

 ≤ c′E

[(
Ĵ1 + |Ĵ0|+ 1

)
(log n)

log((|Ĵ0|+ Ĵ1 + 1)n)

n1/2

]
,

which, combined with Lemmas 9 and 10, ensures that the expectation tends to 0 faster than the
right-hand sides of (21) and (24).

In the following, we will always suppose that n is large enough in the sense that n ≥ n0 for some n0
depending only on p, α, θ, s, κ, ϱ, ς, R,M1,M2, b− a, the wavelet basis, and possibly varying line by
line. When θ ≤ θ0, j0 ≥ 0 denotes the smallest integer satisfying

2j0(2α+1) ≥ R2M
(1−2/p)/(1−θ)
1 n.(64)

When θ > θ0, j0 ≥ 0 is rather the smallest integer satisfying

2j0(2α+1) ≥ R2M
(1−2θ/p)/(1−θ)
1 M

−2/p
2 n.(65)

When, moreover, 1− θ/p+ sθ > 0 (and α > s), we define the smallest integer j1 ≥ 0 such that

2j1(1−θ/p+α+s−2sθ/p+sθ+2αsθ) ≥M
−s−1/p
2 R2sθ+1n1−θ/p+sθ.(66)

This number is also defined if 1 − θ/p + sθ = 0, α > s and M
−s−1/p
2 R2sθ+1 ≥ 1. We have j0 = j1

when p = 2θ. We have j0 < j1 when p > 2θ and α > s, and j0 > j1 when p < 2θ and α > s. Note
also that θ0 < 1/2 when p > 1, θ0 > 1/2 when p < 1 and θ0 = 1/2 when p = 1.

Below, we explain which formulas we choose in Proposition 9 to bound the terms Uj , j ∈
{Ĵ0, . . . , Ĵ1}. By summing up all these terms, and possibly applying Lemma 30 in [Sar24b], or the

bounds on |Ĵ0|, Ĵ1, we get the theorems.

Case 1: α > s, p ≥ 1 and θ ≤ θ0, θ ̸= 1/2. We use (50) when j ≤ −1, (52) when j ∈ [0, j0] and
(54) when j > j0.

Case 2: α > s, p = 1 and θ = θ0 = 1/2. We define j2 as the smallest integer such that

2j2(2α+1) ≥ R2M
2(1−2/p)
1 (n/ log2 n).

We use (50) when j ≤ −1, (52) when j ∈ [0, j2] and (53) when j > j2.
Case 3: α > s, p ≥ 1 and θ ∈ (θ0, 1/2). We use (50) when j ≤ −1, (52) when j ∈ [0, j0], (56) when

j ∈ (j0, j1), and (62) when j ≥ j1
Case 4: α > s, p ≥ 1, θ > 1/2. We use (51) when j ≤ −1, (58) when j ∈ [0, j1), and (62) when

j ≥ j1.
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Case 5: α > s, p > 1 and θ = 1/2. We use (50) when j ≤ −1, (52) when j ∈ [0, j0], (61) when
j ∈ (j0, j1), and (62) when j ≥ j1

Case 6: α > s, p < 1 and θ < 1/2. We use (50) when j ≤ −1, (52) when j ∈ [0, j0] and (57) when
j > j0.

Case 7: α > s, p < 1 and θ = 1/2. We use (50) when j ≤ −1, (54) when j ∈ [0, j0) and (57) when
j ≥ j0.

Case 8: α > s, p < 1 and θ ∈ (1/2, θ0]. We use (51) when j ≤ −1, (54) when j ∈ [0, j0) and (57)
when j ≥ j0.

Case 9: α > s, p < 1, θ > θ0 and either 1−θ/p+sθ > 0 or 1−θ/p+sθ = 0 withM
−s−1/p
2 R2sθ+1 ≥ 1.

Note that p < 2θ here and hence j1 < j0. We then use (51) when j ≤ −1, (58) when j ≤ j1
and (55) when j ∈ (j1, j0) and (57) if j ≥ j0.

Case 10: α > s, p < 1, θ > θ0 and 1− θ/p+ sθ < 0. We use (51) when j ≤ −1, (55) when j ∈ [0, j0)

and (57) if j ≥ j0. Note that the sum of (55) leads to the rate n−θ(1/p−1)/(2θ/p−1) that is

faster than n−(sθ+1−θ)/(2sθ+1).
Case 11: α > s, p < 1, θ > θ0 and 1 − θ/p + sθ = 0 with M

−s−1/p
2 R2sθ+1 < 1. We use (51)

when j ≤ −1, (55) when j ∈ [0, j0) and (57) if j ≥ j0. The sum of (55) leads to the rate

n−θ(1/p−1)/(2θ/p−1) = n−γ = n−(sθ+1−θ)/(2sθ+1). The factor in front of n is not larger than

M
(s+1)/(2sθ+1)
2 .

Case 12: α ≤ s. We consider an arbitrary number θ′ ∈ (θ, 1) and observe that f ∈ WT θ′(M
′) with

M ′ = M
(1−θ′)/(1−θ)
1 . We may therefore pretend from now on that θ > 1/2. The proof of

Lemma 25 of [Sar24b] ensures the existence of q1 > 1 and q2 > 0 such that ∥f∥q1q1 ≤ c1R
′q2

where R′ = 1+R. Besides, c1, q1, q2 only depend on α, p and the wavelets. An interpolation
inequality using that f is a density gives: for all q ∈ (1, q1],

∥f∥qq ≤ c2R
′c3(q−1),

where c2 only depends on α, p, q and the wavelets, and where c3 only depends on α, p and
the wavelets. We define j3 ≥ 0 as the largest integer such that

2j3 ≤M
−1/(1−θ)
1 n1/(2s+1).

We use (51) when j ≤ −1, (59) when j ∈ [0, j3) and (60) when j ≥ j3 with q suitably
chosen.

To understand why this yields the result, let us denote by

µj = cqR
′c3(q−1)q(s+1)/(2sq+1)2−j(s+1)(q−1)/(2qs+1)n−(1+sq−q)/(2sq+1)(67)

the leading term in the right-hand side of (60). If we take q ∈ (1,min{q1, 2}], the factor cq
may be chosen independently of q. We have,

∞∑
j=j3

µj ≤ c′
∞∑
j=j3

R′c3(q−1)q(s+1)/(2sq+1)2−j(s+1)(q−1)/(2qs+1)n−(1+sq−q)/(2sq+1)

≤ c′′ (q − 1)−1R′c3(q−1)q(s+1)/(2sq+1)M
(s+1)(q−1)/((1−θ)(2qs+1))
1 n−s/(2s+1)

≤ c′′′ (q − 1)−1R′c4(q−1)M
c4(q−1)
1 n−s/(2s+1),

where c′′, c′′′ do not depend on q, and where

c4 = max {2c3(s+ 1)/(4s+ 1), (s+ 1)/((1− θ)(2s+ 1))} .
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We then choose

q = 1 +
1

c4 log(R′M1)
,

when R′M1 is large enough and q = min{q1, 2} otherwise.

□

Proof of Proposition 10. The triangle inequality leads to

d1(f, f̂) ≤ c1

[
A+ E

Ĵ0
(α,Z)

]
+

∞∑
k=Ĵ1+1

2−j/2
∑
k∈Z

|βj,k|

where

A =

Ĵ1∑
j=Ĵ0

2−j/2
∑
k∈Z

|βj,k| − 2−j/2
∑
k∈K̂j

|βj,k|+ Ej(K̂j)


and where c1 only depends on the wavelet basis.

The reverse triangle inequality gives

A ≤
Ĵ1∑
j=Ĵ0

2−j/2
∑
k∈Z

|βj,k| − 2−j/2
∑
k∈K̂j

|β̂j,k|+ 2Ej(K̂j)

 .

We deduce from (41) and from the condition κ ≥ κ0,

−2−j/2
∑
k∈K̂j

|β̂j,k|+ 2Ej(K̂j) ≤ −2−j/2
∑
k∈K̂j

|β̂j,k|+ κÊj(K̂j)

≤ critj(K̂j).

By using (7): for all Kj ⊂ Ẑj ,

critj(K̂j) ≤ critj(Kj)

≤ −2−j/2
∑
k∈Kj

|β̂j,k|+ κÊj(Kj).

We put everything together and take the expectation of the result to get

E
[
d1(f, f̂)1A

]
≤ c2

E
[
E
Ĵ0
(α,Z)1A

]
+ E

 Ĵ1∑
j=Ĵ0

Uj1A

+ E
[(
T̂ + ̂̄T)1A]

 .

Now,

∥f̂∥1 ≤
c3
n

n∑
i=1

∑
k∈Z

∣∣∣ϕ(2Ĵ0Xi − k)
∣∣∣+ Ĵ1∑

j=Ĵ0

∑
k∈Z

∣∣ψ(2jXi − k)
∣∣

≤ c4(Ĵ1 + |Ĵ0|+ 1).
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We deduce from Cauchy-Schwarz inequality,

E
[
d1
(
f, f̂

)
1Ac

]
≤ c5

(
E[Ĵ2

1 ] + E[Ĵ2
0 ] + 1

)1/2
[P (Ac)]1/2 .

We conclude using (43), Lemma 9, and P (Ac) ≤ c6n
−4. □

6.3. Proofs of Section 6.1

6.3.1. Proof of Lemma 6. The proof of (33) and (34) is similar and we may therefore only focus
on (34). We put

Zj,ref = Z ∩
[
−Lwav + 2ja, Lwav + 2jb

]
.

We have,

|{k ∈ Z, fj,k ≥ t}| ≤
∣∣{k ∈ Zj,ref, fj,k ≥ t

}∣∣+ ∣∣{k ̸∈ Zj,ref, fj,k ≥ t
}∣∣ .

The cardinal of the first set can be bounded from above by 2j(b − a) + 2Lwav + 1. By using the
monotonic properties of f , we deduce for all k ≥ Lwav + 2jb,

fj,k ≤ Lwav2
1−jf(2−j(k − Lwav)).

We now use (19) to get

fj,k ≤ Lwav2
1−j(2M2)

1/θ
(
2−j(k − Lwav)− b

)−1/θ
.

The number of k ≥ Lwav+2jb such that fj,k ≥ t is hence upper-bounded by 2θLθwav(2M2)2
j(1−θ)t−θ+

1. We do a similar reasoning when k ≤ −Lwav + 2ja hence the result.

We now turn to the proof of (36). We have,

|{k ∈ Z, fj,k ≥ t}| ≤ t−q
∑
k∈Z

f qj,k,

and we apply Hölder’s inequality:∑
k∈Z

f qj,k ≤
∑
k∈Z

(∫ 2−j(k+Lwav)

2−j(k−Lwav)
(f(x))q dx

)(
21−jLwav

)q−1

≤ c∥f∥qq2−j(q−1).

□

6.3.2. Sketch of the proof of Lemma 8. The lemma mainly follows from Proposition 6, Lem-
mas 1 and 14 of [Sar24b]. We have,

σ̂2j,k − σ2j,k =
1

n

n∑
i=1

[
ψ2(2jXi − k)− E

(
ψ2(2jXi − k)

)]
.

The set Fj =
{
ψ2(2j · −k), k ∈ Z

}
is composed of piecewise constants functions on at most one

interval. It is therefore VC subgraph. As ψ is bounded, we may apply Proposition 6 of [Sar24b]
with some ξ > log n. We deduce an event of probability 1− e−ξ on which: for all k ∈ Z,∣∣σ̂2j,k − σ2j,k

∣∣ ≤ c1

[√
(σ2j,k/n) log+(1/σ

2
j,k) +

√
σ2j,k(ξ/n) + ξ/n

]
≤ (1/3)σ2j,k + c2ξ/n.
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If now ς and ξ are suitably chosen, we deduce from a union bound that with probability 1− n−4∣∣σ̂2j,k − σ2j,k
∣∣ ≤ (1/3)σ2j,k + (1/3)σ̂2j,k

holds true for all j ∈ Z and k ∈ Ẑj,r̄n,j ,−. This leads to (38).

The reasoning behind (39) is the same than that the one used to prove Lemma 2 of [Sar24b].
Only the end changes (just adapt the union bound argument and note that σ2j (Kj) can be bounded

independently of Kj).

We can mimic the reasoning used to prove Lemma 14 of [Sar24b] to show (41). We do not rewrite
it here because it is very long and that there are only minor differences. For example, we deal here
with possibly negative values of j whereas he only controls Ej(Kj) for non-negative j. We therefore
need to change the union bounds slightly, which explains why the absolute value of j appears in

the definition of Êj(Kj). The sets Ẑj,r do not have exactly the same definition than in [Sar24b]
(the supremum norm of ψ is involved in our definition). The reason is that we are relying here on
the partition

Ẑj = Ẑj,rj ,−
⋃ ∞⋃

r=rj+1

Ẑj,r


to define Êj(Kj) by (9). □

6.3.3. Proof of Lemma 10. We consider ξ ≥ 4 and deduce from (32) and (37) that on an event

of probability 1− e−ξ: for all j ≤ −1,

|Ẑj(α)| ≤ c1

[
1 + (b− a)2j +M2n

θ2j(1−θ) + log(1 + |j|) + ξ
]
.

For all ξ > 0 and j ≤ 0 such that log((1 + |j|)n) ≥ ξ/4,

|Ẑj(α)| ≤ c2

[
1 + (b− a)2j +M2n

θ2j(1−θ) + log((1 + |j|)n)
]
.

In particular, when

|j| ≥ max
{
(1− θ)−1 log2(M2n

θ), log2(b− a), eξ/4n−1 − 1
}
,

we have

|Ẑj(α)| ≤ ϱ log ((1 + |j|)n)

for any ϱ ≥ 4c2. Therefore,

|Ĵ0| ≤ c3max
{
log+(M2n

θ), log+(b− a), eξ/4n−1 − 1
}
,

with probability 1 − e−ξ. We use this result with ξ = 4 log n to get (42). Besides, (43) follows by
integration. □
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6.3.4. Proof of Lemma 11. We have,

|Ẑ
Ĵ0
(α)| ≤ ϱ log

[(
1 + |Ĵ0|

)
n
]
.(68)

We deduce from (39) and (42) that with probability 1− 2n−4,

E
Ĵ0
(α, Ẑ

Ĵ0
(α)) ≤ c1

√
log
(
nmax

{
log+(M2nθ), log+(b− a)

})
n

.

Note that

E
Ĵ0
(α, Ẑ

Ĵ0
(α)) ≤ sup

j∈Z
sup

i∈{1,...,n}

{∑
k∈Z

ϕ(2jXi − k) + E

[∑
k∈Z

ϕ(2jXi − k)

]}
≤ 2.

Therefore,

E
[
E
Ĵ0
(α, Ẑ

Ĵ0
(α))

]
≤ c2

√
log
(
nmax

{
log+(M2nθ), log+(b− a)

})
n

.(69)

We now focus on E
Ĵ0
(α,Z \ Ẑ

Ĵ0
(α)). We sort the set Ẑ

Ĵ0
(α): we write Ẑ

Ĵ0
(α) = {k1, . . . , kr} ,

where k1 < k2 < · · · < kr. We have,

E
Ĵ0
(α,Z \ Ẑ

Ĵ0
(α)) =

∑
k∈Z\Ẑ

Ĵ0
(α)

∫ 2−Ĵ0 (k+1)

2−Ĵ0k
f(x) dx

=

∫ 2−Ĵ0k1

−∞
f(x) dx+

r−1∑
ℓ=1

∫ 2−Ĵ0kℓ+1

2−Ĵ0 (kℓ+1)
f(x) dx+

∫ ∞

2−Ĵ0 (kr+1)
f(x) dx.

We introduce the intervals Kℓ = [kℓ, kℓ + 1] and note{
2Ĵ0X1, . . . , 2

Ĵ0Xn

}
⊂

r⋃
ℓ=1

Kℓ.

Moreover, each interval Kℓ contains at least one element of {2Ĵ0X1, . . . , 2
Ĵ0Xn}. We may hence

define the smallest integer nℓ ∈ {1, . . . , n} satisfying 2Ĵ0X(nℓ) ∈ Kℓ. We recall that X(nℓ) is the n
th
ℓ

smallest value of X1, . . . , Xn. The numbers nℓ are increasing when ℓ grows up. Besides n1 = 1 and
we set nr+1 = 1 + n so that {

2Ĵ0X(nℓ), . . . , 2
Ĵ0X(nℓ+1−1)

}
⊂ Kℓ

holds true for all ℓ ∈ {1, . . . , r}. In particular, kℓ ≤ 2Ĵ0X(nℓ) and 2Ĵ0X(nℓ+1−1) ≤ kℓ + 1. We
deduce,

E
Ĵ0
(α,Z \ Ẑ

Ĵ0
(α)) ≤

∫ X(1)

−∞
f(x) dx+

r−1∑
ℓ=1

∫ X(nℓ+1)

X(nℓ+1−1)

f(x) dx+

∫ ∞

X(n)

f(x) dx.
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Let F be the cumulative distribution function of X and Ui = F (Xi). The above ensures,

E
Ĵ0
(α,Z \ Ẑ

Ĵ0
(α)) ≤ U(1) +

r−1∑
ℓ=1

(
U(nℓ+1) − U(nℓ+1−1)

)
+ 1− U(n).

We set U(0) = 0 and U(n+1) = 1 to get

E
Ĵ0
(α,Z \ Ẑ

Ĵ0
(α)) ≤ (r + 1) max

0≤i≤n

{
U(i+1) − U(i)

}
.

We deduce from (68) and (42) that on an event A of probability 1− n−4,

E
[
E
Ĵ0
(α,Z \ Ẑ

Ĵ0
(α))1A

]
≤ c3 log

(
nmax

{
log+(M2n

θ), log+(b− a)
})

× E
[
max
0≤i≤n

{
U(i+1) − U(i)

}]
.

We apply Lemma 13 below with the inequality E
Ĵ0
(α,Z \ Ẑ

Ĵ0
(α)) ≤ 2 to get

E
[
E
Ĵ0
(α,Z \ Ẑ

Ĵ0
(α))

]
≤ c4 log

(
nmax

{
log+(M2n

θ), log+(b− a)
}) log n

n
.

We put this result with (69) to conclude. □

Lemma 13. Let n ≥ 2 and U1, . . . , Un be n independent random variables that are uniformly
distributed on [0, 1]. Set U(0) = 0 and U(n+1) = 1. Then,

E
[
max
0≤i≤n

{
U(i+1) − U(i)

}]
≤ log (n(n+ 1))

n− 1
.

Proof of Lemma 13. The density φ of U(i+1) − U(i) is given for x ∈ [0, 1] by

φ(x) = n(1− x)n−1.

We then have,

E
[
max
0≤i≤n

{
U(i+1) − U(i)

}]
≤ 1

n− 1
log

(
n∑
i=0

E
[
e(n−1)(U(i+1)−U(i))

])

≤ 1

n− 1
log

(
n(n+ 1)

∫ 1

0
e(n−1)t(1− t)n−1 dt

)
≤ log(n(n+ 1))

n− 1
.

□

6.3.5. Proof of Lemma 12. Lemma 8 implies fj,k ≤ c1 log((1+ |j|)n)/n on A for all k ̸∈ Ẑj,r̄n,j ,−

and even for all k ∈ Z if j ≥ Ĵ1 + 1 (as ψ is bounded from below by a positive constant on its
support). We define r′n,j ≥ 1 as the largest integer such that

2−r
′
n,j+1 ≥ min {1, c1 log((1 + |j|)n)/n} .

We set for j ∈ Z, r ≥ 0,

Zj,r =
{
k ∈ Z, 2−r < fj,k ≤ 2−r+1

}
,
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and

Tj,r =
∑
k∈Zj,r

2−j/2 |βj,k|.

We deduce from the above,

T̂ ≤
∞∑
j=0

∞∑
r=r′n,j

Tj,r

̂̄T ≤
−1∑
j=Ĵ0

∞∑
r=r′n,j

Tj,r.

Consider now the smallest integer k̄j,r ≥ Lwav+2jb such that fj,k̄j,r ≤ 2−r+1, and the largest integer

kj,r ≤ −Lwav + 2ja such that fj,kj,r ≤ 2−r+1. We have,

Tj,r ≤ 2−j/2


k̄j,r+2Lwav−1∑

k=k̄j,r

|βj,k|+
kj,r∑

k=kj,r−2Lwav+1

|βj,k|+
∑

k≤kj,r−2Lwav

or k≥k̄j,r+2Lwav

|βj,k|

+
∑

k∈[−Lwav+2ja,Lwav+2jb]

k∈Zj,r

|βj,k|

 .
We deduce from Lemma 2 with s = 1, and from the inequality 2−j/2|βj,k| ≤ c2fj,k,

Tj,r ≤ c3

2−r + 2−j/2
∑

k∈[−Lwav+2ja,Lwav+2jb]

k∈Zj,r

|βj,k|

 .(70)

We always have

2−j/2
∑

k∈[−Lwav+2ja,Lwav+2jb]

k∈Zj,r

|βj,k| ≤ c42
−r [1 + 2j(b− a)

]
.

Therefore,

̂̄T ≤ c5

−1∑
j=Ĵ0

∞∑
r=r′n,j

2−r
[
1 + 2j(b− a)

]
≤ c6

log((1 + |Ĵ0|)n)
n

[
|Ĵ0|+ 1 + b− a

]
.

Using (42) then leads to (48).
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We now turn to the proof of (47). We derive from Lemma 25 of [Sar24b] that fj,k ≤ c7R
q12−j(1−1/q2)

for some q1, q2 > 0. Therefore, when k ∈ Zj,r with r ≥ r̄′n,j ,

fj,k ≤ c8min

{
log((1 + j)n)

n
,Rq12−j(1−1/q2)

}
,(71)

and hence

fj,k ≤ c9
log n+ log+ log+R

n
.

We define r′′n,j ≥ 1 as the largest integer such that

2−r
′′
n,j+1 ≥ min

{
1, c8

log((1 + j)n)

n
, c8R

q12−j(1−1/q2)

}
,

and r′′n ≥ 1 as the largest integer such that

2−r
′′
n+1 ≥ min

{
1, c9

log n+ log+ log+R

n

}
.

We deduce,

T̂ ≤
∞∑
j=0

∞∑
r=max{r′′n,j ,r

′′
n}

Tj,r.

When p ≥ 1, the smoothness of f and a suitable version of Hölder’s inequality lead to

2−j/2
∑

k∈[−Lwav+2ja,Lwav+2jb]

k∈Zj,r

|βj,k| ≤ c10R2
−j(α+1−1/p)

(
1 + 2j(b− a)

)1−1/p
.

Without loss of generality, we may assume that b− a ≥ 1. We then have,

2−j/2
∑

k∈[−Lwav+2ja,Lwav+2jb]

k∈Zj,r

|βj,k| ≤ c11min
{
2−r+j(b− a), R(b− a)1−1/p2−jα

}
.

When p < 1, we use (38) in [Sar24b] to get

2−j/2
∑

k∈[−Lwav+2ja,Lwav+2jb]

k∈Zj,r

|βj,k| ≤ c12R
p2−jp(α+1−1/p)2−r(1−p).

Therefore,

2−j/2
∑

k∈[−Lwav+2ja,Lwav+2jb]

k∈Zj,r

|βj,k| ≤ c13min
{
2−r+j(b− a), Rp2−jp(α+1−1/p)2−r(1−p)

}
.

In both cases,
∞∑
j=0

2−j/2
∑

k∈[−Lwav+2ja,Lwav+2jb]

k∈Zj,r

|βj,k|

≤ c14

{
R1/(1+α)(b− a)(1+α−1/p)/(α+1)2−rα/(α+1) + (b− a)2−r

}
.
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We deduce from (70) and (71),

∞∑
j=0

∞∑
r=max{r′′n,j ,r

′′
n}

Tj,r ≤ c15

{
R1/(1+α)(b− a)(1+α−1/p)/(α+1)

(
log n+ log+ log+R

n

)α/(α+1)

+(b− a)
log n+ log+ log+R

n

}
+ c16

∞∑
j=0

min

{
log((1 + j)n)

n
,Rq12−j(1−1/q2)

}
.

It then remains to compute the last sum to end the proof. □

6.3.6. Proof of Proposition 9. On the event A, we deduce from (38) that fj,k ≥ c02
−r for all

k ∈ Ẑj,r,−, j ∈ Z, r ∈ {0, . . . , r̄n,j} and some c0 > 0. All the results stated in this section are valid
on this event A. We define

Zj,r,− =
{
k ∈ Z, fj,k ≥ c02

−r} .
The condition on the tails of f entails when j ≥ 0,

|Zj,r,−| ≤ c1M12
j(1−θ)2rθ.

This inequality may be improved in some cases as shown by Lemma 6. We actually have for all
j ≥ 0,

|Ẑj,r,−|+ |Ẑ′
j,r|+ |Zj,r,−| < cwmin

{
M12

j(1−θ)2rθ, (b− a)2j +M22
j(1−θ)2rθ,

2r, ∥f∥qq2rq−j(q−1)
}
.(72)

When j ≤ −1, the inequality

|Ẑj,r,−|+ |Ẑ′
j,r|+ |Zj,r,−| < cw

[
1 + (b− a)2j +M22

j(1−θ)2rθ
]

(73)

is also true. We increase cw if necessary so that cw ≥ s + 2Lwav. Note that cw may be chosen
independently of q when q ≥ 1 is small enough, say q ≤ 2.

We define k̄j,0 ∈ Z as the smallest integer satisfying k̄j,0 ≥ Lwav + 2jb and kj,0 ∈ Z is the largest

integer such that kj,0 ≤ −Lwav + 2ja. We then set

Zj,ref = Z ∩
[
kj,0, k̄j,0

]
.(74)

We consider rj ≥ 0 to be specified later on. We then set for x ≥ 0 and r ≥ 0,

Ẽj,r(x) = x2−r/2 log+

(
min

{
2r, |Ẑ′

j,r|
}
/x
)
n−1/2,

Ẽj,r,−(x) = x1/2n−1/2.

Above, the convention 0× log+(·/0) = 0 is used when necessary. We recall that 2r ≤ c3n/ log n ≤
c3n when r ≤ r̄n,j , and |Ẑj,r| ≤ |Ẑj,r,−| ≤ c42

r. Elementary maths therefore lead to: for all

Kj ⊂ Ẑj,r̄n,j ,−,

Uj(Kj) ≤ c5

[
Bj(Kj) + Ẽj(Kj) + uj

]
(75)
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where c5 only depends on κ, ς and the wavelets, where uj = (log n)(log((|j|+1)n))n−1/2 and where

Ẽj(Kj) = Ẽj,rj ,−(Kj ∩ Ẑj,rj ,−) +
r̄n,j∑

r=rj+1

Ẽj,r
(
|Kj ∩ Ẑj,r|

)
.

We decompose the bias and variance as

Bj(Kj) ≤ B
(1)
j (Kj) +B

(2)
j (Kj) +B

(3)
j (Kj),

where

B
(1)
j (Kj) = 2−j/2

∑
k∈(Ẑj,r̄n,j ,−∩Zj,ref)\(Kj∪Ẑj,rj ,−)

|βj,k|

B
(2)
j (Kj) = 2−j/2

∑
k∈Ẑj,rj ,−\Kj

|βj,k|

B
(3)
j (Kj) = 2−j/2

∑
k∈Ẑj,r̄n,j ,−\(Zj,ref∪Ẑj,rj ,−∪Kj)

|βj,k|.

Likewise, we have,

Ẽj(Kj) ≤ Ẽ(1)
j (Kj) + Ẽ(2)

j (Kj) + Ẽ(3)
j (Kj),

where

Ẽ(1)
j (Kj) = Ẽj((Kj ∩ Zj,ref) \ Ẑj,rj ,−)

Ẽ(2)
j (Kj) = Ẽj(Kj ∩ Ẑj,rj ,−)

Ẽ(3)
j (Kj) = Ẽj(Kj \ (Zj,ref ∪ Ẑj,rj ,−)).

The lemmas below show how the first two bias and error terms can be controlled when j ≥ 0. They
are proved in Sections 6.3.19 and 6.3.20.

Lemma 14. There exist n0 ≥ 1 and for each j ≥ 0, a subset K
(1)
j,ref of Zj,ref such that: for all

n ≥ n0,

∞∑
j=0

{
B

(1)
j (K

(1)
j,ref) + Ẽ(1)

j (K
(1)
j,ref)

}
≤ cR1/(2α+1)(b− a)(1+α−1/p)/(2α+1)n−α/(2α+1).(76)

Above, c only depends on α, p, θ and the wavelets. Moreover, n0 only depends on α, p, b− a,R.

Lemma 15. Suppose that rj ≥ 0 is defined for all j ≥ 0 as the smallest integer such that

2rj ≥M
1/(1−θ)
1 2j .

Then, there exist n0 ≥ 1 and for each j ≥ 0, a subset K
(2)
j,ref of Ẑj,rj ,− such that

∞∑
j=0

{
B

(2)
2 (K

(2)
j,ref) + Ẽ(2)

j (K
(2)
j,ref)

}
≤ c1R

1/(2α+1)M
(1+α−1/p)/((2α+1)(1−θ))
1 n−α/(2α+1).

Above, c only depends on α, p, θ and the wavelets. Moreover, n0 only depends on α, p, b− a,M1.
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The two following lemmas are designed to deal with the first and third bias and variance terms.
They are proved in Section 6.3.21.

Lemma 16. Consider j ≥ 0, r ≥ rj + 1, and

K
(1,3)
j =

r̄n,j⋃
r=r

Ẑj,r.

We have B
(3)
j

(
K

(1,3)
j

)
= 0 if r = rj + 1. Moreover, the two following inequalities hold true when

p ≥ 1:

B
(1)
j

(
K

(1,3)
j

)
+B

(3)
j

(
K

(1,3)
j

)
≤ c1RM

1−1/p
1 2r(1−1/p)θ2−j(α−θ/p+θ)(77)

B
(1)
j

(
K

(1,3)
j

)
+B

(3)
j

(
K

(1,3)
j

)
≤ c2R

{
M

1−1/p
2 2r(1−1/p)θ2−j(α−θ/p+θ) + (b− a)1−1/p2−jα

}
.(78)

We also have when θ < 1/2,

Ẽ(1)
j

(
K

(1,3)
j

)
+ Ẽ(3)

j

(
K

(1,3)
j

)
≤ c3M12

j(1−θ)2r(θ−1/2)n−1/2(79)

Ẽ(1)
j

(
K

(1,3)
j

)
+ Ẽ(3)

j

(
K

(1,3)
j

)
≤ c4

[
M22

j(1−θ)2r(θ−1/2)n−1/2 +
[
1 + (b− a)2j

]
n−1/22−r/2

]
.(80)

Lemma 17. Consider j ≥ 0, p < 1, r̄ ≥ rj and

K
(1,3)
j =

 r̄⋃
r=rj+1

Ẑj,r

⋃( r̄n,j⋃
r=r̄+1

Kj,r

)
,

where

Kj,r =
{
k ∈ Ẑj,r, |βj,k| ≥ 2−(r−j)/2n−1/2

}
.

Then,

B
(1)
j (K

(1,3)
j ) +B

(3)
j (K

(1,3)
j ) ≤ c1R

p2−jp(α+1−1/p)2−r̄(1−p)/2n−(1−p)/2.

If r̄ = rj,

Ẽ(1)
j

(
K

(1,3)
j

)
+ Ẽ(3)

j

(
K

(1,3)
j

)
≤ c2R

p2−jp(α+1−1/p)2−r̄(1−p)/2n−(1−p)/2

× log+

(
M1R

−pn−p/22jp(α+1−θ/p)2r̄(θ−p/2)
)
.

If r̄ ≥ rj + 1 and θ ≥ 1/2,

Ẽ(1)
j

(
K

(1,3)
j

)
+ Ẽ(3)

j

(
K

(1,3)
j

)
≤ c3M12

j(1−θ)
(
2r̄(θ−1/2) + (r̄ − rj)1θ=1/2

)
n−1/2(81)

+ c4R
p2−jp(α+1−1/p)2−r̄(1−p)/2n−(1−p)/2

× log+

(
M1R

−pn−p/22jp(α+1−θ/p)2r̄(θ−p/2)
)
.
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We also have if r̄ ≥ rj + 1 and θ > 1/2,

Ẽ(1)
j

(
K

(1,3)
j

)
+ Ẽ(3)

j

(
K

(1,3)
j

)
≤ c5M22

j(1−θ)2r̄(θ−1/2)n−1/2 + c6(b− a)2−rj/22jn−1/2

+ c7R
p2−jp(α+1−1/p)2−r̄(1−p)/2n−(1−p)/2

×
[
log+

(
M2R

−pn−p/22jp(α+1−θ/p)2r̄(θ−p/2)
)

+ log+

(
(b− a)R−pn−p/22jp(α+1)2−r̄p/2

)]
.(82)

The shape constraint has not been used in the previous four lemmas. We present two results to
take it into account.

In the sequel, ℓ̇j,r stands for one of these three elements:

ℓ̇j,r = cw

[
1 + (b− a)2j +M22

j(1−θ)2rθ
]

(83)

ℓ̇j,r = cwM12
j(1−θ)2rθ(84)

ℓ̇j,r = cw

[
1 +Aqq2

rq−j(q−1)
]
.(85)

In these equalities, q ≥ 1 and Aq ≥ ∥f∥q are to be specified and cw ≥ s + 2Lwav appears in (72)
and (73).

Note that k̄j,0 and kj,0 have already been defined. We now define for r ≥ 1 the smallest integer k̄j,r
satisfying

k̄j,r ≥ Lwav + 2jb+

r∑
r′=1

ℓ̇j,r′

and the largest integer kj,r such that

kj,r ≤ −Lwav + 2ja−
r∑

r′=1

ℓ̇j,r′ .

We put for all r ≥ 0,

Kj,r = Ẑj,r̄n,j ,− ∩
(
[kj,r+1, kj,r) ∪ (k̄j,r, k̄j,r+1]

)
.(86)

We show in Section 6.3.22:

Lemma 18. Consider j ∈ Z, r ≥ 0, r̄ ≥ r, ℓ̇j,r given by (83) and

K
(3)
j =

r̄⋃
r=r

Kj,r.

We suppose that r = 0 if j ≤ −1 and that p ≥ 1 if r ≥ 1. Then:

B
(3)
j (K

(3)
j ) ≤ c1M

1−s
2 2−r̄(sθ−θ+1)2−j(1−θ)(s−1)

+ c1R
[
r2−j(α+1−1/p) + (b− a)1−1/p2−jαr +M

1−1/p
2 2r(1−1/p)θ2−j(α−θ/p+θ)

]
1r≥1.
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Moreover, if θ ≥ 1/2,

Ẽ(3)
j (K

(3)
j )

≤ c2

[(
1 + 2j(b− a)

)
min

{
(rj + 1)2−rj/2 log+

(
2rj/(1 + (b− a)2j)

)
, 2−r/2 log+

(
2r/(1 + (b− a)2j)

)}
+M22

j(1−θ)
{
2r̄(θ−1/2) + (r̄ − r + 1)1θ=1/2

}]
n−1/2.

In these inequalities, c1, c2 only depend on s, θ and the wavelets. All the above remains true when
j ≥ 0 up to mild modifications when the formulas (84) and (85) are used for ℓ̇j,r in place of (83).
In the first case, we need to formally replace in the inequalities M2 by M1 and b − a by 0. In the
second case, we replace M2 by Aqq and b − a by 0 (and then, c1, c2 only depend on s, q and the
wavelets. We also have the following property: c1 and c2 do not depend on q if q ∈ [1, 2]).

Lemma 19. Consider j ≥ 0 such that 2j(1−θ/p+α−s+sθ) ≥ RM
s−1/p
2 and p ≥ 1. Then,

B
(3)
j (∅) ≤ c

[
R(sθ−θ+1)/(1−θ/p+sθ)M

(1−1/p)/(1−θ/p+sθ)
2 2−j(α−sθ/p−αθ+sθ+αsθ)/(1−θ/p+sθ)

+R
{
(b− a)1−1/p2−jα + 2−j(α+1−1/p)

}
log+

(
2j(1−θ/p+α−s+sθ)R−1M

1/p−s
2

)]
,

where c only depends on α, p, s, θ and the wavelets. This result also holds true if we replace for-
mally M2 by M1 and b− a by 0 (in the assumption and inequality).

The following remains to be done to prove (50)–(62).

• Choose rj ≥ 0.

• Define a set Kj for which the bias term Bj(Kj) and the variance term Ẽj(Kj) are of the
right-order of magnitude. The preceding lemmas are particularly well suited to solving this
problem.

• Conclude by applying (75).

6.3.7. Proof of (50). We take Kj = Ẑj,r̄n,j ,− and rj = 0. Therefore,

Bj(Kj) + Ẽj(Kj) ≤
r̄n,j∑
r=1

Ẽj,r
(
|Ẑj,r|

)

≤ c1

r̄n,j∑
r=1

[
1 + (b− a)2j +M22

j(1−θ)2rθ
]
2−r/2n−1/2

≤ c2

[
1 + (b− a)2j +M22

j(1−θ)n−1/2 +M22
j/2 (log n)n−1/2 1θ=1/2

]
.

□
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6.3.8. Proof of (51). We define rj = 0 so that B
(2)
j (K

(2)
j )+Ẽ(2)

j (K
(2)
j ) = 0 for all K

(2)
j . Moreover,

B
(1)
j (Zj,ref) + Ẽ(1)

j (Zj,ref) ≤
r̄n,j∑
r=1

Ẽj,r
(
|Zj,ref ∩ Ẑj,r|

)

≤ c1

r̄n,j∑
r=1

[
1 + (b− a)2j

]
2−r/2 log+

(
2r/(1 + (b− a)2j)

)
n−1/2

≤ c2
[
1 + (b− a)2j

]
n−1/2

thanks to Lemma 30 of [Sar24b]. We now define the smallest integer r̄ ≥ 0 such that

2r̄(2sθ+1) ≥ nM−2s
2 2−2j(1−θ)s

and set

K
(3)
j =

r̄⋃
r=0

Kj,r.

We use Lemma 18 to get a bound on

B
(3)
j (K

(3)
j ) + Ẽ(3)

j (K
(3)
j ).

We put everything together to conclude. □.

6.3.9. Proof of (52). We define rj ≥ 0 as the smallest integer such that

2rj ≥M
1/(1−θ)
1 2j .

We take Kj = Ẑj,r̄n,j ,− so that

Bj(Kj) + Ẽj(Kj) ≤ Ẽj,rj ,−
(
|Ẑj,rj ,−|

)
+

r̄n,j∑
r=rj+1

Ẽj,r
(
|Ẑj,r|

)
≤ c

[
1 +M12

j(1−θ)2rjθ
]1/2

n−1/2

+ c

r̄n,j∑
r=rj+1

[
1 +M12

j(1−θ)2rθ
]
2−r/2n−1/2.

We use the definition of rj to conclude. □

6.3.10. Proof of (53). We choose Kj = ∅ so that

Bj(Kj) + Ẽj(Kj) ≤ 2−j/2
∑
k∈Z

|βj,k|

≤ R2−jα.

□
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6.3.11. Proof of (54). We define rj ≥ 0 as the smallest integer such that

2rj ≥M
1/(1−θ)
1 2j .

When θ ≥ 1/2 and p < 1, we define the smallest integer r̄ ≥ rj satisfying

2(θ−p/2)(r̄−rj−1) ≥M
(p−2)/(2(1−θ))
1 Rpnp/22−jp(α+1/2),

set

K
(1,3)
j =

 r̄⋃
r=rj+1

Ẑj,r

⋃( r̄n,j⋃
r=r̄+1

Kj,r

)
,

apply Lemma 17 (with the bound given by (81)) and conclude thanks to Lemma 15.

When θ < 1/2 and p ≥ 1, we define r ≥ rj + 1 as the smallest integer such that

2(1−2θ/p)(r−1) ≥M
2/p
1 R−222j(1+α−θ/p)n−1.

We then consider the set

K
(1,3)
j =

r̄n,j⋃
r=r

Ẑj,r,

apply Lemma 16 (with (77) and (79)) and conclude thanks to Lemma 15. □

6.3.12. Proof of (55). We define rj ≥ 0 as the smallest integer such that

2rj ≥M
1/(1−θ)
1 2j .

We define r̄ ≥ rj + 1 as the smallest integer satisfying

2(θ−p/2)(r̄−rj−1) ≥M
(p−2θ)/(2(1−θ))
1 M−1

2 Rpnp/22−jp(α+1/2),

set

K
(1,3)
j =

 r̄⋃
r=rj+1

Ẑj,r

⋃( r̄n,j⋃
r=r̄+1

Kj,r

)
,

apply Lemma 17 (with the bound given by (82)) and Lemma 15. □

6.3.13. Proof of (56). We define rj ≥ 0 as the smallest integer such that

2rj ≥M
1/(1−θ)
1 2j .

We define r ≥ rj + 1 as the smallest integer satisfying

2(r−1)(1−2θ/p) ≥M
2/p
2 R−222j(1+α−θ/p)n−1.

and set

K
(1,3)
j =

r̄n,j⋃
r=r

Ẑj,r.

We then consider the set and apply Lemma 16 (with (78) and (80)). □
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6.3.14. Proof of (57). We define rj ≥ 0 as the smallest integer such that

2rj ≥M
1/(1−θ)
1 2j .

We set

K
(1,3)
j =

r̄n,j⋃
r=rj+1

Kj,r.

and apply Lemma 17 with r̄ = rj . □

6.3.15. Proof of (58). We define rj ≥ 0 as the smallest integer such that

2rj ≥M
1/(1−θ)
1 2j .

We define r = 0 and r̄ ≥ 0 as the smallest integer such that

2r̄(2sθ+1) ≥ nM−2s
2 2−2j(1−θ)s.

We define ℓ̇j,r given by (83) and set

K
(3)
j =

r̄⋃
r=0

Kj,r.

We then apply Lemmas 18, 14 and 15. □

6.3.16. Proofs of (59) and (60). The proof is the same than in the preceding section but by

defining rj = 0, and ℓ̇j,r either by (84) or (85). □

6.3.17. Proof of (61). We define rj ≥ 0 as the smallest integer such that

2rj ≥M
1/(1−θ)
1 2j ,

and r, r̄ ≥ 0, as the smallest integers such that

2r̄(s+1) ≥ nM−2s
2 2−js

2r(1−1/p) ≥ R−2M
2/p
2 22j(α−1/(2p)+1)n−1.

We define ℓ̇j,r by (83) and set

K
(3)
j =

r̄⋃
r=r

Kj,r.

We conclude by applying Lemmas 18, 14 and 15. □

6.3.18. Proofs of (62). We apply Lemma 19. □
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6.3.19. Proof of Lemma 14. We consider the largest j0 ≥ 0 such that

2j0(1+2α) ≤ R2n(b− a)1−2/p.(87)

We set Kj,ref = Zj,ref when j ∈ {0, . . . , j0}. When j ≥ j0 + 1, the definition of Kj,ref depends on
whether p ≥ 1 or p < 1. When p ≥ 1, Kj,ref = ∅. When p < 1,

Kj,ref =
{
k ∈ Zj,ref, |βj,k| ≥ η

}
,

with

η = Rp/(p−2)n1/(p−2)2−jp(α+1/2)/(p−2).(88)

For all j ≥ 0,

|Zj,ref| ≤ c1
[
1 + (b− a)2j

]
.

Therefore, when j ∈ {0, . . . , j0},

B
(1)
j (K

(1)
j,ref) + Ẽ(1)

j (K
(1)
j,ref) ≤ Ẽ(1)

j (K
(1)
j,ref)

≤
r̄n,j∑

r=rj+1

Ẽj,r
(
|Zj,ref ∩ Ẑj,r|

)

≤ n−1/2

r̄n,j∑
r=rj+1

|Zj,ref ∩ Ẑj,r,−| 2−r/2 log+
(
2r/|Zj,ref ∩ Ẑj,r,−|

)
.

We define the smallest integer r′j such that 2r
′
j ≥ 1 + (b − a)2j . We deduce from Lemma 30

of [Sar24b],

r̄n,j∑
r=r′j+1

|Zj,ref ∩ Ẑj,r,−|2−r/2 log+
(
2r/|Zj,ref ∩ Ẑj,r,−|

)
≤ c2

(
1 + (b− a)2j

)1/2
.

We deal with smaller values of r by noticing that |Zj,ref ∩ Ẑj,r,−| ≤ c32
r and hence

r′j∑
r=1

|Zj,ref ∩ Ẑj,r,−| ≤ c4

r′j∑
r=1

2r/2

≤ c5
(
1 + (b− a)2j

)1/2
.

Thereby, by putting everything together, we get for all j ∈ {0, . . . , j0},

B
(1)
j (K

(1)
j,ref) + Ẽ(1)

j (K
(1)
j,ref) ≤ c6

(
1 + (b− a)2j

)1/2
n−1/2.

We now deal with larger value of j. When j > j0 and p ≥ 1, the smoothness condition plus
Lemma 18 of [Sar24b] lead to

B
(1)
j (K

(1)
j,ref) + Ẽ(1)

j (K
(1)
j,ref) = B

(1)
j (K

(1)
j,ref)

≤ c7R2
−j(α+1−1/p)|Zj,ref|1−1/p

≤ c8R
[
2−j(α+1−1/p) + (b− a)1−1/p2−jα

]
.
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We reapply this lemma when j > j0 and p < 1 to bound the bias term:

B
(1)
j (Kj,ref) ≤ c92

−j/2η1−pRp2−jp(α+1/2−1/p)

≤ c10R
p/(2−p)n−(1/p−1)/(2/p−1)2−j(1+α−1/p)/(2/p−1).

Moreover, the assumption f ∈ WBαp,∞(R) and (88) lead to

|K(1)
j,ref| ≤ η−pRp2−jp(α+1/2−1/p)

≤ R2p/(2−p)n1/(2/p−1)2−2j(1+α−1/p)/(2/p−1).(89)

As |Ẑj,r| ≤ c112
r,

Ẽ(1)
j (K

(1)
j,ref) ≤ c12

r̄n,j∑
r=rj+1

min{|K(1)
j,ref|, 2

r} 2−r/2 log+
(
2r/min{|K(1)

j,ref|, 2
r}|
)
.

Define the smallest integer r′′j such that 2r
′′
j ≥ |K(1)

j,ref|. The sum can be split into two parts: the

first part runs from 1 to r′′j and the second from r′′j + 1 to ∞. By mimicking what was done above
when j ≤ j0, we deduce

Ẽ(1)
j (K

(1)
j,ref) ≤ c13n

−1/2 |K(1)
j,ref|

1/2,

and using (89),

Ẽ(1)
j (K

(1)
j,ref) ≤ c14R

p/(2−p)n−(1/p−1)/(2/p−1)2−j(1+α−1/p)/(2/p−1).

In the end, all this leads to (76). □

6.3.20. Proof of Lemma 15. We consider the largest j0 ≥ 0 such that

2j0(1+2α) ≤ R2nM
(1−2/p)/(1−θ)
1 .

We set K
(2)
j,ref = Ẑj,rj ,− when j ∈ {0, . . . , j0}. When j ≥ j0 + 1, and p ≥ 1, K

(2)
j,ref = ∅. When

j ≥ j0 + 1 and p < 1,

K
(2)
j,ref =

{
k ∈ Ẑj,rj ,−, |βj,k| ≥ η

}
,

with η defined by (88).

When j ∈ {0, . . . , j0},

B
(2)
j (K

(2)
j,ref) + Ẽ(2)

j (K
(2)
j,ref) ≤ Ẽj,rj ,−(Ẑj,rj ,−)

≤ n−1/2
∣∣Ẑj,rj ,−∣∣1/2

≤ c1n
−1/2M

1/2
1 2rjθ/22j(1−θ)/2

≤ c2n
−1/2M

1/(2(1−θ))
1 2j/2
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thanks to (72). When j > j0 and p ≥ 1, we do as in the proof of Lemma 14 to get

B
(2)
j (K

(2)
j,ref) + Ẽ(2)

j (K
(2)
j,ref) = B

(2)
j (K

(2)
j,ref)

≤ c3R2
−j(α+1−1/p)|Ẑj,rj ,−|1−1/p

≤ c4RM
(1−1/p)/(1−θ)
1 2−jα.

Likewise, when j > j0 and p < 1

B
(2)
j (K

(2)
j,ref) ≤ c5R

p/(2−p)n−(1/p−1)/(2/p−1)2−j(1+α−1/p)/(2/p−1).

We also have in this case,

E(2)
j (K

(2)
j,ref) ≤ n−1/2|K(2)

j,ref|
1/2

≤ Rp/(2−p)n−(1/p−1)/(2/p−1)2−j(1+α−1/p)/(2/p−1).

thanks to (89). The lemma can be deduced from all these results. □

6.3.21. Proofs of Lemmas 16 and 17.

Proof of Lemma 16. We omit the exponent (1,3) on Kj to lighten the notations. We have,

B
(1)
j (Kj) +B

(3)
j (Kj) ≤ 2−j/2

∑
k∈Ẑj,r−1,−

|βj,k|.

When p > 1 we apply a suitable version of Hölder’s inequality (see Lemma 18 of [Sar24b] if needed)
to get

2−j/2
∑

k∈Ẑj,r−1,−

|βj,k| ≤ c12
−j/2∥βj,·∥p,∞

∣∣Ẑj,r−1,−
∣∣1−1/p

.

This result also holds true when p = 1 if we replace the weak norm by its strong version. We then
use (72) and the smoothness assumption to get the bound on the bias.

As to the variance terms, we merely remark

Ẽ(1)
j (Kj) + Ẽ(3)

j (Kj) ≤
r̄n,j∑
r=r

Ẽj,r
(
|Ẑj,r|

)
,

and conclude by using (72). □

Proof of Lemma 17. We omit in this proof the exponent (1,3) on Kj . The smoothness assumption
ensures that |Kj,r| is no larger than

kj,r = Rpnp/22−jp(α+1−1/p)2rp/2.

We deduce from a classical inequality in weak spaces (stated in (38) in [Sar24b]),∑
k∈Ẑj,r\Kj,r

2−j/2|βj,k| ≤ c1kj,r2
−r/2n−1/2.
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Therefore,

B
(1)
j (Kj) +B

(3)
j (Kj) ≤

r̄n,j∑
r=r̄+1

∑
k∈Ẑj,r\Kj,r

2−j/2 |βj,k|

≤ c2

r̄n,j∑
r=r̄+1

Rpn−(1−p)/22−jp(α+1−1/p)2−r(1−p)/2

≤ c3R
pn−(1−p)/22−jp(α+1−1/p)2−r̄(1−p)/2.

Moreover,

Ẽ(1)
j (Kj) + Ẽ(3)

j (Kj) ≤
r̄∑

r=rj+1

Ẽj,r(|Ẑj,r|) +
r̄n,j∑
r=r̄+1

Ẽj,r(|Kj,r|).

The first term is zero if r̄ = rj . It can be bounded thanks to (72) and (73) in the contrary case. The

second term can be controlled by using the bounds on |Ẑ′
j,r| and |Kj,r| and by applying Lemma 30

of [Sar24b]. □

6.3.22. Proofs of Lemmas 18 and 19. As f is monotone on (−∞, a) and on (b,+∞), we have

fj,k ≤ c′02
−r when k ∈ Kj,r where c′0 = max{c0, 1} (the case r = 0 comes from the inequality

fj,k ≤ 1 as f is a density and c′0 ≥ 1).

We apply Lemma 2 to get ∑
k≥kj,r+1

or k≤kj,r+1

2−j/2|βj,k| ≤ c1ℓ̇
1−s
j,r 2−r.(90)

Throughout this proof, we omit the exponent on Kj to lighten the notations. We begin by showing
the following lemma.

Lemma 20. Suppose θ ≥ 1/2, consider j ∈ Z, r, r̄ ≥ 0, ℓ̇j,r given by (83) and

Kj =
r̄⋃
r=r

Kj,r.

Then,

Ẽ(3)
j (Kj) ≤ c

[
1 + 2j(b− a)

]
min

{
(rj + 1)2−rj/2 log+

(
2rj/(1 + (b− a)2j)

)
,(91)

2−r/2 log+
(
2r/(1 + (b− a)2j)

)}
n−1/2

+ cM22
j(1−θ)

{
2r̄(θ−1/2) + (r̄ − r + 1)1θ=1/2

}
n−1/2,

where c only depends on θ and the wavelets. The same inequality holds true when j ≥ 0 and the
definition of Kj,r rather uses (84) or (85), up to the following modifications: we replace M2 by M1

and b − a by 0 in the first case, and M2 by Aqq, θ by q, and b − a by 0 in the second case (c then
only depends on q and the wavelets. It can be bounded independently of q when q ∈ [1, 2]).
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Proof of Lemma 20. We recall that fj,k ≤ c′02
−r′ when k ∈ Kj,r′ , and fj,k ≥ c02

−r when k ∈ Ẑj,r
with r ≤ r̄n,j . We deduce Kj,r′ ∩ Ẑj,r = ∅ when r′ > r + c1. Hence,

Kj ∩ Ẑj,r ⊂
min{r+c1,r̄}⋃

r′=r

(
Kj,r′ ∩ Ẑj,r

)
.

Therefore,

Ẽ(3)
j (Kj) ≤

r̄n,j∑
r=rj+1

min{r+c1,r̄}∑
r′=r

Ẽj,r(|Kj,r′ ∩ Ẑj,r|).

We consider the smallest integer r′ ≥ 0 such that

M22
j(1−θ)2r

′θ ≥ 1 + (b− a)2j .

We deduce from (72),

r̄∑
r=max{r′,rj+1}

min{r+c1,r̄}∑
r′=max{r,r′}

Ẽj,r(|Kj,r′ ∩ Ẑj,r|)

≤ c2

r̄∑
r=max{r,r′,rj+1}

r+c1∑
r′=max{r,r′}

M22
j(1−θ)2r

′θ2−r/2 log+

(
2rθ/2r

′θ
)
n−1/2

≤ c3

r̄∑
r=r

M22
j(1−θ)2r(θ−1/2)n−1/2

≤ c4M22
j(1−θ)

[
2r̄(θ−1/2) + (r̄ − r + 1)1θ=1/2

]
n−1/2.

To get the third line, we relied on Lemma 30 of [Sar24b]. Moreover,

r̄n,j∑
r=max{r̄,r′}

min{r+c1,r̄}∑
r′=max{r,r′}

Ẽj,r(|Kj,r′ ∩ Ẑj,r|)(92)

≤ c5

r̄n,j∑
r=max{r̄,r′}

r̄∑
r′=max{r,r′}

M22
j(1−θ)2r

′θ2−r/2 log+

(
2rθ/2r

′θ
)
n−1/2

≤ c6

r̄n,j∑
r=max{r̄,r′}

M22
j(1−θ)2r̄θ2−r/2 log+

(
2rθ/2r̄θ

)
n−1/2

≤ c7M22
j(1−θ)2r̄(θ−1/2)n−1/2.
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When either r or r′ is smaller than r′, |Kj,r′ ∩ Ẑj,r| ≤ c8(1 + (b− a)2j). Hence,

r̄n,j∑
r=rj+1

min{r+c1,r̄}∑
r′=r

Ẽj,r(|Kj,r′ ∩ Ẑj,r|)1min{r,r′}≤r′

≤ c9

r̄n,j∑
r=max{rj+1,r−c1}

r+c1∑
r′=r

(
1 + (b− a)2j

)
2−r/2n−1/2 log+

(
2r/(1 + (b− a)2j)

)
≤ c10

[
1 + 2j(b− a)

]
min

{
(rj + 1)2−rj/2 log+

(
2rj/(1 + (b− a)2j)

)
,

2−r/2 log+
(
2r/(1 + (b− a)2j)

)}
n−1/2.

In the last inequality, we use the elementary result
∞∑
r=r0

r2−r/2 log+(2
r/x) ≤ c r02

−r0/2 log+(2
r0/x),

that holds true for all r0 ≥ 1 and x ≥ 1.

When j ≥ 0 and Kj,r is defined via (85), the term c in (91) can be bounded independently of q
because cw does not depend on q when q ∈ [1, 2] and because the term c in the first equation of
Lemma 30 of [Sar24b] can be taken as a bounded function of a1 if a1 lies in a a compact set such
as [1, 2] (and k = 1). □

Proof of Lemma 18. We have,

B
(3)
j (Kj) ≤

r−1∑
r=0

2−j/2
∑
k∈Kj,r

|βj,k|+
∑

k≥kj,r̄+1+1
or k≤kj,r̄+1−1

2−j/2|βj,k|

≤
r−1∑
r=0

2−j/2
∑
k∈Kj,r

|βj,k| + c2M
1−s
2 2−r̄(sθ−θ+1)2−j(1−θ)(s−1).

The formula for the second term comes from (90) by noticing that ℓ̇j,r ≥ cwM22
j(1−θ)2rθ. Note

that the first term of this inequality is 0 if r = 0. Otherwise, we reproduce some of the arguments
in the proof of Lemma 16. When p > 1,

2−j/2
∑
k∈Kj,r

|βj,k| ≤ c32
−j/2∥βj,·∥p,∞|Kj,r|1−1/p.

We use f ∈ WBαp,∞(R) to bound the weak norm. As to |Kj,r|, we have

|Kj,r| ≤ c4

[
1 + (b− a)2j +M22

j(1−θ)2rθ
]
.

This leads to

2−j/2
∑
k∈Kj,r

|βj,k| ≤ c5R
[
2−j(α+1−1/p) + (b− a)1−1/p2−jα +M

1−1/p
2 2r(1−1/p)θ2−j(α−θ/p+θ)

]
.

It then remains to sum this inequality to get the bound on the bias term. The proof when p = 1
is similar. □
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Proof of Lemma 19. Consider some r̄ ≥ 0 to be specified later on. We have,

B
(3)
j (∅) ≤

r̄∑
r=0

2−j/2
∑
k∈Kj,r

|βj,k|+
∞∑

r=r̄+1

2−j/2
∑
k∈Kj,r

|βj,k|,

where Kj,r is defined via (83). By doing as in the proof of Lemma 18,

B
(3)
j (∅) ≤ c1R

[
r̄2−j(α+1−1/p) + r̄(b− a)1−1/p2−jα +M

1−1/p
2 2r̄(1−1/p)θ2−j(α−θ/p+θ)

]
+ c2M

1−s
2 2−r̄(sθ−θ+1)2−j(1−θ)(s−1)

We then choose r̄ suitably. The remaining part of the lemma is obtained by choosing a different
formula for ℓ̇j,r. □

7. Proof of Proposition 7

Since the result is stated for R,M1 and M2 large enough, we only need to show

inf
f̃

sup
f∈Fα,s

p,θ (a,b,c′R,c′M,c′M)

E
[
d1(f, f̂)

]
≥ cRβ1Mβ2n−γ .

for some c′ > 0 only depending on p, s, θ, α and the wavelet basis.

In the sequel, we need to build functions with special properties. For this, we rely on the two
elementary results below. They are proved in Sections 7.1 and 7.2.

Lemma 21. Consider q1 ≥ 0 and q2 ≥ 0. There exist two polynomial functions ς0 and ς1 such
that:

• ς0, ς1 are non-negative and non-increasing on [0, 1].
• ς0(0) = ς1(0) = 1 and ς0(1) = ς1(1) = 0.

• For all k ∈ {1, . . . , q1 + 1}, ς(k)0 (0) = ς
(k)
1 (0) = ς

(k)
0 (1) = ς

(k)
1 (1) = 0.

• For all k ∈ {0, . . . , q2}, ∫ 1

0
xkς0(x) dx =

∫ 1

0
xkς1(x) dx.

• ς0 and ς1 do not coincide almost everywhere on [0, 1].

Lemma 22. Consider q ≥ 0, ℓ ≥ 1, and ε1, . . . , εℓ > 0 small enough. There exists a polynomial
function ζ on [0, 1] such that:

• For all x ∈ [0, 1], ζ(x) ≥ 0. Moreover, ζ(0) = 0 and ζ(1) = 1.

• For all k ∈ {1, . . . , ℓ+ q + 1}, ζ(k)(0) = 0.

• For all k ∈ {1, . . . , ℓ}, ζ(k)(1) = (−1)kεk.

• For all k ∈ {ℓ+ 1, . . . , ℓ+ q + 1}, ζ(k)(1) = 0.

• For all k ∈ {1, . . . , ℓ+ q + 1}, supx∈[0,1] |ζ(k)(x)| ≤ c where c only depends on ℓ, k and q.

The following lemma is useful for showing the regularity of the forthcoming functions. It is
proved in Section 7.3.
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Lemma 23. Consider p ∈ (0,+∞], α > max{1/p−1, 1}, q ∈ [α, α+1]∩Z and τ large enough. We
suppose that f is even and admits bounded derivatives up to order q+1. We consider x2 > x1 > 0
and we denote for k ∈ {1, . . . , q + 1},

A1,k = sup
x∈[0,x1]

|f (k)(x)|

A2,k = sup
x∈[x1,x2]

|f (k)(x)|

Ak = sup
x∈R

|f (k)(x)|.

We also assume that f(x) = ae−bx for some a ≥ 0, b ∈ (0, 1] when x ≥ x2. We then have
f ∈ Bαp,∞ (cR) where

R = 1 +Aq+1−α
1,q A−q+α

1,q+1 (x1 + 1)1/p +Aq+1−α
2,q A−q+α

2,q+1 (x2 − x1 + 1)1/p

+Aq+1−α
q A−q+α

q+1 + abα−1/pe−bx2 ,

and where c only depends on α, p and the wavelet basis.

Without loss of generality, we assume in the sequel that b > 0 and a < 0. We then denote
x0 = min{b, |a|}. We also consider r ≥ 1 and denote the elements of {0, 1}r+1 by (δk)0≤k≤r. We
introduce the Hamming distance ∆ defined for δ, δ′ ∈ {0, 1}r+1 by

∆(δ, δ′) =
r∑

k=0

|δk − δ′k|.

We consider positive numbers b0, ℓ0, and set for all k ≥ 0,

bk = b0(1 + 1/r)−k

ℓk = ℓ0(1 + 1/r)2k

xk+1 = xk + ℓk.

We define the smallest integer qα,s ≥ 2 larger than α− s+1. Let then ς0 and ς1 be the maps given
by Lemma 21 with q1 = qα,s and q2 = s.

We define for x ≥ 0 and δ ∈ {0, 1}r+1,

g1,δ(x) = b01[0,x0)(x)

+
r

r + 1

r∑
k=0

bk
[
1 + r−1ςδk((x− xk)/ℓk)

]
1[xk,xk+1)(x)

+ br+1 ς0

(
x− xr+1

rℓ0

)
1[xr+1,xr+1+rℓ0](x).(93)

We extend it to make it even on R.

The lemma below describes some of its properties. Its proof is elementary and is therefore
skipped. It simply follows from Lemma 21.
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Lemma 24. For all δ ∈ {0, 1}r+1, g1,δ belongs to M1(a, b), is non-negative and compactly supported
on the interval [−xr+1− rℓ0, xr+1+ rℓ0]. It is qα,s+1 times differentiable. Moreover, for all x ∈ R
and k ∈ {1, . . . , qα,s + 1}, ∣∣g(k)1,δ (x)

∣∣ ≤ c1r
−1b0ℓ

−k
0 ,

where c1 only depends on ς0, ς1. For all k ∈ {0, . . . , r}, δ, δ′ ∈ {0, 1}r+1, and x ∈ [xk, xk+1],

g1,δ(x)− g1,δ′(x) =
bk

1 + r

(
δk − δ′k

)
ξ1((x− xk)/ℓk)

where ξ1 = ς1 − ς0. Moreover, for all q ∈ {0, . . . , s},∫ xk

x0

xqg1,δ(x) dx =

∫ xk

x0

xqg1,δ′(x) dx.

We also have for all δ′ ∈ {0, 1}r+1,

d1(g1,δ, g1,δ′) ≥ c2b0(ℓ0/r)∆(δ, δ′)

d22(g1,δ, g1,δ′) ≤ c3b
2
0(ℓ0/r

2)∆(δ, δ′)

where c2, c3 are positive and only depend on ς0 and ς1.

As we will see below, this result is sufficient to prove the lower bound when s = 1. We now
suppose s ≥ 2 and define functions whose tails satisfy stronger shape constraints. We consider
u ∈ {1, . . . , s}, x ≥ 0, δ ∈ {0, 1}r+1, and set

gu+1,δ(x) =
Ju
ℓ0r

ζu+1 (2(x− x0/2)/x0)1[x0/2,x0)(x)

+

(
1

ℓ0r

∫ xr+1+rℓ0

x
gu,δ(t) dt

)
1[x0,xr+1+rℓ0](x)

where

Ju =

∫ xr+1+rℓ0

x0

gu,δ(t) dt.

In this equality, ζu+1(·) comes from Lemma 22 with ℓ = u, q = qα,s, and

εk =

{
(x0/2)

k(ℓ0r)
−kJu−k/Ju, if k ∈ {1, . . . , u− 1}

(x0/2)
u(ℓ0r)

−u+1b0/Ju if k = u.
(94)

This definition is possible if the εk are small enough, which we suppose for the moment. The
map gu+1,δ is then extended to be even on R. We show in Section 7.4:

Lemma 25. Consider u ∈ {2, . . . , s} and δ ∈ {0, 1}r+1. Then:

• gu,δ ∈ Mu(a, b) and is compactly supported on the interval [−xr+1 − rℓ0, xr+1 + rℓ0].
• gu,δ admits derivatives up to order qα,s + u. Moreover,

g
(k)
u,δ(x0) =


(−1)k(ℓ0r)

−k−1Ju−k−1 if k ∈ {1, . . . , u− 2}
(−1)u−1(ℓ0r)

−u+1b0 if k = u− 1

0 if k ∈ {u, . . . , qα,s + u}.
For all x ̸∈ [−x0, x0] and k ∈ {u, . . . , qα,s + u},

|g(k)u,δ(x)| ≤ c1r
−ub0ℓ

−k
0 ,
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where c1 only depends on ς0, ς1.
• For all k ∈ {0, . . . , r + 1}, δ′ ∈ {0, 1}r+1, q ∈ {0, . . . , s− u+ 1},∫ xk

x0

xqgu,δ(x) dx =

∫ xk

x0

xqgu,δ′(x) dx.

• We have gu,δ(x0) ≤ c2b0 where c2 only depends on u.
• We have ∫ xr+1+rℓ0

xr+1

gu,δ(x) dx =
br+1rℓ0
(u− 1)!

∫ 1

0
tu−1ς0(t) dt.

In particular, Ju does not depend on δ.
• For all k ∈ {0, . . . , r}, δ′ ∈ {0, 1}r+1, x ∈ [xk, xk+1],

gu,δ(x)− gu,δ′(x) =
bk(ℓk/ℓ0)

u−1

(r + 1)ru−1
(δk − δ′k)ξu((x− xk)/ℓk)

where ξu(x) =
∫ 1
x ξu−1(t) dt and ξ1 = ς1 − ς0.

• We have for all δ′ ∈ {0, 1}r+1,

d1(gu,δ, gu,δ′) ≥ c3ℓ0b0r
−u∆(δ, δ′)

d22(gu,δ, gu,δ′) ≤ c4ℓ0b
2
0r

−2u∆(δ, δ′)

where c3, c4 are positive and only depends on ς0, ς1, u.

We consider υ ∈ (0, 1), a density ω ∈ Fα,s
p,θ (a, b, R,M,M), and

φ(x) = (1/2)(M/(rℓ0))
1/θ
[
ζφ
(
2(x− x0/2)/x0

)
1[x0/2,x0](x) + e−(x−x0)/(rℓ0)1x>x0

]
,

where ζφ(·) is defined by Lemma 22 with q = 0, ℓ = qα,s + s and εk = (x0/2)
k(ℓ0r)

−k. The map φ
is extended to an even function on R. We then set for all δ ∈ {0, 1}r+1, x ∈ R,

fδ(x) = υgs,δ(x) + φ(x) + pω(x),

where

p = 1−
∫
R
(υgs,δ(x) + φ(x)) dx.

Note that p does not depend on δ because neither does Js (see Lemma 24 or 25).

We now specify the parameters r, ℓ0, b0 that are involved in our analysis. When θ > θ0, we
define r as the smallest integer such that

r1+s ≥ Rβ1Mβ2n1−γ .(95)

When θ ≤ θ0, r is the smallest integer such that

r ≥ R2β1M2β2n1/(2α+1).(96)

We define in the two cases ℓ0 by

ℓ
1+α−1/p
0 = r1/p−1Rβ1−1Mβ2n−γ .(97)

and

b0 = Rℓ
α−1/p
0 rs−1/p.(98)
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Let us observe that r → ∞, b0 → 0, b0ℓ0r → 0 when n → +∞. In particular, Js → 0. We also
have ℓ0r → +∞ when θ > θ0 and n → +∞. When θ ≤ θ0, ℓ0r is rather of the order of M1/(1−θ)

(and is not smaller than M1/(1−θ)). In both cases, ℓ0r can be taken as large as we wish by choosing
either n large enough or M large enough.

The fourth point of Lemma 25 ensures that Ju−k ≤ c1b0(rℓ0). The fifth point, Ju ≥ c2b0rℓ0.
In particular, the term εk in (94) is no larger than c3x

k
0(ℓ0r)

−k, whatever k ∈ {1, . . . , u}. They
can therefore be assumed as small as we wish. The maps gu,δ are then well defined. Likewise, the
map φ above is well defined. We also deduce that p may be taken between 0 and 1. The fδ are
therefore densities.

We know from the above that fδ lies in Ms(a, b). Its smoothness is ensured by Lemma 23. More
precisely, we apply Lemma 23 to deal with gs,δ. We choose x1 = x0 and x2 = xr+1 + rℓ0. The last
point of Lemma 22 ensures that

A1,k ≤ c3(ℓ0r)
−1Ju ≤ c4b0,

which can be as small as wished. Moreover, Lemma 25 ensures

A2,k ≤ c5r
−sb0ℓ

−k
0 .

We deduce that gs,δ belongs to Bαp,∞(R′) with

R′ ≤ c6

[
1 + b0(1 + x

1/p
0 ) + r−sb0ℓ

−α
0 (rℓ0)

1/p
]

≤ c7

[
1 + b0ℓ

−α+1/p
0 r1/p−s

]
.

We deduce from (95)–(98) that R′ ≤ c8R. The smoothness of φ is also guaranteed by Lemma 23.
It ensures that φ ∈ Bαp,∞(R′′) with

R′′ ≤ c9

[
1 +M1/θ(rℓ0)

1/p−α−1/θ
]

≤ c10R

as n or M is large enough. In conclusion, fδ does belong to Bαp,∞(c11R).

Since gs,δ is bounded from above by c12b0 when |x| ≥ x0 and is compactly supported, gs,δ
belongs to WT θ(M

′) with M ′ = c13
[
1 + bθ0(rℓ0)

]
≤ c14M (see Propositions 4 and 5). Clearly,

φ ∈ WT θ(c15M). All this ensures fδ ∈ Fα,s
p,θ (a, b, c16R, c17M, c18M).

We deduce from the last point of Lemmas 24 and 25, and from the formulas (95)–(98), that for
all δ, δ′ ∈ {0, 1}r+1,

d1(fδ, fδ′) = υd1(gs,δ, gs,δ′)

≥ c19υℓ0b0r
−s∆(δ, δ′)

≥ c20υr
−1Rβ1Mβ2n−γ∆(δ, δ′).

Moreover,

d22(fδ, fδ′) ≤ c21υ
2ℓ0b

2
0r

−2s∆(δ, δ′).(99)

The Hellinger distance h(fδ, fδ′) between fδ and fδ′ is defined by

h2(fδ, fδ′) =
1

2

∫
R

(√
fδ(x)−

√
fδ′(x)

)2
dx.
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As fδ and fδ′ coincide on [−x0, x0] and on R \ [−xr+1, xr+1],

h2(fδ, fδ′) ≤ sup
x∈[x0,xr+1]

d22(fδ, fδ′)

8φ(x)
.(100)

Note that infx∈[x0,xr+1] φ(x) ≥ c22(M/(rℓ0))
1/θ. This inequality with (99) and (100) leads to

h2(fδ, fδ′) ≤ c23υ
2n−1∆(δ, δ′).

We conclude by applying Assouad’s lemma, and by taking υ small enough, see Lemma 31 of [Sar24b]
for instance. □

Note: we may get (23) by using the same reasoning but by applying formula (95) all the time, even
when θ ≤ θ0.

7.1. Proof of Lemma 21. We set ς0(x) = (1 − xq1+2)q1+2 and turn to the definition of ς1. We
introduce the linear map L defined for any polynomial R by

L(R) =
(
R(0), R′(0), . . . , R(q1+2)(0), R(1), R′(1), . . . , R(q1+2)(1),∫ 1

0
R(x) dx,

∫ 1

0
xR(x) dx, . . . ,

∫ 1

0
xq2R(x) dx

)
.

This map cannot be injective. There exist therefore a non-zero polynomial R such that L(R) = 0.
Since 0 and 1 are roots of R of order at least q1 + 2, we may find another polynomials R1, R2 such
that

R(x) = (1− x)q1+2R1(x)

R′(x) = xq1+1(1− x)q1+1R2(x).

We set

ς1(x) = ς0(x) + εR(x),

where

ε = min


[

sup
x∈[0,1]

|R1(x)|

]−1

, (q1 + 2)2

[
sup
x∈[0,1]

|R2(x)|

]−1
 .

Note that

ς1(x) = (1− xq1+2)q1+2 + ε(1− x)q1+2R1(x)

is non-negative when x ∈ [0, 1]. Besides,

ς ′1(x) = −(q1 + 2)2xq1+1(1− xq1+2)q1+1 + εxq1+1(1− x)q1+1R2(x)

is non-positive when x ∈ [0, 1]. This ends the proof. □
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7.2. Proof of Lemma 22. We define by induction maps ςℓ,ε1,...,εℓ where ℓ ≥ 1 and ε1, . . . , εℓ ∈ R.
More precisely, we set when ℓ = 1, ε1 ∈ R, and x ∈ [0, 1],

ς1,ε1(x) = 1 + ε1 − ε1x− ε1

∫ 1

x
(1− tq+2)q+2 dt.

We then set when ℓ ≥ 1, ε1, . . . , εℓ+1 ∈ R and x ∈ [0, 1],

ςℓ+1,ε1,ε2,...,εℓ+1
(x) = 1−

∫ 1

x
(ςℓ,−ε2,−ε3,...,−εℓ+1

(t)− 1− ε1) dt.

The following properties hold true whatever ℓ ≥ 1 and ε1, . . . , εℓ ∈ R. They are proved by induction.

• ςℓ,ε1,ε2,...,εℓ(1) = 1.

• For all k ∈ {1, . . . , ℓ}, ς(k)ℓ,ε1,ε2,...,εℓ
(1) = (−1)kεk.

• For all x ∈ [0, 1],

|ςℓ,ε1,ε2,...,εℓ(x)− 1| ≤ c1 [|ε1|+ · · ·+ |εℓ|] ,
where c1 only depends on q and ℓ.

• For all x ∈ [0, 1], and k ∈ {1, . . . , ℓ− 1},∣∣∣ς(k)ℓ,ε1,ε2,...,εℓ
(x)
∣∣∣ ≤ c2 [|ε1|+ · · ·+ |εℓ|] ,

where c2 only depends on q and ℓ.
• For all x ∈ [0, 1],

ς
(ℓ)
ℓ,ε1,ε2,...,εℓ

(x) = (−1)ℓεℓ

[
1−

(
1− xq+2

)q+2
]
.

In particular, ς
(k)
ℓ,ε1,ε2,...,εℓ

(1) = 0 for all k ∈ {ℓ+ 1, . . . , ℓ+ q + 1}.

We consider ℓ ≥ 1, ε1, . . . , εℓ > 0 small enough and set for all x ∈ [0, 1],

ζ(x) = Q(x)× ςℓ,ε1,ε2,...,εℓ(x)

where Q(x) = 1− (1− xℓ+q+2)ℓ+q+2. This function suits. □

7.3. Proof of Lemma 23. We show the result when p < ∞. The case p = ∞ is similar. The

map ψj,k is compactly supported on the interval [2−j(k − Lwav), 2
−j(k + Lwav)]. We consider

r ∈ {0, . . . , q} and apply the Taylor–Lagrange formula to build a polynomial map P of degree r
satisfying

sup
x∈[2−j(Lwav−k),2−j(Lwav+k)]

|f(x)− P (x)|(101)

≤ c1

[
sup

x∈[2−j(k−Lwav),2−j(Lwav+k)]

|f (r+1)(x)|

]
2−j(r+1),

where c1 only depends on the wavelets and r. Define

K1 = Z
⋂[

−2jx1 + Lwav, 2
jx1 − Lwav

]
K2 = Z

⋂([
−2jx2 + Lwav,−2jx1 − Lwav

]⋃[
2jx1 + Lwav, 2

jx2 − Lwav

])
K3 = Z

⋂((
−∞,−2jx2 − Lwav

]⋃[
2jx2 + Lwav,+∞

))
.
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Since ψj,k is orthogonal to polynomials of degree no larger than τ − 1,

βj,k = 2j/2
∫
R

(f(x)− P (x))ψ(2jx− k) dx.

We deduce from (101),

|βj,k| ≤ c2Ar+12
−j(r+3/2)

for all k ∈ Z. Moreover, when k ∈ Ku for some u ∈ {1, 2},

|βj,k| ≤ c3Au,r+12
−j(r+3/2).

By putting these two results together:∑
k∈Z\(K1∪K2∪K3)

|βj,k|p ≤ c4A
p
r+12

−jp(r+3/2)

≤ c4A
p
r+12

−jp(r+3/2−1/p)

and ∑
k∈Ku

|βj,k|p ≤ c5A
p
u,r+1Lu2

−jp(r+3/2−1/p),

where L1 = x1 + 1 and L2 = x2 − x1 + 1.

We turn to K3 and observe that if k ∈ K3 such that k ≥ 2jx2 + Lwav,

|βj,k| ≤ c6ab
r+1e−b2

−j(k−Lwav)2−j(r+3/2).

A similar result holds true when k ≤ −2jx2 − Lwav. Therefore:∑
k∈K3

|βj,k|p ≤ c7a
pbp(r+1−1/p)e−bpx2 2−jp(r+3/2−1/p).

All these inequalities are valid for r ∈ {0, . . . , q}. We apply them with r = q − 1 and r = q. We
deduce that for all θ ∈ [0, 1], u ∈ {1, 2},∑

k∈Ku

|βj,k|p ≤ c8

(
LuA

p
u,q2

−jp(q+1/2−1/p)
)θ (

LuA
p
u,q+12

−jp(q+3/2−1/p)
)1−θ

∑
k∈K3

|βj,k|p ≤ c9a
pe−bpx2

(
bp(q−1/p)2−jp(q+1/2−1/p)

)θ (
bp(q+1−1/p)2−jp(q+3/2−1/p)

)1−θ
∑

k∈Z\(K1∪K2∪K3)

|βj,k|p ≤ c10

(
Apq2

−jp(q+1/2−1/p)
)θ (

Apq+12
−jp(q+3/2−1/p)

)1−θ
.

We then choose θ = q + 1− α. □

7.4. Proof of Lemma 25. We first observe that the conclusion of the lemma also applies when
u = 1 (see Lemma 24). We may therefore prove the lemma by induction. We suppose that it is
true for u ∈ {1, . . . , s− 1} and shows that it also holds true for u+ 1.

• For all x > x0, g
′
u+1,δ(x) = −(1/(ℓ0r))gu,δ(x). A similar result holds true when x < x0. As

gu,δ ∈ Mu(a, b), we deduce that gu+1,δ ∈ Mu+1(a, b).

• The second point of the lemma comes from the equality g
(k)
u+1,δ(x) = −(1/(ℓ0r))g

(k−1)
u,δ (x)

that is valid for all x > x0, and k ∈ {1, . . . , qα,s + u+ 1}, and from the definition of ζu+1.
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• For the third point, we consider q ∈ {0, . . . , s− u} and observe that∫ xk

x0

xq
(
gu+1,δ(x)− gu+1,δ′(x)

)
dx

=
1

(q + 1)ℓ0r

∫ xk

x0

(
xq+1 − xq+1

0

) (
gu,δ(x)− gu,δ′(x)

)
dx.

• We remark that xr+1 − x0 ≤ c1ℓ0r. Besides, gu,δ is non-increasing on (x0,∞). Therefore,

gu+1,δ(x0) ≤ (ℓ0r)
−1gu,δ(x0)(xr+1 − x0 + ℓ0r)

≤ c2gu,δ(x0)

hence the fourth point.
• We have,∫ xr+1+rℓ0

xr+1

gu,δ(x) dx = (ℓ0r)
−1

∫ xr+1+rℓ0

xr+1

(t− xr+1)gu−1,δ(t) dt

= (ℓ0r)
−2 1

2

∫ xr+1+rℓ0

xr+1

(t− xr+1)
2gu−2,δ(t) dt

= . . .

= (ℓ0r)
−u+1 1

(u− 1)!

∫ xr+1+rℓ0

xr+1

(t− xr+1)
u−1g1,δ(t) dt

= br+1(ℓ0r)
−u+1 1

(u− 1)!

∫ xr+1+rℓ0

xr+1

(t− xr+1)
u−1ς0((t− xr+1)/(rℓ0)) dt

=
br+1rℓ0
(u− 1)!

∫ 1

0
tu−1ς0(t) dt.

• We have for all x ∈ [xk, xk+1],

gu+1,δ(x)− gu+1,δ′(x) =
1

ℓ0r

∫ xr+1+rℓ0

x

(
gu,δ(t)− gu,δ′(t)

)
dt

=
1

ℓ0r

∫ xk+1

x

(
gu,δ(t)− gu,δ′(t)

)
dt

because of the third point (and because gu+1,δ(x) does not depend on δ when x ≥ xr+1).
Therefore,

gu+1,δ(x)− gu+1,δ′(x) =
bk(ℓk/ℓ0)

u−1

(1 + r)ℓ0ru
(δk − δ′k)

∫ xk+1

x
ξu((t− xk)/ℓk) dt

=
bk(ℓk/ℓ0)

u

(1 + r)ru
(δk − δ′k)

∫ 1

(x−xk)/ℓk
ξu(t) dt.
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• We deduce from the last point,

d1(gu+1,δ, gu+1,δ′) =
2

(1 + r)ru

r∑
k=0

bk(ℓk/ℓ0)
u|δk − δ′k|

∫ xk+1

xk

|ξu+1((x− xk)/ℓk)| dx

=
2

(1 + r)ru

r∑
k=0

bkℓk(ℓk/ℓ0)
u|δk − δ′k|

∫ 1

0
|ξu+1(x)| dx

≥ c3r
−u−1b0ℓ0

(∫ 1

0
|ξu+1(x)| dx

)
∆(δ, δ′).

We get the lower bound by noticing that ξu+1 cannot be zero almost everywhere. The proof
for the L2 distance follows the same principle.

□
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