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A B S T R A C T

Refractory high-entropy alloys (RHEAs) and complex concentrated alloys (RCCAs) are vital for high-temperature 
applications beyond the capabilities of Ni-based superalloys. Traditional methods for predicting oxidation 
resistance in these alloys are often inaccurate and resource-intensive. This study introduces a novel approach 
using Gradient Boosted Decision Trees (GBDT), an artificial intelligence technique, to predict specific mass gain 
due to oxidation. Utilizing a dataset synthesized from extensive literature and characterized by diverse alloy 
compositions and oxidation conditions, the model was trained using Iterated Nested k-fold Cross Validation with 
Shuffling (INKCVS). Our findings demonstrate that the GBDT model achieves a good balance between accuracy 
and generalization capacity in predicting oxidation resistance, as validated experimentally with selected alloys. 
This approach not only enhances prediction accuracy but also significantly reduces the need for extensive 
experimental testing, facilitating rapid development of new high-performance materials.

Refractory high-entropy alloys (RHEAs) [1], refractory complex 
concentrated alloys (RCCAs) and high entropy superalloys (HESAs) [2] 
have emerged as significant candidates for high-temperature applica-
tions, offering promising alternatives to conventional Ni-based super-
alloys, which are reaching their operational temperature limits. As 
future technologies demand materials that can endure higher tempera-
tures, for applications such as aerospace engines, nuclear reactors, and 
thermal protection systems, the development of alloys capable of per-
forming under such extreme conditions has become crucial. RHEAs and 
RCCAs, characterized by a mix of multiple principal refractory elements, 
often display superior mechanical properties and higher melting points 
compared to traditional materials [3,4]. These alloys, drawn from a 
palette of nine refractory metals including Zr, Hf, V, Nb, Ta, Cr, Mo, W, 
and Re, with minor additions of Al, Si, or Ti, are designed to withstand 
temperatures well beyond the 1000 ◦C threshold, competing with 
Ni-based superalloys.

Despite their high-temperature mechanical performance, a 

significant challenge in the development of RHEAs and RCCAs is their 
susceptibility to oxidation [5–9], a critical factor in many 
high-temperature environments, which can severely impair their me-
chanical properties. Such a high temperature oxidation process is gov-
erned by complex thermodynamic and kinetic factors that involve the 
formation, growth, dissolution, and spalling of oxide layers. Tradition-
ally, predicting the oxidation behavior of alloys has relied on empirical 
observations and complex physical models, which are both 
resource-intensive and limited in their predictive accuracy, particularly 
for new alloy compositions. These methods often fail to effectively 
navigate the vast design space required for developing innovative ma-
terials. Given these significant limitations, there is a pressing need for 
more adaptive and scalable models.

Recognizing the limitations of traditional methods, we propose a 
novel AI-driven approach to predict the oxidation resistance of RHEAs/ 
RCCAs. Unlike conventional empirical or thermo-kinetic models, our AI 
techniques efficiently analyze extensive datasets to uncover patterns not 
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readily apparent through standard methods. By integrating AI, we aim 
to provide a more precise, less resource-demanding, and scalable solu-
tion, enabling the rapid evaluation of new alloys. Our method uniquely 
determines the specific mass gain, a critical metric for assessing oxida-
tion resistance, based on alloy composition, exposure time, and tem-
perature. This parameter is also relatively easy to measure 
experimentally using standard methods such as thermogravimetric 
analysis (TGA), making it a common choice in studies focusing on 
oxidation resistance. Consequently, specific mass gain is the most 
frequently reported property in the literature on the oxidation resistance 
of metals, making it particularly suitable for a machine learning 
approach. Compared to the study referenced in Ref. [10], which 
explored a limited compositional space resulting in fewer than 10,000 
alloy combinations, our approach considers a broader range of over 10 
million potential compositions. These extensive exploration and pre-
dictive capabilities offer the potential to rapidly pinpoint materials with 
optimal properties for high-temperature applications, significantly 
accelerating material development.

AI models rely on the data used for training, which must accurately 
link descriptive features of the alloy’s chemistry and environmental 
conditions to metrics indicative of oxidation resistance. Unlike proper-
ties that depend solely on structure and can be predicted with high- 
throughput density functional theory (DFT), the oxidation behavior of 

alloys necessitates a complex understanding of elemental diffusion, 
microstructure, oxide stability, and environmental interactions. Conse-
quently, since a large computational database does not exist for this 
property, we must rely entirely on experimental data, which are often 
scarce and noisy. Therefore, our primary focus was to train an AI model 
that is both robust and generalizable despite such limitations.

To implement this solution, we first created a comprehensive 
experimental dataset extracted from the published literature [8,9,
11–70]. This dataset (Fig. 1) encompasses both conventional refractory 
alloys and RHEAs/RCCAs composed from a palette of 11 elements: Al, 
Cr, Hf, Mo, Nb, Si, Ta, Ti, V, W, and Zr. It details alloy composition, 
oxidation test temperatures, and exposure times. These descriptors are 
controllable during the alloy’s fabrication and thus chosen as input 
features for our AI model. The target output is the measured specific 
mass gain during oxidation, Δm∗, i.e., the increase in mass per unit area 
of an alloy due to the formation of oxide layers when exposed to air at 
elevated temperatures. With 886 observations, the dataset provides a 
fair basis for training our predictive model. While most of the papers 
selected for our dataset involve thermogravimetric analysis (TGA), we 
acknowledge that variations due to specific equipment and slight dif-
ferences in practice by different research teams can introduce noise into 
the data. Despite these variations, our model is designed to provide a 
direct and efficient means of predicting the specific mass gain during 

Fig. 1. Distribution of compositional and processing features in the dataset. The bar chart in the upper left panel displays the number of observations containing each 
element, while the boxplots in the lower left panel show the concentration distributions across all alloys in the dataset. The interquartile ranges (IQR = Q3 - Q1), 
where Q3 is the third quartile marking the 75th percentile and Q1 is the first quartile marking the 25th percentile, are illustrated by the boxes, with median values 
indicated by red lines and mean values by green dashed lines. Whiskers on the boxplots extend to the furthest point within 1.5 times the IQR from the upper and 
lower quartiles, showing the range of typical data points. Outliers are depicted as individual points. The boxplot in the upper right panel shows the distribution of 
oxidation temperatures. The boxplot in the lower right panel shows the distribution of oxidation duration.
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high-temperature exposure, utilizing controllable alloy fabrication pa-
rameters (elemental composition) and exposure environment (temper-
ature and time) to offer rapid and reliable evaluations for material 
designers and experimentalists.

Fig. 2 presents a compositional similarity network of alloys, which 
allows for the visual exploration of relationships between different alloy 
compositions in our dataset. Each of the 163 nodes in the graph repre-
sents a unique alloy, identified by a distinct composition. The color of 
each node indicates the element most concentrated by molar percent-
age. Edges connect alloys exhibiting significant similarity, based on 
cosine similarity, which is calculated by comparing the normalized 
composition vectors of the alloys to assess their relative orientation in 
the hyper-dimensional composition space. The color of each edge is 
determined by the predominant element in the average composition of 
the two connected alloys. This average is obtained by calculating the 
mean concentrations of each element and selecting the element with the 
highest concentration. This edge coloring method allows for quick 
identification of the dominant element in the connections between 

different alloys. The positions of the nodes result from the balance be-
tween repulsive forces among all nodes and the attractive forces of the 
edges, which depend on the weight of the similarity. Consequently, 
clusters of densely interconnected nodes emerge, indicating that alloys 
within these groups share marked similarities. Three areas with high 
concentrations of blue, orange, and violet colors indicate regions of the 
compositional space where Al, Cr, and Nb frequently dominate. A cen-
tral area with a low density of nodes reveals less explored regions in the 
alloy composition space, suggesting domains of compositions that have 
not been extensively studied. To enrich our dataset, we randomly 
sampled 9 compositions from this region, synthesized these 9 so-called 
"random" alloys by arc-melting, and measured the temporal evolution 
of their specific mass gain under air at 1000 ◦C for up to 50 h using 
Thermogravimetric Analysis (TGA). The results are reported (Fig. 2) as 
black nodes, whose diameter is proportional to the observed mass gain, 
together with the surface condition of the random alloys after 20 h of 
oxidation at 1000 ◦C. These experimental results will be presented in 
detail and discussed in a subsequent article. Four of these random alloys 

Fig. 2. Compositional similarity network of alloys. This network graph, created using the NetworkX [71] Python library, visualizes relationships between 163 
distinct alloy compositions in our database, each represented by a node color-coded by the predominant element in molar percentage. Connections between nodes, or 
edges, are colored based on the dominant element in their average composition, determined by cosine similarity of normalized composition vectors. This similarity 
measures how closely related the alloys are in the hyper-dimensional composition space. Clusters of densely interconnected nodes illustrate groups of alloys with 
significant similarities, while a central area with fewer nodes highlights less explored compositional regions. Notably, black nodes with diameters proportional to the 
observed mass gain represent nine alloys randomly sampled and tested for this study (1: Al0.5CrMoNbTi, 2: Al0.5CrMoNbTaTi, 3: Al0.5CrNbTaTiZr, 4: Al0.5NbTaTi, 5: 
Cr0.25NbTaTi, 6: NbTaTi, 7: CrNbTaTiZr, 8: Al0.5Cr1Nb1.5Ta2Ti1Zr0.5, 9: Cr0.5Nb1Ta1.3Ti0.6Zr0.3). The inset photographs depict the surface condition of these alloys 
after 20 h of oxidation in air at 1000 ◦C.

S. Gorsse et al.                                                                                                                                                                                                                                  Scripta Materialia 255 (2025) 116394 

3 



were included in the training dataset, while the remaining five were 
used to test the model for a supplementary evaluation on previously 
unseen data. These will be referred to as “test alloys” in what follows.

Due to the relatively small size of the dataset and the complexity of 
the property to be modeled, we selected the XGBoost (Extreme Gradient 
Boosting) machine learning algorithm [72], an advanced implementa-
tion of gradient-boosted decision trees (GBDT) particularly effective at 
managing non-linear relationships and feature interactions. Compared 
to simpler models such as multivariate linear regression (MLR) and more 
complex models like neural networks, which often overfit unless pro-
vided with large datasets, XGBoost offers a balanced solution. It main-
tains model simplicity while handling effectively our dataset of 886 
observations and 13 features. These features include 11 elemental con-
centrations (the palette of elements found in RHEAs: Al, Cr, Hf, Mo, Nb, 
Si, Ta, Ti, V, W, and Zr) as well as the time and temperature of 
isothermal oxidation exposure under air, as these variables are critical 
for accurately predicting oxidation resistance in RHEAs. The selection 
ensures a comprehensive representation of the chemical and operational 
conditions affecting oxidation outcomes, specifically the specific mass 
gain.

To enhance our model training and evaluation, we implemented 
Iterated Nested k-fold Cross Validation with Shuffling (INKCVS) [73]. 
This method is particularly effective in hyperparameter optimization, 
rigorous model selection, robustness assessment, and evaluating 
generalization capabilities. Hyperparameters, which are predefined 
settings that are derived during training, play a critical role as they in-
fluence the training process and must be carefully selected and tuned to 
optimize performance. We tailored several XGBoost hyperparameters to 
better suit our dataset’s specific challenges. Adjustments included 
reducing tree depth to prevent excessive complexity and overfitting, 
increasing the node creation threshold to improve generalization, and 
using partial data sampling to enhance tree diversity and reduce over-
fitting risks.

Nested k-fold Cross Validation (NKCV) involves two levels: an inner 
loop for model training and hyperparameter tuning, and an outer loop 
for validating the model’s performance. This structure not only en-
hances standard cross-validation by adding an additional level of vali-
dation to prevent overfitting to a single data subset but also provides a 
more reliable estimate of the model’s ability to generalize to new data. 
Configured with 5 splits in the inner loop and 4 splits in the outer loop, 
our setup minimizes data leakage and overfitting by ensuring unbiased 
evaluations based on multiple, independent tests across the dataset.

Shuffling the dataset before each iteration mitigates any bias from 
inadvertent patterns in the data order, thereby enhancing the robustness 
of evaluations. Iterating this process 25 times allows each input row to 
contribute to 100 predictions (4-fold out CV times 25 interactions), 
facilitating a detailed computation of residuals and the standard devi-
ation of predictions for each input. We chose the mean absolute error 
(MAE) as our evaluation metric for its resistance to outliers—preventing 
extreme values from disproportionately skewing the results—and for its 
straightforward interpretation. To prevent bias toward features with 
larger scales, we normalized the data using the Standard Scaler, which 
standardizes features by removing the mean and scaling to unit 
variance.

Fig. 3 illustrates the predictive accuracy of the Gradient Boosted 
Decision Trees (GBDT) model by comparing the actual versus predicted 
specific mass gains, ln(Δm∗), for each of the 861 unique observations, 
which include specific alloy compositions, temperatures, and oxidation 
durations. A dashed 1:1 line indicates perfect agreement. The model’s 
effectiveness is evaluated using MAE and standard deviation, calculated 
over all predictions from the 100 models generated during the INKCVS. 
These metrics are averaged over all predictions made by the 100 models 
for each observation in the databases. Additionally, predictions on the 5 
test alloys, comprising 25 observations, are depicted with black dots 
with red edges. Although the average MAE for unseen data is slightly 
higher than for INKCVS, the model effectively infers the target property 

with significant accuracy, demonstrating strong generalization 
capabilities.

This rigorous approach ensures the selection of the best model from 
among the 100 that were trained during the INKCVS, with finely tuned 
hyperparameters, making the model robust and capable of generalizing 
well. The optimal model underwent a final round of training on the 
entire dataset, now including 886 observations, to ensure its full opti-
mization. Fig. 4 compares these results with those of a multivariate 
linear regression (MLR) model trained on the same dataset. Performance 
metrics such as the coefficient of determination (R2), root mean squared 
error (RMSE), and MAE highlight the superior performance of the GBDT 
model compared to the MLR model.

SHAP (SHapley Additive exPlanations) [74] values are used to 
analyze and visualize the impact of various features on model pre-
dictions. Initially, the correlation coefficient between the SHAP values 
and the actual feature values is calculated to determine if a feature’s 
influence on the target is positive or negative. To quantify the overall 
importance of each feature, the absolute average of their SHAP values is 
computed. These results are visualized in a horizontal bar chart (Fig. 5), 
where features impacting the model positively are indicated in red and 
those with a negative impact are shown in blue. This visualization 
highlights the most influential features affecting specific mass gain. 
Ranked by importance, they include oxidation temperature, Nb con-
centration, oxidation time, and Al concentration. Notably, oxidation 
temperature and time, along with concentrations of Nb, Zr, V, Ti, W, and 
Hf, positively correlate with an increase in specific mass gain, indicating 
a detrimental effect on oxidation resistance. Conversely, increases in Al, 
Mo, Cr, Ta, and Si concentrations lead to a decrease in specific mass 
gain, enhancing oxidation resistance.

From a physical standpoint, the formation of thermodynamically 
stable oxides like Al2O3 [75], Cr2O3 [76], and SiO2 [77], which exhibit 

Fig. 3. Accuracy of the Gradient Boosted Decision Trees (GBDT) model in 
predicting specific mass gain due to oxidation in air between 600–1400 ◦C and 
over durations ranging from 3 to 100 h, as determined through Iterated Nested 
K-fold Cross Validation with Shuffling (INKCVS). Each of the 861 data point 
represents a unique combination of alloy composition, temperature, and 
oxidation duration. The mean absolute error (MAE) and standard deviation 
from INKCVS are displayed. Additionally, MAE for the unseen test set of 5 
random alloys (black dots with red edges representing 25 observations), 
calculated from the residuals between predicted and actual values, is 
also shown.
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low oxygen permeability, in Al, Cr, or Si-bearing RHEAs, explains the 
positive impact of these elements on oxidation resistance. In contrast, 
the addition of Zr and V has been found to degrade oxidation resistance 
due to the formation of non-protective oxides or promoting internal 
oxidation [7]. Conversely, Ta-containing alloys, such as TaMoCrTiAl [8] 
and Al18Si3Ti5Cr25Nb15Mo20Ta13 [9], benefit from the formation of 
CrTaO4, a complex protective oxide layer. However, Nb’s presence in 
alloys such as NbMoCrTiAl [8] tends to reduce resistance, leading to the 
development of porous Nb2O5 scales that facilitate severe oxide spall-
ation. Titanium presents a more nuanced case. While the SHAP analysis 
indicates that increasing the Ti level generally results in heightened 
mass gain—suggesting a negative impact on oxidation resis-
tance—literature points to beneficial effects in specific contexts. For 
instance, Ti supports the formation of protective CrTaO4 layers [6], and 
its presence in small quantities within certain RCCA formulations leads 
to the formation of rutile-type complex oxides that improve overall 
resistance [7]. This paradoxical behavior of titanium is captured in our 
model’s nuanced analysis, as depicted in the inset of Fig. 5, where Ti can 
enhance the oxidation resistance when used in low concentration.

This detailed understanding of how various elements influence the 
oxidation resistance of RHEAs and RCCAs informs the design of future 
alloys optimized for high-temperature performance. Our AI model’s 
predictions, aligning with these experimental findings, confirm its ac-
curacy and reliability. This synergy between experimental results and AI 
predictions underscores the model’s effectiveness in reflecting real- 
world alloy behavior under high-temperature conditions, thus serving 
as a crucial tool for alloy composition optimization.

For a final and rapid validation, we utilized our fine-tuned GBDT 
model to explore the target space for specific mass gain values of 1, 3 and 
7 mg/cm2. We focused on the quinary system Al-Cr-Mo-Ta-Ti, with each 
component adjusted in 5 % compositional steps. From the inferences, we 
selected the compositions Al30Cr25Mo20Ta15Ti10, Al30Cr30Mo20Ta5Ti15, 
and Al30Cr30Mo30Ta5Ti5, produced them via arc-melting, and then 
measured their specific mass gains during a 20 h oxidation test in air at 
1000 ◦C. The results are depicted in Fig. 4 as black dots with red edges. 
While they can lie far from the 1:1 line for the multivariate linear model, 

Fig. 4. Comparison of the best Gradient Boosted Decision Trees (GBDT) model and a Multivariate Linear Regression model in predicting specific mass gain due to 
oxidation in air between 600–1400 ◦C and over durations ranging from 3 to 100 h, after retraining with the entire dataset. Each of the 886 data points represents a 
unique combination of alloy composition, temperature, and oxidation duration. For each model, the mean absolute error (MAE), root mean squared error (RMSE), 
and coefficient of determination (R2) are depicted. These metrics are calculated based on the residuals between the predicted and actual values. The three black dots 
with red edges represent a final experimental validation of the model’s predictions.

Fig. 5. Impact of model features on specific mass gain prediction. Average 
SHAP values for model features in predicting specific mass gain, ordered by 
descending importance. Bars are colored to indicate the nature of each feature’s 
impact on predictions: red for positive and blue for negative influences. Inset 
figure shows the positive and negative relationships of the Ti concentration 
with specific mass gain.
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they closely align with the 1:1 line for our fine-tuned GBDT model, 
indicating strong agreement between predicted and observed outcomes. 
This successful experimental validation of the GBDT model’s pre-
dictions, alongside comparisons to simpler a model, confirms the 
model’s effectiveness in efficiently mapping the design space. Further-
more, this validation also serves as a practical demonstration of our 
model’s application. Looking ahead, we plan to integrate this model 
with other AI-models previously developed for assessing high- 
temperature strength and room temperature ductility of refractory 
high-entropy alloys [78]. This integration aims to comprehensively map 
the three-dimensional Pareto front, delineating the trade-offs between 
these mechanical properties and high-temperature oxidation resistance, 
thus extending our model’s utility beyond this study.

In summary, we developed an experimental database with 886 ob-
servations on oxidation mass gain in RHEAs, now available in the sup-
plementary materials. Despite potential biases and noise in this 
experimental dataset, our Gradient Boosted Decision Trees model 
effectively predicts specific mass gain using alloy composition 
(including elements like Al, Cr, Hf, Mo, Nb, Si, Ta, Ti, V, W, and Zr), and 
oxidation conditions (temperature and duration). This model balances 
accuracy with generalization, proving invaluable in early material 
design stages by enabling rapid evaluations to eliminate unsuitable 
materials and identify promising ones. This facilitates quicker, more 
focused resource allocation in materials research. We acknowledge that 
specific mass gain captures only one facet of oxidation resistance. 
Quantifying oxidation resistance through a single value can be complex 
as it might encompass both mass gain from oxide formation and mass 
loss due to spallation or vaporization. To address these complexities, 
future work could explore the application of the Pilling-Bedworth ratio 
[79], which assesses the volume changes of oxide formations relative to 
the original metal and would complement our approach by enhancing 
the overall understanding of oxidation behavior.
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