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Abstract

The spectrum of the weighted sample covariance shows a asymptotic non random
behavior when the dimension grows with the number of samples. In this setting, we
prove that the asymptotic spectral distribution F of the weighted sample covariance
has a continuous density on R∗. We address then the practical problem of numeri-
cally finding this density. We propose a procedure to compute it, to determine the
support of F and define an efficient grid on it. We use this procedure to design
the WeSpeR algorithm, which estimates the spectral density and retrieves the true
spectral covariance spectrum. Empirical tests confirm the good properties of the
WeSpeR algorithm.

1 Introduction and related work

In Random Matrix Theory - RMT -, the sample covariance spectrum has a non-random limit, denoted
F , when the dimension grows linearly with the number of samples. In this regime, the sample spectral
distribution does not converge to the population spectral distribution, but to a limit described by the
Marcenko-Pastur equation [1]. The joint work of Silverstein and Choi [2] gives important results on
the asymptotic distribution F : F has a density on R∗, and its support can be computed with a simple
procedure without any sampling of high dimensional sample covariance matrices.

Those results were directly used in the design of the algorithm QuEST by Ledoit and Wolf [3], aiming
at retreving the population covariance spectrum and the sample covariance asymptotic density F ′.

Those works focus on the sample covariance matrix, however in practice we often face weighted
sample covariance matrices, in particular in multivariate time series analysis. Indeed, weighting
schemes, such as the exponential weighted moving average (EWMA), are a model-free approach,
and represent a widely used method to estimate statistics. They were used in covariance estimation
for portfolio management in [4], further studied for covariance filtering in [5], for financial spectrum
estimation in [6], and recently Tan et al.[7] developped a NERCOME-like approach for EWMA
sample covariance in a dynamic brain connectivity setting.

For the generalization to the weighted sample covariance of the asymptotic results on the spectral
distribution, the work of Oriol [8] gives a Fundamental Equation similar to Marcenko-Pastur equation.
The high dimensional spectrum also converges to a non-random distribution F .

This work aims at studying F for weighted sample covariances, in order to retrieve the population
spectrum, and numerically compute the sample density.

We prove that the asymptotic sample spectrum has a density on R∗. We then provide a procedure to
compute it at any point x ∈ R∗. Moreover, we design a method to find numerically the asymptotic
support SF of the spectrum F , so that we can numerically detect spectral gaps and determine a precise
discretization grid on SF . This is the approach used by Ledoit and Wolf [3] in the QuEST function
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for the standard sample covariance: we present here WeSpeR that generalizes the idea to weighted
sample covariance and makes use of automatic differentiation for a greatly simplified implementation.

Experimentally, we propose an algorithm based on these results. It retrieves the population spectrum
from a weighted sample covariance, and computes the asymptotic density F ′ of the sample spectrum.

2 Notations, definitions and hypotheses

Notation is not constant across major works on the spectrum of sample covariances, we mostly follow
Silverstein [9].

Notation 1 (The data matrix). There are N samples of dimension n. We have:

• cn = n
N the concentration ratio,

• Zn is the noise n×N matrix composed of i.i.d centered complex entries of variance 1,

• Tn is the true covariance, a non-negative definite Hermitian matrix of size n× n,

• Wn is the weight matrix, a N ×N diagonal non-negative real matrix,

• Yn = T
1/2
n Zn is the observed data matrix.

The object of interest is the weighted sample covariance Bn, particularly its spectrum of eigenvalues,
which is introduced below.

Notation 2 (Weighted sample covariance). For n ∈ N∗, the weighted sample covariance is defined:

Bn :=
1

N
T 1/2
n ZnWnZ

∗
nT

1/2
n .

Moreover, we denote (τ
(n)
1 , ..., τ

(n)
n ) the eigenvalues of Tn in decreasing order, and (λ

(n)
1 , ..., λ

(n)
n )

the eigenvalues of Bn in decreasing order.

Example 1 (Standard weighting). The most simple weighting is the constant weighting: Wn = IN .
In this situation, Bn is the standard sample covariance, and its asymptotic spectrum is described by
the Marcenko-Pastur theorem [1].

Example 2 (Exponentially weighted scheme). A common choice in time series analysis is the
exponentially weighted scheme. Parametrized by some α ∈ R∗

+, we define the weights as:

∀i ∈ J1, NK, (Wn)ii = βe−αi/N ,

β = e−α/N 1− e−α/N

1− e−α
.

Notation 3 (Empirical spectrum distribution). We consider a Hermitian matrix A of size n× n with
real eigenvalues (µ1, ..., µn). We define the empirical spectrum distribution of A, denoted FA, as:

FA :=
1

n

n∑
i=1

1[µi,+∞[.

We describe now several assumptions, the same used in Ledoit and Péché [10], extended to the
weighted situation. These assumptions define the framework of what we call "high dimensional
setting": the dimension and number samples grow linearly together, and the empirical spectrum
distribution converges.

Assumption 1. We assume the following hypotheses.

H1: Zn is a (n,N) matrix of real or complex iid random variables with zero mean, unit variance.

H2: Tn is a random Hermitian positive definite matrix, Wn is a diagonal random positive definite
matrix, and Zn, Wn and Tn are mutually independent.

H3: cn = n
N → c ∈ R∗

+ as n → ∞.
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Figure 1: Theoretical F , and observed FBn using H = 1
51[1,∞[ +

2
51[3,∞[ +

2
51[10,∞[, D uniform

between 1/2 and 3/2, c = 0.25, and empirical eigenvalues sampled with n = 2000.

H4: FTn =⇒
n→∞

H almost surely, where =⇒ denotes weak convergence. H defines a probability

distribution function (p.d.f.), whose support SH is included in the compact interval [h1, h2]
with 0 < h1 ≤ h2 < ∞.

H5: FWn =⇒
n→∞

D a.s.. D defines a probability distribution function, whose support SD

is included in the compact interval [d1, d2] with 0 < d1 ≤ d2 < ∞. Moreover, a.s.,∫
xdFWn(x) →

∫
xdD(x).

3 The asymptotic spectrum F has a density on R∗

As stated in the Theorem 2 [8], Fn is asymptotically non random, we denote its limit F . We give
here a weaker form of the Theorem, that needs fewer assumptions.
Theorem 1 (Theorem 2 [8]). Assume H1 to H5. Then, almost surely, FBn converges weakly to a
nonrandom p.d.f F , whose Cauchy-Stieltjes transform m := mF satisfies for all z ∈ C+:

m(z) = −1

z

∫
1

τX(z) + 1
dH(τ), (1)

where for all z ∈ C+, X(z) is the unique solution in C+ of the following equation:

X(z) = −
∫

δ

z − δc
∫

τ
τX(z)+1dH(τ)

dD(δ).

An example of asymptotic spectrum F is given in Figure 1. A key objective of this work is to derive
properties of F through the analysis of X . This study leads to show that F has a density on R∗, and
even R if c < 1. Moreover, we prove that the support of F , denoted SF can be retrieved with a
simple function analysis.

We define the functionals Θg which are the objects of interest of this section. This functional play a
central role in the asymptotic analysis of F , through m [8], and its optimal shrinkage, through Θ(1)

and Θ(−1) particularly [10].
Definition 1 (Θg). For g : [h1, h2] → R a bounded function with a finite number of discontinuities,
we define:

Θg(z) = −1

z

∫
g(τ)

τX(z) + 1
dH(τ),

where for all z ∈ C+, X(z) is the unique solution in C+ of the following equation:

X(z) = −
∫

δ

z − δc
∫

τ
τX(z)+1dH(τ)

dD(δ).

For k ∈ Z, we denote Θ(k) = Θg for g : t 7→ tk and m := Θ(0).
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The next result controls the behavior of X , m and Θg near the real line. This theorem and its proof
contain most of the theoretical ideas that lead to the rest of the article.
Theorem 2 (Continuity on R∗). Assume the conditions H1-H5. Then, for λ ∈ R∗, we have that
X̌(λ) := limη→0+ X(λ+ iη), m̌(λ) := limη→0+ m(λ+ iη) and Θ̌(1)(λ) := limη→0+ Θ(1)(λ+ iη)
exist.

Moreover, for g : [h1, h2] → R bounded with a finite number of discontinuity points, Im[Θ̌g(λ)] :=
limη→0+ Im[Θg(λ+ iη)] exists.

One key implication of this theorem is the existence of a density for F on R∗. More generally, most
of the interesting information we use from Θg or m comes from the limit of the imaginary part on
the real line in the unweighted case: density, support retrieval [2], shrinkage [10] for example. So,
the existence of such a limit on the real line is an essential result to extend the results of unweighted
sample covariance to the weighted case.
Corollary 1 (Density of F ). Assume the conditions H1-H5. Then, F has a density on R∗. If c < 1,
F has a density on R. Its density is F ′ = 1

π Im[m̌(·)].

Moreover, for λ ∈ R∗\{x ∈ SF , F
′(x) = 0} and g : [h1, h2] → R bounded with a finite number of

discontinuity points:

m̌(λ) = − 1

λ

∫
1

τX̌(λ) + 1
dH(τ),

Θ̌(1)(λ) = − 1

λ

∫
τ

τX̌(λ) + 1
dH(τ),

Im[Θ̌g(λ)] =
1

λ

∫
g(τ)τ Im[X̌(λ)]

|τX̌(λ) + 1|2
dH(τ).

One interesting point that emerges directly from this corollary is that no matter the regularity of D
and H , typically even if they are mixtures of Diracs, then F always has a density on R∗. It was
noticed in [2] for the unweighted scenario, and the result is generalized here.

4 Numerical computation of X̌ , m̌ and Im[Θ̌g]

In this section, we adress the practical problem of numerically computing X̌ at a point λ ∈ R∗ while
knowing H , D and c. We saw in Corollary 1 that computing X̌(λ) is enough to compute m̌(λ) or
Im[Θ̌g](λ).

Those quantities are in practice what we are interested in: for example 1
π m̌(λ) is the density of F in

λ, Im[Θ̌(1)(λ)] and Im[Θ̌(−1)(λ)] are closely linked to non-linear shrinkage [10].

We define, for z ∈ C:

fz : X 7→ X +

∫
δ

z − δc
∫

τ
τX+1dH(τ)

dD(δ)

We assume that fz is easy to evaluate at any X ∈ C in its domain of definition. This is the practical
case where H and D are finite mixtures of diracs for example, or when they can be efficiently sampled
for Monte-Carlo evaluation.

In this situation, X(z) for z ∈ C+ is the unique solution to fz(X) = 0 for X ∈ C\C− and can be
solved as a classical minimization problem. In our experiments, a first-order minimization algorithm
worked efficiently for this task.

However, computing the limit X̌(λ) = limz∈C+→λ X(z) for λ ∈ R∗ is a priori a more difficult task.
Fortunately, we prove that X̌(λ) is a solution to the equation fλ(X) = 0, which is a first important
step.

But, we cannot apply the same method as with z ∈ C+ and directly solve fλ(X) = 0 for X ∈ C\C−
because there can be many solutions to this equation. Indeed, considering D = 1[1,+∞] and H a
mixture of N ∈ N∗ diracs, fλ(X) = 0 as up to N different solutions in C\C−.

We can split the problem into two different scenarios:
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• if X̌(λ) ∈ C+, then X̌(λ) is the unique solution in C+ (and not C\C− this time) of the
equation fλ(X) = 0,

• otherwise, i.e. X̌(λ) ∈ R, the equation (on X) fλ(X) = 0 has only real solutions and X̌(λ)
is one of them.

This is formally stated in the following theorem.

Theorem 3 (X̌ computing). Assume the conditions H1-H5. Then, for λ ∈ R∗\{x ∈ SF , F
′(x) = 0},

we denote fλ : X ∈ C+ ∪R 7→ X +
∫

δ
λ−δc

∫
τ

τX+1dH(τ)
dD(δ), where R is its domain of definition

included in R. Then, we have that fλ(X̌(λ)) = 0. Moreover,

X̌(λ) ∈ C+ ⇐⇒
fλ(X) = 0 has at least a solution in X ∈ C+.

Based on this result, we suggest the following procedure to compute X̌(λ).

Proposition 1 (Procedure for computing X̌(λ), λ ∈ R∗). Let λ ∈ R∗\{x ∈ SF , F
′(x) = 0}. To

compute X̌(λ):

• try to solve fλ(X) = 0 on C+ (or C+ϵ := {z ∈ C, Im[z] ≥ ϵ)} for some ϵ > 0), if it
succeeds with a solution X0 ∈ C+ (or in C+ϵ for numerical reasons) then X̌(λ) = X0,

• otherwise, X̌(λ) ∈ R, solve fλ+iη(X) in C+, for some η > 0 small, there is a unique
solution X(λ+ iη) and use X̌(λ) = Re[X(λ+ iη)].

Remark that as F ′ is continuous - due to Theorem 2.2 [9] -, {x ∈ SF , F
′(x) = 0} is of measure zero.

The other question we need to adress in order to compute for example the density of F , is: what is
the support of F , denoted SF ?

Without it, it can be hard to find a grid on R∗ to cover the "interesting" parts of the distribution. One
simple idea is to draw a sample covariance and compute its spectrum. Only made of Diracs, this will
not disclose the spectral gaps and the grid can easily miss them if not chosen appropriately. Moreover,
based on a remark of Ledoit and Wolf [3], the density as a square-root behaviour near the border
of SF , and for numerical approximation we benefit from increasing the density of the grid near the
border.

The following section propose a simple way to find SF without drawing a sample covariance,
generalizing an idea from Silverstein and Choi [2] for unweighted sample covariance.

5 Identification of SF

The purpose of this section is to find the support of F , denoted SF . The idea is to use one or several
well-chosen real functions, easy to compute, and deduce the border of SF from the zero’s of their
derivatives. This method do not rely on sampling any weighted sample matrix and can detect even
very small spectral gaps.

Let us start where the support of the weight distribution, denoted SD, is convex.

5.1 Identification of the support of F in function of H when SD is convex

This case is very similar to the unweighted scenario, studied in [2]. Indeed, the number of spectral
gaps in SF is bounded by the number of gaps in SH , and one function is enough to detect all of them.
The function we are interested in to determine SF is xF , defined below.

Definition 2. Suppose SD is convex, i.e. SD is of the form [d1, d2]. We define:

mLD : x ∈ Sc
D 7→

∫
δ

δ − x
dD(δ) ∈ R∗.
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Figure 2: xF (−1/u) for u ∈ Sc
H , using H = 1

51[1,∞[ +
2
51[3,∞[ +

2
51[10,∞[, D uniform between

1/2 and 3/2, c = 0.1, and empirical eigenvalues sampled with n = 1000, Gaussian noise.

Notice that mLD is invertible. Moreover, we define, with B = {y ∈ R, y ̸= 0,− 1
y ∈ Sc

H}:

xF : X ∈ B 7→

{
h(X)
X m−1

LD (h(X)) , if h(X) ̸= 0,

− 1
X

∫
δdD(δ) , otherwise.

with h : X ∈ B 7→ cX

∫
τ

τX + 1
dH(τ).

Proposition 2. Suppose SD is convex. Then xF ∈ C1(B,R).

The practical result in the following theorem links SF with the derivative of xF .

Theorem 4. Assume H1-H5. Suppose SD is convex. Then, x ∈ Sc
F ⇐⇒ X ∈ B and x′

F (X) > 0,
where X and x are linked respectively by X = X̌(x) and x = xF (X).

The procedure to use this theorem is simple:

• find the open intervals (]ai, bi[)i of B, ai < bi, where ∀i,∀X ∈]ai, bi[, x′
F (X) > 0,

• then, Sc
F = ∪

i
]xF (ai), xF (bi)[.

Numerically, we only need to find the zeros of x′
F and compute the value of xF at those points.

An example is given in Figure 2, and illustrate the use of the theorem, and the precision of the
prediction. Additional figures and experiments for diverse weight distributions are detailed in the
Appendix and implementation is given in the supplementary material.

5.2 Identification of SF in function of H when SD is a finite union of intervals

In the more general case where SD is a finite union of intervals, the method can be extended. This
case is useful in the case of D being a finite mixture of Diracs for example. This method requires as
many functions x(k)

F as there are disjoint intervals in SD.

Definition 3. Suppose SD finite union of M ∈ N∗ intervals, i.e. there exists δ(1)1 ≤ δ
(1)
2 < ... <

δ
(M)
1 ≤ δ

(M)
2 such that SD = ∪M

k=1[δ
(k)
1 , δ

(k)
2 ]. We define for k ∈ J1,M − 1K:

m
(k)
LD : x ∈]δ(k)2 , δ

(k+1)
1 [7→

∫
δ

δ − x
dD(δ),
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and,

m
(M)
LD : x ∈ R\[δ(1)1 , δ

(M)
2 ] 7→

∫
δ

δ − x
dD(δ).

For all k ∈ J1,MK, m(k)
LD is invertible. Moreover, we define for k ∈ J1,M − 1K, with B = {y ∈

R, y ̸= 0,− 1
y ∈ Sc

H}:

x
(k)
F : X ∈ B 7→ h(X)

X

(
m

(k)
LD

)−1

(h(X)) ,

and we define x
(M)
F : X → R as, for X ∈ B:

x
(M)
F (X) =

{
h(X)
X

(
m

(M)
LD

)−1

(h(X)) , if h(X) ̸= 0,

− 1
X

∫
δdD(δ) , otherwise.

As Proposition 2, we have the following result.

Proposition 3. Suppose SD finite union of M ∈ N∗ intervals, then ∀k ∈ J1,MK, x(k)
F ∈ C1(B,R).

In this scenario, the theorem linking SF to the (x
(k)
F )k is similar to Theorem 4: if any of the x

(k)
F is

increasing on an interval I ⊂ R, then x
(k)
F (I) ⊂ Sc

F . This is formally stated in the following theorem.
Theorem 5. Suppose H1-H5 and SD finite union of M ∈ N∗ intervals. Let x ∈ R∗. Then,

x ∈ Sc
F ⇐⇒ ∃k ∈ J1,MK,∃X ∈ B,

(
x
(k)
F

)′
(X) > 0 and

(
x
(k)
F

)
(X) = x.

This result highlights a phenomenom of higher spectral separation than the previous section where
SD was made of only one interval. Let us look at the same example of distribution H we studied
previously: H being a mixture of 3 diracs in 1, 3, and 10 with respectively weights 0.2, 0.4 and
0.4. With SD made of one interval, SF is a union of at most 3 distinct intervals. Now, the situation
is different, each separation in the support of the weights can lead to a spectral separation in the
empirical spectrum.

We show this specific behaviour with weights following a mixture of two diracs in Figure 10 where 3
spectral gaps are visible in SF while SH has only 2 gaps. The case with N diracs is discussed in the
Appendix, along with a way to compute it efficiently.

In practice, it can be computationally demanding to compute each of the x(k)′

F and find its zeros if M
is large. A general heuristic we observed experimentally is that studying x

(M)′

F is enough to find out
most of the gaps if SD has no "large" gaps.

6 WeSpeR: retrieving H and computing F ′

In this section, we propose an application of the previous theoretical results for retrieving the true
spectrum distribution H as a mixture of diracs from observed weighted sample eigenvalues (λi)

n
i=1,

and using this distribution H to compute the empirical spectrum density F ′.

The following algorithm, denoted WeSpeR for Weighted sample covariance Spectrum Retrieval
algorithm, generalizes to weighted sample covariance the idea of the QuEST algorithm [3], with the
help of auto-differentiation to greatly simplify its implementation.

1- As input, we take the observed sample spectrum distribution Fn = 1
n

∑n
i=1 1[λi,∞[ and the

weight matrix W .

2- Find the estimated true spectrum Ĥ(τ) = 1
n

∑n
i=1 1[τi,+∞[ where τ solves:

min
τ∈Rn

EZ

[∥∥∥F̃n(Z)− Fn

∥∥∥2
W,2

]
(2)

where ∥·∥W,2 is the 2-Wasserstein norm and F̃n(Z) := F
1
N

√
TZWZ∗√T with:

– T = Diag ((τi)ni=1),
– Z of size (n,N) with iid Zij ∼ N (0, 1).
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Figure 3: u 7→ x
(k)
F (−1/u) for u ∈ Sc

H , using H = 1
51[1,∞[ +

2
51[3,∞[ +

2
51[10,∞[, D =(

1− 1
80

)
1[ 12 ,∞[ +

1
801[ 79

160 ,∞[, c = 0.1, and empirical eigenvalues sampled with n = 1000. (Left)
Whole spectrum. (Right) Zoom for small eigenvalues.

We use automatic differentiation to solve it.

3- Find the support SF of F using Theorems 4 or 5 for Ĥ , c and the considered weight

distribution in input. For all, or a subset of, k ∈ J1,MK, find the zeros of
(
x
(k)
F

)′
.

4- Define a grid (ξi)
n
i=1 on SF with higher density near ∂SF , as defined in [3], compute m̌ on

the grid with Proposition 1 and deduce F ′ = 1
π Im[m̌].

The algorithm is fully detailed in the Appendix, notably points (3) and (4), and the implementation
given in the supplementary material.

Remark 1 (Noise sampling). We note that the expectation in (2) can be computed under any centered
and standardized distribution, irrespectively of the noise of the observed phenomenon due to the
universality of Theorem 2 [8].

An experimental result is shown in Figure 4 to illustrate how WeSpeR works. We used H =
1
51[1,∞[ +

2
51[3,∞[ +

2
51[10,∞[, D exponentially weighted with α = 1, c = 0.1, and Zij ∼ N (0, 1).

More experiments are available in the Appendix.

7 Conclusion

This work aims at studying the inherent properties of the asymptotic spectrum F of weighted sample
covariance matrices. We prove that F has a density on R∗ and find numerical procedure to compute
it.

We propose a method to retrieve the support SF of F through a study of simple real functions,
enlighting a new phenomenon of spectral gaps that does not exist with the standard sample covariance.

We use these theoretical results and procedure to design WeSpeR: an algorithm addressing the problem
of numerically estimating the true covariance spectrum H and the asymptotic sample density F ′ of a
weighted sample covariance, two essential but non-observable objects. Empirical tests confirm the
performance of the WeSpeR algorithm.
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Figure 4: (Top) Histograms of sample eigenvalues, estimated population eigenvalues Ĥ with WeSpeR,
and true population eigenvalues H . (Middle) u 7→ xF (−1/u) using the estimated Ĥ to detect the
estimated support SF . (Bottom) Estimated and true sample density computed on SF and sample
eigenvalues histogram.
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8 Appendix A - Additional experiments, implementation details

8.1 Support identification for SD convex

8.1.1 Examples of weight distribution: EWMA distribution

In time series analysis, the Exponentially-Weighted Moving Average - EWMA - is a widely used
weighting scheme from neuroscience to finance as detailed in the introduction (see [4, 5, 6, 7]). The
asymptotic distribution p.d.f. Dα of the weights in a EWMA setting is defined in the following
definition. The decay of the EWMA is controlled through the parameter α ∈ R+: the larger α, the
steeper the decay. Some examples of densities for different values of α are shown in figure 5.
Definition 4 (EWMA distribution). For α ∈ R+, we consider the following weight p.d.f.:

Dα : x ∈ [βe−α, β] 7→ 1 +
1

α
log

(
x

β

)
with β =

α

1− e−α
. (3)

Then, we have the following closed-form formulas for mLD and m−1
LD:

mLDα
: x ∈ R\[βe−α, β] 7→ 1

α
log

(
1 +

α

βe−α − x

)
,

m−1
LDα

: y ∈ R∗ 7→ βe−α +
α

1− eαy
.

(4)

Figure 5: EWMA density D′
α for different α.

Two examples of identification of the support are shown in figure 6 when there is spectral separation,
and in figure 7 when there is not.

8.1.2 Examples of weight distribution: uniform distribution

Proposition 4 (Uniform distribution). For α ∈ [0, 2[, we consider the following weight distribution:

Dα : x ∈ R 7→ x− 1 + α/2

α
1[1−α/2,1+α/2](x) + 1[1+α/2,+∞[(x). (5)

Then, we have the following closed-form formulas for mLD:

mLDα : x ∈ R\[1− α/2, 1 + α/2] 7→ 1 +
x

α
log

(
1 +

α

1− α
2 − x

)
. (6)

m−1
LD has no closed-form formulas and it can be retrieved through numerical optimization.

11



Figure 6: xF (−1/u) for u ∈ Sc
H , using H being a mixture of 3 diracs in 1, 3, and 10 with respectively

weights 0.2, 0.4 and 0.4 as in [2], Dα EWMA distribution with α = 5, c = 0.1, and empirical
eigenvalues sampled with p = 1000. Horizontal lines are plotted at the zeros of x′

F , they represent
the theoretical borders of SF .

Figure 7: xF (−1/u) for u ∈ Sc
H , using H being a mixture of 3 diracs in 1, 3, and 10 with respectively

weights 0.2, 0.4 and 0.4 as in [2], Dα EWMA distribution with α = 10, c = 0.1, and empirical
eigenvalues sampled with p = 1000. Horizontal lines are plotted at the zeros of x′

F , they represent
the theoretical borders of SF .
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Two examples of identification of the support are shown in figure 8 when there is spectral separation,
and in figure 9 when there is not.

8.1.3 Numerical implementation of spectrum support identification

In all the implementation, we assume we can compute m−1
LD, t : u ∈ Sc

H 7→ c
∫

τ
τ−udH(τ), and the

derivatives m′
LD, m′′

LD, t′ and t′′ at any point. Moreover, we assume we have access to a root-finding
algorithm taking in input a real function f and two real values (x0, x1) such that f(x0) and f(x1)
have different signs. The idea is inspired from the QuEST algorithm [3].

We implement the algorithm in the scenario where SH can be written as a finite disjoint union of

intervals, i.e. for some K ∈ N∗, SH =
K
∪
i=1

[τ li , τ
r
i ] where τ l1 ≤ τ r1 < ... < τ lK ≤ τ rK .

For convenience, we use the increasing change of variable u 7→ −1/X , and consider the function
yF : u ∈ Sc

H 7→ xF (−1/u). We have, for u ∈ Sc
H with t : u ∈ Sc

H 7→ c
∫

τ
τ−udH(τ):

yF (u) = −ut(u)m−1
LD(t(u)),

y′
F (u) = −t(u)m−1

LD(t(u))− ut′(u)

(
t(u)

m′
LD

(
m−1

LD(t(u))
) +m−1

LD(t(u))

)
,

y′′
F (u) = −(2t′(u) + ut′′(u)))m−1

LD(t(u))− 2 (t(u) + ut′(u)) t′(u) + ut(u)t′′(u)

m′
LD

(
m−1

LD(t(u))
) −

ut(u)t′(u)2m′′
LD

(
m−1

LD(t(u))
)

m′
LD

(
m−1

LD(t(u))
)3 .

(7)

We are going to construct iteratively Sc
F . At step 0, we consider (Sc

F )0 = ∅. There are three different
situations.

• Firstly, on the interval ]−∞, τ l1[, we are looking for the unique zero of y′F . As y′F (u) −→
u→−∞∫

δdD(δ) > 0 and y′F (u) −→
u→τ l−

1

−∞, we can find easily with line search two points

(u1, u2) ∈]−∞, τ l1[
2 such that y′F (u1) > 0 and y′F (u2) < 0. We can use the root-finding

algorithm of y′F between u1 and u2, giving us the solution u∗
l . In conclusion of this part, we

update (Sc
F )1 = (Sc

F )0∪]−∞, yF (u
∗
l )[.

• Similarly, on the interval ]τ rK ,+∞[, we are looking for the unique zero of y′F . As
y′F (u) −→

u→+∞

∫
δdD(δ) > 0 and y′F (u) −→

u→τr+
K

−∞, we can apply the previous pro-

cedure in ]τ rK ,+∞[ and find u∗
r , root of y′F in ]τ rK ,+∞[. In conclusion of this part, we

update (Sc
F )2 = (Sc

F )1∪]yF (u∗
r),+∞[.

• For each i ∈ J1,K−1K, we consider the interval ]τ ri , τ
l
i+1[. This time, we have y′′F (u) −→

u→τr+
i

+∞ and y′′F (u) −→
u→τ l−

i+1

−∞. Still through line-search, we can use the root-finding algorithm

on y′′F . We expect y′′F to have only one zero, denoted by u0 ∈]τ ri , τ li+1[ on this interval.

– If y′F (u0) ≤ 0, there is no spectral gap to be found on this interval.

– Otherwise, we are looking for two zeros of y′F : one on ]τ ri , u0[ and one on ]u0, τ
l
i+1[.

As y′F (u) −→
u→τr+

i

−∞ and y′F (u) −→
u→τ l−

i+1

−∞, we can apply the line-search and use

the root-finding algorithm on each interval, outputting two solutions: u∗
l ∈]τ ri , u0[ and

u∗
r ∈]u0, τ

l
i+1[. We update (Sc

F )i+2 = (Sc
F )i+1∪]yF (u∗

l ), yF (u
∗
r)[.

In the end, we have Sc
F = (Sc

F )K+1.

8.2 Support identification for D mixture of diracs

We give examples of applications of the Theorem 5, when SD is a finite union of intervals.
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Figure 8: xF (−1/u) for u ∈ Sc
H , using H being a mixture of 3 diracs in 1, 3, and 10 with respectively

weights 0.2, 0.4 and 0.4 as in [2], Dα uniform with α = 1, c = 0.1, and empirical eigenvalues
sampled with p = 1000. Horizontal lines are plotted at the zeros of x′

F , they represent the theoretical
borders of SF .

Figure 9: xF (−1/u) for u ∈ Sc
H , using H being a mixture of 3 diracs in 1, 3, and 10 with respectively

weights 0.2, 0.4 and 0.4 as in [2], Dα uniform with α = 1, c = 0.5, and empirical eigenvalues
sampled with p = 5000. Horizontal lines are plotted at the zeros of x′

F , they represent the theoretical
borders of SF .
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8.2.1 Examples of weight distribution: mixture of 2 diracs

We detail the simpler case of SD as union of several intervals: SD as union of two points, i.e. D
being a mixture of two diracs p.d.f.
Proposition 5 (Mixture of two diracs). For α ∈]0, 1[, w ∈]0, 1[, we consider the following weight
distribution, with β = αw

1−w :

Dα,w = w1[1−α,∞[ + (1− w)1[1+β,∞[. (8)

Then, we have the following closed-form formulas for mLD and m−1
LD:

m
(1)
LDα,w

: x ∈]1− α, 1 + α[ 7→ w(1− α)

1− α− x
+

(1− w)(1 + β)

1 + β − x
,

m
(2)
LDα,w

: x ∈ R\[1− α, 1 + α] 7→ w(1− α)

1− α− x
+

(1− w)(1 + β)

1 + β − x
,(

m
(1)
LDα,w

)−1

: y ∈ R∗ 7→
−b(y)2 +

√
b(y)2 − 4a(y)c(y)

2a(y)
,(

m
(2)
LDα,w

)−1

: y ∈ R∗ 7→
−b(y)2 −

√
b(y)2 − 4a(y)c(y)

2a(y)
.

(9)

with for y ∈ R∗:

a(y) = y(1− w),

b(y) = 1− w − (1− 2w(1− α) + 1− α) y,

c(y) = (1− α) (1− w(1− α))− (1− α) (1− w(a− α)) .

(10)

An example of identification of the support is shown in figure 10 where a new spectral separation for
the empirical spectrum is induced by the weight distribution - itself having large gaps. Thus, SF is
made of 4 intervals, while SH is only made of 3. This is a new behavior due to the weight distribution
D that we do not observe in the classical setting with equal weights, where SF could only be made
of at most 3 intervals with this type of true spectrum H .

8.2.2 Examples of weight distribution: mixture of N diracs

We detail the computation and the result for the D mixture of N diracs. The efficient implementation
of this problem is discussed after.

Proposition 6 (Mixture of N diracs). For M ∈ N∗, w ∈]0, 1]M , δ ∈
(
R∗

+

)M
such that

∑M
i=1 wi =

1,
∑M

i=1 wiδi = 1, we consider the following weight distribution:

Dα =

M∑
i=1

wi1[δi,∞[. (11)

Then, we have the following closed-form formulas for mLD:

∀k ∈ J1,M − 1K,m(k)
LD : x ∈]δ(k)2 , δ

(k+1)
1 [7→

M∑
i=1

wi
δi

δi − x
,

m
(M)
LD : x ∈]−∞, δ

(1)
1 [∪]δ(M)

2 ,+∞[ 7→
M∑
i=1

wi
δi

δi − x
.

(12)

(
m

(k)
LD

)−1

has no general closed-form formulas when M ≥ 5 due to Abel–Ruffini theorem and it
can be retrieved through numerical optimization.

An example of identification of the support are shown in figure 11 when an important separation of
the weight diracs implies a new spectral separation for the empirical spectrum, in order to show the

role of each
(
m

(k)
LD

)−1

in the determination of the support.
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Figure 10: x
(k)
F (−1/u) for u ∈ Sc

H , using H being a mixture of 3 diracs in 1, 3, and 10 with
respectively weights 0.2, 0.4 and 0.4 as in [2], Dα,w mixture of 2 diracs with α = 0.5, w = 1− 1

80 ,
c = 0.1, and empirical eigenvalues sampled with p = 4000. Horizontal lines are plotted at the zeros
of x(k)′

F , they represent the theoretical borders of SF .

Figure 11: x
(k)
F (−1/u) for u ∈ Sc

H , using H being a mixture of 3 diracs in 1, 3, and 10 with
respectively weights 0.2, 0.4 and 0.4 as in [2], D mixture of 5 diracs with in 0.34, 0.67, 2.7, 6.74, and
34, with respective weights 0.59, 0.30, 0.074, 0.03, and 0.006, c = 0.1, and empirical eigenvalues
sampled with p = 5000. Horizontal lines are plotted at the zeros of x(k)′

F , they represent the theoretical
borders of SF .

16



8.2.3 Numerical implementation of spectrum support for D finite mixture of Diracs

We mostly use the same implementation scheme provided for the convex setting in Section 8.1.3,
applied to each y

(k)
F : u ∈ Sc

F 7→ x
(k)
F (−1/u) (extended in 0 by 0).

Using the same notation, the only difference in the implementation is about the handling of y(k)F ,
k ∈ J1,M − 1K on the outside interval ]τ rK ,+∞[. For numerical reasons, we apply back the change
of variable X = −1/u, as it is easier to study x

(k)
F on ]− 1/τ rK , 0[ than y

(k)
F on the initial interval.

On each of these intervals, we use the the same idea we used on the bounded intervals: find the zero
X0 of x(k)′′

F , and if x(k)′

F (X0) > 0, find the zero X∗
l of x(k)′

F on ]− 1/τ rK , X0[ and the zero X∗
r of

x
(k)′

F on ]X0, 0[. Then add ]− 1/xF (X
∗
l ),−1/xF (X

∗
r )[ to the current (Sc

F )i.

The central numerical problem remaining is to compute the function v(k) : u 7→
m

(k)−1
LD

(
c
∫

τ
τ−udH(τ)

)
for the desired u ∈ Sc

H .

In this section, the term t : u ∈ Sc
H 7→ c

∫
τ

τ−udH(τ) is supposed to be easy to compute. In the case
of H being a finite mixture of Diracs, it is a rational function.

The more complex part resides in computing v(k). We suppose that D is a finite mixture of Diracs,
i.e. there exists M ∈ N∗, (wi)

M
i=1 ∈ R∗

+, (δi)
M
i=1 ∈ R∗

+, such that
∑M

i=1 wi = 1 and D =∑M
i=1 wi1[δi,+∞[.

Let t ∈ R. Computing v(k)(t) for all k ∈ J1,MK is equivalent to finding the M distinct roots of the
rational function x ∈ Sc

D 7→ mLD(x)− t. And this is equivalent to finding the M distinct roots of
the polynomial P − tQ where:

P (X) =

M∑
i=1

wiδi

M∏
j=1,j ̸=i

(δj −X),

Q(X) =

M∏
i=1

(δi −X).

(13)

We suggest to use MPSolve (useable in Python, Matlab, C, Octave...) to find efficiently and simulta-
neously the M roots of the resulting polynomial routinely for large M . Otherwise, for moderately
large M , using the eigenvalues of the companion matrix of P − tQ is possible and makes the
implementation slightly easier.

Once we computed through this method all the functions u 7→ m
(k)−1
LD

(
c
∫

τ
τ−udH(τ)

)
on the

desired grid of u ∈ Sc
H , we can easily deduce the y

(k)
F and the its derivative y

(k)′

F , y(k)
′′

F with the
following formulas:

y
(k)
F (u) = −ut(u)v(k)(t(u)),

y
(k)′

F (u) = −t(u)v(k)(t(u))− ut′(u)

(
t(u)

m′
LD (v(k)(t(u)))

+ v(k)(t(u))

)
,

y
(k)′′

F (u) = −(2t′(u) + ut′′(u)))v(k)(t(u))− 2 (t(u) + ut′(u)) t′(u) + ut(u)t′′(u)

m′
LD (v(k)(t(u)))

−
ut(u)t′(u)2m′′

LD

(
v(k)(t(u))

)
m′

LD (v(k)(t(u)))
3 .

(14)

8.3 WeSpeR: implementation details and additional experiments

In this section we discuss the details, the implementation and experiments of the proposed algorithm
to retrieve H and F ′.
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8.3.1 Implementation details

Step (2) We used PyTorch to implement this step. The Wasserstein distance of real distributions is
a L2-norm on the cumulative distribution functions, which makes it easy to compute for mixture of
Diracs. Auto-differentiation makes it even easier to implement. We chose Adam optimizer by default.

Step (3) For finding the support, we use the implementation for N -diracs given in Section 8.2.3. If
the product M × n is too large compared to the desired execution time, it is possible to compute only
a subset of Sc

F . For that, analyze only xM
F and xk

F for k in a (small, even empty) subset of J1,M − 1K.

Step (4) From the previous step, we have determined SF of the form SF = ∪ν
i=1[u

l
i, u

r
i ], u

l
1 <

ur
1 < ... < ul

ν < ur
ν . As proposed in [11], a suitable choice for a grid follows the arcsine distribution

on each sub-interval [ul
i, u

r
i ]. Formally, for each i ∈ J1, νK, we define the sub-grid {ξji }

ωi+1
j=0 with

ωi ∈ N points:

∀j ∈ J0, ωi + 1K, ξji = ul
i + (ur

i − ul
i) sin

(
πj

2(ωi + 1)

)2

. (15)

The choice of ωi ∈ N is up to the practitioner. We propose three strategies for a total number of
points of Ω+ 2ν ∈ N∗:

• the uniform weighting: ∀i ∈ J1, νK, ω(u)
i = Ω/ν (up to integer discretization),

• the frequentist weighting, inspired from [11]: ∀i ∈ J1, νK, ω(f)
i =

ν
p

∣∣{k ∈ J1, pK|λk ∈ [ul
i, u

r
i ]
}∣∣ (up to integer discretization), where more points are

used in intervals where we find a lot of empirical eigenvalues,

• a mix of both strategies with parameter µ ∈ [0, 1]: ∀i ∈ J1, νK, ω(m)
i = µω

(u)
i +(1−µ)ω

(f)
i .

With µ = 0.1 for example, this strategy ensures that a minimal number of discretization
points will be used even if no empirical eigenvalues where found in the interval.

8.3.2 Additional experiments

We explore the behavior of the algorithm with a different concentration ratio c = 0.5 to see the effect
of fewer samples on the estimation. Results are shown in Figure 12. Fewer samples compared to
the dimension makes it hard to estimate accurately H . We clearly see that the estimated H is more
spread around the true diracs than it were with c = 0.1 in the experiment shown in the main corpus.

We also experiment the effect of heavy tails in the estimation. In [8], it is remarked that even if the
convergence of Fn to F is almost sure as long as we have bounded 2nd moments, this convergence is
slower as the tail is heavier.

In this experiment, we fix the dimension n = 400, c = 0.1, and we study the impact of ν > 2 when
the underlying noise Zij follows a Student distribution tν(0, 1). In this scenario, nothing particular
happens while ν ≥ 4 roughly, Fn is consistent, and the estimation remains barely affected. However,
for very low ν, around 2 < ν < 4, the sample spectrum Fn tends to have some very high eigenvalues
outside of the asymptotic support SF . Everything else fixed, decreasing ν increases the amount
of outlier eigenvalues in Fn. Of course their frequency vanishes while n → +∞ but they exist in
moderate dimension.

In order to study the impact of these outliers in the estimation of H , we consider an extreme setting
ν = 3 where we consistently draw high outliers when sampling Fn. This experiment brings the
algorithm far from the theoretical requirements H1-H5 that assume ν > 12.

As shown in the Figure 13, these outliers in the sample spectrum affect badly the estimation of H ,
skewing it towards high values. Fortunately, as their frequency is quite low, only the higher values in
H are deteriorated and the estimated densited F ′ is still accurate in the core of the distribution. Some
artefacts appear in the tail of the estimated F ′ and H , with unwanted and isolated high values that fit
the observed outliers. These outliers create small intervals in the estimated support SF around the
observed outliers.

In this extreme setting with ν = 3, far from the theoretical requirement, if one uses heavy tails, we
recommand to transform the observed eigenvalues in order to reject the highest quantiles.
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Figure 12: (Top) Histograms of sample eigenvalues, estimated population eigenvalues Ĥ with
WeSpeR, and true population eigenvalues H . (Middle) u 7→ xF (−1/u) using the estimated Ĥ to
detect the estimated support SF . (Bottom) Estimated and true sample density computed on SF and
sample eigenvalues histogram. H = 1

51[1,∞[ +
2
51[3,∞[ +

2
51[10,∞[, D exponentially weighted with

α = 1, c = 0.5, and Zij ∼ N (0, 1).
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Figure 13: (Top) Histograms of sample eigenvalues, estimated population eigenvalues Ĥ with
WeSpeR, and true population eigenvalues H . (Bottom) Estimated and true sample density computed
on SF and sample eigenvalues histogram. H = 1

51[1,∞[ +
2
51[3,∞[ +

2
51[10,∞[, D exponentially

weighted with α = 1, c = 0.1, and heavy tails Zij ∼ t3(0, 1).
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9 Appendix B - Proofs

9.1 Remark on Theorem 1

In the main corpus, we used Theorem 2 [8] with the following form.

Theorem 6 (Theorem 2 [8]). Assume H1 to H5. Then, almost surely, FBn converges weakly to a
nonrandom p.d.f F , whose Cauchy-Stieltjes transform m := mF satisfies for all z ∈ C+:

m(z) = −1

z

∫
1

τX(z) + 1
dH(τ), (16)

where for all z ∈ C+, X(z) is the unique solution in C+ of the following equation:

X(z) = −
∫

δ

z − δc
∫

τ
τX(z)+1dH(τ)

dD(δ). (17)

One note the use of X(z) is this formulation, instead of m̃(z) = −zX(z) in the original work [8].
We clarify the only non-trivial point of the equivalence between those two formulations (see [8]
Theorem 2 for the original formulation and its notation): for z ∈ C+, X(z) := − m̃(z)

z ∈ C+ and the
solution of Equation (17) is unique in C+.

Let z ∈ C+. Using the notation of the proof of Theorem 2 [8], it is proved that almost surely:

1

N

N∑
j=1

Wjj

1 + r∗j (B(j) − zI)−1rj
−→

N→+∞
m̃(z). (18)

So, using that X(z) := − m̃(z)
z , we have immediatly that, almost surely:

− 1

N

N∑
j=1

Wjj

z + r∗j (B(j)/z − I)−1rj
−→

N→+∞
X(z). (19)

Using the proof of Lemma 3 [8], we have that Im[r∗j (B(j)/z − I)−1rj ], so
∀N,− 1

N

∑N
j=1

Wjj

z+r∗j (B(j)/z−I)−1rj
∈ C+. So, Im[X(z)] ≥ 0.

Moreover, using the definition X(z) = − m̃(z)
z , it is immediate from Theorem 2 [8] that X(z) is a

solution of Equation (17). It is also immediate that Equation (17) does not admit any real solution
because z ∈ C+. As we proved that Im[X(z)] ≥ 0, we deduce now that X(z) ∈ C+.

The last point is the unicity in C+ of the solution of (17). Let X1, X2 ∈ C+, X1 ̸= X2 solving
Equation (17). Then, in the spirit of the proof of unicity for m̃(z) in [8], we have with Hölder
inequality:

|X1 −X2|2 = |X1 −X2|2 ×

∣∣∣∣∣∣
∫ δ2c

∫
τ2

(τX1+1)(τX2+1)dH(τ)(
z − δc

∫
τ

τX1+1dH(τ)
)(

z − δc
∫

τ
τX2+1dH(τ)

)dD(δ)

∣∣∣∣∣∣
2

≤ |X1 −X2|2 ×

∣∣∣∣∣∣∣
∫ δ2c

∫
τ2

|τX1+1|2 dH(τ)∣∣∣z − δc
∫

τ
τX1+1dH(τ)

∣∣∣2 dD(δ)

∣∣∣∣∣∣∣×
∣∣∣∣∣∣∣
∫ δ2c

∫
τ2

|τX2+1|2 dH(τ)∣∣∣z − δc
∫

τ
τX2+1dH(τ)

∣∣∣2 dD(δ)

∣∣∣∣∣∣∣
< |X1 −X2|2 ×

∣∣∣∣ Im[X1]

Im[X1]

∣∣∣∣× ∣∣∣∣ Im[X2]

Im[X2]

∣∣∣∣
|X1 −X2|2 < |X1 −X2|2

(20)
The inequality is strict because H(]0,∞[) > 0 and D(]0,∞[) > 0 according to Assumption H3-H4.
The result is absurd, hence the unicity in C+.
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9.2 Proof of Theorem 2 and Corollary 1

In the whole following section, we assume H1-H5 to hold. We denote m̃(z) := −zX(z).
Lemma 1. m̃ is bounded on every bounded region of C+ bounded away from {0}.

Proof. Suppose there exists (zn)n ∈ CN
+ bounded and bounded away from {0}, i.e. there exists

η > 0 such that |zn| ≥ η, such that |X(zn)| → +∞. Moreover, for z ∈ C+,∣∣∣∣ τ

τX(z) + 1

∣∣∣∣ ≥ h2

h1|X(z)| − 1
. (21)

So, ∣∣∣∣∣ δ

z + δc
∫

τ
τX(z)+1dH(τ)

∣∣∣∣∣ ≤ d2

|z| − cd2
h2

h1|X(z)|−1

. (22)

By hypothesis, for n large enough, |X(zn)| ≥ max
(

1
h1

(
1 + 2cd2h2

η

)
, 2d2

η

)
+ 1. Then, using the

fact that for all z ∈ C+:

X(z) = −
∫

δ

z − δc
∫

τ
τX(z)+1dH(τ)

dD(δ), (23)

we have that:

|X(zn)| ≤
∫ ∣∣∣∣∣ δ

zn − δc
∫

τ
τX(z)+1dH(τ)

∣∣∣∣∣ dD(δ)

≤ d2

|zn| − cd2
h2

h1|X(zn)|−1

≤ 2
dn
|zn|

|X(zn)| < |X(zn)|,

(24)

which is absurd, and concludes the proof.

From Theorem 2 [8], m := Θ(0) is the Cauchy-Stieltjes transform of a probability distribution
function - p.d.f. - that we denote F .
Lemma 2. Let x0 ∈ Sc

F , x0 ̸= 0. Then, limz∈C+→x0
m̃(z) exists.

Proof. Let x0 ∈ Sc
F , x0 ̸= 0. By property of the Cauchy-Stieltjes transform of a p.d.f., m is analytic

on C\SF . Thus, limz∈C+→x0
m(z) := m̌(z) ∈ R exists. Then, limz∈C+→x0

Im[m̃(z)] = 0. Now,
suppose there exists z1,n ∈ CN

+ such that z1,n → x0 and m̃(z1,n) → m̃1, and similarly z2,n ∈ CN
+

such that z2,n → x0 and m̃(z2,n) → m̃2. As m(z1,n) → m̌(z) ∈ R and m(z2,n) → m̌(z) ∈ R, we
have that Re[m(z1,n)−m(z2,n)] → 0. And,

Re[m(z1,n)−m(z2,n)] =

∫
τ Re[m̃(z1,n)− m̃(z2,n)]− Re[z1,n − z2,n]

|τm̃1,n − z1,n|2 × |τm̃2,n − z2,n|2
dH(τ). (25)

So,

|Re[m̃(z1,n)− m̃(z2,n)]| =

∣∣∣∣∣Re[m(z1,n)−m(z2,n)] + Re[z1,n − z2,n]
∫

1
|τm̃1,n−z1,n|2×|τm̃2,n−z2,n|2 dH(τ)∫

τ
|τm̃1,n−z1,n|2×|τm̃2,n−z2,n|2 dH(τ)

∣∣∣∣∣
|Re[m̃(z1,n)− m̃(z2,n)]| ≤

∣∣∣∣∣ Re[m(z1,n)−m(z2,n)]∫
τ

|τm̃1,n−z1,n|2×|τm̃2,n−z2,n|2 dH(τ)

∣∣∣∣∣+ 1

h1
|Re[z1,n − z2,n]| .

(26)
Suppose Re[m̃1] ̸= Re[m̃2]. Then, from the previous inequation, we deduce that∫

τ
|τm̃1,n−z1,n|2×|τm̃2,n−z2,n|2 dH(τ) → 0. So |m̃1,n| → +∞ and |m̃2,n| → +∞, which is absurd.

So Re[m̃1] = Re[m̃2]. We proved at the beginning of the proof that Im[m̃1] = Im[m̃2]. As m̃ is
bounded on every bounded region of C+ bounded away from {0}, we deduce that limz∈C+→x0

m̃(z)
exists (and is equal to m̃1).
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We define:

mLD : z ∈ C\SD 7→
∫

δ

δ − z
dD(δ). (27)

Remark that mLD is analytic on C\SD.

Lemma 3. Let x0 ∈ SF , x0 ̸= 0. We denote X(z) = − m̃(z)
z . Suppose there exists zn ∈ C+ → x0

such that X(zn) → X0 ∈ C+ and ẑn ∈ C+ → x0 such that X(ẑn) → X̂0 ∈ C\C−, X̂0 ̸= X0.
Then there exists z̄n ∈ C+ → x0 such that X(z̄n) → X̄0 ∈ C+ and m′

LD(Y̌ ) ̸= 0 with Y̌ :=
x0

c
∫

τ
τX̌+1

dH(τ)
.

Proof. Consider the following procedures:

(i) Suppose Im[X0] ̸= Im[X̂0]. Let n ∈ N. By continuity of X on C+, there exists un ∈ C+

in the complex segment [zn, ẑn]C such that Im[X(un)] =
1
2 (Im[X(zn)] + Im[X(ẑn)]).

un → x0 ̸= 0 so X(un) is bounded, so there exists an extraction z̄
(1)
n of un such that

z̄
(1)
n → x0 and X(z̄

(1)
n ) → X̄(1) ∈ C+, Im[X̄(1)] = 1

2

(
Im[X0] + Im[X̂0]

)
. Do the

procedure (i) again with zn, z̄
(1)
n instead of zn, ẑn in order to construct z̄(2)n and X̄(2).

(ii) Suppose Im[X0] = Im[X̂0] > 0, then Re[X0] ̸= Re[X̂0]. Similarly, there exists un ∈ C+

in the complex segment [zn, ẑn]C such that Re[X(un)] =
1
2 (Re[X(zn)] + Re[X(ẑn)]).

un → x0 ̸= 0 so X(un) is bounded, so there exists an extraction v̄n of un such that
v̄n → x0 and X(v̄n) → X̄ ∈ C\C−, Re[X̄] = 1

2

(
Re[X0] + Re[X̂0]

)
.

– If Im[X̄] = 0, do the procedure (i) with zn, v̄n instead of zn, ẑn in order to construct
z̄
(1)
n and X̄(1) ∈ C+.

– If Im[X̄] = Im[X0], define z
(1)
n := vn and X̄(1) := X̄ ∈ C+, and do the procedure

(ii) again with zn, z̄
(1)
n instead of zn, ẑn in order to construct z̄(2)n , ... and X̄(2) ∈ C+.

– Otherwise, also define z
(1)
n := vn and X̄(1) := X̄ ∈ C+, and go to procedure (i) with

zn, z̄
(1)
n instead of zn, ẑn in order to construct z̄(2)n and X̄(2) ∈ C+.

Using this procedure, we construct iteratively {X̄(k), k ∈ N∗}, where for all k ∈ N∗, X̄(k) ∈ C+

is an adherence point of X as z ∈ C+ → x0, and by construction, ∀k ̸= k′ ∈ N∗, X̄(k) ̸= X̄(k′).

Suppose that ∀k ∈ N∗,m′
LD

(
x0

c
∫

τ

τX̄(k)+1
dH(τ)

)
= 0. D ̸= 0 by hypothesis so mLD is not constant

over C+, and as mLD is analytic on C+ it implies that
{∫

τ
τX̄(k)+1

dH(τ), k ∈ N∗
}

is finite while{
X(k), k ∈ N∗} is countable. So, as ϕ : X ∈ C+ 7→

∫
τ

τX+1dH(τ) is analytic, we have that ϕ is
constant over C+. But H ̸= 0 by hypothesis, this is absurd and it concludes the proof.

Lemma 4. Let x0 ∈ SF , x0 ̸= 0. Suppose there exists zn ∈ C+ → x0 such that X(zn) →
X̌ ∈ C+ and m′

LD(Y̌ ) ̸= 0 with Y̌ := x0

c
∫

τ
τX̌+1

dH(τ)
. Then limz∈C+→x0

X(z) exists and

limz∈C+→x0 X(z) = X̌ .

Proof. We have for all z ∈ C+, with X(z) = − m̃(z)
z :

mLD

(
z

c
∫

τ
τX(z)+1dH(τ)

)
= c− c

∫
1

τX(z) + 1
dH(τ). (28)

Suppose zn ∈ C+ → x0, X(zn) → X̌ ∈ C+ and, with Y̌ := x0

c
∫

τ
τX̌+1

dH(τ)
∈ C+ we have

m′
LD(Y̌ ) ̸= 0. So by the holomorphic inverse function theorem, mLD is locally invertible at Y̌ in an

open set B containing Y̌ . We denote its local inverse gLD : mLD(B) → B, which is also analytic.
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As Yn := zn
c
∫

τ
τX(zn)+1

dH(τ)
→ Y̌ , for n large enough, Yn ∈ B. We have then, for n large enough:

zn = c

∫
τ

τX(zn) + 1
dH(τ)gLD

(
c− c

∫
1

τX(zn) + 1
dH(τ)

)
. (29)

So,

x0 = c

∫
τ

τX̌ + 1
dH(τ)gLD

(
c− c

∫
1

τX̌ + 1
dH(τ)

)
. (30)

Let ϵ > 0 and B′ = B(X̌, ϵ) so that
{
c− c

∫
1

τX+1dH(τ), X ∈ B′
}

⊂ mLD(B). We can
choose ϵ > 0 arbitrarily small because mLD(B) is open due to the open mapping theorem, c −
c
∫

1
τX̌+1

dH(τ) ∈ mLD(B) and X 7→
∫

1
τX+1dH(τ) is analytic on C\{x ∈ R,−x−1 ∈ SH}. We

define:

zF : X ∈ B′ 7→ c

∫
τ

τX + 1
dH(τ)gLD

(
c− c

∫
1

τX + 1
dH(τ)

)
. (31)

By the open mapping theorem, as zF is analytic and non-constant over B′, zF (B′) is open and
contains x0. Thus, for any (z̄n)n ∈ CN

+ such that z̄n → x0, we have that z̄n ∈ zF (B
′) for n large

enough. So, for these z̄n, there exists Xn ∈ B′ such that zF (Xn) = z̄n. So, Xn = X(z̄n) ∈ B′. As
we can choose ϵ > 0 arbitrarily small, we have that X(z̄n) → X̌ , which concludes the proof.

At this stage, we know that, for x0 ∈ Sc
F \{0}, limz∈C+→x0

m̃(z) exists, and for x0 ∈ SF \{0},
either limz∈C+→x0

Im[m̃(z)] = 0 or limz∈C+→x0
m̃(z) exists.

Lemma 5. Assume 0 /∈]ma,mb[⊂ R. If, for all m0 ∈]ma,mb[, there exists (hn)n ∈ (R∗
+)

N such

that hn → 0 and
∫ hnτ

2dH(τ)
(1+τm0)2+τ2h2

n
→ 0, then ]−m−1

a ,−m−1
b [⊂ Sc

H .

Proof. Let m0 ∈]ma,mb[ and n ∈ N. Let g(τ) = hnτ
2

(1+τm0)2+τ2h2
n

. g is increasing on ] −m−1
0 −

hn,−m−1
0 ] and decreasing on ]−m−1

0 ,−m−1
0 + hn]. Then,∫

g(τ)dH(τ) ≥
∫ −m−1

0

−m−1
0 −hn

hn(m
−1
n + hn)

2dH(τ)

(hnm0)2 + h2
n(m

−1
0 + hn)2∫

g(τ)dH(τ) ≥ (m−1
0 + hn)

2

m2
0 + (m−1

0 + hn)2
H(−m−1

0 )−H(−m−1
0 − hn)

hn
.

(32)

Thus, H(−m−1
0 )−H(−m−1

0 −hn)
hn

→ 0. Then, the lower-left Dini derivative (see [12] for a reference

on the subject) is null, i.e. D−H(−m−1
0 ) := lim infh→0+

H(−m−1
0 )−H(−m−1

0 −h)
h = 0. As it is null,

D−H is continuous on ] − m−1
a ,−m−1

b [. Moreover, H is càdlàg, nondecreasing and D−H = 0

on ]−m−1
a ,−m−1

b [ so H is continuous on ]−m−1
a ,−m−1

b [. The two latter points imply that the
three other Dini derivatives - D−H,D+H and D+H - are continuous on ]−m−1

a ,−m−1
b [. As H is

monotone on ]−m−1
a ,−m−1

b [, it is almost everywhere differentiable due to Lebesgue’s theorem. So,
almost everywhere on ]−m−1

a ,−m−1
b [, all four Dini derivatives are equal, and their value is 0 due

to D−. And from continuity, everywhere on ]ma,mb[, all four Dini derivatives are equal to 0. So
H is differentiable on ]−m−1

a ,−m−1
b [ and H ′ = 0. So H is constant on ]−m−1

a ,−m−1
b [, which

finally implies that ]−m−1
a ,−m−1

b [⊂ Sc
H .

Lemma 6. Assume limz∈C+→x0
Im[X(z)] = 0. Let zn ∈ C+ → x0 and ẑn ∈ C+ → x0 such

that X(zn) → X0 ∈ R and X(ẑn) → X̂0 ∈ R, X0 < X̂0. Then, ∀X̄ ∈]X0, X̂0[, there exists
(z̄n)n ∈ CN

+ such that z̄n → x0 and X(z̄n) → X̄ . (z̄n)n can be chosen so that Re[X(z̄n)] = X̄ .

Proof. The same proof as Lemma 3.6 [9].

Lemma 7. Let x0 ∈ SF , x0 ̸= 0. Suppose limz∈C+→x0
Im[X(z)] = 0, then limz∈C+→x0

X(z)
exists.
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Proof. Suppose limz∈C+→x0 Im[X(z)] = 0 but Re[X(z)] does not converge as z ∈ C+ → x0.
Using Lemma 6, we can find X0 ∈ R and X̂0 ∈ R adherence points of X at x0, X0 < X̂0 such that
0 /∈]X0, X̂0[. Let X̄ ∈]X0, X̂0[. From Lemma 6, there exists (z̄n)n ∈ CN

+ such that z̄n → x0 and
X(z̄n) → X̄ and Re[X(z̄n)] = X̄ . So, Im[X(z̄n)] → 0. By the function equation on X , we have:

Im[X(z̄n)] =

∫ δ
(
Im[z̄n] + δc

∫ τ2 Im[X(z̄n)]
|τX(z̄n)+1|2 dH(τ)

)
∣∣∣z̄n − δc

∫
τ

τX(z̄n)+1dH(τ)
∣∣∣2 . (33)

∣∣∣z̄n − δc
∫

τ
τX(z̄n)+1dH(τ)

∣∣∣2 is bounded, so
∫ τ2 Im[X(z̄n)]

|τX(z̄n)+1|2 dH(τ) → 0. Using Lemma 5 with

ma := X0, mb := X̂0 and hn := Im[X(z̄n)], we deduce that ] − X−1
0 ,−X̂−1

0 [∈ Sc
H .

Without loss of generality, suppose
]
c− c

∫
1

τX0+1dH(τ), c− c
∫

1
τX̂0+1

dH(τ)
[

⊂ R∗. For

z̄n → x0 such that X(z̄n) → X̄ ∈]X0, X̄0[, we have that mLD

(
z̄n

c
∫

τ
τX(z̄n)+1

dH(τ)

)
= c −

c
∫

1
τX(z̄n)+1dH(τ) → c−c

∫
1

τX̄+1
dH(τ) ∈ R∗. Thus,

∫
τ

τX(z̄n)+1dH(τ) →
∫

τ
τX̄+1

dH(τ) ̸= 0

(otherwise mLD

(
z̄n

c
∫

τ
τX(z̄n)+1

dH(τ)

)
→ 0), and z̄n

c
∫

τ
τX(z̄n)+1

dH(τ)
→ x0

c
∫

τ
τX̄+1

dH(τ)
∈ R. Then,]

x0

c
∫

τ
τX0+1dH(τ)

, x0

c
∫

τ
τX̂0+1

dH(τ)

[
⊂ Sc

D.

So, for X̄ ∈]X0, X̂0[, mLD is locally invertible at Ȳ = x0

c
∫

τ
τX̄+1

dH(τ)
, on an open B containing this

point, we denote its inverse gLD. Indeed, m′
LD(Ȳ ) =

∫
δ

(δ−Ȳ )2
dD(δ) > 0.

We define B′ :=
{
X ∈ C∗| −X−1 /∈ SH and c− c

∫
1

τX+1dH(τ) ∈ mLD(B)
}

. Remark that B′

is open as mLD(B) open and X ∈ {X ∈ C∗| − X−1 /∈ SH} 7→ c − c
∫

1
τX+1dH(τ) analytic.

We define zF : X ∈ B′ 7→ c
∫

τ
τX+1dH(τ)gLD

(
c− c

∫
1

τX+1dH(τ)
)
. For all X̄ ∈ B′, we have

x0 = zF (X̄), so zF is constant on B′, which is absurd. So limz∈C+→x0
X(z) exists.

Lemma 8. X - extended on R∗ with X̌ - is a continuous function on C+ ∪ R∗.

Proof. Immediate consequence of Theorem 2.2 [9].

The following Lemma concludes the proof of the first part of Theorem 2.

Lemma 9. For x0 ̸= 0, limz∈C+→x0
m(z) and limz∈C+→x0

Θ(1)(z) exist.

Proof. We recall that ∀z ∈ C+,Θ
g(z) = − 1

z

∫ g(τ)
τX(z)+1dH(τ) = 1

X(z)

∫ g(τ)
τ+X(z)−1 dH(τ). Let

x0 ̸= 0. The case where Im[X̌(x0)] ̸= 0 is trivial, with dominated convergence theorem we have
that limz∈C+→x0

Θg(z) exists and Θ̌g(x0) := limz∈C+→x0
Θg(z) = − 1

x0

∫ g(τ)

τX̌(x0)+1
dH(τ).

Now suppose Im[X̌(x0)] = 0. Suppose X̌(x0) = 0. Then, limz∈C+→x0 Θ
g(z) =

− 1
x0

∫
g(τ)dH(τ) by D.C.T. Now suppose Re[X̌(x0)] ̸= 0.

Suppose there exists zn ∈ C+ → x0 such that
∣∣∣∫ τ

τX(zn)+1dH(τ)
∣∣∣ → +∞. As |X(zn)| ≤∫ ∣∣∣∣ δ

zn−δc
∫

τ
τX(z)+1

dH(τ)

∣∣∣∣ dD(δ) and SD ⊂ [d1, d2], we have that X̌(x0) = 0, which is absurd. So∫
τ

τX(z)+1dH(τ) remains bounded as z ∈ C+ → x0.

Suppose now there exists zn ∈ C+ → x0 and ẑn ∈ C+ → x0 such that
∫

τ
τX(zn)+1dH(τ) → m

and
∫

τ
τX(ẑn)+1dH(τ) → m̂. Remark that m, m̂ ∈ R, and say m < m̂. Using the proof of Lemma
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6, for all m̄ ∈]m, m̂[, there exists z̄n ∈ C+ → x0 such that Re
[∫

τ
τX(z̄n)+1dH(τ)

]
= m̄. And

immediately from the functional equation on X we have that Im
[∫

τ
τX(z̄n)+1dH(τ)

]
→ 0.

Now, following the proof of Lemma 5, we have that ]x0/cm̂, x0/cm[∈ Sc
D. It is in direct contradiction

to the fact that X(z) converges as z ∈ C+ → x0.

So, Θ̌(1)(x0) := limz∈C+→x0

∫
τ

τX(z)+1dH(τ) exists.

As ∀z ∈ C+,Θ
(1)(z) = 1

X(z)

∫
τ

τ+X(z)−1 dH(τ) = 1
X(z)

(
1−

∫
1

τX(z)+1dH(τ)
)

, we deduce that

m̌(x0) := limz∈C+→x0

∫
1

τX(z)+1dH(τ) exists.

Lemma 10. Let g a bounded real function on [h1, h2] with a finite number of discontinuities. Then,
for x0 ̸= 0, limz∈C+→x0 Im[Θg(z)] exists.

Proof. For z ∈ C+, we have that Im[Θg(z)] =
∫ g(τ)(τ Im[−m̃(z)]+Im[z])

|τm̃(z)−z|2 dH(τ). So, if Im[m̌(x0)] =

0, then, as g bounded on [h1, h2], Im[Θg(z)] → 0.

Suppose Im[m̌(x0)] ̸= 0, then Im[Θ̌(1)(x0)] ̸= 0, so by the functional equation on X , Im[X̌(x0)] ̸=
0. With dominated convergence theorem we have that limz∈C+→x0

Θg(z) exists and Θ̌g(x0) :=

limz∈C+→x0
Θg(z) = − 1

x0

∫ g(τ)

τX̌(x0)+1
dH(τ).

We now extend the result to x0 = 0 in the case c < 1.
Lemma 11. Suppose c < 1, for g bounded with a finite number of discontinuities,
limz∈C+→0 Im[Θg(z)] exists.

Proof. Using Equation (1.9b) [13] for c <, we have for η = (1 −
√
c)2h1d1 and any l > 0,

P(λBn

min ≤ η) = o(n−l). So, Fn(η) −→
n→+∞

0. So, for any x < η, F (x) = 0, in particular F (0) = 0

and F continuous in 0. So, limz∈C+→0 Im[m(z)] → 0. So, limz∈C+→0 Im[Θg(z)] → 0.

With the last Lemma, we proved the second part of Theorem 2.

The following corollary proves the first part of Corollary 1 on R∗, or R if c < 1.
Lemma 12. F has a density on R∗ or R if c < 1.

Proof. Applying Theorem 2.2 [9]on m, we have that m̌ is continuous on R∗. Due to Theorem 2.1
[9], F is differentiable on R∗, and F ′ = 1

π Im[m(·)]. As Im[m(·)], F ′ is continuous on R∗.

Suppose c < 1. The previous proof stated that for any x < η = (1−
√
c)2h1d1, F (x) = 0. Moreover,

F ′ exists and is continuous on R∗. So F ′ exists and is continuous density on R when c < 1.

The second part of Corollary 1 on m̃, Θ̌(1) and Im[Θ̌g] uses the following lemma.

Lemma 13. We have: ∀λ ∈ Sc
F , λ ̸= 0,−X̌(λ)−1 ∈ Sc

H and if Θ̌(1)(λ) ̸= 0, then λ
cΘ̌(1)(λ)

∈ Sc
D.

Proof. Let x0 ∈ Sc
F , x0 ̸= 0. Suppose X̌(x0) = 0. Then, by the functional equation,∣∣∣∫ τ

τX(z)+1dH(τ)
∣∣∣ −→
z∈C+→x0

+∞, but we also proved that
∣∣∣∫ τ

τX(z)+1dH(τ)
∣∣∣ −→
z∈C+→x0

Θ̌(1)(x0) ∈

C, which is absurd. So ∀x0 ∈ Sc
F , x0 ̸= 0, X̌(x0) ∈ R∗. Then, ∀x0 ∈ Sc

F , x0 ̸=
0, D−H

(
−X̌(x0)

−1
)
= 0. Sc

F is open, and X̌ is continuous and non-constant, so {−X̌(x0)
−1, x0 ∈

Sc
F } is open. So, ∀x0 ∈ Sc

F , x0 ̸= 0, H ′ (−X̌(x0)
−1
)

is defined and H ′ (−X̌(x0)
−1
)
= 0. So,

{−X̌(x0)
−1, x0 ∈ Sc

F } ⊂ Sc
H . In particular, −X̌(λ)−1 ∈ Sc

H .

Moreover, from the following formula:

∀z ∈ C+,mLD

(
z

cΘ(1)(z)

)
= c− c

∫
1

τX(z) + 1
dH(τ), (34)
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we prove that, as z ∈ C+ → x0 ∈ R∗, the right side converges to a real number c −
c
∫

1
τX̌(x0)+1

dH(τ), because we have just proved that −X̌(x0)
−1 ∈ Sc

H and D.C.T finishes it.

Suppose that Θ̌(1)(x0) ̸= 0. This implies that, as z
cΘ(1)(z)

→ x0

cΘ̌(1)(x0)
∈ R∗, mLD

(
z

cΘ(1)(z)

)
converges to a real number. So, similarly to what we did in the proof of Lemma 7, we have
that D−D

(
x0

cΘ̌(1)(x0)

)
= 0. Sc

F is open, and x0 7→ x0

cΘ̌(1)(x0)
is continuous and non-constant, so

{ x0

cΘ̌(1)(x0)
, x0 ∈ Sc

F } is open. So,
{

x0

cΘ̌(1)(x0)
|x0 ∈ Sc

F ,Θ
(1)(x0) ̸= 0

}
⊂ Sc

D.

The following lemma finishes the proof of Corollary 1.
Lemma 14. For λ ∈ R∗\{x ∈ SF , F

′(x) = 0} and g : [h1, h2] → R bounded with a finite number
of discontinuity points:

m̌(λ) = − 1

λ

∫
1

τX̌(λ) + 1
dH(τ),

Θ̌(1)(λ) = − 1

λ

∫
τ

τX̌(λ) + 1
dH(τ),

Im[Θ̌g(λ)] =
1

λ

∫
g(τ)τ Im[X̌(λ)]

|τX̌(λ) + 1|2
dH(τ).

Proof. Let λ ∈ R∗\{x ∈ SF , F
′(x) = 0}. If F ′(λ) > 0, then m̌(λ) ∈ C+, so X̌(λ) ∈ C+. By

D.C.T, we immediatly conclude that:

m̌(λ) = − 1

λ

∫
1

τX̌(λ) + 1
dH(τ),

Θ̌(1)(λ) = − 1

λ

∫
τ

τX̌(λ) + 1
dH(τ),

Im[Θ̌g(λ)] =
1

λ

∫
g(τ)τ Im[X̌(λ)]

|τX̌(λ) + 1|2
dH(τ).

Otherwise, F ′(λ) = 0. As λ ∈ R∗\{x ∈ SF , F
′(x) = 0}, we have that λ ∈ Sc

F and X̌(λ) ∈ R.
Using Lemma 13, we have that −X̌(λ)−1 ∈ Sc

H . Then, by D.C.T, we deduce immediatly:

m̌(λ) = − 1

λ

∫
1

τX̌(λ) + 1
dH(τ),

Θ̌(1)(λ) = − 1

λ

∫
τ

τX̌(λ) + 1
dH(τ),

Im[Θ̌g(λ)] =
1

λ

∫
g(τ)τ Im[X̌(λ)]

|τX̌(λ) + 1|2
dH(τ).

9.3 Proof of Theorem 3

Let us proof the equivalence in two steps. Assume H1-H5 and let λ ∈ R∗\{x ∈ SF , F
′(x) = 0}.

We prove firstly that fλ(X̌(λ)) = 0. If X̌(λ) ∈ C+, this is immediate by D.C.T. Otherwise, if
X̌(λ) ∈ R, then λ ∈ Sc

F because λ ∈ R∗\{x ∈ SF , F
′(x) = 0}. Using Lemma 13, we have

that X̌(λ) ̸= 0, −X̌(λ)−1 ∈ Sc
H . If Θ̌(1) ̸= 0, then λ

cΘ̌(1)(λ)
∈ Sc

D. So, by D.C.T., we have that

fλ(X̌(λ)) = 0. Otherwise, if Θ̌(1) = 0, we also have directly by D.C.T. that fλ(X̌(λ)) = 0, which
concludes the first part of the proof.

For the direct way, suppose that X̌(λ) ∈ C+. Then, by D.C.T, we have immediatly that fλ
(
X̌(λ)

)
=

0. So fλ(X) = 0 has indeed at least one solution in C+.
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For the other way, suppose now that there exists X0 ∈ C+ such that fλ(X0) = 0. We are using the
Theorem 9.1.1 [14] to conclude. In order to apply it, we have that:

• fλ(X0) = 0,

• (x,X) 7→ fx(X) is analytic on an open of C2 containing (λ,X0),

• fλ(·) is not identically 0 in a neighborhood of X0 (because of the imaginary part for
example).

Then, there exists δ > 0, ϵ > 0, m ∈ N∗ such that for all z ∈ C, |z − x0| < ϵ, fz(·) has exactly m

zeros in {X ∈ C, |X −X0| < δ} and Xkj
(z) = X0 +

∑∞
n=1 akn

((
(z − λ)1/pk

)
j

)n
. We refer to

Section 9 [14] for the notation.

So, for |z − λ| small enough, Xkj
(z) ∈ C+ as X0 ∈ C+ and Xkj

continuous. Moreover,
fz(Xkj (z)) = 0 for all z ∈ C+ and |z − λ| small enough. By unicity of the solution of fz(·) = 0
when z ∈ C+, we deduce that ∀kj ∈ J1,mK, Xkj

(z) = X(z).

In conclusion, that ∀kj ∈ J1,mK, Xkj
(z) −→

z→x0

X0 by continuity of Xkj
, and ∀kj ∈

J1,mK, Xkj
(z) −→

z→x0

X̌(λ) by continuity of X(·) on C∗. So, X̌(λ) = X0 ∈ C+, which concludes

the proof.

9.4 Proof of Proposition 2

Proof. Firstly, we have that h : X ∈ B 7→ cX
∫

τ
τX+1dH(τ) is analytic so is in C∞(B,R). We can

write:

xF : X ∈ B 7→

{
h(X)
X m−1

LD (h(X)) , if h(X) ̸= 0,

− 1
X

∫
δdD(δ) , otherwise.

(35)

Let y ∈ R∗ and x := m−1
LD(y). Then, by Taylor extension as y → 0, possible as SD = [d1, d2], we

have:

yx ∼ −
∫

δdD(δ),

yx+
∫
δdD(δ)

y
∼
∫
δ2dD(δ)∫
δdD(δ)

.

(36)

So,

y ∈ R 7→
{
ym−1

LD (y) , if y ̸= 0,

−y
∫
δdD(δ) , otherwise.

(37)

is in C1(R,R). So, by composition, xF ∈ C1(B,R).

9.5 Proof of Theorems 4 and 5

9.5.1 Proof of Theorem 4

Suppose the assumptions of Theorem 4.

Lemma 15. For any x0 ∈ Sc
F , x0 ̸= 0, let X0 = X̌(x0). Then X0 ∈ B := {X ∈ R : X ̸=

0,−X−1 ∈ Sc
H}, x0 = xF (X0) and x′

F (X0) > 0.

Proof. For z ∈ C+, X is differentiable - because analytic -, and we have from the functional equation
on X:

X ′(z) =

∫
δ

(z−δcΘ(1)(z))2
dD(δ)

1 +
∫

τ2

(τX(z)+1)2 dH(τ)×
∫

δ2c
(z−δcΘ(1)(z))2

dD(δ)
(38)

Let x0 ∈ Sc
F , x0 ̸= 0. Then, Im[X̌(x0)] = 0. Using Lemma 13, we have that −X̌(x0)

−1 ∈ Sc
H and

if Θ̌(1)(x0) ̸= 0, then x0

cΘ̌(1)(x0)
∈ Sc

D.
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We can prove now by D.C.T, using the previous result if Θ(1)(x0) ̸= 0 or using directly D.C.T if
Θ̌(1)(x0) = 0 that:

X ′(z) −→
z→x0

X̌ ′(x0) :=

∫
δ

(x0−δcΘ̌(1)(x0))2
dD(δ)

1 +
∫

τ2

(τX̌(x0)+1)2
dH(τ)×

∫
δ2c

(x0−δcΘ̌(1)(x0))2
dD(δ)

∈ R∗
+. (39)

As X is continuous on C+ ∪ Sc
F \{0}, differentiable on C+ and X ′ admits a limit on Sc

F \{0}, then
X is differentiable on C+ ∪ Sc

F \{0} and is derivative on Sc
F \{0} is indeed X̌ ′.

Similarly, for x0 ∈ Sc
F \{0} and X0 := X̌(x0) and supposing that Θ̌(1)(x0) ̸= 0, we also prove by

D.C.T, for the same reasons, that:

mLD

(
x0

c
∫

τ
τX0+1dH(τ)

)
= cX0

∫
τ

τX0 + 1
dH(τ). (40)

As x0

c
∫

τ
τX0+1dH(τ)

∈ Sc
D, mLD is invertible at this point, so x0 = xF (X̌(x0)).

Now supposing that Θ̌(1)(x0) = 0, we have by D.C.T on (23) that:

X0 = X̌(x0) = − 1

x0

∫
δdD(δ). (41)

So, in this case we also have that x0 = xF (X̌(x0)).

So, xF is indeed the inverse of X̌ on Sc
F \{0}, and as X̌ ′(x0) > 0, we conclude that x′

F (X0) > 0.

Lemma 16. Suppose that X0 ∈ B and x′
F (X0) > 0. Let x0 = xF (X0). Then, x0 ∈ Sc

F ,
limz∈C+→x0 X(z) =: X̌(x0) exists, and X̌(x0) = X0.

Proof. Let X0 ∈ B such that x′
F (X0) > 0, and let x0 = xF (X0). Firstly, remark that mLD - seen

as an analytic function on C\SD - is locally invertible at any y ∈ Sc
D, y real. Indeed, for such y,

m′
LD(y) =

∫
δ

(δ−y)2 dD(δ) > 0.

We prove the result for X0 ∈ B such that
∫

τ
τX0+1dH(τ) ̸= 0 firstly, and we will conclude using the

continuity of F ′.

Assuming
∫

τ
τX0+1dH(τ) ̸= 0, we define: y0 := x0

c
∫

τ
τX0+1dH(τ)

. Remark that y0 ∈ Sc
D because

y0 = m−1
LD

(
c
∫

τX0

τX0+1dH(τ)
)

by definition. Then, mLD is locally invertible in a neighborhood
N of C containing y0, we denote its local inverse by gLD. gLD is analytic as mLD is analytic.
Obviously, on mLD(N ∩ R), which is open in R, we have gLD = m−1

LD. So, on mLD(N) which is
open in C, gLD extends analytically m−1

LD.

We define now an extension of xF , denoted zF , defined on an open N ′ :={
X ∈ C|X ̸= 0, X /∈ SH , c

∫
τX

τX+1dH(τ) ∈ mLD(N)
}

of C containing X0:

zF : X ∈ N ′ 7→ c

∫
τ

τX + 1
dH(τ)gLD

(
c

∫
τX

τX + 1
dH(τ)

)
. (42)

N ′ is open because X 7→ c
∫

τX
τX+1dH(τ) is analytic on C\SH so continuous, and non constant.

X0 ∈ N ′ by construction.

As z′F (X0) = x′
F (X0) because both functions coincides on the real line and zF is differentiable

because analytic, we have that z′F (X0) > 0, so zF is locally invertible at X0 on an open ball B(X0, ϵ)

for some ϵ > 0, and we denote its local inverse X̂ .

We prove that there exists ϵ′ ∈]0, ϵ] such that ∀X ∈ B(X0, ϵ
′), zF (X) ∈ R ⇐⇒ X ∈ R. For that,

suppose there exists a sequence (Xn)n≥1 such that ∀n ∈ N∗, Xn ∈ B(X0, ϵ)\R, Xn → X0 and
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zF (Xn) ∈ R. zF and xF coincides on the real line zF (]X0 − ϵ,X0 + ϵ[) = xF (]X0 − ϵ,X0 + ϵ[).
Moreover, as x′

F (X0) > 0, xF is locally invertible (in the R-topology) at X0, thus there exists
η ∈]0, ϵ] such that xF (]X0 − η,X0 + η[) is an open interval and xF (X0) ∈ xF (]X0 − η,X0 + η[).
So zF (]X0−η,X0+η[) is an open interval of R and zF (X0) ∈ zF (]X0−η,X0+η[). As Xn → X0,
by continuity, we have zF (Xn) → zF (X0). So, as zF (Xn) ∈ R, for n large enough, we have that
zF (Xn) ∈ zF (]X0 − η,X0 + η[). However, Xn /∈]X0 − η,X0 + η[ by assumption. So, zF is
not injective on B(X0, ϵ), which is contradictory with the fact that it is invertible. So there exists
ϵ′ ∈]0, ϵ] such that ∀X ∈ B(X0, ϵ

′), zF (X) ∈ R ⇐⇒ X ∈ R.

We deduce then by continuity that either zF (B(X0, ϵ
′) ∩ C+) ⊂ C+, or zF (B(X0, ϵ

′) ∩ C+) ⊂
C−. Because z′F (X0) > 0, we conclude that zF (B(X0, ϵ

′) ∩ C+) ⊂ C+. So, for all X ∈
B(X0, ϵ

′) ∩ C+, we have that zF (X) ∈ C+ and X = −
∫

δ
zF (X)−δc

∫
τ

τX+1dH(τ)
dD(δ). In other

words, X solve (23) at zF (X) ∈ C+. By unicity of the solution of (23) in C+, we have that
X = X(zF (x)). Moreover, we also have by local invertibility that X = X̂(zF (X)). Then,
by continuity of X̂ , for all x ∈ zF (]X0 − ϵ′, X0 + ϵ′[), X(z) −→

z∈C+→x
X̂(x) ∈ R (it is real

because we proved zF (X) ∈ R ⇐⇒ X ∈ R). In particular, we have that X̌(x0) exists and
X̌(x0) = X̂(x0) = X0. We remind that zF (]X0 − ϵ′, X0 + ϵ′[) contains an open (of R) containing
x0 because z′F (X0) > 0 and zF (X0) = x0. Then, as X̂(x0) = X0 ∈ B, B is an open of R
and X̂ is continuous, there is an open interval I ⊂ zF (]X0 − ϵ′, X0 + ϵ′[) such that x0 ∈ I and
∀x ∈ I, X̂(x) ∈ B.

As a consequence, by D.C.T. from the fact that ∀x ∈ I, X̂(x) ∈ B, we have that ∀x ∈
I,m(z) −→

z∈C+→x

1
x

∫
1

τX̂(x)+1
dH(τ) ∈ R. Therefore, by Theorem 2.1 [9], ∀x ∈ I, F ′(x) = 0.

So I ⊂ Sc
F , and so x0 ∈ Sc

F , which concludes the proof in the case
∫

τ
τX0+1dH(τ) ̸= 0.

Finally, suppose
∫

τ
τX0+1dH(τ) = 0. Then, as X 7→

∫
τ

τX+1dH(τ) is analytic non-constant
on a neighborhood of X0, there exists a real neighborhood I ′ ⊂ B of X0 such that ∀X ∈
I ′\{X0},

∫
τ

τX+1dH(τ) ̸= 0. By the previous proof we know that ∀X ∈ I ′\{X0}, X̌(xF (X)) =

X . Moreover, as
∫

τ
τX0+1dH(τ) = 0, we have that x0 := xF (X0) = − 1

X0

∫
δdD(δ) ∈ R∗. As X̌

is well-defined and continuous on R∗ from Lemma 9, we have that X̌(x0) is well-defined and X̌ con-
tinuous at x0. By continuity of xF on I ′ ∩B from Proposition 2, we deduce that X̌(x0) = X0 ∈ B.
So, ∀X ∈ I ′, X̌(xF (X)) = X . As x′

F (X0) > 0, xF (I
′) contains an open interval J containing x0.

For all x ∈ J , we prove by D.C.T. that m(z) −→
z∈C+→x

1
x

∫
1

τX̂(x)+1
dH(τ) ∈ R, which implies that

F ′(x) = 0. So, x0 ∈ Sc
F which concludes the proof.

9.5.2 Proof of Theorem 5

Suppose the assumptions of Theorem 5.

Lemma 17. For any x0 ∈ Sc
F , x0 ̸= 0, let X0 = X̌(x0). Then X0 ∈ B := {X ∈ R : X ̸=

0,−X−1 ∈ Sc
H}, and there exists k ∈ J1,MK such that x0 = x

(k)
F (X0) and x

(k)′

F (X0) > 0.

Proof. We apply the same method as the proof of Lemma 15. We develop here only the parts that differ.
We consider firstly the case where Θ̌(1)(x0) ̸= 0. Then, we prove that y0 := x0

c
∫

τ
τX0+1dH(τ)

∈ Sc
D.

So by assumption on SD, either there exists k ∈ J1,M − 1K such that y0 ∈ I(k) :=]δ
(k)
2 , δ

(k+1)
1 [ or

for k = M , y0 ∈ I(M) =]−∞, δ
(1)
1 [∪]δ(M)

2 ,+∞[. As y0 ∈ Sc
D, mLD is invertible at this point and

mLD = m
(k)
LD in a neighborhood of y0, so we deduce that x0 = x

(k)
F (X0).

By continuity, we also have in a neighborhood N of x0 that ∀x ∈ N, x
c
∫

τ
τX̌(x)+1

dH(τ)
∈ I(k) and

x = x
(k)
F (X̌(x)).

If Θ̌(1)(x0) = 0, then by D.C.T:

X0 = X̌(x0) = − 1

x0

∫
δdD(δ). (43)
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So in this case we have that x0 = x
(M)
F (X̌(x0)). By continuity of Θ(1), we also have in a

neighborhood N of x0 that ∀x ∈ N, τ
τX̌(x)+1

dH(τ) = 0 or x
c
∫

τ
τX̌(x)+1

dH(τ)
∈ I(M). So,

∀x ∈ N, x = x
(M)
F (X̌(x)).

So, x(k)
F , with the appropriate k chosen above, is indeed the inverse of X̌ in a neighborhood of x0.

As X̌ ′(x0) > 0 (see the proof of Lemma 15), we conclude that x(k)′

F (X0) > 0 and it completes the
proof.

Lemma 18. Suppose that X0 ∈ B and there exists k ∈ J1,MK such that xF (k)
′(X0) > 0. Let

x0 = x
(k)
F (X0). Then, x0 ∈ Sc

F and X̌(x0) = X0.

Proof. We use the same proof as Lemma 16, replacing xF by x
(k)
F , and the result follows.
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