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Abstract

We propose an extension of the high dimensional spectrum analysis of sample co-
variance in the setting of the weighted sample covariance. We derive an asymptotic
equation characterizing the limit density of the weighted sample eigenvalues gener-
alizing for weighted sample covariance matrices the Marcenko-Pastur theorem.

Keywords: weighted covariance, asymptotic spectrum, Random Matrix Theory, Cauchy-Stieltjes
transform

1 Introduction and related work

The spectrum of sample covariance and its behavior in Kolmogorov asymptotics, when the dimension
grows approximately linearly with the number of samples, is a central topic in high dimensional
covariance and precision matrix estimation. Among the large literature on covariance estimation,
the high dimensional framework has known several recent improvements thanks to Random Matrix
Theory (RMT). Main high dimensional approaches are gathered in recent surveys of the field
[1, 2, 3, 4, 5].

The applications of those estimators are diverse, and an extensive list was made by Ledoit and Wolf
[6] in their literature review. We can include new works in this list, as climatology [7], neuroscience
[8], or sensor monitoring [9].

A main topic concerns the spectrum deformation due to the lack of samples with regard to the
dimension. To address this challenge, an idea is to shrink each sample eigenvalue in order to correct
the deformation. This key idea of shrinkage goes back to Stein in 1956 [10] for Gaussian mean
estimation.

Covariance estimation successfully used this idea firstly with a linear formulation. Some linear
shrinkage based estimators are: Ledoit and Wolf linear shrinkage [11], Oracle Approximating
Shrinkage Estimator for Gaussian observations [12], linear shrinkage under factor models [13] and
[14], analytical setting of linear shrinkage [15], shrinkage of Tyler M-estimator [16], linear shrinkage
of elliptical distributions [17], or Ledoit-Wolf shrinkage with unknown mean [18].

RMT gave the mathematical tools to understand the deformation induced by a number of samples
and a dimension of the same order of magnitude. The asymptotic sample covariance spectrum is
described by a fundamental equation discovered by Marcenko and Pastur in a work of 1967 [19].
Later, Bai, Choi and Silverstein wrote a series of articles between 1995 and 1998 on the generalization
of Marcenko-Pastur equation to Hermitian matrices and on characterizations of the spectrum support
[20, 21, 22, 23].

These works on the deformation of the spectrum of the true covariance in the sample covariance
led to Ledoit and Péché equations for optimal non-linear shrinkage in the class of rotation-invariant
estimators [24], with important consequences in covariance estimation [6, 25, 26]
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These works focus on the sample covariance. However, applications in dynamic environments
such as neurosciences [27], finance [28], suggest that the sample covariance suffers from the non-
stationarity of the data. Weighting schemes, such as the exponential weighted moving average
(EWMA), are a model-free approach, with possibly very few parameters depending on the chosen
weighting schemes, and represent a transparent candidate for complex and hard-to-model dynamics.
Their use in covariance estimation is not new: Pafka et al. in 2004 [29] worked on shrinkage for
exponentially-weighted sample covariance in a Gaussian setting for portfolio management, which was
further studied for covariance filtering [30], Svensson in 2007 [31] used Marcenko-Pastur to study
the spectrum of exponentially-weighted sample covariance when the covariance is the identity, and
recently Tan et al. in 2023 [32] developed a NERCOME-like approach to use non-linear shrinkage
on exponentially-weighted sample covariance with applications for dynamic brain connectivity.

As they explain in the latter, no tool from Random Matrix Theory exists at our knowledge for
weighted sample covariance to replicate the methods used for the sample covariance to extract its
asymptotic spectrum.

This work aims at filling this gap by giving an asymptotic description of the spectrum of weighted sam-
ple covariance, as a generalization of Marcenko-Pastur theorem for weighted sample covariance
matrices. Inspired from the works of Marcenko and Pastur [19], Bai, Choi and Silverstein [20, 21, 22],
we show that under the standard, and very minimal, hypotheses of RMT, the spectrum of a weighted
sample covariance converges almost surely to a distribution solving a Marcenko-Pastur-like functional
equation on its Cauchy-Stieltjes transform.

2 Notation and assumptions

Let us introduce the following notation. Notation is not constant across major works on the spectrum
of sample covariances. In our work, we chose to follow mostly Silverstein one [20].

Notation 1 (The data matrix). There are N samples of dimension n. We have:

• cn = n
N the concentration ratio,

• Zn is the noise n×N matrix composed of i.i.d centered complex entries of variance 1,

• Tn is the true covariance, a non-negative definite Hermitian matrix of size n× n,

• Wn is the weight matrix, a N ×N diagonal non-negative real matrix,

• Yn = T
1/2
n Zn is the observed data matrix.

In the following, the subscripts n are omitted when no confusion is possible.

In this work, the object of interest is the weighted sample covariance Bn, particularly its spectrum of
eigenvalues which are introduced below.

Notation 2 (Weighted sample covariance). For n ∈ N∗, the weighted sample covariance is defined
by:

Bn :=
1

N
YnWnY

∗
n . (1)

We note (τ (n)1 , ..., τ
(n)
n ) the eigenvalues of Tn in decreasing order, and (λ

(n)
1 , ..., λ

(n)
n ) the eigenvalues

of Bn in decreasing order.

Additionally, we will need matrix in the proof:

Bn :=
1

N
W 1/2

n Y ∗
n YnW

1/2
n . (2)

Bn and Bn have the same eigenvalues, except for |n−N | zero eigenvalues.

Example 1 (Standard weighting). The most common choice of weighting is of course the constant
weighting: Wn = IN . In this situation, Bn is the standard sample covariance, and its asymptotic
spectrum is covered in RMT by the work of Marcenko and Pastur [19].
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Example 2 (Exponentially weighted scheme). Another common choice in time series analysis is the
exponentially weighted scheme. Parametrized by some α ∈ R∗

+, we define the weights as:

∀i ∈ J1, NK, (Wn)ii = βe−αi/N ,

β = e−α/N 1− e−α/N

1− e−α
.

(3)

Notation 3 (Empirical spectrum distribution). We consider a Hermitian matrix A of size n× n with
real eigenvalues (µ1, ..., µn). We define the empirical spectrum distribution of A, FA, as:

FA :=
1

n

n∑
i=1

1[µi,+∞[. (4)

In particular, we have:

Fn := FBn =
1

n

n∑
i=1

1
[λ

(n)
i ,+∞[

,

Fn := FBn = (1− cn)1[0,+∞[ + cnFn.

(5)

A key tool to manipulate and understand the asymptotic behavior of Fn is the Cauchy-Stieltjes
transform: a transform of a real finite measure into a complex function defined on C+ = {z ∈
C| Im(z) > 0}.
Notation 4 (Cauchy-Stieltjes transform). For a real finite measure H , we denote mH its Cauchy-
Stieltjes transform:

∀z ∈ C+,mH(z) =

∫
1

τ − z
dH(τ). (6)

In particular, for all z ∈ C+, we denote:

mn(z) := mFn(z) =
1

n

n∑
i=1

1

λ
(n)
i − z

=
1

n
tr
(
(Bn − zI)−1

)
,

mn(z) := mFn
(z) =

1

N
tr
(
(Bn − zI)−1

)
= −1− cn

z
+ cnmn(z).

(7)

We handle the weakly convergence of Fn through the pointwise almost sure convergence of its
Cauchy-Stieltjes transform mn using the following fundamental theorem.
Theorem 1 (Cauchy-Stieltjes convergence, Theorem 5.8.3 [33]). Let (µn)n be random probability
measures, µ be a deterministic probability measure, and Z ⊂ C+ that has an accumulation point in
C+, then with =⇒

n→∞
denoting the weak convergence:

µn =⇒
n→∞

µ almost surely ⇐⇒

∀z ∈ Z,mµn
(z) −→

n→∞
mµ(z) almost surely.

(8)

We consider the following set of mild assumptions necessary to the proof of the main result. Except
for Assumption (d) which concerns specifically the weights, those assumptions were introduced by
Silverstein [22] in his proof of Marcenko-Pastur theorem for Hermitian matrices.
Assumption 1. Assume that:

(a) For all n ∈ N∗ and i ∈ J1, NK, j ∈ J1, nK, the (Xn)i,j ∈ C are i.i.d random variables with
E[(Xn)i,j ] = 0 and E[|(Xn)i,j |2] = 1.

(b) N = N(n) and cn = n
N(n) −→

n→∞
c ∈ R∗

+.

(c) FTn =⇒
n→∞

H almost surely where H is a probability distribution function - p.d.f. - on R+.
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(d) FWn =⇒
n→∞

D almost surely where D ∈ L1(R+) is a p.d.f., and almost surely∫
xdFWn(x) −→

n→∞

∫
xdD(x) ∈ R+.

(e) Xn, Tn and Wn are independent.

Assumption (a) makes sure that the covariance is well-defined and that E
[
1
N YnY

∗
n

]
= Tn. Assump-

tion (b) is the standard asymptotic setting we consider in RMT: the dimension and the number of
samples are of the same order of magnitude. Assumption (c) and (d) ensure that the population
covariance spectrum and the weight distribution converge: those two objects are essential to describe
asymptotically the spectrum of Bn. The last assumption makes sure, for example, that the weights
have no dependence on the drawn samples.

3 Main result: convergence of mn and Fn

The main result of this work is the following theorem. It characterizes the asymptotic non random
spectrum F of Bn as n → ∞ through its Cauchy-Stieltjes transform mF .

Theorem 2 (Asymptotic spectrum). Assume (a) to (e). Then, almost surely, Fn converges weakly to
a nonrandom p.d.f F , whose Cauchy-Stieltjes transform m := mF satisfies for all z ∈ C+:

m(z) =

∫
1

τm̃(z)− z
dH(τ), (9)

where for all z ∈ C+, m̃(z) is the unique solution in C\C+ of the following equation:

m̃(z) =

∫
δ

1 + δc
∫

τ
τm̃(z)−zdH(τ)

dD(δ). (10)

This theorem describes the asymptotic non-random behavior of Fn, through its Cauchy-Stieltjes
transform, as Marcenko-Pastur theorem does for the standard sample covariance.

Remark 1 (Role of m̃). In Equation (9), we note that if we fix m̃(z) = 1, then the right side of the
equation becomes mH(z), so F = H . An interpretation of this equation is that m̃(z) carries out the
deformation of H in its Cauchy-Stieltjes transform.

We only give here the main idea of the proof which is given in the Appendix. We follow the procedure
introduced in the proof of [22], and we make it work in our setting using recent developments of
Lebesgue theorem [34]. We firstly truncate the noise, the population eigenvalues and the weights by
roughly log(n). This transform does not affect the asymptotic behavior of Fn. Doing that, we can
apply a result from concentration theory that leads to the almost sure pointwise convergence of mn

towards m. Through careful use of Lebesgue theorem for varying measures, we can extract an integral
description of this limitnig m that uses m̃. Finally, we check that m is indeed the Cauchy-Stieltjes
transform of some p.d.f., that we denote F .

Examples of asymptotic densities are shown in figure 1 and 2.

To understand better what is behind m̃, we can go back in the setting of the standard non-weighted
covariance matrix.

Remark 2 (Role of m̃ when D = 1[1,+∞[). When D = 1[1,+∞[, we have that for all z ∈ C+,
m̃(z) = 1− c (1 + zm(z)) = −zm(z).

The conclusion of this remark is that m̃ in the setting of weighted sample covariance has a similar
role than m has in the uniformly weighted setting.

4 Experimental results

4.1 Impact of weight distribution on the asymptotic spectrum and on its support

We show the behavior of the asymptotic density when we vary the weight distribution. The reference
distribution of true eigenvalues is H = 0.2× 1[1,∞[ + 0.4× 1[3,∞[ + 0.4× 1[10,∞[, introduced by

4



Figure 1: Different approximations regarding parameter α of the asymptotic density of weighted
sample eigenvalues for c = 0.1, true covariance spectrum distribution H = 1[1,∞[ and weight
distribution Dα = 1

21[1−α,∞[ +
1
21[1+α,∞[. α = 0 corresponds to the classic Marcenko-Pastur

density for c = 0.1.

Figure 2: Different approximations regarding parameter α of the asymptotic density of weighted
sample eigenvalues for c = 0.1, true covariance spectrum distribution H = 1[1,∞[ and weight

distribution Dα : x ∈ [βe−α, β] 7→ 1 + 1
α log

(
x
β

)
with β = α

1−e−α , defined in Definition 1. α = 0

corresponds to the classic Marcenko-Pastur density for c = 0.1.
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Figure 3: Approximations of the asymptotic density of weighted sample eigenvalues for c = 0.25,with
H = 0.2× 1[1,∞[ + 0.4× 1[3,∞[ + 0.4× 1[10,∞[ and uniform weight distribution of parameter α.

Bai and Silverstein [23] and used by Ledoit and Péché [24]. The code is given in supplementary
material. All experiments used a Lenovo laptop, Intel i7, 32Go RAM.

This distribution helps visualizing the phenomenon of spectral separation: areas of exclusion between
the true eigenvalues where the asymptotic density is null. Those areas vanish when c is increasing,
as was shown in the classic setting of Marcenko-Pastur theory, but we show here that the same
phenomenon appears when the weight distribution is smoothly spreading.

For that matter, we are considering different weight distribution parametrized by α ∈ R+ where α
controls how much we are spreading the weights. We define the exponentially-weighted distribution,
that corresponds to the distribution of weights in an Exponentially-Weighted Moving Average -
EWMA -, used in time series analysis.

Definition 1 (α-exponentially weighted distribution). We fix α ∈ R+. We define this law such as
its cdf D follows: D(βe−αt) = 1 − t for t ∈ [0, 1]. Moreover, we impose that

∫
δdD(δ) = 1. We

finally have: ∀x ∈ [βe−α, β], D(x) = 1 + 1
α log

(
x
β

)
, with β = α

1−e−α .

We consider three weight distributions:

• A uniform distribution with [1− α/2, 1 + α/2] for α ∈ [0, 2]. The experiment is shown in
figure 3. There are 2 spectral separation for α = 0 and α = 1. For α = 2 there is only one
left.

• A mixture of 2 diracs, with D = 1
21[1−α,∞[ +

1
21[1+α,∞[ for α ∈ [0, 1]. The experiment is

shown in figure 4. There are 2 spectral separation for α = 0. For α = 0.7 and α = 1 there
is no more spectral separation.

• An exponentially-weighted distribution. The experiment is shown in figure 5. There are 2
spectral separation for α = 0, only 1 for α = 2 and no more for α = 5.

4.2 New spectral gaps due to weight gaps

Silverstein and Choi [22] proved, in the case of the non-weighted sample covariance, that when H is
a finite sum of K diracs, then there are at most K − 1 spectral gaps in the asymptotic spectrum F .

In the case of the weighted covariance spectrum, this result is not true anymore, as gaps in D can
lead to new spectral gaps in F .

To illustrate this new phenomenon, we consider:

• c = 0.05 and c = 0.01,

• H = 0.2× 1[1,∞[ + 0.4× 1[3,∞[ + 0.4× 1[10,∞[,

6



Figure 4: Approximations of the asymptotic density of weighted sample eigenvalues for c = 0.25,
with H = 0.2× 1[1,∞[ + 0.4× 1[3,∞[ + 0.4× 1[10,∞[ and weight distribution from a mixture of 2
diracs of parameter α.

Figure 5: Approximations of the asymptotic density of weighted sample eigenvalues for c = 0.25,
with H = 0.2× 1[1,∞[ + 0.4× 1[3,∞[ + 0.4× 1[10,∞[ and exponentially-weighted distribution of
parameter α.

• D =
(
1− 1

2α

)
× 1[ α

2α−1 ,∞[ +
1
2α1[α,∞[ for α ∈ {1, 50} with c = 0.05 and α ∈ {1, 200}

with c = 0.01.

In the standard non-weighted sample covariance case, we expect to find two spectral gaps roughly
when c < 0.34, one spectral gap for c ∈ [0.34, 0.40] and no spectral gaps for c > 0.40. These values
result from the theoretical study of Silverstein and Choi [22].

In our setting, we indeed have at most two spectral gaps with α = 1, which coincides with the
non-weighted situation. However, for α = 50 and α = 200, a third spectral gap appears at smaller
values of c, respectively numerically for c ≤ 0.05 and c ≤ 0.01. Results are shown in figure 6.

4.3 Speed of convergence with heavy tails

This last experimental part aims at empirically showing the speed of convergence to the asymptotic
density we described in Theorem 2, depending on the heaviness of tails.

To visualize this point, we are plotting the histogram of the empirical spectrum of the weighted
sample covariance along with the theoretical asymptotic density.

7



Figure 6: Approximations of the asymptotic density of weighted sample eigenvalues for c = 0.05
and c = 0.01, with H = 0.2× 1[1,∞[ + 0.4× 1[3,∞[ + 0.4× 1[10,∞[ and weight distribution from a
mixture of 2 diracs of parameter α for spectral gaps.

We draw the (Xij) from a normalized t-distribution with varying degree of freedom ν ∈ {2.5, 3.5, 4}.

As previously, we chose H = 0.2 × 1[1,∞[ + 0.4 × 1[3,∞[ + 0.4 × 1[10,∞[ and an exponentially-
weighted distribution of parameter α = 1 for the weights. The concentration ratio is set at c = 0.25
and the dimension at n = 3000. The convergence is meant to be almost sure, so we did only one
draw of spectrum per plot. The results are shown in figure 7.

The conclusion of this experiment is that heavy tails tend to create rare but high eigenvalues, making
the convergence slower as the tail grows. We recall that the convergence of the distributions is shown
under weak convergence. So, the presence of very high eigenvalues far from the support of F is not a
contradiction as long as their frequence of appearance converges to zero, which experimentally is the
case. This type of behavior is clearly visible for ν = 2.5 in Figure 7 where eigenvalues higher than
40 are sampled, but in very low proportion.

5 Limitations and extensions

The assumptions needed to prove the main theoretical result - Theorem 2 - are quite light, particularly
on the properties of the underlying distributions. However, one can remark the disymmetry between
H and D: we require, in Assumption (d), that D ∈ L1(R+) and that

∫
xdFWn(x) →

∫
xdD(x) a.s.

This assumption is essential in our proof, basically to remain in a compact and find a converging
subsequence. But we experimentally failed to find an exemple that proves the minimality of this
condition, so we conjecture that a weaker form should suffice.

8



Figure 7: Histogram from a t-distribution with ν = 4, ν = 3 and ν = 2.5 from top to bottom, and
asymptotic theoretical density, for n = 3000, c = 0.25, H = 0.2×1[1,∞[+0.4×1[3,∞[+0.4×1[10,∞[

and exponentially-weighted distribution of parameter α = 1.
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Secondly, Wn is supposed to be diagonal. This is our practical interest in multivariate time series
analysis, and this is important in the proof to properly use the independence assumption. Out of
curiosity, we tried to rotate Wn under Student noise in order to make it non-diagonal, and our
experiments - given in Appendix - suggest that the conclusions of Theorem 2 hold in this situation,
but a theoretical and empirical study needs to be made to ensure it.

6 Conclusion

In this work, we characterize the asymptotic spectrum of weighted sample covariance, extending
Random Matrix Theory tools developed for the equally weighted sample covariance.

Experimentally, we show the behavior of the weighted sample covariance spectrum under different
concentration ratios and weight distributions, and expose a new phenomenon on the spectral gaps.
Finally, we confirm empirically the robustness of the theory and speed of convergence when the
underlying distribution has heavy tails.

This theory paves a way for further works and extensions, as the optimal asymptotic non-linear
shrinkage in the spirit of [24].
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7 Appendix A - Experiment with non-diagonal Wn

We tried to rotate Wn under Student noise in order to make it non-diagonal, and check if the
conclusions of Theorem 2 hold in this situation. For that matter, we compare two situations:

• in figure 8 (left), we examine the histograms of the sample spectrum for a diagonal weight
matrix W = D, T = Q′ΛQ

′∗.

• in figure 8 (right), we examine the histograms of the sample spectrum for a non-diagonal
weight matrix W = QDQ∗, T = Q′ΛQ

′∗.

where

• Λ is a diagonal matrix with a spectrum following H = 0.2× 1[1,∞[ + 0.4× 1[3,∞[ + 0.4×
1[10,∞[,

• D is a diagonal weight matrix where weights are sampled in an exponentially-weighted
distribution of parameter α = 1,

• Q and Q′ are independent sampled unitary matrix: we sampled a noise matrix A of size
(N,N), with iid normal entries, and taking the QR decomposition, we extracted a unitary
matrix Q.

The underlying noise matrix Z follows a Student distribution with ν ∈ {4, 3, 2.5} degrees of freedom.

The comparison does not clearly show any particular difference. That experiment, and the fact that
the population covariance Σ does not need to be diagonal, suggests that an extension of Theorem 2
where Wn is not diagonal could be possible. However, this assumption is necessary in our proof, and
further work need to be done to take this point into account.

Figure 8: Histogram for Wn diagonal (left)/non-diagonal (right), from a t-distribution with ν =
4, ν = 3 and ν = 2.5 from top to bottom, and asymptotic theoretical density, for n = 2000, c = 0.25,
H = 0.2×1[1,∞[+0.4×1[3,∞[+0.4×1[10,∞[ and exponentially-weighted distribution of parameter
α = 1.
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8 Appendix B - Proof of Theorem 2

8.1 Truncation and centralization

In this first part of the proof, we use a similar approach as [21], aiming at truncating and centering Z,
T and W while conserving the same asymptotic spectrum for Fn.

8.1.1 Truncation of Z by
√
N

Let Ẑij = Zij1|Zij |<
√
N and B̂n = 1

NW 1/2Ẑ∗T ẐW 1/2. We use Lemmas 2.5.a and 2.1.d [21], and
with ∥·∥ denoting the ∞-norm on bounded real functions, we have:

∥FBn − F B̂n∥ ≤ 2

N
rank

(
W 1/2Z −W 1/2Ẑ

)
≤ 2

N
rank

(
Z − Ẑ

)
∥FBn − F B̂n∥ ≤ 2

N

∣∣∣{i ∈ J1, nK, j ∈ J1, NK|Zij − Ẑij ̸= 0
}∣∣∣︸ ︷︷ ︸

ξn

(11)

At this point, we follow the idea of the proof p.58-59 of [35]. We have that:

ξn =
∑
i,j

Yi,j with Yij = 1|Zij |≥
√
N . (12)

Remark that the Yij are i.i.d Bernoulli B(η) with η = P
(
|Z11| ≥

√
N
)

. As E[|Z11|2] = 1,

η = o
(
1
n

)
.

Let ϵ > 0. For n large enough, we have:

P
(

2

N
ξn ≥ ϵ

)
= P

 1

nN

∑
ij

Yij ≥
ϵ

2n

 ≤ P

 1

nN

∑
ij

Yij ≥ η +
ϵ

4n

 . (13)

As E[Yij ] = η, we have by Chernoff-Hoeffding’s theorem, for n large enough:

P
(

2

N
ξn ≥ ϵ

)
≤ exp

[
nN

((
η +

ϵ

4n

)
ln

η

η + ϵ
4n

+
(
1− η − ϵ

4n

)
ln

1− η

1− η − ϵ
4n

)]
≤ exp

[
nN

(
−

(
ϵ
4n

)2
2
(
η + ϵ

4n

) − (
ϵ
4n

)3
3
(
η + ϵ

4n

)2 −
(

ϵ
4n

)2
2
(
1− η − ϵ

4n

) + (
ϵ
4n

)3
3
(
1− η − ϵ

4n

)2
)]

= exp

[
−ϵ2N

32n
× 1(

η + ϵ
4n

) (
1− η − ϵ

4n

) − ϵ3N

3× 43n2
×

1− 2
(
η + ϵ

4n

)(
η + ϵ

4n

)2 (
1− η − ϵ

4n

)2
]

P
(

2

N
ξn ≥ ϵ

)
≤ exp

[
−ϵN ×

(
1

16
+

2

3× 43

)]
.

(14)
Consequently,

∥FBn − F B̂n∥ −→
n→∞

0 almost surely. (15)

8.1.2 Centralization of Ẑ

Let Z̃ij = Ẑij − E
[
Ẑij

]
and B̃n = 1

NW 1/2Z̃∗T ẐW 1/2. The Ẑij are i.i.d, so ∀i, j,E
[
Ẑij

]
=

E
[
Ẑ11

]
. Consequently,

rank
(
W 1/2Z̃ −W 1/2Ẑ

)
= rank

(
W 1/2E[Ẑ]

)
≤ 1. (16)

Using Lemma 2.5.a [21], we have:

∥F B̃n − F B̂n∥ ≤ 2

N
rank

(
W 1/2Z̃ −W 1/2Ẑ

)
≤ 2

N
−→
n→∞

0. (17)
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8.1.3 Truncation of T and W by αn and βn respectively

We denote U a matrix of eigenvector of T with associated eigenvalues (τ1, ..., τn), so that T =
U Diag ((τi))U

∗. For α > 0, we define:

Tα = U Diag
((
τi1|τi|≤α

))
U∗. (18)

If α and −α are continuity points of H , using Lemma 2.5.b [21], we have that for any n × N
Hermitian matrix Q:

∥FQ∗TQ − FQ∗TαQ∥ ≤ 1

N
rank(T − Tα) =

1

N

n∑
i=1

1|τ1|>α. (19)

Using Assumptions (b) and (c), we have then:
1

N
rank(T − Tα) −→

n→∞
cH([−α, α]c) almost surely. (20)

Consequently,

α := αn −→
n→∞

+∞ =⇒ ∥FQ∗TQ − FQ∗TαQ∥ −→
n→∞

0 almost surely. (21)

Similarly, for β > 0, we define:

Wβ = Diag
((
Wii1|Wii|≤β

))
. (22)

Using Lemma 2.5.b [21] and Assumptions (b) and (c), we have also for any n×N Hermitian matrix
Q:

∥FW 1/2Q∗TαQW 1/2

− FW
1/2
β Q∗TαQW

1/2
β ∥ ≤ 1

n
rank(W −Wβ) −→

n→∞

1

c
D([−β, β]c) almost surely.

(23)
Consequently,

β := βn −→
n→∞

+∞ =⇒ ∥FW 1/2Q∗TαQW 1/2

− FW
1/2
β Q∗TαQW

1/2
β ∥ −→

n→∞
0 almost surely. (24)

In the following, we choose αn ↑ +∞ and βn ↑ +∞ so that:

• (αnβn)
4
(
E
[
|Z11|21|Z11|≥lnN

]
+ 1

N

)
−→
n→∞

0,

•
∑∞

n=1
(βnαn)

8

N2

(
E
[
|Z11|41|Z11|≥

√
N

]
+ 1
)
< +∞.

We denote B̃α,β = 1
NW

1/2
β Z̃∗TαZ̃W

1/2
β . With α, β chosen following the rules above, we have:

∥F B̃α,β − F B̃n∥ −→
n→∞

0 almost surely. (25)

8.1.4 Truncation of Z̃ by lnN

Let Z̄ij = Z̃ij1|Zij |<lnN −E
[
Z̃ij1|Zij |<lnN

]
and ¯̄Zij = Z̃ij − Z̄ij . Remark that E[ ¯̄Z] = E[Z̄] = 0.

Moreover, since |Z̃ij | ≤ lnN + E[|Z11|], we have for n sufficiently large and some a > 2:

|Z̄ij |√
E[|Z̄11|2]

≤ lnN + E[|Z11|]√
E[|Z̄11|2]

≤ a lnn := log n. (26)

We denote log n the logarithm of n in base exp(1/a).

In this part, we use a metric D on M(R), the set of all subprobability distribution functions on R,
defined in [21] p.191.
Definition 2 (D-metric, [21]). Let {fi} be an enumeration of all continuous functions that take a
constant 1/m value (m a positive integer) on [a, b], where a, b are rational, 0 on ]−∞, a− 1/m] ∪
[b+ 1/m,+∞[, and linear on each [a− 1/m, a], [b, b+ 1/m]. For F1, F2 ∈ M(R), we define:

D(F1, F2) :=

∞∑
i=1

∣∣∣∣∫ fidF1 −
∫

fidF2

∣∣∣∣ 2−i. (27)

D is a metric on M(R) inducing the topology of vague convergence.
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We denote B̄α,β = 1
NW

1/2
β Z̄∗TαZ̄W

1/2
β . Using Lemma 2.1.c and Equation (2.4) [21], we have:

D2
(
F B̃α,β , F B̄α,β

)
≤ 1

N
tr

[(
W

1/2
β Z̃∗TαZ̃W

1/2
β −W

1/2
β Z̄∗TαZ̄W

1/2
β

)2]
=

1

N
tr

[(
W

1/2
β ( ¯̄Z + Z̄)∗Tα(

¯̄Z + Z̄)W
1/2
β −W

1/2
β Z̄∗TαZ̄W

1/2
β

)2]
D2
(
F B̃α,β , F B̄α,β

)
=

1

N

(
tr

[(
W

1/2
β

¯̄Z∗Tα
¯̄ZW

1/2
β

)2]
+ tr

[(
W

1/2
β

¯̄Z∗TαZ̄W
1/2
β +W

1/2
β Z̄∗Tα

¯̄ZW
1/2
β

)2]

+ 2 tr
[(

W
1/2
β

¯̄Z∗Tα
¯̄ZW

1/2
β

)(
W

1/2
β

¯̄Z∗TαZ̄W
1/2
β +W

1/2
β Z̄∗Tα

¯̄ZW
1/2
β

)])
.

(28)
Using Cauchy-Schwarz inequality, we have:

D2
(
F B̃α,β , F B̄α,β

)
=

1

N

(
tr

[(
W

1/2
β

¯̄Z∗Tα
¯̄ZW

1/2
β

)2]
+ 4 tr

[
W

1/2
β

¯̄Z∗TαZ̄WβZ̄
∗Tα

¯̄ZW
1/2
β

]
+ 4

√
tr

[(
W

1/2
β

¯̄Z∗Tα
¯̄ZW

1/2
β

)2]
tr
[
W

1/2
β

¯̄Z∗TαZ̄WβZ̄∗Tα
¯̄ZW

1/2
β

])
.

(29)
We show, through Von Neumann’s trace inequality, that:

tr

[(
W

1/2
β

¯̄Z∗Tα
¯̄ZW

1/2
β

)2]
≤ α2β2 tr

[(
¯̄Z∗ ¯̄Z

)2]
,

and tr
[
W

1/2
β

¯̄Z∗TαZ̄WβZ̄
∗Tα

¯̄ZW
1/2
β

]
≤ α2β2

√
tr

[(
¯̄Z∗ ¯̄Z

)2]
tr
[(
Z̄∗Z̄

)2]
.

(30)

And, from [21] p.185 and Assumption (b), we have:
1

N
tr
[(
Z̄∗Z̄

)2] −→
n→∞

c(1 + c) almost surely. (31)

We have also from [21] p.185, with K and K ′ constant independent of n,

E
[
1

N
tr

[(
¯̄Z∗ ¯̄Z

)2]]
≤ K ′

(
E
[
|Z11|21|Z11|≥lnN

]
+

1

N

)
,

V
[
1

N
tr

[(
¯̄Z∗ ¯̄Z

)2]]
≤ K

N2

(
E
[
|Z11|41|Z11|≥

√
N

]
+ 1
)
.

(32)

So, E
[
α4β4

N tr

[(
¯̄Z∗ ¯̄Z

)2]]
−→
n→∞

0 and V
[
α4β4

N tr

[(
¯̄Z∗ ¯̄Z

)2]]
is summable, so:

α4β4

N
tr

[(
¯̄Z∗ ¯̄Z

)2]
−→
n→∞

0 almost surely. (33)

Backing up, we have then:

D2
(
F B̃α,β , F B̄α,β

)
−→
n→∞

0 almost surely. (34)

So, F B̃α,β − F B̄α,β
v−→ 0, v−→ denotes the vague convergence.

8.1.5 Conclusion of the truncations and centralizations

The conclusion of that first part of the proof is that it is sufficient to show that F B̄α,β
v−→ F for some

F ∈ M(R) (we will in fact prove the weak convergence) in order to prove that FBn
v−→ F , which

is equivalent to show that FBn
v−→ F := 1

cF + 1−c
c 1[0,∞[.

Moreover, as by definition FBn(R) = 1, if F (R) = 1, it is equivalent to prove that FBn =⇒
n→∞

F .

In the following, we focus on the truncated and centralized variables. In fact, we swap:
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• Zij by Z̄ij/
√
E[|Z̄ij |2],

• T by E[|Z̄11|2]Tα,
• W by Wβ .

Remark that we can impose α ≤ log n and β ≤ log n without compromising any of the properties on
α and β defined in Section 6.1.3.

In addition to (a)-(e), we can now use the following Assumptions.
Assumption 2. Assume that:

(f) ∀i, j, |Zij | ≤ log n,

(g) ∥T∥ ≤ log n,

(h) ∥W∥ ≤ log n.

From now, Bn = 1
N T 1/2Z∗WZT 1/2 and Bn = 1

NW 1/2ZTZ∗W 1/2 use the truncated variables Z,
T and W , and so are Fn, Fn, mn and mn.

The following aims at proving, with those truncated variables, that for some p.d.f F , FBn
v−→ F

a.s., which proves the theorem. For that, we prove that for some p.d.f F , FBn =⇒
n→∞

F a.s. It is done

using the Cauchy-Stieltjes transform: we prove that for all z ∈ C+, a.s. mn(z) −→
n→∞

m(z) where m

is the Cauchy-Stieltjes transform of a p.d.f.

We introduce new objects of interest in the analysis, namely qj , rj , and B(j).

Notation 5. For j ∈ J1, NK, we denote:

• qj =
1√
n
Z·j ,

• rj =
1√
N
T 1/2Z·jW

1/2
jj ,

• B(j) = Bn − rjr
∗
j ,

8.2 Concentration

8.2.1 Preliminary derivations

Let’s introduce a technical result.
Lemma 1 (Eq (2.1) [22]). For B a (n, n) matrix, q ∈ Cn for which B and B + qq∗ is invertible, we
have:

q∗(B + qq∗)−1 =
1

1 + q∗B−1q
q∗B−1. (35)

We have:

(Bn − zI) + zI =

N∑
j=1

rjr
∗
j

I + z(Bn − zI)−1 =

N∑
j=1

rjr
∗
j (Bn − zI)−1

I + z(Bn − zI)−1 =

N∑
j=1

1

1 + r∗j (B(j) − zI)−1rj
rjr

∗
j (B(j) − zI)−1

cn + zcnmn(z) = 1− 1

N

N∑
j=1

1

1 + r∗j (B(j) − zI)−1rj

mn(z) = − 1

N

N∑
j=1

1

z
(
1 + r∗j (B(j) − zI)−1rj

) .

(36)
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Here is the crucial difference between the proof in [20] in the evenly weighted case and the weighted
case. We denote:

αn = − 1

zmn(z)

1

N

N∑
j=1

Wjj

(
r∗j (Bn − zI)−1rj − 1

)
, (37)

while in [22], αn = 1 is used.

We have equivalently:

αn = − 1

zmn(z)

1

N

N∑
j=1

Wjj

1 + r∗j (B(j) − zI)−1rj

and αn =

1
N

∑N
j=1

Wjj

1+r∗j (B(j)−zI)−1rj

1
N

∑N
j=1

1
1+r∗j (B(j)−zI)−1rj

,

(38)

Then:
(−zαnmn(z)Tn − zI)−1 − (Bn − zI)−1 =

(−zαnmn(z)Tn − zI)−1

zαnmn(z)Tn +

N∑
j=1

rjr
∗
j

 (Bn − zI)−1 =

(−zαnmn(z)Tn − zI)−1
N∑
j=1

rjr
∗
j (B(j) − zI)−1 − 1

N αnTn(Bn − zI)−1

1 + r∗j (B(j) − zI)−1rj
.

(39)

Applying the trace and dividing by n, we obtain:

1

n
tr
(
(−zαnmn(z)Tn − zI)−1

)
−mn(z) =

− 1

N

N∑
j=1

1

z(1 + r∗j (B(j) − zI)−1rj)

(
Wjjq

∗
jT

1/2(B(j) − zI)−1(αnmn(z)Tn + I)−1T 1/2qj

− 1

n
tr
(
(αnmn(z)Tn + I)−1αnTn(Bn − zI)−1

) )
(40)

So,

1

n
tr
(
(−zαnmn(z)Tn − zI)−1

)
−mn(z) =

− 1

zN

N∑
j=1

q∗j

(
WjjT

1/2
n (B(j) − zI)−1(αnmn(z)Tn + I)−1T

1/2
n

1 + r∗j (B(j) − zI)−1rj

)
qj

+
1

zNn
tr

(αnmn(z)Tn + I)−1
N∑
j=1

αnTn

1 + r∗j (B(j) − zI)−1rj
(Bn − zI)−1

 =

− 1

N

N∑
j=1

1

z(1 + r∗j (B(j) − zI)−1rj)
dj ,

(41)

where:
dj = Wjjq

∗
jT

1/2
n (B(j) − zI)−1(αnmn(z)Tn + I)−1T 1/2

n qj

− 1

n
tr
(
Wjj(αnmn(z)Tn + I)−1Tn(Bn − zI)−1

)
.

(42)

The strategy of the proof is the following:

• prove that maxj≤N dj −→ 0 a.s., and that 1
n tr

(
(−zαnmn(z)Tn − zI)−1

)
−mn(z) −→ 0

a.s.,
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• show that a.s. it exists m̃(z) ∈ C\C+ and a subsequence ni so that m̃ni(z) :=
−zαnimni

(z) −→ m̃(z) a.s.,

• prove that m̃(z) is the unique solution in C− of a functional equation, and deduce
m̃n(z) −→ m̃(z) a.s.,

• deduce that a.s. it exists m(z) ∈ C+, uniquely defined in function of m̃(z) so that
mn(z) −→ m(z) a.s.,

• similarly deduce that a.s. it exists Θ(1)(z) ∈ C+, uniquely defined in function of m̃(z) so
that Θ(1)

n (z) −→ Θ(1)(z) a.s.,

• conclude proving that m is the Cauchy-Stieltjes transform of a p.d.f.

8.2.2 Decomposition of dj

Much of the truth of this proof relies upon the following lemma from [21].

Lemma 2 (Lemma 3.1 [21]). Let C a Hermitian n × n matrix so that ∥C∥ ≤ 1, and Y =
(Z1, ..., Zn)

T , Zi ∈ C where the Zi’s are i.i.d., E[Z1] = 0, E[|Z1|2] = 1 and |Z1| ≤ log n. Then,

E
[
|Y ∗CY − trC|6

]
≤ Kn3 log(n)

12
, (43)

where the constant K does not depend on n, C, nor the distribution of Z1.

In order to use this Lemma on dj , we decompose it into negligible terms and a term of the form
q∗jCqj − 1

n tr(C) where C is independent of qj .

For that, we denote:

m̃n(z) := −zαnmn(z)

and m̃(j)(z) :=
1

N

∑
i ̸=j

Wii

(
r∗i (B(j) − zI)−1ri − 1

)
. (44)

We have the following decomposition of dj :

dj = d
(1)
j + d

(2)
j + d

(3)
j + d

(4)
j , (45)

with:

d
(1)
j = Wjjq

∗
jT

1/2
n (B(j) − zI)−1

[(
−m̃n(z)

z
Tn + I

)−1

−
(
−
m̃(j)(z)

z
Tn + I

)−1
]
T 1/2
n qj ,

d
(2)
j = Wjjq

∗
jT

1/2
n (B(j) − zI)−1

(
−
m̃(j)(z)

z
Tn + I

)−1

T 1/2
n qj

− Wjj

n
tr

((
−
m̃(j)(z)

z
Tn + I

)−1

Tn(B(j) − zI)−1

)
,

d
(3)
j =

Wjj

n
tr

([(
−
m̃(j)(z)

z
Tn + I

)−1

−
(
−m̃n(z)

z
Tn + I

)−1
]
Tn(B(j) − zI)−1

)
,

d
(4)
j =

Wjj

n
tr

((
−m̃n(z)

z
Tn + I

)−1

Tn

[
(B(j) − zI)−1 − (Bn − zI)−1

])
.

(46)

In order to prove that for each k ∈ J1, 4K,maxj≤N d
(k)
j −→ 0 a.s., we need some technical lemmas.

They essentially provide the necessary inequalities to prove that d(1)j , d
(3)
j and d

(4)
j are indeed

negligible, to finally use Lemma 2 on d
(2)
j and prove that maxj≤N |dj | −→ 0 a.s.
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8.2.3 Technical lemmas

Lemma 3. We have the following inequalities, for j ∈ J1, NK:

∥(Bn − zI)−1∥ ≤ 1

v
,

∥(B(j) − zI)−1∥ ≤ 1

v
,

1

|z(1 + r∗j (B(j) − zI)−1rj)|
≤ 1

v
.

(47)

Proof. Let j ∈ J1, NK. The two first inequalities comes from the fact that Bn and B(j) are Hermitian,
so for any eigenvalue λ of Bn − zI or B(j) − zI , we have that |λ| ≥ | Im[λ]| = v.

For the third inequality, we remark that:

Im r∗j (B(j)/z − I)−1rj =
1

2i
r∗j
[
(B(j)/z − I)−1 − (B(j)/z

∗ − I)−1
]
rj

=
v

|z|2
r∗j (B(j)/z − I)−1B(j)(B(j)/z

∗ − I)−1rj

Im r∗j (B(j)/z − I)−1rj ≥ 0.

(48)

So, we deduce that:
1

|z(1 + r∗j (B(j) − zI)−1rj)|
≤ 1

v
. (49)

Lemma 4. We denote W̄ = 1
N

∑N
i=1 Wii. For z = u+ iv, v > 0 and j ∈ J1, NK, we have for any

nonnegative Hermitian matrix A:∥∥∥∥∥
(
−m̃n(z)

z
A+ I

)−1
∥∥∥∥∥ ≤ f(z, ∥A∥), and

∥∥∥∥∥
(
−
m̃(j)(z)

z
A+ I

)−1
∥∥∥∥∥ ≤ f(z, ∥A∥), (50)

where:

f(z, ∥A∥) =

{
max

(
2, 4

v W̄∥A∥
)
, if u = 0,

16
(

|z|2
4v2|u|W̄∥A∥+ 1

)
×max

(
1
3 ,

|u|
v

)
, otherwise.

(51)

Proof. Let z = u + iv, v > 0, u ∈ R. For j ∈ J1, NK, we denote by (uij)
n
i=1 a set of eigenvectors of

B(j) with associated eigenvalues (λij)
n
i=1. We then derive the following formulation:

R := Re

[
−m̃n(z)

z

]
= − 1

N

N∑
j=1

Wjj∣∣∣∣z + r∗j

(
B(j)

z − I
)−1

rj

∣∣∣∣2
(
u+

n∑
i=1

|r∗juij |2

|λij − z|2
(λiju− |z|2)

)
,

I := Im

[
−m̃n(z)

z

]
=

1

N

N∑
j=1

Wjj∣∣∣∣z + r∗j

(
B(j)

z − I
)−1

rj

∣∣∣∣2
(
v +

n∑
i=1

|r∗juij |2

|λij − z|2
λijv

)
≥ 0.

(52)
Using Cauchy-Schwarz inequality, we deduce:

1

N

N∑
j=1

Wjj |z|2
∑n

i=1

|r∗j uij |2

|λij−z|2∣∣∣∣z + r∗j

(
B(j)

z − I
)−1

rj

∣∣∣∣2
≤

√√√√√√ 1

N

N∑
j=1

Wjj

(∑n
i=1

|r∗j uij |2
|λij−z|2

)2
∣∣∣1 + r∗j

(
B(j) − zI

)−1
rj

∣∣∣2
√√√√√√ 1

N

N∑
j=1

Wjj∣∣∣∣z + r∗j

(
B(j)

z − I
)−1

rj

∣∣∣∣2
1

N

N∑
j=1

Wjj |z|2
∑n

i=1

|r∗j uij |2

|λij−z|2∣∣∣∣z + r∗j

(
B(j)

z − I
)−1

rj

∣∣∣∣2
≤|z|

√
W̄

v
√
v

√
I.

(53)
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So, combining both previous points, we have:

|R| ≤ |u|
v
I +

|z|
√
W̄

v
√
v

√
I. (54)

Suppose u ̸= 0. We denote K := |z|
√
W̄

2v
√

|u|
. We have then:√

v

|u|

(
−K +

√
K2 + |R|

)
≤

√
I. (55)

Now, let x ≥ 0. Then:∣∣∣∣−m̃n(z)

z
x+ 1

∣∣∣∣2 = (Rx+ 1)
2
+ I2x2

∣∣∣∣−m̃n(z)

z
x+ 1

∣∣∣∣2 ≥ (−|R|x+ 1)2 +
v2

|u|2
(
−K

√
x+

√
K2x+ |R|x

)4
.

(56)

We denote: t :=
√
K2x+ |R|x ∈ R+ . We have then:∣∣∣∣−m̃n(z)

z
x+ 1

∣∣∣∣2 ≥ (t2 −K2x− 1)2 +
v2

|u|2
(t−K

√
x)4. (57)

We denote a := K
√
x, b :=

√
K2x+ 1 and we split the study of the right part of the previous

equation between [0, (a+ b)/2] and [(a+ b)/2,+∞[. The lower bounds rely mainly on the fact that
b− a ≥ 1

2b :

• Let t ∈ [0, (a+ b)/2]. Then,

(t2 −K2x− 1)2 +
v2

|u|2
(t−K

√
x)4 ≥

((
a+ b

2

)2

− b2

)2

=
(a+ 3b)2(b− a)2

16

≥ 9(b− a)4

16

(t2 −K2x− 1)2 +
v2

|u|2
(t−K

√
x)4 ≥ 9

162b4
.

(58)

• Let t ∈ [(a+ b)/2,+∞[. Then,

(t2 −K2x− 1)2 +
v2

|u|2
(t−K

√
x)4 ≥ v2

16|u|2
(b− a)4

(t2 −K2x− 1)2 +
v2

|u|2
(t−K

√
x)4 ≥ v2

162|u|2b4
.

(59)

Backing up, we have that:∣∣∣∣−m̃n(z)

z
x+ 1

∣∣∣∣2 ≥ 1

162 (K2x+ 1)
2 ×min

(
v2

|u|2
, 9

)
. (60)

It finally leads to:∥∥∥∥∥
(
−m̃n(z)

z
A+ I

)−1
∥∥∥∥∥ ≤ 16

(
|z|2

4v2|u|
W̄∥A∥+ 1

)
×max

(
1

3
,
|u|
v

)
, (61)

which proves the first inequality when u ̸= 0.
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Now suppose u = 0. From Equation (62), we have:

|R| ≤
√

W̄

v

√
I. (62)

If W̄ = 0, then: ∣∣∣∣−m̃n(z)

z
x+ 1

∣∣∣∣2 = 1 + x2I2 ≥ 1 ≥ 1

4
. (63)

Otherwise, with y = Rx and a = v2

W̄ 4x2 :∣∣∣∣−m̃n(z)

z
x+ 1

∣∣∣∣2 ≥ (Rx+ 1)2 + x2R
4v2

W̄ 4
= ay4 + (y + 1)2. (64)

Splitting the study between ]−∞, 1/2] and [1/2,+∞[, we have that ay4+(y+1)2 ≥ min
(

a
16 ,

1
4

)
.

So, we deduce the first inequality when u = 0:∥∥∥∥∥
(
−m̃n(z)

z
A+ I

)−1
∥∥∥∥∥ ≤ max

(
2,

4W̄∥A∥
v

)
. (65)

Let j ∈ J1, NK. Using the same method for
∥∥∥∥(− m̃(j)(z)

z A+ I
)−1

∥∥∥∥, we have with W̄(j) :=

1
N

∑
i ̸=j Wii :

∣∣∣∣Re [−m̃(j)(z)

z

]∣∣∣∣ ≤ |u|
v

Im

[
−
m̃(j)(z)

z

]
+

|z|
√

W̄(j)

v
√
v

√
Im

[
−
m̃(j)(z)

z

]
. (66)

As Wjj ≥ 0, W̄(j) ≤ W̄ , so we find the same equation as Equation (62):∣∣∣∣Re [−m̃(j)(z)

z

]∣∣∣∣ ≤ |u|
v

Im

[
−
m̃(j)(z)

z

]
+

|z|
√
W̄

v
√
v

√
Im

[
−
m̃(j)(z)

z

]
. (67)

So, from the previous proof of the first inequality, we deduce immediatly the second one, which
complete the proof of this lemma:

u ̸= 0 =⇒

∥∥∥∥∥
(
−
m̃(j)(z)

z
A+ I

)−1
∥∥∥∥∥ ≤ 16

(
|z|2

4v2|u|
W̄∥A∥+ 1

)
×max

(
1

3
,
|u|
v

)
,

u = 0 =⇒

∥∥∥∥∥
(
−
m̃(j)(z)

z
A+ I

)−1
∥∥∥∥∥ ≤ max

(
2,

4W̄∥A∥
v

)
.

(68)

Corollary 1. Let j ∈ J1, NK and z = u+ iv, v > 0. Then, for any matrices A and B of same size
n× n, A Hermitian non-negative, we have:∣∣∣∣∣tr
[
B

((
−m̃n(z)

z
A+ I

)−1

−
(
−
m̃(j)(z)

z
A+ I

)−1
)]∣∣∣∣∣ ≤

∣∣∣∣m̃n(z)

z
−

m̃(j)(z)

z

∣∣∣∣n∥B∥∥A∥f(z, ∥A∥)2.

(69)

Proof. For any invertible matrices C1, C2 of the same size than B, we have:

| tr
[
B(C−1

1 − C−1
2 )
]
| = tr

[
BC−1

1 (C2 − C1)C
−1
2

]
| tr
[
B(C−1

1 − C−1
2 )
]
| ≤ ∥B∥ × ∥C−1

1 ∥ × ∥C−1
2 ∥ × n∥C2 − C1∥.

(70)

From that point, the result comes immediately from Lemma 4.
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Corollary 2. Let j ∈ J1, NK and z = u + iv, v > 0. Then, for any n × n matrix A Hermitian
non-negative, and r ∈ Cn, ∥r∥ denoting its euclidean norm, we have:∣∣∣∣∣r∗

((
−m̃n(z)

z
A+ I

)−1

−
(
−
m̃(j)(z)

z
A+ I

)−1
)
r

∣∣∣∣∣ ≤
∣∣∣∣m̃n(z)

z
−

m̃(j)(z)

z

∣∣∣∣ ∥r∥2∥A∥f(z, ∥A∥)2.

(71)

Proof. For any invertible matrices C1, C2 of size n× n, we have:

r∗(C−1
1 − C−1

2 )r = r∗C−1
1 (C2 − C1)C

−1
2 r

r∗(C−1
1 − C−1

2 )r ≤ ∥r∥2 × ∥C−1
1 ∥ × ∥C−1

2 ∥ × ∥C2 − C1∥.
(72)

From that point, the result comes immediately from Lemma 4.

Lemma 5. Let j ∈ J1, NK. We denote: A(j) =
∑

i ̸=j Wiirir
∗
i . Then,∣∣∣∣m̃n(z)

z
−

m̃(j)(z)

z

∣∣∣∣ ≤ 2 log n

Nv
+

∥A(j)∥
|z|vN

. (73)

Proof. Let j ∈ J1, NK. We have, using Lemma 1:∣∣∣∣m̃n(z)

z
−

m̃(j)(z)

z

∣∣∣∣ =
∣∣∣∣∣∣Wjjr

∗
j (Bn − zI)−1rj

zN
+
∑
i ̸=j

Wii

zN
r∗i
[
(Bn − zI)−1 − (B(j) − zI)−1

]
ri

∣∣∣∣∣∣∣∣∣∣m̃n(z)

z
−

m̃(j)(z)

z

∣∣∣∣ ≤
∣∣∣∣∣Wjj

zN

(
1− 1

1 + r∗j (B(j) − zI)−1rj

)∣∣∣∣∣
+

∣∣∣∣∣ 1

zN

r∗j (B(j) − zI)−1A(j)(B(j) − zI)−1rj

1 + r∗j (B(j) − zI)−1rj

∣∣∣∣∣ .
(74)

For the first term, using Lemma 3, we have:∣∣∣∣∣Wjj

zN

(
1− 1

1 + r∗j (B(j) − zI)−1rj

)∣∣∣∣∣ ≤ log n

N |z|
+

log n

Nv
≤ 2 log n

Nv
. (75)

For the second term, we have:∣∣∣∣∣ 1

zN

r∗j (B(j) − zI)−1A(j)(B(j) − zI)−1rj

1 + r∗j (B(j) − zI)−1rj

∣∣∣∣∣ ≤ ∥A(j)∥
|z|N

∥(B(j) − zI)−1rj∥2

|1 + r∗j (B(j) − zI)−1rj |∣∣∣∣∣ 1

zN

r∗j (B(j) − zI)−1A(j)(B(j) − zI)−1rj

1 + r∗j (B(j) − zI)−1rj

∣∣∣∣∣ ≤ ∥A(j)∥
|z|vN

.

(76)

Using the proof of Lemma 2.6 [21], we have additionally that:

∥(B(j) − zI)−1rj∥2

|1 + r∗j (B(j) − zI)−1rj |
≤ 1

v
. (77)

So, ∣∣∣∣∣ 1

zN

r∗j (B(j) − zI)−1A(j)(B(j) − zI)−1rj

1 + r∗j (B(j) − zI)−1rj

∣∣∣∣∣ ≤ ∥A(j)∥
|z|vN

, (78)

which concludes the proof.

Lemma 6. We have:
max
j≤N

∥qj∥2 −→ 1 a.s.,

∀p ∈ N,max
j≤N

log(n)
p

N
∥A(j)∥ −→ 0 a.s.

(79)
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Proof. The first convergence is a direct use of Lemma 2 as remarked in [21] p.338.

Let p ∈ N. The second convergence comes from the following derivations for j ∈ J1, NK:

log(n)
2p

N2
∥A(j)∥2 ≤ 1

N2
tr

∑
i ̸=j

Wiirir
∗
i


≤ c2n log(n)

2p

N2

∑
i ̸=j

W 4
ii∥T∥2∥qi∥4 +

∑
i ̸=j

∑
i′ ̸=i,i′ ̸=j

W 2
iiW

2
i′i′ |q∗i′Tqi|2


≤ c2n log(n)

2p

N2

 N∑
i=1

W 4
ii∥T∥2∥qi∥4 +

N∑
i=1

∑
i′ ̸=i

W 2
iiW

2
i′i′ |q∗i′Tqi|2


≤ c2n log(n)

2p+4

N2

 N∑
i=1

log(n)
2∥qi∥4 +

N∑
i=1

∑
i′ ̸=i

|q∗i′Tqi|2


1

N2
∥A(j)∥2 ≤ c2n log(n)

2p+6

N
max
i≤N

∥qi∥4 +
c2n log(n)

2p+4

N
max
i≤N

∑
i′ ̸=i

|q∗i′Tqi|2.

(80)

The upper bound does not depend on j anymore, so we have:

max
j≤N

1

N2
∥A(j)∥2 ≤ c2n log(n)

2p+6

N
max
i≤N

∥qi∥4 +
c2n log(n)

2p+4

N
max
i≤N

∑
i′ ̸=i

|q∗i′Tqi|2. (81)

From the first part of the proof, we have that maxi≤N∥qi∥4 −→ 1 a.s., so:

c2n log(n)
2p+6

N
max
i≤N

∥qi∥4 −→ 0 a.s. (82)

For the second term, we have:

c2n log(n)
2p+4

N
max
i≤N

∑
i′ ̸=i

|q∗i′Tqi|2 =
c2n log(n)

2p+4

N
max
i≤N

∑
i′ ̸=i

q∗i′(Tqiq
∗
i T )qi′ . (83)

Let i ∈ J1, NK. We use Lemma 2 in dimension n(N − 1) with Y = (Zki′)k,i′ ̸=i ∈ Rn×(N−1) (in

vectorized form) and C =

Tqiq
∗
i T (0)

. . .
(0) Tqiq

∗
i T

 of size n(N − 1)× n(N − 1). We have then:

E


∣∣∣∣∣∣ log(n)

2p+4

N

∑
i′ ̸=i

q∗i′(Tqiq
∗
i T )qi′ −

(N − 1) log(n)
2p+4

nN
∥Tqi∥2

∣∣∣∣∣∣
6
 ≤

Kn3(N − 2)3 log (n(N − 2))
6
log(n)

6(2p+4)

N6n6
∥C∥6 ≤

K log (nN)
6

N3n3
log(n)

6(2p+8)
.

(84)

So, for all ϵ > 0:

P

∣∣∣∣∣∣max
i≤N

1

N

∑
i′ ̸=i

q∗i′(Tqiq
∗
i T )qi′ −max

i≤N

N − 1

nN
∥Tqi∥2

∣∣∣∣∣∣ ≥ ϵ

 ≤

N × P

∣∣∣∣∣∣ 1N
∑
i′ ̸=1

q∗i′(Tq1q
∗
1T )qi′ −

N − 1

nN
∥Tq1∥2

∣∣∣∣∣∣ ≥ ϵ

 ≤

≤ K log (nN)
6

ϵ6N2n3
log(n)

6(2p+8)
,

(85)
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which is summable. So,

max
i≤N

log(n)
2p+4

N

∑
i′ ̸=i

q∗i′(Tqiq
∗
i T )qi′ −max

i≤N

(N − 1) log(n)
2p+4

nN
∥Tqi∥2 −→ 0 a.s. (86)

And, from the first part of the proof:∣∣∣∣∣max
i≤N

c2n(N − 1) log(n)
2p+4

nN
∥Tqi∥2

∣∣∣∣∣ ≤ c2n log(n)
2p+6

nN
max
i≤N

∥qi∥2 −→ 0 a.s. (87)

We can conclude the proof:

max
j≤N

log(n)
p

N
∥A(j)∥ −→ 0 a.s. (88)

8.2.4 Proof that maxj≤N |dj | −→ 0 a.s.

Proof that maxj≤N |d(1)j | −→ 0 a.s. Let j ∈ J1, NK. We recall that:

d
(1)
j = Wjjq

∗
jT

1/2
n (B(j) − zI)−1

[(
−m̃n(z)

z
Tn + I

)−1

−
(
−
m̃(j)(z)

z
Tn + I

)−1
]
T 1/2
n qj .

(89)
Then, using Corollary 2 and Lemma 3, we have:

|d(1)j | ≤ Wjj∥(B(j) − zI)−1∥∥T∥2∥qj∥2
∣∣∣∣m̃n(z)

z
−

m̃(j)(z)

z

∣∣∣∣ f(z, log(n))2
|d(1)j | ≤ log(n)

3

v
f(z, log(n))2∥qj∥2

∣∣∣∣m̃n(z)

z
−

m̃(j)(z)

z

∣∣∣∣ . (90)

Using Lemma 5, we have:

|d(1)j | ≤ log(n)
3

v
f(z, log(n))2

(
2 log n

Nv
+

∥A(j)∥
|z|vN

)
∥qj∥2. (91)

By Assumption (d),
∫
xdFWn(x) −→

∫
xdD(x) < ∞ a.s., i.e. W̄ −→

∫
xdD(x) ≤ ∞ a.s., so W̄

is bounded a.s. As a consequence, f(z, log(n))2 = O(log(n)
2
) a.s.. Finally, using Lemma 6, we can

conclude:
max
j≤N

|d(1)j | −→ 0 a.s. (92)

Proof that maxj≤N |d(2)j | −→ 0 a.s. Let j ∈ J1, NK. We recall that:

d
(2)
j =Wjjq

∗
jT

1/2
n (B(j) − zI)−1

(
−
m̃(j)(z)

z
Tn + I

)−1

T 1/2
n qj

− Wjj

n
tr

((
−
m̃(j)(z)

z
Tn + I

)−1

Tn(B(j) − zI)−1

)
.

(93)

Using Lemma 2, we have:

E
[∣∣∣d(2)j

∣∣∣6] ≤ K log(n)
12

n3

∥∥∥∥∥Wjj

(
−
m̃(j)(z)

z
Tn + I

)−1

Tn(B(j) − zI)−1

∥∥∥∥∥
6

. (94)

Using Lemmas 3 and 4, we have:

E
[∣∣∣d(2)j

∣∣∣6] ≤ K log(n)
24

v6n3
f(z, log(n))6. (95)

As argued above, f(z, log(n)) = O(log(n)) a.s., so
∑N

j=1 E
[∣∣∣d(2)j

∣∣∣6] is a.s. summable. So, we can

conclude:
max
j≤N

|d(2)j | −→ 0 a.s. (96)
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Proof that maxj≤N |d(3)j | −→ 0 a.s. Let j ∈ J1, NK. We recall that:

d
(3)
j =

Wjj

n
tr

([(
−
m̃(j)(z)

z
Tn + I

)−1

−
(
−m̃n(z)

z
Tn + I

)−1
]
Tn(B(j) − zI)−1

)
.

(97)
Using Corollary 1 and Lemma 3, we have:

|d(3)j | ≤ log(n)
3

nv

∣∣∣∣m̃n(z)

z
−

m̃(j)(z)

z

∣∣∣∣nf(z, log(n))2. (98)

Using Lemma 5, we have:

|d(3)j | ≤ log(n)
3

v

(
2 log n

nv
+

∥A(j)∥
|z|vn

)
f(z, log(n))2. (99)

As we argued previously, f(z, log(n))2 = O(log(n)
2
) a.s., so from Lemma 6 we can conclude:

max
j ≤N

|d(3)j | −→ 0 a.s. (100)

Proof that maxj≤N |d(4)j | −→ 0 a.s. Let j ∈ J1, NK. We recall that:

d
(4)
j =

Wjj

n
tr

((
−m̃n(z)

z
Tn + I

)−1

Tn

[
(B(j) − zI)−1 − (Bn − zI)−1

])
(101)

Using Lemma 1, we have:

d
(4)
j =

Wjj

n

r∗j (B(j) − zI)−1
(
− m̃n(z)

z Tn + I
)−1

T (B(j) − zI)−1rj

1 + r∗j (B(j) − zI)−1rj
(102)

So,

|d(4)j | = log(n)

n

∥∥∥∥∥
(
−m̃n(z)

z
Tn + I

)−1

T

∥∥∥∥∥ ∥(B(j) − zI)−1rj∥2

|1 + r∗j (B(j) − zI)−1rj |
(103)

Using the proof of Lemma 2.6 [21], we have that:

∥(B(j) − zI)−1rj∥2

|1 + r∗j (B(j) − zI)−1rj |
≤ 1

v
. (104)

So, using Lemma 5, we have:

|d(4)j | = log(n)
2
f(z, log(n))

vn
(105)

As argued before, f(z, log(n)) = O(log(n)) a.s., so we can conclude:

max
j≤N

|d(4)j | −→ 0 a.s. (106)

We can now conclude this section. The last four points prove that:

max
j≤N

|dj | −→ 0 a.s. (107)

And from Lemma 3, we have for j ∈ J1, NK:
1

|z(1 + r∗j (B(j) − zI)−1rj)|
≤ 1

v
. (108)

So,
1

N

N∑
j=1

−1

z(1 + r∗j (B(j) − zI)−1rj)
dj −→

n→∞
0 a.s. (109)

Using Equation (41), we can now conlude that:
1

n
tr
(
(m̃n(z)Tn − zI)−1

)
−mn(z) −→

n→∞
0 a.s. (110)
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8.3 Convergences and functional equation

For this section, we introduced an object used in [24], we define:

Θ(1)
n (z) =

1

n
tr
(
(Bn − zI)−1Tn

)
. (111)

8.3.1 Proof that a.s., ∀p ∈ N, log(n)p
∣∣∣m̃n(z)Θ

(1)
n (z)− (1 + zmn(z))

∣∣∣ −→
n→∞

0

Let p ∈ N. We have:

∣∣∣m̃n(z)Θ
(1)
n (z)− (1 + zmn(z))

∣∣∣ =
∣∣∣∣∣∣m̃n(z)Θ

(1)
n (z)− 1

n

N∑
j=1

r∗j (B(j) − zI)−1rj

1 + r∗j (B(j) − zI)−1rj

∣∣∣∣∣∣
=

∣∣∣∣∣∣ 1N
N∑
j=1

Wjj

(
Θ

(1)
n (z)− q∗j (B(j) − zI)−1qj

)
1 + r∗j (B(j) − zI)−1rj

∣∣∣∣∣∣∣∣∣m̃n(z)Θ
(1)
n (z)− (1 + zmn(z))

∣∣∣ ≤ |z|
v

max
j≤N

log(n)
∣∣∣Θ(1)

n (z)− q∗jT
1/2(B(j) − zI)−1T 1/2qj

∣∣∣ .
(112)

Using Lemma 2, we have that:

E
[∣∣∣log(n)pΘ(1)

n (z)− log(n)
p
q∗jT

1/2(B(j) − zI)−1T 1/2qj

∣∣∣6] ≤ K
log(n)

6(p+3)

n3v6
. (113)

So,
max
j≤N

∣∣∣log(n)pΘ(1)
n (z)− log(n)

p
q∗jT

1/2(B(j) − zI)−1T 1/2qj

∣∣∣ −→
n→∞

0 a.s. (114)

As N is countable, we have also:

a.s., ∀p ∈ N,max
j≤N

log(n)
p
∣∣∣Θ(1)

n (z)− q∗jT
1/2(B(j) − zI)−1T 1/2qj

∣∣∣ −→
n→∞

0 a.s. (115)

We can conclude:

a.s., ∀p ∈ N, log(n)p
∣∣∣m̃n(z)Θ

(1)
n (z)− (1 + zmn(z))

∣∣∣ −→
n→∞

0. (116)

From Assumption (d), W̄ →
∫
xdD(x) ∈ R+ a.s. We focus now on trajectories where W̄ →∫

xdD(x) ∈ R+, Equations (110) and (115) hold, FTn =⇒ H and FWn =⇒ D.

Then, (m̃n(z)) is bounded. Indeed, from Lemma 3, |m̃n(z)| ≤ W̄ |z|
v . Then, as Im[m̃n(z)] ≤ 0,it

exists a subsequence {ni} of N and m̃(z) ∈ C\C+ such that m̃ni
(z) −→

i→∞
m̃(z) ∈ C\C+.

8.3.2 Proof that mni
(z) −→

i→∞

∫
1

τm̃(z)−zdH(τ).

We want to prove that:

mni(z)−
∫

1

τm̃(z)− z
dH(τ) −→

i→∞
0. (117)

From Equation (110), it is equivalent to prove that:∫
1

τm̃ni(z)− z
dFTni (τ)−

∫
1

τm̃(z)− z
dH(τ) −→

i→∞
0. (118)

We prove that
∫

1
τm̃ni

(z)−zdF
Tni (τ) −→

i→∞
− 1

z using the Lebesgue’s convergence theorem for weakly

converging measures, as detailed in Corollary 5.1 [34]. We denote: f : τ ∈ R → 1
τm̃(z)−z and

fi : τ ∈ R → 1
τm̃ni

(z)−z . Regarding the hypotheses of the theorem, we have:
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• (fi)i is a.u.i. w.r.t. (FTni )i (see (2.4) [? ] for a definition). Indeed, ∀τ ∈ R+,∀i ∈
R+, |fi(τ)| ≤ 1

v , so limK→+∞ lim supi→+∞
∫
|fi(τ)|1[K,+∞[(|fi(τ)|)dFTni = 0.

• FTni =⇒ H by assumption.

• Let τ ∈ R+ and ϵ > 0. By assumption, W̄ni
is bounded and we denote by κ one of its finite

upper bound. By (3), we have that ∀i, |m̃ni(z)| ≤ κ
|z|v , so m̃(z) ≤ κ

|z|v . We define:

δ := min

(
1,

v2

κ
|z|v + τ + 1

)
> 0. (119)

Then, there exists i0 ∈ N such that ∀i ≥ i0, |m̃ni
(z) − m̃(z)| ≤ δ. Now, let τ ′ ∈

]τ − δ, τ + δ[∩R+ and i ≥ i0. Then,

|fi(τ ′)− f(τ)| = |τ ′m̃ni
(z)− τm̃(z)|

|τ ′m̃ni(z)− z| × |τm̃(z)− z|

≤ 1

v2
(|(τ ′ − τ)m̃(z)|+ |τ ′(m̃ni

(z)− m̃(z))|)

≤ δ

v2

(
κ

|z|v
+ τ + 1

)
|fi(τ ′)− f(τ)| ≤ ϵ.

(120)

So limi→∞,τ ′→τ fi(τ
′) exists.

So, using Corollary 5.1 [34] on the real and imaginary parts, we deduce that limi→∞
∫
fi(τ)dF

Tni (τ)
exists and:

lim
i→∞

∫
fi(τ)dF

Tni (τ) =

∫
f(τ)dH(τ). (121)

It immediatly leads to:

mni
(z)−

∫
1

τm̃(z)− z
dH(τ) −→

i→∞
0. (122)

8.3.3 Case H = 1[0,+∞[.

Suppose H = 1[0,+∞[. We have then that a.s. mn(z) −→
n→+∞

− 1
z . Moreover, the equation

m =
∫

δ
1+δc

∫
τ

τm−z dH(τ)
dD(δ) =

∫
δdD(δ) has trivially a unique solution in C\C+ that we

denote m̃(0)(z) :=
∫
δdD(δ). As − 1

z =
∫

1
τm̃(0)(z)−z

dH(τ), we indeed have that mn(z) −→
n→+∞∫

1
τm̃(0)(z)−z

dH(τ). And z 7→ − 1
z is the Cauchy-Stieltjes transform of the p.d.f 1[0,∞[ which

complete the proof of the Theorem in the case H = 1[0,+∞[.

Until the end of the proof, we now suppose that H(]0,+∞[) > 0.

8.3.4 Case D = 1[0,+∞[.

Suppose D = 1[0,+∞[. Then, W̄n −→
n→+∞

0. By (3), m̃n(z) ≤ W̄
|z|v . So the complete sequence (not

the subsequence) m̃n(z) −→
n→+∞

0. From the previous section on Equation (122), we proved that if

m̃n(z) converges to some m̃(z), then mn(z) −
∫

1
τm̃(z)−zdH(τ) −→

n→∞
0. So, with m̃(1)(z) := 0,

we have that mn(z) −→
n→∞

∫
1

τm̃(1)(z)−z
dH(τ) = − 1

z . Moreover, we remark that m̃(1)(z) = 0 is

the unique solution to the equation m =
∫

δ
1+δc

∫
τ

τm−z dH(τ)
dD(δ) =

∫
δdD(δ) in C\C+. And

z 7→ − 1
z is the Cauchy-Stieltjes transform of the p.d.f 1[0,∞[ which complete the proof of the

Theorem in the case D = 1[0,+∞[.

Until the end of the proof, we now suppose that D(]0,+∞[) > 0.
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8.3.5 Case m̃(z) = 0.

Suppose m̃(z) = 0. Then, mni(z) −→
i→∞

− 1
z and by Cauchy-Stieltjes transform property FBni =⇒

1[0,+∞[. Consequently, E
[

1
ni

tr(Bni
)
]

−→
i→+∞

0. As E
[

1
ni

tr(Bni
)
]
= 1

ni
tr(Tni

) × W̄ni
. W̄ni

converges by assumption to
∫
δdD(δ), and we supposed D(]0,+∞[) > 0 so

∫
δdD(δ) > 0. We

deduce that 1
ni

tr(Tni
) −→
i→+∞

0. So, H = 1[0,+∞[, which is absurd. So m̃(z) ̸= 0.

8.3.6 Proof that 1 + zmni
(z) −→

i→∞

∫ δΘ(1)(z)
1+δcΘ(1)(z)

dD(δ) with Θ(1)(z) := 1+zm(z)
m̃(z) .

We remind that we suppose now: H(]0,+∞[) > 0, D(]0,+∞[) > 0 and m̃ni(z) −→
i→+∞

m̃(z) ̸= 0.

Firstly, we denote: Mn := log(n)maxj≤N

∣∣∣Θ(1)
n (z)− log(n)

p
q∗jT

1/2(B(j) − zI)−1T 1/2qj

∣∣∣.
There is n0 large enough so that ∀n ≥ n0,Mn ≤ v

2cn
, due to Equation (115). Then, we have

for ni ≥ n0: ∣∣∣∣∣∣(−cn(1 + zmni
(z)) + 1)− 1

N

N∑
j=1

1

1 +WjjcniΘ
(1)
ni

∣∣∣∣∣∣ =∣∣∣∣∣∣ 1N
N∑
j=1

1

1 + r∗j (B(j) − zI)−1rj
− 1

1 +WjjcniΘ
(1)
ni

∣∣∣∣∣∣ ≤
cni

W̄Mni

v(v − cni
Mni

)
−→
i→∞

0.

(123)

Then, we denote Θ(1)(z) := 1+zm(z)
m̃(z) =

∫
τ

τm̃(z)−zdH(τ). From Equation (116), Θ(1)
ni −→

i→∞
Θ(1)(z). We define:

g : δ ∈ R → 1

1 + δcΘ(1)(z)
. (124)

We want to prove that:

1

N

N∑
j=1

1

1 +Wjjcni
Θ

(1)
ni

−→
i→∞

∫
g(δ)dD(δ). (125)

Let δ ∈ R. Remark that, as Im[m̃(z)] ≤ 0:

Im[Θ(1)(z)] = Im

[
1 + zm(z)

m̃(z)

]
= Im

[∫
τ

τm̃(z)− z
dH(τ)

]
≥ v

∫
τ

|τm̃(z)− z|2
dH(τ) > 0.

(126)
So, from [22] p.338, we have:

|g(δ)| ≤ |Θ(1)(z)|
Im[Θ(1)(z)]

. (127)

And, for ni large enough so that ∀ni ≥ n1, Im[Θ
(1)
ni ] > 0:∣∣∣∣∣ 1

1 + δcni
Θ

(1)
ni

− g(δ)

∣∣∣∣∣ ≤ 1

cni
Im[Θ

(1)
ni (z)]

× |Θ(1)(z)|
Im[Θ(1)(z)]

∣∣∣cΘ(1)(z)− cniΘ
(1)
ni

∣∣∣ . (128)

Using (123), (127) and (128), we have that:

cni
(1 + zmni

(z))− 1 −→
i→∞

∫
1

1 + δcΘ(1)(z)
dD(δ). (129)

We conclude that:

1 + zmni(z) −→
i→∞

∫
δΘ(1)(z)

1 + δcΘ(1)(z)
dD(δ). (130)

Finally, using (122) and (130), we have that:

m̃(z) =

∫
δ

1 + δc
∫

τ
τm̃(z)−zdH(τ)

dD(δ). (131)
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8.4 Unicity

In this section, we show that there is at most one solution m ∈ C\C+ so that:

m =

∫
δ

1 + δc
∫

τ
τm−zdH(τ)

dD(δ). (132)

Let m ∈ C\C+, verifying (132). Then, as H(]0,+∞[) > 0:

Im[m] = −
∫ δ2c

∫ τ(τ Im[−m]+v)
|τm−z|2 dH(τ)∣∣∣1 + δc
∫

τ
τm−zdH(τ)

∣∣∣2 dD(δ) < 0. (133)

So, with C− = {y ∈ C| Im[y] < 0}:
[m ∈ C\C+ verifies (132) and H(]0,+∞[) > 0] ⇐⇒ [m ∈ C− verifies 132 and H(]0,+∞[) > 0] .

(134)
Let m1 = u1 − iv1 ∈ C− and m2 = u2 − iv2 ∈ C− solving (132) at z = u+ iv ∈ C+. Then,

m1 −m2 =

∫ δ2c
(∫

τ
τm2−zdH(τ)−

∫
τ

τm1−zdH(τ)
)

(
1 + δc

∫
τ

τm1−zdH(τ)
)(

1 + δc
∫

τ
τm2−zdH(τ)

)dD(δ)

m1 −m2 = (m1 −m2)×
∫ δ2c

∫
τ2

(τm1−z)(τm2−z)dH(τ)(
1 + δc

∫
τ

τm1−zdH(τ)
)(

1 + δc
∫

τ
τm2−zdH(τ)

)dD(δ)

(135)

Using Hölder inequality on the last term and using (133) at the end, we have:∣∣∣∣∣∣
∫ δ2c

∫
τ2

(τm1−z)(τm2−z)dH(τ)(
1 + δc

∫
τ

τm1−zdH(τ)
)(

1 + δc
∫

τ
τm2−zdH(τ)

)dD(δ)

∣∣∣∣∣∣
2

≤

∣∣∣∣∣∣∣
∫ δ2c

∫
τ2

|τm1−z|2 dH(τ)∣∣∣1 + δc
∫

τ
τm1−zdH(τ)

∣∣∣2 dD(δ)

∣∣∣∣∣∣∣×
∣∣∣∣∣∣∣
∫ δ2c

∫
τ2

|τm2−z|2 dH(τ)∣∣∣1 + δc
∫

τ
τm2−zdH(τ)

∣∣∣2 dD(δ)

∣∣∣∣∣∣∣ <∣∣∣∣∣∣∣
∫ δ2c

∫ τ2+τ v
v1

|τm1−z|2 dH(τ)∣∣∣1 + δc
∫

τ
τm1−zdH(τ)

∣∣∣2 dD(δ)

∣∣∣∣∣∣∣×
∣∣∣∣∣∣∣
∫ δ2c

∫ τ2+τ v
v2

|τm2−z|2 dH(τ)∣∣∣1 + δc
∫

τ
τm2−zdH(τ)

∣∣∣2 dD(δ)

∣∣∣∣∣∣∣ =∣∣∣∣v1v1
∣∣∣∣× ∣∣∣∣v2v2

∣∣∣∣ = 1.

(136)

Remark that the inequality is strict because we supposed H(]0,+∞[) > 0. Injecting this inequation
in (138), we find:

|m1 −m2| ≠ 0 =⇒ |m1 −m2| < |m1 −m2|. (137)
So there is at most one solution m ∈ C\C+ verifying (132).

8.5 Convergences of m̃n(z), mn(z) and Θ
(1)
n (z).

Backing up, we proved that almost surely, m̃n(z) is bounded and every convergent subsequence of
m̃n(z) converge towards the unique m̃(z) ∈ C\C+ verifying (131). So, a.s., m̃n(z) −→

n→∞
m̃(z).

We also proved that, almost surely, if m̃n(z) −→
n→∞

m̃(z) then:

• mn(z) −→
n→∞

m(z) =
∫

1
τm̃(z)−zdH(τ),

• Θ
(1)
n (z) −→

n→∞
Θ(1)(z) =

∫
τ

τm̃(z)−zdH(τ).

So, almost surely, mn(z) −→
n→∞

m(z) =
∫

1
τm̃(z)−zdH(τ) where m̃(z) is the unique solution in

C\C+ to (131).
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8.6 m is Stieltjes transform of a p.d.f.

The last point to prove is that m is Stieltjes transform of a p.d.f. As pointwise limit of Stieltjes
transform, it is enough to prove that, using Theorem 7 [36], iym(iy) −→

y→∞
−1 to show that m is a

Stieltjes transform of a p.d.f.

Consider a trajectory where W̄ is bounded, say by κ, and m̃n(z) → m̃(z). Then, ∀z ∈
C+, |m̃n(z)| ≤ κ |z|

v . So, ∀y ∈ R∗
+, |m̃(iy)| ≤ κ. Consequently,

|−iym(iy)− 1| =
∣∣∣∣∫ −τm̃(iy)

τm̃(iy)− iy
dH(τ)

∣∣∣∣ ≤ κ

y
. (138)

So, iym(iy) −→
y→∞

−1, which proves that m is a Stieltjes transform a p.d.f. and concludes the proof.
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