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ON LOCAL COMPACTNESS OF SPACES OF
CONTINUOUS VALUATIONS

JEAN GOUBAULT-LARRECQ

Abstract. We show that the spaces of continuous valuations,
resp. subprobability valuations on a locally compact space is locally
compact; similarly with probability valuations on locally compact,
compact spaces. Continuous valuations are close cousins of mea-
sures. No separation property is assumed.

1. Introduction

A continuous valuation on a topological space X is a close cousin of
a Borel measure. Continuous valuations on X form a space VX, with
a topology known as the weak topology, and similarly for the subspaces
V≤1X of subprobability valuations and V1X of probability valuations.
We will define these notions more precisely below. It is known thatV≤1
preserves various properties: stable compactness [2, Theorem 39], being
a continuous dcpo [16, Theorem 5.2], being a quasi-continuous dcpo
[14, Theorem 5.1], for example. Some of these preservation theorems
extend over to V1 or to V, but a conspicuously absent property in the
list is local compactness. This is what we address in this paper.

The proof relies on credibilities, as already used in [14], on the
Smyth powerdomain construction [23], on Jones’ celebrated theorem
that the probabilistic powerdomain preserves continuous dcpos [16,
Theorem 5.2], and on a few things about certain functionals called
superlinear previsions [12]. As a whole, the proof is therefore rather
elaborate; but it also results from little more than an assemblage of
previously known results, and as a consequence, is pretty short.

2. Preliminaries

For background on topology, we refer the reader to [11].
A compact subset A of a space X is one such that one can extract a

finite subcover from any of its open covers. No separation property is
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assumed. A subset A of X is saturated if and only if it is equal to the
intersection of its open neighborhoods, or equivalently if and only if it
is upwards-closed in the specialization preordering of X. The latter is
defined by x ≤ y if and only if every open neighborhood of x contains
y.

A space X is locally compact if and only if every point has a base of
compact neighborhoods, or equivalently of compact saturated neigh-
borhoods, since for any compact subset K of X, the upward closure
↑K of K with respect to the specialization preordering of X is com-
pact saturated. In non-Hausdorff spaces, a compact space may fail to
be locally compact.

A space is T0 if and only if its specialization preordering is antisym-
metric. An irreducible closed subset C of X is a non-empty closed
subset such that, for any two closed subsets C1 and C2 of X such that
C ⊆ C1 ∪ C2, C is included in C1 or in C2 already; equivalently, if C
intersects two open sets, it must intersect their intersection. A space
X is sober if and only if it is T0 and every irreducible closed subset
is of the form ↓x for some point x ∈ X. Every Hausdorff space, for
example, is sober. The notation ↓x stands for the downward closure of
x in X, namely the set of points y below x; that is also the closure of
{x}. Symmetrically, ↑x stands for the upward closure of x, namely the
set of points y above x. This notation extends to ↑A, for any subset
A, denoting

⋃
x∈A ↑x.

A function f : P → Q between posets is monotonic if and only if for
all x, x′ ∈ P , x ≤ x′ implies f(x) ≤ f(x′). It is Scott-continuous if
and only if f is monotonic and for every directed family (xi)i∈I with a
supremum x in P , the (necessarily directed) family of elements f(xi)
has f(x) as supremum. A directed family is a non-empty family D
such that any two elements of D have an upper bound in D. We write
sup↑D for the supremum of a directed family D. Scott-continuity is
equivalent to continuity with the respective Scott topologies on P and
Q. The Scott topology on a poset P consists of those subsets U that
are upwards closed (x ∈ U and x ≤ x′ implies x′ ∈ U) and such that
every directed family D that has a supremum in U intersects U .

A dcpo (short for directed-complete partial order) is a poset P in
which every directed subset has a supremum. In a dcpo P , let x � y
(“x is way below y”) if and only if every directed family D such that
y ≤ sup↑D contains an element d ∈ D such that x ≤ d. A basis for P
is a subset B such that, for every x ∈ P , ↓↓Bx

def
= {b ∈ B | b � x} is

directed and has x as its supremum. A dcpo is continuous if and only
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if it has a basis. If so, the sets ↑↑b def
= {x ∈ P | b � x} form a base of

the Scott topology.
Let R+ be the set of extended non-negative real numbers R+∪{∞},

with its usual ordering. When needed, we will consider it with its Scott
topology, whose open sets are the intervals ]t,∞], t ∈ R+, plus ∅ and
R+ itself. In passing, R+ is an example of a continuous dcpo, with
s� t if and only if s = 0 or s < t.

We write OX for the lattice of open subsets of a space X. A contin-
uous valuation on X is a map ν : OX → R+ that is strict (ν(∅) = 0),
modular (for all U, V ∈ OX, ν(U)+ ν(V ) = ν(U ∪V )+ ν(U ∩V )) and
Scott-continuous. We say that ν is bounded if ν(X) <∞, a probability
valuation if and only if ν(X) = 1, and a subprobability valuation if and
only if ν(X) ≤ 1.

Continuous valuations are an alternative to measures that have be-
come popular in domain theory [17, 16]. The first results that con-
nected continuous valuations and measures are due to Saheb-Djahromi
[21] and Lawson [19]. The current state of the art on this matter is the
following. In one direction, every measure on the Borel σ-algebra of X
induces a continuous valuation on X by restriction to the open sets,
if X is hereditarily Lindelöf (namely, if every directed family of open
sets contains a cofinal monotone sequence). This is an easy observa-
tion, and one half of Adamski’s theorem [1, Theorem 3.1], which states
that a space is hereditary Lindelöf if and only if every measure on its
Borel σ-algebra restricts to a continuous valuation on its open sets. In
the other direction, every continuous valuation on a space X extends
to a measure on the Borel sets provided that X is an LCS-complete
space [6, Theorem 1]. An LCS-complete space is a Gδ subspace of
a locally compact sober space, and the class of LCS-complete spaces
contains all locally compact sober spaces, in particular all continuous
dcpos from domain theory, all of M. de Brecht’s quasi-Polish spaces
[13] and therefore all Polish spaces.

The extension of a continuous valuation ν to a measure on the Borel
σ-algebra is unique if ν is bounded. This is a consequence of the π-λ
theorem [3, Theorem 3.2], usually applied to probability measures [3,
Theorem 3.3], but the same proof works for bounded measures.

Hence the above maps from Borel measures to continuous valuations
and conversely, defined on hereditary Lindelöf LCS-complete spaces
(in particular, quasi-Polish spaces), are inverse of each other when re-
stricted to bounded measures and bounded continuous valuations.

Let VX denote the space of continuous valuations on a space X,
with the weak topology, defined by subbasic open sets [U > r]

def
= {ν ∈
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VX | ν(U) > r}, where U ∈ OX and r ∈ R+. We define its subspace
V1X of probability valuations and V≤1X (subprobability) similarly.
In general, we write V•X, where • can be nothing, “≤ 1”, or “1”. The
specialization ordering of each is the stochastic ordering ≤ given by
ν ≤ ν ′ if and only if ν(U) ≤ ν ′(U) for every U ∈ OX; indeed, ν ≤ ν ′

if and only if for every U ∈ OX, for every r ∈ R+, ν ∈ [U > r] implies
ν ′ ∈ [U > r].

There is a related topology on spaces of probability measures. A se-
quence of probability measures Pn, n ∈ N, on a metric space converges
weakly to a probability measure P if and only if lim infn∈N Pn(U) ≥
P (U) for every open subset U [4, Portmanteau Theorem 2.1]. It is
easy to see that this is equivalent to: for every open subset U and for
every r ∈ R+, P (U) > r implies that Pn(U) > r for n large enough.
Hence we may define the weak topology on spaces of measures (not
just probability measures) on a topological space X (not just a met-
ric space) as given via a subbasis of sets {P | P (U) > r}, U ∈ OX,
r ∈ R+. We obtain the following.

Proposition 2.1. The weak topology makes the spaces M≤1X and
M1X of subprobability, resp. probability measures homeomorphic to
V≤1X and V1X, respectively, for every hereditarily Lindelöf LCS-
complete space X.

V• is the object part of an endofunctor on the category of topological
spaces, whose morphism part is defined as follows: for every continuous
map f : X → Y , V•f maps every ν ∈ V•X to its image valuation f [ν],
where f [ν](V )

def
= ν(f−1(V )) for every V ∈ OY .

We will prove slightly more than the fact that V• preserves local
compactness, where • is nothing, “≤ 1”, or “1”. A space X is core-
compact if and only if OX is a continuous dcpo; every locally compact
space is core-compact [11, Theorem 5.2.9]. The connection between
the two notions can be made more precise as follows. Every topological
space X has a sobrification S(X) (or Xs), which is the free sober space
overX [11, Theorem 8.2.44]; thenX is core-compact if and only if S(X)
is locally compact [11, Proposition 8.3.11]. S(X) can be built as the
collection of irreducible closed subsets, with the topology whose open
sets (all of them, not just a base) are �U def

= {F ∈ S(X) | F ∩ U 6= ∅},
U ∈ OX. In particular, � : U 7→ �U is an order-isomorphism between
OX and OS(X). This induces a homeomorphism between V•X and
V•S(X).
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3. Credibilities, previsions and the Smyth powerdomain

The proof of our main theorem will rely on reducing the question to
spaces of valuations on Smyth powerdomains, and on using notions of
credibilities [10] and of previsions [9, 12]. We need to give a quick tour
of the part of that theory that we need.

Let LX denote the dcpo of all lower semicontinuous maps from X
to R+; a map f : X → R+ is lower semicontinuous if and only if it
is continuous, where R+ is given its Scott topology. The ordering on
LX is the pointwise ordering. For every monotone map ν : OX → R+,
for every h ∈ LX, there is a Choquet integral

∫
x∈X h(x) dν, defined

as the indefinite Riemann integral
∫∞
0
ν(h−1(]t,∞])) dt. We need to

reprove in part some of the results of [10] on Choquet integrals, since
that paper only considers integrals of maps from X to R+; we will do
this in Lemma 3.1 below.

A prevision on a space X is a Scott-continuous map F : LX → R+

that is positively homogeneous in the sense that F (ah) = aF (h) for all
a ∈ R+ and h ∈ LX. There is a space PX of previsions on X, whose
topology is generated by sets [h > r]

def
= {F | F (h) > r}, h ∈ LX,

r ∈ R+.
For example, any continuous valuation ν on X gives rise to a previ-

sion G : h 7→
∫
x∈X h(x) dν. Such a prevision is linear, in the sense that

G(h+ h′) = G(h) +G(h′) for all h, h′ ∈ LX. Let PPX be the subspace
of PX of linear previsions. In the reverse direction, every linear previ-
sion G ∈ PPX gives rise to a continuous valuation U 7→ G(χU), where
χU is the characteristic map of the open set U , and the two construc-
tions are inverse of each other. Additionally, those two constructions
define continuous maps between VX and PPX [24, Satz 4.16]. We will
therefore equate continuous valuations with linear previsions.

A prevision is superlinear if and only if G(h + h′) ≥ G(h) + G(h′)
for all h, h′ ∈ LX. As in [12], we write PDPX for the subspace of PX
consisting of superlinear previsions.

Among the continuous valuations, there are the probability valua-
tions and the subprobability valuations. Similarly, we say that a pre-
vision F is subnormalized (resp., normalized) iff F (1+ h) ≤ 1+ F (h)
(resp., =) for every h ∈ LX, where 1 is the constant function with value
1. The homeomorphism between VX and PPX restricts to homeomor-
phisms between V≤1X (resp., V1X) and the subspace P≤1P X (resp.,
P1
PX) of subnormalized (resp., normalized) linear previsions on X. We
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write P≤1DPX, P1
DPX for the corresponding spaces of (sub)normalized, su-

perlinear previsions. In general, we write P•DPX, where • can be nothing,
“≤ 1”, or “1”.

For every topological spaceX, letQX be the collection of non-empty
compact saturated subsets of X, ordered by reverse inclusion ⊇. This
is the Smyth powerdomain of X [23]; see also [22, Section 7]. Let QVX
be the same set, but with the upper Vietoris topology, whose basic open
subsets are �U def

= {Q ∈ QX | Q ⊆ U}, U ∈ OX. We will first use this
in item (6) of Lemma 3.1 below. The functions

∑m
j=1 ajuQj

of item (7)
of the same lemma are the (simple) credibilities of [10, Theorem 6.18].

Lemma 3.1. The following properties hold, where h ∈ LX and ν is a
monotonic map from OX to R+.

(1) The Choquet integral
∫
x∈X h(x) dν is linear in ν, monotonic and

even Scott-continuous in ν.
(2) If ν is Scott-continuous, then the Choquet integral is Scott-

continuous in h.
(3) If ν is a continuous valuation, then the Choquet integral is also

linear in h.
(4) For every U ∈ OX,

∫
x∈X χU(x) dν = ν(U).

(5) Given any continuous valuation µ on QVX, there is a Scott-
continuous map µ� : OX → R+ defined by µ�(U)

def
= µ(�U) for

every U ∈ OX. Then, for every h ∈ LX, the map h∗ : Q 7→
minx∈Q h(x) is in LQVX and

∫
x∈X h(x) dµ

� =
∫
Q∈QVX

h∗(Q) dµ.
(6) For every compact saturated subset Q of X, the unanimity game

uQ : OX → R+, which maps every U ∈ OX to 1 if Q ⊆ U and
to 0 otherwise, is a Scott-continuous map from OX to R+.

(7) Letting ν def
=
∑m

j=1 ajuQj
, where each Qj is compact saturated

and aj ∈ R+, the map F : LX → R+ defined by:

F (h)
def
=

∫
x∈X

h(x) dν =
m∑
j=1

aj min
x∈Qj

h(x)

for every h ∈ LX, is a superlinear prevision.

Proof. (1) The fact that the Choquet integral is linear in ν, namely
that it commutes with scalar products by non-negative real numbers
and with addition of continuous valuations, follows from the linear-
ity of indefinite Riemann integration. It is also monotonic in ν. In
order to show Scott-continuity, we consider a directed family (νi)i∈I ,
with (pointwise) supremum ν, and we observe that

∫
x∈X h(x) dν =∫∞

0
sup↑i∈I νi(h

−1(]t,∞])) dt. The key is that the maps t 7→ νi(h
−1(]t,∞]))
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are antitone (all antitone maps are Riemann-integrable), and that in-
definite Riemann integration of antitone maps f is Scott-continuous in
f , see [24, Lemma 4.2]. Therefore

∫
x∈X h(x) dν = sup↑i∈I

∫∞
0
νi(h

−1(]t,∞])) dt =

sup↑i∈I
∫
x∈X h(x) dνi.

(2) The proof works as Tix’s original proof of the same result in
the special case where ν is a continuous valuation [24, Satz 4.4], and
relies on [24, Lemma 4.2], just like item (1). Explicitly, let (hi)i∈I
be a directed family in LX, with (pointwise) supremum h. For every

t ∈ R+, h−1(]t,∞]) = {x ∈ X | sup↑i∈I hi(x) > t} =
⋃↑

i∈I
h−1i (]t,∞]).

Therefore,

∫
x∈X

h(x) dν =

∫ ∞
0

ν(
⋃↑
i∈I

h−1i (]t,∞])) dt

=

∫ ∞
0

sup↑
i∈I

ν(h−1i (]t,∞])) dt

= sup↑
i∈I

∫ ∞
0

ν(h−1i (]t,∞])) dt = sup↑
i∈I

∫
x∈X

hi(x) dν,

using the Scott-continuity of ν and the Scott-continuity of indefinite
Riemann integration of antitone maps.

(3) This is a result of Tix [24, Satz 4.4].
(4)

∫
x∈X χU(x) dν =

∫∞
0
ν(χ−1U (]t,∞])) dt =

∫ 1

0
ν(U) dt +

∫∞
1

0 dt =
ν(U).

(5) This is as with [10, Lemma 7.5]. The fact that µ� is Scott-
continuous follows from the fact that µ is, and that the � operator is,
too. For the latter, observe that for every directed family (Ui)i∈I of

open subsets of X, for every Q ∈ QVX, Q ∈ �
⋃↑

i∈I
Ui if and only if

Q ⊆
⋃↑

i∈I
Ui, which is equivalent to Q ⊆ Ui (namely, Q ∈ �Ui) for

some i ∈ I, because Q is compact.
For every Q ∈ QVX, the minimum of h(x) when x ranges over Q is

reached, since Q is compact and non-empty. For every t ∈ R+, Q ∈
h∗−1(]t,∞]) if and only if h∗(Q) > t. The latter certainly implies that
h(x) > t for every x ∈ Q, hence that Q ∈ �h−1(]t,∞]). Conversely, if
Q ∈ �h−1(]t,∞]), then let us pick x ∈ Q such that h(x) is the least
value reached by h on Q; then h∗(Q) = h(x) > t, so Q ∈ h∗−1(]t,∞]).
Hence h∗−1(]t,∞]) = �h−1(]t,∞]). This implies that h∗ is in LQVX,
in particular.
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Now:∫
Q∈QVX

h∗(Q) dµ =

∫ ∞
0

µ(h∗−1(]t,∞])) dt

=

∫ ∞
0

µ(�h−1(]t,∞]) dt

=

∫ ∞
0

µ�(h−1(]t,∞]) dt =

∫
x∈X

h(x) dµ�.

(6) Monotonicity is clear. For every directed family (Ui)i∈I of open

subsets of X, uQ(
⋃↑

i∈I
Ui) = 1 if and only if Q ∈ �

⋃↑
i∈I

Ui, which is
equivalent to the existence of an i ∈ I such that Q ∈ �Ui (equivalently,
uQ(Ui) = 1), as we have seen at the beginning of the proof of item (5).

(7) That would be a consequence of [10, Propositions 7.2, 7.6], except
for the fact that our functions h take their values in R+. We verify that∫
x∈X h(x) dν =

∑m
j=1 aj

∫
x∈X h(x) duQj

=
∑m

j=1 aj minx∈Qj
h(x): the

first equality is by item (1), and the second one is because
∫
x∈X h(x) duQi

is equal to
∫∞
0

uQi
(h−1(]t,∞])) dt =

∫ minx∈Qi
h(x)

0
1 dt+

∫∞
minx∈Qi

h(x)
0 dt =

minx∈Qi
h(x).

It is easy to see that F (h) is superlinear, because minx∈Qi
ah(x) =

aminx∈Qi
h(x) andminx∈Qi

(h(x)+h′(x)) ≥ minx∈Qi
h(x)+minx∈Qi

h′(x),
for all a ∈ R+ and h, h′ ∈ LX. Scott-continuity comes from the fact
that F (h) =

∫
x∈X h(x) dν, where ν def

=
∑m

j=1 ajuQj
, that ν is Scott-

continuous (by item (6)), and by using item (2). �

Let us turn to QV. The specialization preordering of QVX is ⊇, and
in particular QVX is T0. The Scott topology on QX is finer than the
upper Vietoris topology when X is sober, and coincides with it when
X is locally compact and sober [11, Lemma 8.3.26], and then QX itself
is a continuous dcpo [11, Proposition 8.3.25].
QV is an endofunctor on the category of topological spaces, whose

action on continuous maps f : X → Y is given by QVf(Q)
def
= ↑ f [Q],

where f [Q] denotes the image of Q under f . That functor is part of
a monad [22, Section 7], of which we need to know the unit ηQ: for
every space X, for every x ∈ X, ηQX(x) = ↑x. We also note that
(ηQX)

−1
(�U) = U for every U ∈ OX.

By [12, Lemma 3.20], for every space X, there is a continuous map
s•DP : P•DPX → QVP•PX defined by s•DP(F )

def
= {G ∈ P•PX | G ≥ F}. The

ordering ≤ between previsions is the specialization ordering, which is
pointwise, and ≥ is the opposite ordering. Up to the homeomorphism
between P•PX and V•X, we restate the latter as follows.
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Lemma 3.2. For every topological space X, there is a continuous map
s•DP : P•DPX → QVV•X, defined by:

s•DP(F )
def
=

{
ν ′ ∈ V•X

∣∣∣ ∀h ∈ LX, ∫
x∈X

h(x) dν ′ ≥ F (h)

}
.

In order to show that V•X is locally compact (if X is), we will need
to find enough compact subsets. They will be provided to us by the
images of certain superlinear previsions under s•DP.

4. The main theorem

We spend most of this section proving the following theorem. We
remember that all locally compact spaces are core-compact.

Theorem 4.1. For every core-compact space X, VX and V≤1X are
locally compact. If X is also compact, then V1X is locally compact.

Proof. Replacing X by S(X) if necessary, we may assume that X is
locally compact and sober.

A fundamental theorem due to Jones [16, Theorem 5.2] states that
for every continuous dcpo P , V≤1P is a continuous dcpo under the
stochastic ordering, and that a basis is given by the simple valuations,
namely those of the form

∑n
i=1 aiδxi , where each ai is in R+ and xi ∈ P .

The notation δx refers to the Dirac valuation at x, defined by δx(U)
def
= 1

if x ∈ U , 0 otherwise, for every U ∈ OX.
A similar result holds for VP [8, Theorem IV-9.16], and for V1P

provided that P is also pointed [7, Corollary 3.3]. (A poset is pointed
if and only if it has a least element.) We will apply those results to
P

def
= QX, and we notice that if X is compact, then P is pointed, as X

itself will be the least element of P in that case.
Let ν ∈ V•X, and let U be any open neighborhood of ν. Then ν is

in some finite intersection of subbasic open sets
⋂n
i=1[Ui > ri] that is

included in U , where each Ui is open in X and ri ∈ R+. We consider
µ

def
= VηQX(ν) ∈ V•QVX. We recall that ηQX is the unit of the QV

monad, and maps every point x ∈ X to ↑x ∈ QVX. For every open
subset U of X, µ(�U) = ηQX [ν](�U) = ν((ηQX)

−1(�U)) = ν(U). It
follows that µ is in

⋂n
i=1[�Ui > ri]. The latter is open in the upper

Vietoris topology on V•QVX = V•P , hence in the Scott topology of
the stochastic ordering. Since X is locally compact and sober, P is a
continuous dcpo, so V•P is a continuous dcpo with a basis of simple
valuations, and therefore there is a simple valuation ξ

def
=
∑m

j=1 ajδQj

in V•P that is way below µ and in
⋂n
i=1[�Ui > ri].
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We may form ξ�, as in Lemma 3.1, item (5): for every U ∈ OX,
ξ�(U) = ξ(�U). We check easily that ξ� is equal to

∑m
j=1 ajuQj

. Using
Lemma 3.1, item (7) allows us to build a superlinear prevision F on
X by letting F (h) def

=
∫
x∈X h(x) dξ

� =
∑m

j=1 aj minx∈Qj
h(x) for every

h ∈ LX.
Now s•DP(F ) is a compact saturated subset of V•X, by Lemma 3.2.

We claim that ν is in the interior of s•DP(F ), and that s•DP(F ) is included
in U ; this will end our proof.

We start by showing that s•DP(F ) ⊆ U . Let ν ′ be any element of
s•DP(F ). In other words, for every h ∈ LX,

∫
x∈X h(x) dν

′ ≥ F (h) =∑m
j=1 aj minx∈Qj

h(x). For each i ∈ {1, · · · , n}, we apply this to h def
=

χUi
; then minx∈Qj

h(x) = uQj
(Ui), so F (χUi

) =
∑m

j=1 ajuQj
(Ui) =

ξ�(Ui) = ξ(�Ui), and therefore ν ′(Ui) =
∫
x∈X χUi

(x) dν ′ ≥ F (χUi
) =

ξ(�Ui) > ri, since ξ ∈ [�Ui > ri]. Hence ν ′ ∈
⋂n
i=1[Ui > ri] ⊆ U .

Next, we verify that ν is in the interior of s•DP(F ). We use the fact that
ξ is way below µ, equivalently that µ is in the open set ↑↑ξ. Since µ =
VηQX(ν), ν is in (VηQX)

−1(↑↑ξ), which is open since VηQX is continuous.
It remains to show that (VηQX)

−1(↑↑ξ) is included in s•DP(F ).
For every ν ′ ∈ (VηQX)

−1(↑↑ξ), by definition ξ is way below, in par-
ticular less than or equal to µ′ def

= VηQX(ν
′). The latter is such that

µ′(�U) = ηQX [ν
′](�U) = ν ′((ηQX)

−1(�U)) = ν ′(U) for every U ∈
OX. Hence ν ′ = µ′�. By Lemma 3.1, item (5),

∫
x∈X h(x) dν

′ =∫
Q∈QVX

h∗(Q) dµ′. Since ξ ≤ µ′, the latter is larger than or equal to∫
Q∈QVX

h∗(Q) dξ =
∫
x∈X h(x) dξ

� = F (h), using Lemma 3.1, item (5)
once again. We have shown that

∫
x∈X h(x) dν

′ ≥ F (h) for every
h ∈ LX, so ν ′ ∈ s•DP(F ), as promised. �

When X is compact, V1X = s•DP(F ), where F is the normalized
superlinear prevision h ∈ LX 7→

∫
x∈X h(x) duX = miny∈X h(y). In-

deed, for every probability valuation ν on X, for every h ∈ LX,∫
x∈X h(x) dν ≥

∫
x∈X miny∈X h(y) dν = miny∈X h(y). We therefore ob-

tain the following.

Fact 4.2. If X is compact, then V1X is compact.

Lemma 4.3. Let • be nothing, “≤ 1”, or “1”. For every space X, V•X
is sober.

Proof. For every space X, VX is sober. The argument is due to R. Tix
[24, Satz 5.4], following ideas by R. Heckmann (see [15, Section 2.3]).
The sober subspaces of a sober space Z coincide with the subsets that
are closed in the strong topology on Z [18, Corollary 3.5]. The latter
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is also known as the Skula topology, and is the smallest one generated
by the original topology on Z and all the downwards-closed subsets. In
particular, any closed subspace of a sober space is sober, any saturated
subspace of a sober space is sober. Hence V≤1Y is sober, being equal
to the closed subspace VY r [Y > 1] of VY , and V1Y is sober, being
upwards-closed in V≤1Y . �

Corollary 4.4. V and V≤1 restrict to endofunctors on the category
of locally compact (resp., locally compact sober) spaces and continuous
maps. V1 restricts to an endofunctor on the category of compact, locally
compact (resp., compact, locally compact sober) spaces.

We finish with the mandatory application to spaces of measures,
which follows directly, using the considerations developed in Section 2
on the relationship between measures and continuous valuations.

Corollary 4.5. For every hereditarily Lindelöf, LCS-complete space
X—in particular, for every quasi-Polish space X—if X is locally com-
pact, thenM≤1X ∼= V≤1X are locally compact; if X is locally compact
and compact, thenM1X ∼= V1X are locally compact and compact.

The locally compact, quasi-Polish spaces are exactly the locally com-
pact, sober, second-countable spaces [5, Theorem 44]. It is easy to see
that the V• functor preserves second countability. Using Lemma 4.3,
we obtain our final corollary.

Corollary 4.6. For every locally compact quasi-Polish space X,M≤1X ∼=
V≤1X are locally compact and quasi-Polish.

5. Conclusion

When trying to show that a space Z is locally compact, the direct
approach—which is how we proceeded—consists in picking an arbitrary
point z ∈ Z, an arbitrary open neighborhood V of z, and to find a
compact (saturated) neighborhood Q of z included in V . The main
difficulty is in finding enough compact saturated sets Q.

Previous work has shown that V≤1X is stably compact for every
stably compact space X, and gives a hint at what compact saturated
subsets of V≤1X we may need for the task [2, Theorem 39]. (A stably
compact space is a compact, locally compact sober space that is co-
herent, in the sense that the intersection of any two compact saturated
subsets is compact.) Indeed, in that case, the subsets [Q ≥ r]≤1

def
=

{ν ∈ V≤1X | ∀U ∈ OX,Q ⊆ U ⇒ ν(U) ≥ r} form the required family
of compact saturated sets, where Q ranges over the compact saturated
subsets of X and r ∈ R+. We might therefore assume that analogous
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sets [Q ≥ r]•
def
= {ν ∈ V•X | ∀U ∈ OX,Q ⊆ U ⇒ ν(U) ≥ r} would

be compact saturated in V•X, and could be used to form enough com-
pact saturated neighborhoods of points ν ∈ V•X, when X is locally
compact sober—but without coherence (or compactness).

Without using the detour through superlinear previsions, however,
it is not completely clear how one might prove that [Q ≥ r]• is com-
pact, to start with. It is true that [Q ≥ r]• is compact saturated in
V•X, for every compact saturated subset Q of any topological space
X, and for every r ∈ R+. Indeed, [Q ≥ r]• = s•DP(F ), where F is the
superlinear prevision h ∈ LX 7→ r

∫
x∈X h(x) duQ, as one may check by

using Lemma 3.1.
However, the proof we have given needs many more compact sat-

urated subsets, and we have obtained them as s•DP(F ) for superlinear
previsions of the form h ∈ LX 7→

∫
x∈X h(x) d

∑n
i=1 aiuQi

. In general,
s•DP(F ) is compact saturated in V•X, for any superlinear prevision F
on X. This naturally leads to the following question.

(1) What are the compact saturated subsets of V•X, for an arbi-
trary topological space X?

In investigating (1), one may restrict X to some interesting subclasses.
The answer to (1) is already known for stably compact spaces: the
compact saturated subsets of V≤1X are exactly the intersections of
finite unions of sets of the form [Q ≥ r]≤1 given as above [2]. One
should also compare this with Prokhorov’s characterization of compact
sets of probability measures as those sets that are uniformly tight [20],
see also the fundamental paper by Topsøe [25]. In the meantime, one
should observe that for every topological space X, there is a continuous
map rDP : QV(V•X) → P•DPX such that rDP ◦ s•DP = idP•DPX and s•DP ◦
rDP ≤ idQV(V•X) [12, Proposition 3.22], and that those maps define a
homeomorphism between P•DPX and the subspace QcvxV (V•X) of convex
elements of QVV•X [12, Theorem 4.15]. Hence the convex compact
saturated subsets of V•X are known: they are exactly the sets s•DP(F ),
where F is a superlinear prevision on X.
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