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ON LOCAL COMPACTNESS OF SPACES OF
CONTINUOUS VALUATIONS

JEAN GOUBAULT-LARRECQ

Abstract. We show that the spaces of continuous valuations,
resp. subprobability valuations on a locally compact space is locally
compact; similarly with probability valuations on locally compact,
compact spaces. Continuous valuations are close cousins of mea-
sures. No separation property is assumed.

1. Introduction

A continuous valuation on a topological space X is a close cousin of
a Borel measure. Continuous valuations on X form a space VX, with
a topology known as the weak topology, and similarly for the subspaces
V≤1X of subprobability valuations and V1X of probability valuations.
We will define these notions more precisely below. It is known that V≤1
preserves various properties: stable compactness [2, Theorem 39], being
a continuous dcpo [16, Theorem 5.2], being a quasi-continuous dcpo [14,
Theorem 5.1], for example. Some of these preservation theorems extend
over to V1 or to V, but a conspicuously absent property in the list is local
compactness. This is what we address in this paper.

The proof relies on credibilities, as already used in [14], on the Smyth
powerdomain construction [23], on Jones’ celebrated theorem that the
probabilistic powerdomain preserves continuous dcpos [16, Theorem 5.2],
and on a few things about certain functionals called superlinear previsions
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[12]. As a whole, the proof is therefore rather elaborate; but it also results
from little more than an assemblage of previously known results, and as
a consequence, is pretty short.

2. Preliminaries

For background on topology, we refer the reader to [11].
A compact subset A of a space X is one such that one can extract a

finite subcover from any of its open covers. No separation property is
assumed. A subset A of X is saturated if and only if it is equal to the
intersection of its open neighborhoods, or equivalently if and only if it
is upwards-closed in the specialization preordering of X. The latter is
defined by x ≤ y if and only if every open neighborhood of x contains y.

A space X is locally compact if and only if every point has a base of
compact neighborhoods, or equivalently of compact saturated neighbor-
hoods, since for any compact subset K of X, the upward closure ↑K of K
with respect to the specialization preordering of X is compact saturated.
In non-Hausdorff spaces, a compact space may fail to be locally compact.

A space is T0 if and only if its specialization preordering is antisymmet-
ric. An irreducible closed subset C of X is a non-empty closed subset such
that, for any two closed subsets C1 and C2 of X such that C ⊆ C1∪C2, C
is included in C1 or in C2 already; equivalently, if C intersects two open
sets, it must intersect their intersection. A space X is sober if and only
if it is T0 and every irreducible closed subset is of the form ↓x for some
point x ∈ X. Every Hausdorff space, for example, is sober. The notation
↓x stands for the downward closure of x in X, namely the set of points y
below x; that is also the closure of {x}. Symmetrically, ↑x stands for the
upward closure of x, namely the set of points y above x. This notation
extends to ↑A, for any subset A, denoting

⋃
x∈A ↑x.

A function f : P → Q between posets is monotonic if and only if for
all x, x′ ∈ P , x ≤ x′ implies f(x) ≤ f(x′). It is Scott-continuous if
and only if f is monotonic and for every directed family (xi)i∈I with a
supremum x in P , the (necessarily directed) family of elements f(xi) has
f(x) as supremum. A directed family is a non-empty family D such that
any two elements of D have an upper bound in D. We write sup↑D for
the supremum of a directed family D. Scott-continuity is equivalent to
continuity with the respective Scott topologies on P and Q. The Scott
topology on a poset P consists of those subsets U that are upwards closed
(x ∈ U and x ≤ x′ implies x′ ∈ U) and such that every directed family D
that has a supremum in U intersects U .

A dcpo (short for directed-complete partial order) is a poset P in which
every directed subset has a supremum. In a dcpo P , let x � y (“x is
way below y”) if and only if every directed family D such that y ≤ sup↑D
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contains an element d ∈ D such that x ≤ d. A basis for P is a subset B
such that, for every x ∈ P , ↓↓Bx

def
= {b ∈ B | b� x} is directed and has x

as its supremum. A dcpo is continuous if and only if it has a basis. If so,
the sets ↑↑b def

= {x ∈ P | b� x} form a base of the Scott topology.
Let R+ be the set of extended non-negative real numbers R+ ∪ {∞},

with its usual ordering. When needed, we will consider it with its Scott
topology, whose open sets are the intervals ]t,∞], t ∈ R+, plus ∅ and R+

itself. In passing, R+ is an example of a continuous dcpo, with s � t if
and only if s = 0 or s < t.

We write OX for the lattice of open subsets of a space X. A continuous
valuation on X is a map ν : OX → R+ that is strict (ν(∅) = 0), modular
(for all U, V ∈ OX, ν(U) + ν(V ) = ν(U ∪ V ) + ν(U ∩ V )) and Scott-
continuous. We say that ν is bounded if ν(X) <∞, a probability valuation
if and only if ν(X) = 1, and a subprobability valuation if and only if
ν(X) ≤ 1.

Continuous valuations are an alternative to measures that have be-
come popular in domain theory [17, 16]. The first results that connected
continuous valuations and measures are due to Saheb-Djahromi [21] and
Lawson [19]. The current state of the art on this matter is the following.
In one direction, every measure on the Borel σ-algebra of X induces a
continuous valuation on X by restriction to the open sets, if X is hered-
itarily Lindelöf (namely, if every directed family of open sets contains a
cofinal monotone sequence). This is an easy observation, and one half of
Adamski’s theorem [1, Theorem 3.1], which states that a space is heredi-
tary Lindelöf if and only if every measure on its Borel σ-algebra restricts
to a continuous valuation on its open sets. In the other direction, every
continuous valuation on a space X extends to a measure on the Borel
sets provided that X is an LCS-complete space [6, Theorem 1]. An LCS-
complete space is a Gδ subspace of a locally compact sober space, and the
class of LCS-complete spaces contains all locally compact sober spaces, in
particular all continuous dcpos from domain theory, all of M. de Brecht’s
quasi-Polish spaces [13] and therefore all Polish spaces.

The extension of a continuous valuation ν to a measure on the Borel
σ-algebra is unique if ν is bounded. This is a consequence of the π-
λ theorem [3, Theorem 3.2], usually applied to probability measures [3,
Theorem 3.3], but the same proof works for bounded measures.

Hence the above maps from Borel measures to continuous valuations
and conversely, defined on hereditary Lindelöf LCS-complete spaces (in
particular, quasi-Polish spaces), are inverse of each other when restricted
to bounded measures and bounded continuous valuations.
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Let VX denote the space of continuous valuations on a space X, with
the weak topology, defined by subbasic open sets [U > r]

def
= {ν ∈ VX |

ν(U) > r}, where U ∈ OX and r ∈ R+. We define its subspace V1X of
probability valuations and V≤1X (subprobability) similarly. In general,
we write V•X, where • can be nothing, “≤ 1”, or “1”. The specialization
ordering of each is the stochastic ordering ≤ given by ν ≤ ν′ if and only
if ν(U) ≤ ν′(U) for every U ∈ OX; indeed, ν ≤ ν′ if and only if for every
U ∈ OX, for every r ∈ R+, ν ∈ [U > r] implies ν′ ∈ [U > r].

There is a related topology on spaces of probability measures. A se-
quence of probability measures Pn, n ∈ N, on a metric space converges
weakly to a probability measure P if and only if lim infn∈N Pn(U) ≥ P (U)
for every open subset U [4, Portmanteau Theorem 2.1]. It is easy to see
that this is equivalent to: for every open subset U and for every r ∈ R+,
P (U) > r implies that Pn(U) > r for n large enough. Hence we may
define the weak topology on spaces of measures (not just probability mea-
sures) on a topological space X (not just a metric space) as given via
a subbasis of sets {P | P (U) > r}, U ∈ OX, r ∈ R+. We obtain the
following.

Proposition 2.1. The weak topology makes the spacesM≤1X andM1X
of subprobability, resp. probability measures homeomorphic to V≤1X and
V1X, respectively, for every hereditarily Lindelöf LCS-complete space X.

V• is the object part of an endofunctor on the category of topological
spaces, whose morphism part is defined as follows: for every continuous
map f : X → Y , V•f maps every ν ∈ V•X to its image valuation f [ν],
where f [ν](V )

def
= ν(f−1(V )) for every V ∈ OY .

We will prove slightly more than the fact that V• preserves local com-
pactness, where • is nothing, “≤ 1”, or “1”. A space X is core-compact
if and only if OX is a continuous dcpo; every locally compact space is
core-compact [11, Theorem 5.2.9]. The connection between the two no-
tions can be made more precise as follows. Every topological space X has
a sobrification S(X) (or Xs), which is the free sober space over X [11,
Theorem 8.2.44]; then X is core-compact if and only if S(X) is locally
compact [11, Proposition 8.3.11]. S(X) can be built as the collection of
irreducible closed subsets, with the topology whose open sets (all of them,
not just a base) are �U def

= {F ∈ S(X) | F ∩ U 6= ∅}, U ∈ OX. In partic-
ular, � : U 7→ �U is an order-isomorphism between OX and OS(X). This
induces a homeomorphism between V•X and V•S(X).
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3. Credibilities, previsions and the Smyth
powerdomain

The proof of our main theorem will rely on reducing the question to
spaces of valuations on Smyth powerdomains, and on using notions of
credibilities [10] and of previsions [9, 12]. We need to give a quick tour of
the part of that theory that we need.

Let LX denote the dcpo of all lower semicontinuous maps from X
to R+; a map f : X → R+ is lower semicontinuous if and only if it is
continuous, where R+ is given its Scott topology. The ordering on LX is
the pointwise ordering. For every monotone map ν : OX → R+, for every
h ∈ LX, there is a Choquet integral

∫
x∈X h(x) dν, defined as the indefinite

Riemann integral
∫∞
0
ν(h−1(]t,∞])) dt. We need to reprove in part some

of the results of [10] on Choquet integrals, since that paper only considers
integrals of maps from X to R+; we will do this in Lemma 3.1 below.

A prevision on a space X is a Scott-continuous map F : LX → R+ that
is positively homogeneous in the sense that F (ah) = aF (h) for all a ∈ R+

and h ∈ LX. There is a space PX of previsions on X, whose topology is
generated by sets [h > r]

def
= {F | F (h) > r}, h ∈ LX, r ∈ R+.

For example, any continuous valuation ν on X gives rise to a prevision
G : h 7→

∫
x∈X h(x) dν. Such a prevision is linear, in the sense that G(h+

h′) = G(h) + G(h′) for all h, h′ ∈ LX. Let PPX be the subspace of
PX of linear previsions. In the reverse direction, every linear prevision
G ∈ PPX gives rise to a continuous valuation U 7→ G(χU ), where χU
is the characteristic map of the open set U , and the two constructions
are inverse of each other. Additionally, those two constructions define
continuous maps between VX and PPX [24, Satz 4.16]. We will therefore
equate continuous valuations with linear previsions.

A prevision is superlinear if and only if G(h+h′) ≥ G(h)+G(h′) for all
h, h′ ∈ LX. As in [12], we write PDPX for the subspace of PX consisting
of superlinear previsions.

Among the continuous valuations, there are the probability valuations
and the subprobability valuations. Similarly, we say that a prevision F is
subnormalized (resp., normalized) iff F (1+ h) ≤ 1+ F (h) (resp., =) for
every h ∈ LX, where 1 is the constant function with value 1. The home-
omorphism between VX and PPX restricts to homeomorphisms between
V≤1X (resp., V1X) and the subspace P≤1P X (resp., P1

PX) of subnormal-
ized (resp., normalized) linear previsions on X. We write P≤1DP X, P1

DPX
for the corresponding spaces of (sub)normalized, superlinear previsions.
In general, we write P•DPX, where • can be nothing, “≤ 1”, or “1”.

For every topological space X, let QX be the collection of non-empty
compact saturated subsets of X, ordered by reverse inclusion ⊇. This
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is the Smyth powerdomain of X [23]; see also [22, Section 7]. Let QVX
be the same set, but with the upper Vietoris topology, whose basic open
subsets are �U

def
= {Q ∈ QX | Q ⊆ U}, U ∈ OX. We will first use this

in item (6) of Lemma 3.1 below. The functions
∑m
j=1 ajuQj

of item (7)
of the same lemma are the (simple) credibilities of [10, Theorem 6.18].

Lemma 3.1. The following properties hold, where h ∈ LX and ν is a
monotonic map from OX to R+.

(1) The Choquet integral
∫
x∈X h(x) dν is linear in ν, monotonic and

even Scott-continuous in ν.
(2) If ν is Scott-continuous, then the Choquet integral is Scott-continuous

in h.
(3) If ν is a continuous valuation, then the Choquet integral is also

linear in h.
(4) For every U ∈ OX,

∫
x∈X χU (x) dν = ν(U).

(5) Given any continuous valuation ν on QVX, there is a Scott-
continuous map ν� : OX → R+ defined by ν�(U)

def
= ν(�U) for

every U ∈ OX. Then, for every h ∈ LX, the map h∗ : Q 7→
minx∈Q h(x) is in LQVX and

∫
x∈X h(x) dν

� =
∫
Q∈QVX

h∗(Q) dν.
(6) For every compact saturated subset Q of X, the unanimity game

uQ : OX → R+, which maps every U ∈ OX to 1 if Q ⊆ U and to
0 otherwise, is a Scott-continuous map from OX to R+.

(7) Letting ν def
=
∑m
j=1 ajuQj

, where each Qj is compact saturated and
aj ∈ R+, the map F : LX → R+ defined by:

F (h)
def
=

∫
x∈X

h(x) dν =

m∑
j=1

aj min
x∈Qj

h(x)

for every h ∈ LX, is a superlinear prevision.

Proof. (1) The fact that the Choquet integral is linear in ν, namely that
it commutes with scalar products by non-negative real numbers and with
addition of continuous valuations, follows from the linearity of indefinite
Riemann integration. It is also monotonic in ν. In order to show Scott-
continuity, we consider a directed family (νi)i∈I , with (pointwise) supre-
mum ν, and we observe that

∫
x∈X h(x) dν =

∫∞
0

sup↑i∈I νi(h
−1(]t,∞])) dt.

The key is that the maps t 7→ νi(h
−1(]t,∞])) are antitone (all antitone

maps are Riemann-integrable), and that indefinite Riemann integration of
antitone maps f is Scott-continuous in f , see [24, Lemma 4.2]. Therefore∫
x∈X h(x) dν = sup↑i∈I

∫∞
0
νi(h

−1(]t,∞])) dt = sup↑i∈I
∫
x∈X h(x) dνi.

(2) The proof works as Tix’s original proof of the same result in the
special case where ν is a continuous valuation [24, Satz 4.4], and relies
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on [24, Lemma 4.2], just like item (1). Explicitly, let (hi)i∈I be a di-
rected family in LX, with (pointwise) supremum h. For every t ∈ R+,

h−1(]t,∞]) = {x ∈ X | sup↑i∈I hi(x) > t} =
⋃↑

i∈I
h−1i (]t,∞]). There-

fore, ∫
x∈X

h(x) dν =

∫ ∞
0

ν(
⋃↑
i∈I

h−1i (]t,∞])) dt

=

∫ ∞
0

sup↑

i∈I
ν(h−1i (]t,∞])) dt

= sup↑

i∈I

∫ ∞
0

ν(h−1i (]t,∞])) dt = sup↑

i∈I

∫
x∈X

hi(x) dν,

using the Scott-continuity of ν and the Scott-continuity of indefinite Rie-
mann integration of antitone maps.

(3) This is a result of Tix [24, Satz 4.4].
(4)

∫
x∈X χU (x) dν =

∫∞
0
ν(χ−1U (]t,∞])) dt =

∫ 1

0
ν(U) dt +

∫∞
1

0 dt =

ν(U).
(5) This is as with [10, Lemma 7.5]. The fact that ν� is Scott-

continuous follows from the fact that ν is, and that the � operator is,
too. For the latter, observe that for every directed family (Ui)i∈I of

open subsets of X, for every Q ∈ QVX, Q ∈ �
⋃↑

i∈I
Ui if and only if

Q ⊆
⋃↑

i∈I
Ui, which is equivalent to Q ⊆ Ui (namely, Q ∈ �Ui) for some

i ∈ I, because Q is compact.
For every Q ∈ QVX, the minimum of h(x) when x ranges over Q is

reached, since Q is compact and non-empty. For every t ∈ R+, Q ∈
h∗−1(]t,∞]) if and only if h∗(Q) > t. The latter certainly implies that
h(x) > t for every x ∈ Q, hence that Q ∈ �h−1(]t,∞]). Conversely,
if Q ∈ �h−1(]t,∞]), then let us pick x ∈ Q such that h(x) is the least
value reached by h on Q; then h∗(Q) = h(x) > t, so Q ∈ h∗−1(]t,∞]).
Hence h∗−1(]t,∞]) = �h−1(]t,∞]). This implies that h∗ is in LQVX, in
particular.

Now:∫
Q∈QVX

h∗(Q) dν =

∫ ∞
0

ν(h∗−1(]t,∞])) dt

=

∫ ∞
0

ν(�h−1(]t,∞]) dt

=

∫ ∞
0

ν�(h−1(]t,∞]) dt =

∫
x∈X

h(x) dν�.



8 JEAN GOUBAULT-LARRECQ

(6) Monotonicity is clear. For every directed family (Ui)i∈I of open

subsets of X, uQ(
⋃↑

i∈I
Ui) = 1 if and only if Q ∈ �

⋃↑
i∈I

Ui, which is
equivalent to the existence of an i ∈ I such that Q ∈ �Ui (equivalently,
uQ(Ui) = 1), as we have seen at the beginning of the proof of item (5).

(7) That would be a consequence of [10, Propositions 7.2, 7.6], except
for the fact that our functions h take their values in R+. We verify that∫
x∈X h(x) dν =

∑m
j=1 aj

∫
x∈X h(x) duQj =

∑m
j=1 aj minx∈Qj h(x): the

first equality is by item (1), and the second one is because
∫
x∈X h(x) duQi

is equal to
∫∞
0

uQi(h
−1(]t,∞])) dt =

∫minx∈Qi
h(x)

0
1 dt+

∫∞
minx∈Qi

h(x)
0 dt =

minx∈Qi
h(x).

It is easy to see that F (h) is superlinear, because minx∈Qi
ah(x) =

aminx∈Qi h(x) andminx∈Qi(h(x)+h
′(x)) ≥ minx∈Qi h(x)+minx∈Qi h

′(x),
for all a ∈ R+ and h, h′ ∈ LX. Scott-continuity comes from the fact that
F (h) =

∫
x∈X h(x) dν, where ν

def
=
∑m
j=1 ajuQj

, that ν is Scott-continuous
(by item (6)), and by using item (2). �

Let us turn to QV. The specialization preordering of QVX is ⊇, and in
particular QVX is T0. The Scott topology on QX is finer than the upper
Vietoris topology, and coincides with it when X is locally compact and
sober [11, Lemma 8.3.26], and then QX itself is a continuous dcpo [11,
Proposition 8.3.25].
QV is an endofunctor on the category of topological spaces, whose

action on continuous maps f : X → Y is given by QVf(Q)
def
= ↑ f [Q],

where f [Q] denotes the image of Q under f . That functor is part of a
monad [22, Section 7], of which we need to know the unit ηQ: for every
space X, for every x ∈ X, ηQX(x) = ↑x. We also note that (ηQX)

−1
(�U) =

U for every U ∈ OX.
By [12, Lemma 3.20], for every space X, there is a continuous map

s•DP : P•DPX → QVP•PX defined by s•DP(F )
def
= {G ∈ P•PX | G ≥ F}. The

ordering ≤ between previsions is the specialization ordering, which is
pointwise, and ≥ is the opposite ordering. Up to the homeomorphism
between P•PX and V•X, we restate the latter as follows.

Lemma 3.2. For every topological space X, there is a continuous map
s•DP : P•DPX → QVV•X, defined by:

s•DP(F )
def
=

{
ν′ ∈ V•X

∣∣∣ ∀h ∈ LX,∫
x∈X

h(x) dν′ ≥ F (h)
}
.

In order to show that V•X is locally compact (if X is), we will need to
find enough compact subsets. They will be provided to us by the images
of certain superlinear previsions under s•DP.
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4. The main theorem

We spend most of this section proving the following theorem. We
remember that all locally compact spaces are core-compact.

Theorem 4.1. For every core-compact space X, VX and V≤1X are
locally compact. If X is also compact, then V1X is locally compact.

Proof. ReplacingX by S(X) if necessary, we may assume thatX is locally
compact and sober.

A fundamental theorem due to Jones [16, Theorem 5.2] states that for
every continuous dcpo P , V≤1P is a continuous dcpo under the stochastic
ordering, and that a basis is given by the simple valuations, namely those
of the form

∑n
i=1 aiδxi

, where each ai is in R+ and xi ∈ P . The notation
δx refers to the Dirac valuation at x, defined by δx(U)

def
= 1 if x ∈ U , 0

otherwise, for every U ∈ OX.
A similar result holds for VP [8, Theorem IV-9.16], and for V1P pro-

vided that P is also pointed [7, Corollary 3.3]. (A poset is pointed if and
only if it has a least element.) We will apply those results to P def

= QX,
and we notice that if X is compact, then P is pointed, as X itself will be
the least element of P in that case.

Let ν ∈ V•X, and let U be any open neighborhood of ν. Then ν is
in some finite intersection of subbasic open sets

⋂n
i=1[Ui > ri] that is

included in U , where each Ui is open in X and ri ∈ R+. We consider
µ

def
= VηQX(ν) ∈ V•QVX. We recall that ηQX is the unit of the QV monad,

and maps every point x ∈ X to ↑x ∈ QVX. For every open subset U of
X, µ(�U) = ηQX [ν](�U) = ν((ηQX)−1(�U)) = ν(U). It follows that µ is
in
⋂n
i=1[�Ui > ri]. The latter is open in the upper Vietoris topology on

V•QVX = V•P , hence in the Scott topology of the stochastic ordering.
Since X is locally compact and sober, P is a continuous dcpo, so V•P is
a continuous dcpo with a basis of simple valuations, and therefore there
is a simple valuation ξ def

=
∑m
j=1 ajδQj

in V•P that is way below µ and in⋂n
i=1[�Ui > ri].
We may form ξ�, as in Lemma 3.1, item (5): for every U ∈ OX,

ξ�(U) = ξ(�U). We check easily that ξ� is equal to
∑m
j=1 ajuQj

. Using
Lemma 3.1, item (7) allows us to build a superlinear prevision F on X by
letting F (h) def

=
∫
x∈X h(x) dξ

� =
∑m
j=1 aj minx∈Qj h(x) for every h ∈ LX.

Now s•DP(F ) is a compact saturated subset of V•X, by Lemma 3.2. We
claim that ν is in the interior of s•DP(F ), and that s•DP(F ) is included in U ;
this will end our proof.

We start by showing that s•DP(F ) ⊆ U . Let ν′ be any element of
s•DP(F ). In other words, for every h ∈ LX,

∫
x∈X h(x) dν

′ ≥ F (h) =
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j=1 aj minx∈Qj

h(x). For each i ∈ {1, · · · , n}, we apply this to h def
= χUi

;
then minx∈Qj

h(x) = uQj
(Ui), so F (χUi

) =
∑m
j=1 ajuQj

(Ui) = ξ�(Ui) =

ξ(�Ui), and therefore ν′(Ui) =
∫
x∈X χUi

(x) dν′ ≥ F (χUi
) = ξ(�Ui) > ri,

since ξ ∈ [�Ui > ri]. Hence ν′ ∈
⋂n
i=1[Ui > ri] ⊆ U .

Next, we verify that ν is in the interior of s•DP(F ). We use the fact
that ξ is way below µ, equivalently that µ is in the open set ↑↑ξ. Since
µ = VηQX(ν), ν is in (VηQX)−1(↑↑ξ), which is open since VηQX is continuous.
It remains to show that (VηQX)−1(↑↑ξ) is included in s•DP(F ).

For every ν′ ∈ (VηQX)−1(↑↑ξ), by definition ξ is way below, in particular
less than or equal to µ′ def

= VηQX(ν′). The latter is such that µ′(�U) =

ηQX [ν′](�U) = ν′((ηQX)−1(�U)) = ν′(U) for every U ∈ OX. Hence
ν′ = µ′

�. By Lemma 3.1, item (5),
∫
x∈X h(x) dν

′ =
∫
Q∈QVX

h∗(Q) dµ′.
Since ξ ≤ µ′, the latter is larger than or equal to

∫
Q∈QVX

h∗(Q) dξ =∫
x∈X h(x) dξ

� = F (h), using Lemma 3.1, item (5) once again. We have
shown that

∫
x∈X h(x) dν

′ ≥ F (h) for every h ∈ LX, so ν′ ∈ s•DP(F ), as
promised. �

When X is compact, V1X = s•DP(F ), where F is the normalized su-
perlinear prevision h ∈ LX 7→

∫
x∈X h(x) duX = miny∈X h(y). Indeed, for

every probability valuation ν on X, for every h ∈ LX,
∫
x∈X h(x) dν ≥∫

x∈X miny∈X h(y) dν = miny∈X h(y). We therefore obtain the following.

Fact 4.2. If X is compact, then V1X is compact.

Lemma 4.3. Let • be nothing, “≤ 1”, or “1”. For every space X, V•X
is sober.

Proof. For every space X, VX is sober. The argument is due to R. Tix
[24, Satz 5.4], following ideas by R. Heckmann (see [15, Section 2.3]).
The sober subspaces of a sober space Z coincide with the subsets that
are closed in the strong topology on Z [18, Corollary 3.5]. The latter
is also known as the Skula topology, and is the smallest one generated
by the original topology on Z and all the downwards-closed subsets. In
particular, any closed subspace of a sober space is sober, any saturated
subspace of a sober space is sober. Hence V≤1Y is sober, being equal
to the closed subspace VY r [Y > 1] of VY , and V1Y is sober, being
upwards-closed in V≤1Y . �

Corollary 4.4. V and V≤1 restrict to endofunctors on the category of
locally compact (resp., locally compact sober) spaces and continuous maps.
V1 restricts to an endofunctor on the category of compact, locally compact
(resp., compact, locally compact sober) spaces.
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We finish with the mandatory application to spaces of measures, which
follows directly, using the considerations developed in Section 2 on the
relationship between measures and continuous valuations.

Corollary 4.5. For every hereditarily Lindelöf, LCS-complete space X—
in particular, for every quasi-Polish space X—if X is locally compact,
then M≤1X ∼= V≤1X are locally compact; if X is locally compact and
compact, thenM1X ∼= V1X are locally compact and compact.

The locally compact, quasi-Polish spaces are exactly the locally com-
pact, sober, second-countable spaces [5, Theorem 44]. It is easy to see
that the V• functor preserves second countability. Using Lemma 4.3, we
obtain our final corollary.

Corollary 4.6. For every locally compact quasi-Polish space X,M≤1X ∼=
V≤1X are locally compact and quasi-Polish.

5. Conclusion

When trying to show that a space Z is locally compact, the direct
approach—which is how we proceeded—consists in picking an arbitrary
point z ∈ Z, an arbitrary open neighborhood V of z, and to find a compact
(saturated) neighborhood Q of z included in V . The main difficulty is in
finding enough compact saturated sets Q.

Previous work has shown that V≤1X is stably compact for every stably
compact space X, and gives a hint at what compact saturated subsets of
V≤1X we may need for the task [2, Theorem 39]. (A stably compact space
is a compact, locally compact sober space that is coherent, in the sense
that the intersection of any two compact saturated subsets is compact.)
Indeed, in that case, the subsets [Q ≥ r]≤1

def
= {ν ∈ V≤1X | ∀U ∈

OX,Q ⊆ U ⇒ ν(U) ≥ r} form the required family of compact saturated
sets, where Q ranges over the compact saturated subsets ofX and r ∈ R+.
We might therefore assume that analogous sets [Q ≥ r]•

def
= {ν ∈ V•X |

∀U ∈ OX,Q ⊆ U ⇒ ν(U) ≥ r} would be compact saturated in V•X, and
could be used to form enough compact saturated neighborhoods of points
ν ∈ V•X, when X is locally compact sober—but without coherence (or
compactness).

Without using the detour through superlinear previsions, however, it
is not completely clear how one might prove that [Q ≥ r]• is compact, to
start with. It is true that [Q ≥ r]• is compact saturated inV•X, for every
compact saturated subset Q of any topological space X, and for every
r ∈ R+. Indeed, [Q ≥ r]• = s•DP(F ), where F is the superlinear prevision
h ∈ LX 7→ r

∫
x∈X h(x) duQ, as one may check by using Lemma 3.1.
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However, the proof we have given needs many more compact saturated
subsets, and we have obtained them as s•DP(F ) for superlinear previsions
of the form h ∈ LX 7→

∫
x∈X h(x) d

∑n
i=1 aiuQi

. In general, s•DP(F ) is
compact saturated in V•X, for any superlinear prevision F on X. This
naturally leads to the following question.

(1) What are the compact saturated subsets of V•X, for an arbitrary
topological space X?

In investigating (1), one may restrict X to some interesting subclasses.
The answer to (1) is already known for stably compact spaces: the com-
pact saturated subsets of V≤1X are exactly the intersections of finite
unions of sets of the form [Q ≥ r]≤1 given as above [2]. One should
also compare this with Prokhorov’s characterization of compact sets of
probability measures as those sets that are uniformly tight [20], see also
the fundamental paper by Topsøe [25]. In the meantime, one should
observe that for every topological space X, there is a continuous map
rDP : QV(V•X) → P•DPX such that rDP ◦ s•DP = idP•DPX and s•DP ◦ rDP ≤
idQV(V•X) [12, Proposition 3.22], and that those maps define a homeo-
morphism between P•DPX and the subspaceQcvxV (V•X) of convex elements
of QVV•X [12, Theorem 4.15]. Hence the convex compact saturated sub-
sets of V•X are known: they are exactly the sets sDP(F ), where F is a
superlinear prevision on X.
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