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MODEL FREE COLLISION AGGREGATION FOR THE COMPUTATION OF
ESCAPE DISTRIBUTIONS

Laetitia Laguzet1 and Gabriel Turinici2,*

Abstract. Motivated by a heat radiative transport equation, we consider a particle undergoing col-
lisions in a space-time domain and propose a method to sample its escape time, space and direction
from the domain. The first step of the procedure is an estimation of how many elementary collisions
is safe to take before chances of exiting the domain are too high; then these collisions are aggregated
into a single movement. The method does not use any model nor any particular regime of parameters.
We give theoretical results both under the normal approximation and without it and test the method
on some benchmarks from the literature. The results confirm the theoretical predictions and show that
the proposal is an efficient method to sample the escape distribution of the particle.
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1. Introduction

Particle simulations offering insights into complex chemical systems at the molecular level and can help elu-
cidate reaction mechanisms, predict thermodynamic properties, and explore molecular assembly; such methods
have been successfully applied in various fields such as catalysis [1], atmospheric modelling [2, 3], radiation
transport [4], etc. We will focus on the integro-differential transport equation:

1
𝑐
𝜕𝑡𝑢(𝑡, 𝑥, 𝜔) + 𝜔 · ∇𝑢(𝑡, 𝑥, 𝜔) + (𝜎𝑎(𝑡, 𝑥) + 𝜎𝑠(𝑡, 𝑥))𝑢(𝑡, 𝑥, 𝜔) = 𝜎𝑠(𝑡, 𝑥)⟨𝑢⟩(𝑡, 𝑥), (1)

with time variable 𝑡 ∈ [0, 𝑇 ], position variable 𝑥 ∈ 𝒳 ⊂ R𝑑 (here 𝑑 ≥ 1 is the spatial dimension), the angle
of propagation 𝜔 ∈ 𝒮𝑑 (unit sphere in R𝑑) and ⟨𝑢⟩(𝑡, 𝑥) =

∫︀
𝒮𝑑 𝑢(𝑡,𝑥,𝜔′) d𝜔′∫︀

𝒮𝑑 1· d𝜔′ the angular average of 𝑢 on 𝒮𝑑. The
model represents heat radiative transfer equations that can be used for both photons and neutrons (we use the
former in the numerical results).

The model also comes with the constant speed 𝑐; for instance for photons this will be the speed of light. The
absorption opacity 𝜎𝑎 and the scattering opacity 𝜎𝑠 are (known) functions of 𝑥 and 𝑡 that describe the collision
dynamics of the particles and more precisely the time to next collision, see Section 2.1 for details.
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The spatial domain 𝒳 is usually a mesh simulation cell and various approximations are invoked to compute
relevant quantities and manage the transition of particles from one mesh cell to another. We will not discuss this
but refer to [5, 6] and related literature. The main focus of this paper will be on how to compute the evolution
of one particle from the initial time 𝑡0 = 0 and initial position 𝑥0 ∈ 𝒳 to the moment when it exits the domain
𝒳 × [0, 𝑇 ], i.e., either reaches the spatial boundary 𝜕𝒳 or consumes all available time 𝑇 .

We are concerned here with “Monte Carlo” approaches that regard (1) as the time-evolving probability
density of a stochastic process, see [7]. When the parameter 𝜎𝑠 is large, many collisions occur before final time
𝑇 because the average time to next collision is 1

𝜎𝑠
. This is the so-called “diffusion regime” [8] and approximation

methods exist to exploit this remark, in particular the Random Walk (RW) methods [4, 9]. On the contrary,
when 𝜎𝑠 is small, the particle will not undergo many collisions before exiting the mesh cell and the ballistic
regime is important. In between, there are situations where the diffusion limit is not valid but the number
of collisions is still important and requires extensive numerical simulations. Like in the diffusion limit, one
would like to somehow accelerate this computation by replacing a large sum of independent collisions with some
aggregate step, without resorting to diffusive approximations. So we focus in this paper on a model free method
to aggregate many collisions into a single displacement without affecting the escape distribution of the particle.
The simulation of the particle’s trajectory stops when either time ends (at 𝑡 = 𝑇 ) or the particle reaches the
spatial boundary 𝜕𝒳 . Note that a single aggregated step will probably not suffice to end the simulation for the
particle so several such movements will probably be used.

As a technical circumstance, we will invoke the discrete ordinate method, denoted 𝑆𝑁 , which consists in
discretizing the angular direction variable i.e., replacing 𝒮𝑑 by a set of discrete directions 𝒟.

The outline of the paper is the following: we describe the collision dynamics of one particle in Section 2.1.
Then in Section 2.2 we describe the general principle of the proposed method; in Sections 2.3 and 2.4 we give
several theoretical results. The procedure is then tested in Section 3.

2. Procedure and associated theoretical insights

2.1. Description of the collision dynamics

We present briefly the dynamical setting. For graphical convenience this problem is presented in 1D but it
transcribes without difficulty to the multi-dimensional case.

For further simplification we will restrict to a situation where the direction of the particle is either +1 or −1;
this is the so-called 𝑆2 discrete-ordinates method (see [10], Sect. 16.3, p. 502, which relates to the Schuster–
Schwarzschild equations ([10], Sect. 14.3, p. 456)). We will denote 𝒟2 = {−1, 1} and in general

𝒟𝑁 =
{︂

cos
(︂

2𝜋𝑗
𝑁

)︂
, 𝑗 = 0, . . . , 𝑁 − 1

}︂
. (2)

Note that, for dimensions 𝑑 higher than 1, the direction of the particle is an element of the unit sphere 𝒮𝑑. We
consider a 1𝐷 particle in the spatial domain 𝒳 := [0, 𝐿] starting from 𝑥(0) = 𝑥0 ∈ 𝒳 at 𝑡0 = 0. We are also
given a maximum time 𝑇 . The particles evolve as follows : the collision counter is set to 𝑠 = 1 and a direction
𝑎𝑠 ∈ 𝒟 is chosen at random uniformly from 𝒟. Here 𝒟 = 𝒟𝑁 and unless stated otherwise we set 𝑁 = 2 but our
most general results in Section 2.5 consider arbitrary values of 𝑁 .

A time 𝜏𝑠 is sampled from an exponential law of mean 1/𝜎 (this will be denoted 𝜏𝑠 ∼ Exp(𝜎)). We define
𝑡𝑠 = 𝑡𝑠−1 + 𝜏𝑠. The particle moves on a straight line in the direction 𝑎𝑠 during the time 𝜏𝑠 at constant speed 𝑣.
Thus for any 𝑡 ∈ [𝑡𝑠−1, 𝑡𝑠] : 𝑥(𝑡) = 𝑥(𝑡𝑠−1) + 𝑣(𝑡− 𝑡𝑠−1)𝑎𝑠.

Next, the collision counter 𝑠 is incremented 𝑠 → 𝑠 + 1 and the process repeats until either 𝑡𝑠⋆ ≥ 𝑇 or
𝑥𝑡𝑠⋆ /∈ 𝒳 . The precise space-time coordinates when the particle touches the first time the boundary of the
domain 𝒳 × [0, 𝑇 ] are computed, i.e., for our simple 1D case the smallest 𝑡⋆ ∈ [𝑡𝑠⋆−1, 𝑡𝑠⋆ ] such that 𝑥(𝑡⋆) = 0 or
𝑥(𝑡⋆) = 𝐿 or 𝑡⋆ = 𝑇 .
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Figure 1. An illustration of the time dynamics and escape space-time distribution for a particle
starting at 𝑥0, 𝒟 = 𝒟2. The abscissas represent the position of the particle and the ordinates
the time. For each remarkable point we give its 𝑥, 𝑡 coordinates, for instance 𝐴 has 𝑥 = 0 and
𝑡 = 0 and represents the left extremity of the segment at 𝑡 = 0 while 𝐶 is the left extremity
at the final time. The time to next collision is an exponential random variable of average 1/𝜎
i.e., distributed Exp(𝜎). The joint escape distribution ℰ(𝜎,𝒳 , 𝑇, 𝑥0) collects the location 𝑥⋆,
time 𝑡⋆ and direction 𝑎⋆ when the boundary 𝑥 = 0, 𝑥 = 𝐿 or 𝑡 = 𝑇 is reached for the first time
(i.e., particle hits 𝐴𝐵, 𝐵𝐶 or 𝐶𝐷). The simulation is stopped when this happens. The colored
histograms are artist views of each conditional escape distributions: the magenta/orange is the
histogram of the escape time 𝑡⋆ given that particle escaped through the left/right while the
green is the histogram of escape position 𝑥⋆ for particles that did not escape before time 𝑇 or,
equivalently, the escape is due to time 𝑇 being totally consumed.

The quantity of interest is the distribution of the escape space-time, more precisely the joint distribution of
the escape position 𝑥⋆ := 𝑥(𝑡⋆), escape direction 𝑎⋆ ∈ 𝒟 and escape time 𝑡⋆ when the boundary is reached. This
triplet (𝑥⋆, 𝑡⋆, 𝑎⋆) is a random variable whose distribution ℰ(𝜎,𝒳 , 𝑇, 𝑥0) depends only on 𝜎, 𝒳 , 𝑇 and 𝑥0.

An illustration is given in Figure 1 for 𝒟 = 𝒟2. Note that the escape space-times values are elements of
R2𝑑𝑖𝑚(𝒳 )+1 = R3 thus the support of the distribution ℰ(𝜎,𝒳 , 𝑇, 𝑥0) is included in 𝑅3; but there are many
restrictions on this support, for instance 𝑡 ∈ [0, 𝑇 ] and so on, leaving the support to be included in (see Fig. 1
for notations): (︁

𝐴𝐵 × {−1}
)︁ ⋃︁ (︁

𝐵𝐶 × {−1, 1}
)︁ ⋃︁ (︁

𝐶𝐷 × {1}
)︁
. (3)

For instance, the explanation of the first element 𝐴𝐵×{−1} is that if the particle exists through its left border
the exit direction will point to the left. Or in 𝒟 there is only one direction that points to the left which is −1;
same for 𝐶𝐷 × {1}.

The colored areas in Figure 1 are a general illustration, not corresponding to any specific parameters, of the
following three conditional distributions:

– the left area (magenta in color figure) is the distribution of the escape time 𝑡⋆ at which 𝑥(𝑡⋆) = 0, conditioned
by the fact that the particle touched 𝑥 = 0 before 𝑇 and before touching 𝑥 = 𝐿;

– the top area (green in color figure) is the distribution of the escape position 𝑥(𝑡⋆) conditioned by escaping
because time 𝑇 was reached before reaching 𝑥 = 0 or 𝑥 = 𝐿, i.e., 𝑡⋆ = 𝑇 ;

– the right area (orange in color figure) is the equivalent to the magenta area when border is first reached for
𝑥 = 𝐿.
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2.2. Idea and first estimations

The dynamics described in Section 2.1 is used to sample from the distribution ℰ . In particular the trajectory
before the exit time i.e., 𝑥(𝑡) for 𝑡 < 𝑡⋆, is not useful and not used. We can thus imagine a way to accelerate
the computation by “skipping” these intermediary steps. For instance, when the diffusion parameter 𝜎 is very
large many collisions will occur before particle exits the space-time domain and in this case a random walk
approximation could be valid. We do not want to use this kind of approximation here but remain as close as
possible to the collisional dynamics.

Recall that the collision time 𝑡𝑛 is the sum of i.i.d Exp(𝜎) random variables 𝜏𝑗 : 𝑡𝑛 =
∑︀𝑛
𝑗=1 𝜏𝑗 ; the law of 𝑡𝑛

is a Gamma distribution of parameters 𝑛 and 𝜎.
The position 𝑋𝑛 = 𝑥(𝑡𝑛) is such that 𝑋𝑛 = 𝑥0 +

∑︀𝑛
𝑗=1 𝑣𝑎𝑗𝜏𝑗 , its law is a mixture of sums of two Gamma

distributed random variables (one for each value in 𝒟); we will make this precise latter. In any case we will show
that for any 𝑛 one can sample directly and exactly from the joint law (𝑋𝑛, 𝑡𝑛). In this way we can advance the
time by 𝑡𝑛 units and replace 𝑛 individual collisions by only one sample from this joint law.

But the question that arises is the following: what is the value of 𝑛 such that, with high certainty, we can
make 𝑛 steps without exiting the space-time domain 𝒳 × [0, 𝑇 ]? Given some tolerance 𝜖 > 0 the overall goal of
the estimations in following sections is to find how large 𝑛 can be while still ensuring that:

P[{∃𝑡 ≤ 𝑡𝑛 : 𝑥(𝑡) /∈ 𝒳} ∪ {𝑡𝑛 ≥ 𝑇}] ≤ 𝜖. (4)

Remark 1. The event {∃𝑡 ≤ 𝑡𝑛 : 𝑥(𝑡) /∈ 𝒳}∪{𝑡𝑛 ≥ 𝑇} whose probability is evaluated above concerns trajecto-
ries where either 𝑡𝑛 is larger than 𝑇 or trajectory already exited the domain 𝒳 before 𝑡𝑛. The complementary
of this event are trajectories (𝑥(𝑡), 𝑡) that remained in 𝒳 × [0, 𝑇 ] for all 𝑡 ≤ 𝑡𝑛. For trajectories in the comple-
mentary of {∃𝑡 ≤ 𝑡𝑛 : 𝑥(𝑡) /∈ 𝒳} ∪ {𝑡𝑛 ≥ 𝑇} we do not need to sample 𝑥(𝑡1), . . . 𝑥(𝑡𝑛−1) because, with high
probability, no exit occurred in [0, 𝑡𝑛[. If 𝜖 is small then with probability at least 1− 𝜖 one can thus only sample
𝑡𝑛, 𝑥(𝑡𝑛) (and the direction at time 𝑡𝑛). This is the goal of this estimation, to know how many intermediary
steps 𝑥(𝑡1), . . . 𝑥(𝑡𝑛−1) can be safely omitted. Note that 𝑥(𝑡𝑛) is still sampled exactly; the acceleration provided
by our procedure comes from the fact that we do not need to sample 𝑥(𝑡1), . . . , 𝑥(𝑡𝑛−1). Then the procedure
computes, starting from 𝑥(𝑡𝑛) another estimation for how many steps can be aggregated from this new position
with very low risk of exiting the domain 𝒳 × [0, 𝑇 − 𝑡𝑛] and so on.

Note that when 𝜖 is small this does not imply 𝑛 is also small, cf. for instance estimation (5) below where
𝜖 = 10−9 and 𝑛 can be as large as 𝑇𝜎 + 18 − 6

√
𝑇𝜎 + 9 (which is large provided 𝑇𝜎 is large, see Tab. 2 for

examples).

2.3. Estimates for 𝑡𝑛

2.3.1. Normal approximation for 𝑡𝑛
The first approach is to use a normal (Gaussian) approximation. This idea is close to the Random Walk

regime (cf. Introduction). For instance we know that 𝑡𝑛 has mean 𝑛/𝜎 and variance 𝑛/𝜎2. For very large values
of 𝑛, 𝑡𝑛 will behave as a normal variable with same mean and variance, i.e., 𝜎√

𝑛
(𝑡𝑛 − 𝑛/𝜎) is “close” to a

standard normal. So, we will write P[𝑡𝑛 ≥ 𝑇 ] ≤ 𝜖 is the same as P[ 𝜎√
𝑛

(𝑡𝑛 − 𝑛/𝜎) ≥ 𝜎√
𝑛

(𝑇 − 𝑛/𝜎)] ≤ 𝜖 which, if
the normal approximation holds, will be true when 𝜎√

𝑛
(𝑇 −𝑛/𝜎) is larger than the 1− 𝜖 quantile of the normal

distribution. To simplify things we take as small error 𝜖 = 10−9 corresponding to slightly more than 6 standard
deviations (that we conservatively set to 6). In this case, with high probability, 𝑡𝑛 will not be larger than 𝑇 if
𝜎√
𝑛

(𝑇 − 𝑛/𝜎) > 6 or, equivalently, 𝑛+ 6
√
𝑛 ≤ 𝜎𝑇 . So the aggregation rule becomes :

𝑛 ≤ 𝑇𝜎 + 18− 6
√
𝑇𝜎 + 9. (5)

Note that here 𝑇𝜎 is the mean number of collisions required to reach the final time 𝑇 (each collision “consumes”
in average 1/𝜎 time units).
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2.3.2. Exact tail approximation for 𝑡𝑛
We can also give a more precise, but slightly less convenient, estimation for 𝑛 coming from the tail estimates

for the gamma distribution.

Proposition 2. With previous notations, choosing 𝑛 ≤ 𝑇𝜎/2:

P[𝑡𝑛 ≥ 𝑇 ] ≤ 𝑧𝑧/2𝑒−𝑧

Γ(1 + 𝑧/2)
, where 𝑧 = 𝑇𝜎. (6)

In particular:
P[𝑡𝑛 ≥ 𝑇 ] ≤ 10−9, if 𝑛 ≤ 𝑇𝜎/2, 𝑛 ≥ 50. (7)

Proof. We are interested in P[𝑡𝑛 ≥ 𝑇 ] = P[𝜎𝑡𝑛 ≥ 𝑇𝜎]. Note that 𝜎𝑡𝑛 is a gamma random variable with
parameters shape =𝑛 and scale = 1 and density 𝑓(𝑦) = 1

(𝑛−1)!𝑦
𝑛−1𝑒−𝑦. We need to give a bound for P[𝜎𝑡𝑛 ≥

𝑇𝜎] =
∫︀∞
𝑇𝜎

1
(𝑛−1)!𝑦

𝑛−1𝑒−𝑦 d𝑦. By integration by parts for general 𝑧 > 0:∫︁ ∞

𝑧

𝑦𝑛−1

(𝑛− 1)!
𝑒−𝑦 d𝑦 =

𝑦𝑛

𝑛!
𝑒−𝑦

⃒⃒⃒∞
𝑦=𝑧

+
∫︁ ∞

𝑧

𝑦𝑛

𝑛!
𝑒−𝑦 d𝑦 ≥ 𝑧

𝑛

∫︁ ∞

𝑧

𝑦𝑛−1

(𝑛− 1)!
𝑒−𝑦 d𝑦 − 𝑧𝑛

𝑛!
𝑒−𝑧. (8)

We used the inequality
∫︀∞
𝑧

𝑦𝑛

𝑛! 𝑒
−𝑦 d𝑦 ≥ 𝑧

𝑛

∫︀∞
𝑧

𝑦𝑛−1

(𝑛−1)!𝑒
−𝑦 d𝑦 that is true because 𝑦 ≥ 𝑧 on the domain of integra-

tion. The term
∫︀∞
𝑧

𝑦𝑛−1

(𝑛−1)!𝑒
−𝑦 d𝑦 appears now in both sides and thus one can write

(︀
𝑧
𝑛 − 1

)︀ ∫︀∞
𝑧

𝑦𝑛−1

(𝑛−1)!𝑒
−𝑦 d𝑦 ≤

𝑧𝑛

𝑛! 𝑒
−𝑧; dividing by

(︀
𝑧
𝑛 − 1

)︀
it follows that, for 𝑧 > 𝑛:∫︁ ∞

𝑧

𝑦𝑛−1

(𝑛− 1)!
𝑒−𝑦 d𝑦 ≤ 𝑛𝑧𝑛𝑒−𝑧

𝑛!(𝑧 − 𝑛)
=

𝑛𝑧𝑛𝑒−𝑧

Γ(𝑛+ 1)(𝑧 − 𝑛)
· (9)

Let us take now 𝑛 = 𝑧/2; the right hand side equals 𝑧𝑧/2𝑒−𝑧

Γ(1+𝑧/2) . The function 𝑧 ↦→ ln
(︁
𝑧𝑧/2𝑒−𝑧

Γ(1+𝑧/2)

)︁
= 𝑧

2 ln(𝑧) −

𝑧 − ln(Γ(1 + 𝑧/2)) has derivative ln(𝑧)−1−𝜓(1+𝑧/2)
2 = ln(𝑧/2)−𝜓(1+𝑧/2)+ln(2/𝑒)

2 ≤ 0 we have used the notation for
the digamma function 𝜓(𝑧) = Γ′(𝑧)

Γ(𝑧) , inequality ln(𝑢) ≤ 𝜓(𝑢 + 1) for all 𝑢 > 0 and ln(2/𝑒) < 0. This shows

that the error term 𝑧𝑧/2𝑒−𝑧

Γ(1+𝑧/2) is decreasing for 𝑧 ≥ 2. In particular its value at 𝑧 = 100 is 2.44 × 10−10 < 10−9.
Conclusion (7) follows because 𝑛 ↦→ P[𝑡𝑛 ≥ 𝑇 ] is obviously increasing with 𝑛 and the value at 𝑛 = 𝑇𝜎/2 is less
than 10−9. �

2.3.3. Summary for 𝑡𝑛
To summarize, in order to satisfy P[𝑡𝑛 ≥ 𝑇 ] < 10−9 we have two possible choices

– the rigorous, conservative estimate from (7) with choice 𝑛 ≤ 𝑇𝜎/2 as soon as 𝑛 ≥ 50;
– the normal approximation (5) resulting in the bound: 𝑛 ≤ 𝑇𝜎+ 18− 6

√
𝑇𝜎 + 9. In practice we require 𝑛 to

be larger than some 𝑛𝒩 that we set to 𝑛𝒩 := 300 in order to ensure that the normal approximation is in
the asymptotic regime.

The normal approximation provides larger (thus less restrictive) values for 𝑛 but its quality is not precisely
quantified. On the other hand, the conservative estimate (7) has a known error bound and works even if only
one hundred average collisions are left in the time interval. If no other parameters enter into the decision, the
number of such “aggregated collisions” required to reach final time 𝑇 is 𝑂(1) for the normal approximation and
𝑂(log(𝑇𝜎)) for the conservative estimate (each step halves the time “left”). Both give very good results for the
numerical regimes we are interested in.
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2.4. Estimates for the spatial boundary

We now inquire about estimating the number of collisions that can be aggregated without reaching the spatial
boundary. Define 𝐷 to be the distance from 𝑥0 to the boundary of 𝒳 i.e., 𝐷 = min{𝑥0, 𝐿− 𝑥0}. In general, if
the spatial domain is 𝒳 we set 𝐷 = dist(𝑥0, 𝜕𝒳 ). Note that E[𝑋𝑛 − 𝑥0] = 0, V[𝑋𝑛 − 𝑥0] = 𝑛𝑣2/𝜎2. But, this
still does not tell us if some other 𝑋𝑘 for 𝑘 ≤ 𝑛 did not already exited through the spatial domain boundaries
{0} or {𝐿}. We can write:

P[{∃𝑡 ≤ 𝑡𝑛 : 𝑥(𝑡) /∈ 𝒳}] ≤ P
[︂{︂

max
𝑠≤𝑛

|𝑋𝑠 − 𝑥0| ≥ 𝐷

}︂]︂
= P

⎡⎣⎧⎨⎩max
𝑠≤𝑛

⃒⃒⃒⃒
⃒⃒ 𝑠∑︁
𝑗=1

𝑎𝑗𝜏𝑗

⃒⃒⃒⃒
⃒⃒ ≥ 𝐷/𝑣

⎫⎬⎭
⎤⎦. (10)

2.5. Spatial boundary treatment, no Gaussian approximation, general 𝑁

We will consider a general case when 𝒟 is not necessary {−1, 1}. We will assume:

Hypothesis on directions (HD) : ∀𝑗 ≥ 0 : E[𝑎𝑗 ] = 0,V[𝑎𝑗 ] = 𝜍2, the law of 𝑎𝑗 is symmetric. (11)

In practice this can restrict for instance the number of directions to be even for the 𝑆𝑁 model (to ensure
symmetry). Note that for 𝒟 = 𝒟𝑁 : 𝜍 =

√︀
𝑁/2. We will need the following result.

Proposition 3. Consider 𝑌𝑛 =
∑︀𝑛
𝑗=1 𝑍𝑗 with 𝑍𝑗 symmetric i.i.d. variables such that for some 𝜆 > 0: E[𝑒𝜆𝑍1 ] <

∞. Then for any 𝐶 ≥ 0

P
[︂
max
𝑗≤𝑛

|𝑌𝑗 | ≥ 𝐶

]︂
≤ 4P[𝑌𝑛 ≥ 𝐶] = 2P[|𝑌𝑛| ≥ 𝐶] (12)

P
[︂
max
𝑗≤𝑛

|𝑌𝑗 | ≥ 𝐶

]︂
≤ 2𝑒−𝜆𝐶

(︀
E[𝑒𝜆𝑍1 ]

)︀𝑛
(13)

In particular P[max𝑗≤𝑛 |𝑌𝑗 | ≥ 𝐶] ≤ 𝜖 as soon as:

𝑛 ≤ 𝜆𝐶 + ln(𝜖)− ln(2)
ln(E[𝑒𝜆𝑍1 ])

· (14)

Remark 4. The estimation (12) reminds of the Kolmogorov’s inequality that would read:

P
[︂
max
𝑗≤𝑛

|𝑌𝑗 | ≥ 𝐶

]︂
≤ 1
𝐶2

V[𝑌𝑛] =
𝑛

𝐶2
V[𝑍1]. (15)

Such an inequality is not useful because if would constraint 𝑛 to not be larger than 𝜖𝐶2/V[𝑍1] which is very
disappointing when 𝜖 → 0. On the other hand, Doob’s inequality will be invoked in the proof of the upper
bound (13) and the estimation (14) where 𝜖 only appears through its logarithm.

Proof. Proof of inequality (12): the general idea is that 𝑌𝑛 can be thought close, by Donsker’s reflection
principle, to a Brownian motion; for a Brownian motion the reflection principle related the maximum deviation
before time 𝑡𝑛 with the value at time 𝑡𝑛, i.e., the estimation (12) is true with equality. So we follow the proof
of the Brownian motion reflection principle. Note first that

P
[︂
max
𝑗≤𝑛

|𝑌𝑗 | ≥ 𝐶

]︂
= P

[︂{︂
max
𝑗≤𝑛

𝑌𝑗 ≥ 𝐶

}︂
∪

{︂
min
𝑗≤𝑛

𝑌𝑗 ≤ −𝐶
}︂]︂

≤ P
[︂{︂

max
𝑗≤𝑛

𝑌𝑗 ≥ 𝐶

}︂]︂
+ P

[︂{︂
min
𝑗≤𝑛

𝑌𝑗 ≤ −𝐶
}︂]︂

= P
[︂{︂

max
𝑗≤𝑛

𝑌𝑗 ≥ 𝐶

}︂]︂
+ P

[︂{︂
𝐶 ≤ −min

𝑗≤𝑛
𝑌𝑗

}︂]︂
= P

[︂{︂
max
𝑗≤𝑛

𝑌𝑗 ≥ 𝐶

}︂]︂
+ P

[︂{︂
𝐶 ≤ max

𝑗≤𝑛
−𝑌𝑗

}︂]︂



MODEL FREE ESCAPE DISTRIBUTIONS 2067

= 2P
[︂{︂

max
𝑗≤𝑛

𝑌𝑗 ≥ 𝐶

}︂]︂
, (16)

where we used the symmetry of 𝑌𝑛. By symmetry we also obtain

P[|𝑌𝑛| ≥ 𝐶] = 2P[𝑌𝑛 ≥ 𝐶], (17)

so it is enough to show that

P
[︂
max
𝑗≤𝑛

𝑌𝑗 ≥ 𝐶

]︂
≤ 2P[𝑌𝑛 ≥ 𝐶]. (18)

Denote 𝑢 the stopping time to be the first 𝑠 such that 𝑌𝑠 ≥ 𝐶 or 𝑛 if no such 𝑠 exists; define ℱ𝑢 to be its
associated sigma-algebra. Then:

P
[︂
max
𝑗≤𝑛

𝑌𝑗 ≥ 𝐶

]︂
= P

[︂
max
𝑗≤𝑛

𝑌𝑗 ≥ 𝐶, 𝑌𝑛 ≥ 𝐶

]︂
+ P

[︂
max
𝑗≤𝑛

𝑌𝑗 ≥ 𝐶, 𝑌𝑛 < 𝐶

]︂
≤ P[𝑌𝑛 ≥ 𝐶]

+ P
[︂
max
𝑗≤𝑛

𝑌𝑗 ≥ 𝐶, 𝑌𝑛 − 𝑌𝑢 < 0
]︂

= P[𝑌𝑛 ≥ 𝐶] + E
[︀
1max𝑗≤𝑛 𝑌𝑗≥𝐶,𝑌𝑛−𝑌𝑢<0

]︀
= P[𝑌𝑛 ≥ 𝐶] + E

[︀
E[1max𝑗≤𝑛 𝑌𝑗≥𝐶,𝑌𝑛−𝑌𝑢<0|ℱ𝑢]

]︀
= P[𝑌𝑛 ≥ 𝐶] + E

[︀
1max𝑗≤𝑛 𝑌𝑗≥𝐶E[1𝑌𝑛−𝑌𝑢<0]

]︀
= P[𝑌𝑛 ≥ 𝐶] + P

[︂
max
𝑗≤𝑛

𝑌𝑗 ≥ 𝐶

]︂
· P[𝑌𝑛 − 𝑌𝑢 < 0] ≤ P[𝑌𝑛 ≥ 𝐶] +

1
2

P
[︂
max
𝑗≤𝑛

𝑌𝑗 ≥ 𝐶

]︂
, (19)

where we used the fact that 𝑌𝑛 − 𝑌𝑢 is symmetric thus P[𝑌𝑛 − 𝑌𝑢 < 0] ≤ 1/2. The relation (18) follows by
subtracting 1

2P[max𝑗≤𝑛 𝑌𝑗 ≥ 𝐶] from the first and last terms of the formula above.

Proof of inequality (13): we already proved P[max𝑗≤𝑛 |𝑌𝑗 | ≥ 𝐶] ≤ 2P[{max𝑗≤𝑛 𝑌𝑗 ≥ 𝐶}] =
2P[{max𝑗≤𝑛 𝑒𝜆𝑌𝑗 ≥ 𝑒𝜆𝐶}]. Since for 𝜆 > 0, the function 𝑥 ↦→ 𝑒𝑥𝑝(𝜆𝑥) is convex, 𝑒𝜆𝑌𝑛 is a sub-martingale.
By Doob’s inequality,

P
[︂{︂

max
𝑗≤𝑛

𝑒𝜆𝑌𝑗 ≥ 𝑒𝜆𝐶
}︂]︂

≤ 𝑒−𝜆𝐶E[𝑒𝜆𝑌𝑛 ] = 𝑒−𝜆𝐶
𝑛∏︁
𝑗=1

E[𝑒𝜆𝑍𝑗 ] = 𝑒−𝜆𝐶(E[𝑒𝜆𝑍1 ])𝑛. (20)

Proof of inequality (14): it results from (13) by taking the logarithm in 2𝑒−𝜆𝐶
(︀
E[𝑒𝜆𝑍1 ]

)︀𝑛 ≤ 𝜖. �

Corollary 5. Let 𝜖 > 0. Then, with the previous notations, when 𝒟 = 𝒟𝑁 for some even value of 𝑁 ≥ 2:

P[{∃𝑡 ≤ 𝑡𝑛 : 𝑥(𝑡) /∈ 𝒳}] ≤ 𝜖 if 𝑛 ≤
𝜎𝐷
𝑣 +

√
2 ln(𝜖/2)

√
2 ln(2)

· (21)

Proof. We use (10) and inequality (14) from Proposition 3. Here 𝑍𝑗 = 𝑎𝑗𝜏𝑗 , 𝐶 = 𝐷/𝑣. We write for 𝜆 < 𝜎 and
𝒟 = 𝒟2:

E[𝑒𝜆𝑍1 ] = E[𝑒𝜆𝑎1𝜏1 ] =
1
2

E[𝑒𝜆𝜏1 + 𝑒−𝜆𝜏1 ]

=
𝜎

2

∫︁ ∞

0

𝑒−𝜎𝜏 (𝑒𝜆𝜏 + 𝑒−𝜆𝜏 ) d𝜏 =
𝜎

2

(︂
1

𝜎 − 𝜆
+

1
𝜎 + 𝜆

)︂
=

𝜎2

𝜎2 − 𝜆2
· (22)

Take now 𝜆 = 𝜎/
√

2. The term in (14) becomes 𝜎𝐷/(𝑣
√

2)+ln(𝜖/2)
ln(2) .
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For 𝒟 = 𝒟𝑁 with 𝑁 > 2 (even) denote 𝑑𝑗 = cos
(︀

2𝜋𝑗
𝑁

)︀
. Then

E[𝑒𝜆𝑍1 ] = E[𝑒𝜆𝑎1𝜏1 ] =
1
𝑁

𝑁−1∑︁
𝑗=0

E[𝑒𝜆𝑑𝑗𝜏1 ] =
𝜎

𝑁

𝑁−1∑︁
𝑗=0

∫︁ ∞

0

𝑒−𝜎𝜏𝑒𝜆𝑑𝑗𝜏 d𝜏 =
1
𝑁

𝑁−1∑︁
𝑗=0

𝜎

𝜎 − 𝑑𝑗𝜆
· (23)

In the sum over 𝑗, for even values of 𝑁 , values can be regrouped by associating some value 𝑑 with the value −𝑑.
There are 𝑁/2 such couples and each of them will contribute 𝜎

𝜎−𝑑𝜆 + 𝜎
𝜎+𝑑𝜆 = 𝜎2

𝜎2−𝑑2𝜆2 ≤ 𝜎2

𝜎2−𝜆2 . We conclude as
in the case 𝑁 = 2. �

This corollary can be used to know how many elementary collisions can be aggregated while keeping the
chances to reach the frontier very small. In practice we will improve this bound but it has the merit to show
that 𝜎𝐷/𝑣 should be large enough with respect to ln(𝜖). Conservative values for 𝜖 will be of order 10−9 which
is a chance in a billion to be wrong and assume that particle still stays inside the domain when in reality it has
exited. This would give

√
2 ln(𝜖/2) = −30.28 which leads, using

√
2 ln(𝜖/2) ∼ 0.98 < 1 to:

𝑛 ≤ 𝜎𝐷

𝑣
− 31. (24)

This is a more useful value than 2
𝑁 × 10−9 ×

(︀
𝜎𝐷
𝑣

)︀2
from Remark 4. Of course, which one is larger depends

on the precise value of 𝜎𝐷
𝑣 but in the regimes where this is of interest to us 𝜎𝐷

𝑣 can be quite large. From a
qualitative point of view, combining the two behaviors is even better; the goal would be to have an estimate
that contains

(︀
𝜎𝐷
𝑣

)︀2
with a very weak dependence on 𝜖, for instance logarithmic or even weaker. This will be

provided in the context of the normal approximation presented in Section 2.6 and using Hoeffding inequality in
the next result.

Proposition 6. Let 𝜖 > 0. Then, with the previous notations, for even values of 𝑁 :

P[{∃𝑡 ≤ 𝑡𝑛 : 𝑥(𝑡) /∈ 𝒳}] ≤ 𝜖 if 2𝑛
[︂
ln(𝑛) + ln

(︂
2
𝜖

)︂]︂2

ln
(︂

8
𝜖

)︂
≤ 𝐷2𝜎2

𝑣2
· (25)

Proof. We invoke (12) from Proposition 3 for 𝑍𝑗 = 𝑎𝑗𝜏𝑗 , 𝐶 = 𝐷/𝑣. We choose some level to be defined 𝜉 > 0
and recall that for 𝑈 ≃ Exp(1): P[𝑈 ≥ 𝜉] = 𝑒−𝜉 and thus P[𝜏𝑖 ≥ 𝜉/𝜎] = 𝑒−𝜉. We can replace each 𝜏𝑖 by
𝜏𝑖 = min{𝜏𝑖, 𝜉/𝜎}. Note that P[𝜏𝑖 = 𝜏𝑖] = 1− 𝑒−𝜉 and P[𝜏𝑖 = 𝜏𝑖, ∀𝑖 ≤ 𝑛] ≥ 1− 𝑛𝑒−𝜉.

Consider the modified trajectory �̃�(𝑡) constructed as 𝑥(𝑡) but with 𝜏𝑖 instead of 𝜏𝑖. Previous estimation
informs that P[∃𝑡 ≤ 𝑡𝑛 : �̃�(𝑡) ̸= 𝑥(𝑡)] ≤ 𝑛𝑒−𝜉. We will use the following Hoeffding inequality: if 𝜒1, . . . , 𝜒𝑛 are i.i.d.
random variables such that 𝛼𝑖 ≤ 𝜒𝑖 ≤ 𝛽𝑖 almost surely, then P[|

∑︀𝑛
𝑖=1(𝜒𝑖−E[𝜒𝑖])| ≥ m] ≤ 2 exp

(︁
− 2m2
∑︀𝑛

𝑖=1(𝛽𝑖−𝛼𝑖)2

)︁
.

We use this Hoeffding inequality for the variables 𝑍𝑗 = 𝑎𝑗𝜏𝑗 which have values inside [−𝜉/𝜎, 𝜉/𝜎] and average
to zero:

P[{∃𝑡 ≤ 𝑡𝑛 : 𝑥(𝑡) /∈ 𝒳}] ≤ 𝑛𝑒−𝜉 + P[{∃𝑡 ≤ 𝑡𝑛 : �̃�(𝑡) /∈ 𝒳}] ≤ 𝑛𝑒−𝜉 + 2P

⎡⎣⃒⃒⃒⃒
⃒⃒ 𝑛∑︁
𝑗=1

𝑍𝑗

⃒⃒⃒⃒
⃒⃒ ≥ 𝐷

𝑣

⎤⎦
≤ 𝑛𝑒−𝜉 + 4𝑒−

2𝐷2𝜎2

4𝑛𝑣2𝜉2 · (26)

We now choose 𝜉 such that 𝑛𝑒−𝜉 = 𝜖/2 i.e., 𝜉 = ln(𝑛) + ln(2/𝜖). Then, it is enough to find 𝑛 such that

4𝑒−
2𝐷2𝜎2

4𝑛𝑣2𝜉2 ≤ 𝜖/2 to conclude. Replacing the value of 𝜉 we obtain the required estimation. �

This result is to be used when 𝐷𝜎
𝑣 is large. For example, the bound in equation (24) is better for values of

𝐷𝜎
𝑣 up to ≃ 5× 104. On the contrary, for 𝐷𝜎

𝑣 ≃ 106, estimation (25) gives a “𝑛” one order of magnitude larger
than that of (24); for 𝐷𝜎

𝑣 ≃ 107 more than two orders of magnitude are gained.
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Table 1. Summary of estimations of the number of steps. We used that 𝜍2 = 𝑁/2 for 𝒟 = 𝒟𝑁 .

Situation Time Condition Spatial Condition

Normal Equation (5): 𝑛 ≥ 𝑛𝒩 := 300 Equation (28): 𝑛 ≤ 1
25𝑁

(︀
𝐷𝜎
𝑣

)︀2
𝑛 ≥ 𝑛𝒩 := 300

approximation 𝑛 ≤ 𝑇𝜎 + 18− 6
√

𝑇𝜎 + 9 (empirical) (empirical)

Conservative Equation (7): 𝑛 ≤ 𝑇𝜎/2 𝑛 ≥ 50 Equations (21) and (24): 𝑛 ≤ 𝜎𝐷
𝑣
− 31 𝑛 ≥ 1

(probability Equation (25): 𝑛[ln(𝑛) + 21.42]2

≥ 1− 10−9) ≤ 1
45.61

𝐷2𝜎2

𝑣2

2.6. Spatial boundary treatment, normal approximation

We consider now the normal approximation. Then in this case
∑︀𝑛
𝑗=1 𝑎𝑗𝜏𝑗 looks like a Brownian motion and,

in view of the estimation (12) if we accept and error 𝜖, we will set 𝑛 such that:

2P

⎡⎣⃒⃒⃒⃒
⃒⃒ 𝑛∑︁
𝑗=1

𝑎𝑗𝜏𝑗

⃒⃒⃒⃒
⃒⃒ ≥ 𝐷/𝑣

⎤⎦ ≤ 𝜖. (27)

But
∑︀𝑛
𝑗=1 𝑎𝑗𝜏𝑗 has mean 0 and variance 𝑛𝜍2/𝜎2 so the probability to be larger than 𝐷/𝑣 will be small when

𝐷𝜎
𝑣𝜍
√
𝑛

is large enough (of the order of 6), giving the aggregation rule:

𝑛 ≤ 1
50

(︂
𝐷𝜎

𝑣𝜍

)︂2

. (28)

As before, this rule will be used when 𝑛 is large enough, we take 𝑛 larger than some 𝑛𝒩 that is set to 𝑛𝒩 := 300.
Note that the dependence with respect to 𝐷𝜎 is quadratic and not linear as in Corollary 21 (recall that 𝜍 = 1
when 𝒟 = {−1, 1}). The dependence on the tolerance 𝜖 is very weak, because the 1− 𝜖/2 quantile of the normal
law increase very slowly when 𝜖→ 0.

2.7. Summary of the aggregation rules

We summarize the estimations obtained in Table 1.

2.8. Sampling once aggregation level 𝑛 is given

Previous considerations helped to choose a 𝑛 such that 𝑛 collisions later the particle has a very high probability
to be still in the space-time domain 𝒳 × [0, 𝑇 ]. But we still need to place the particle somewhere i.e., we need to
explain how to sample from the distribution of the position and time coordinates of the particle after 𝑛 collision
steps.

As soon as 𝑛 > 1 the direction of the particle is very easy to sample: it is a value from 𝒟 sampled uni-
formly. For the time 𝑡𝑛 we take a gamma variable with shape 𝑛 and scale 1/𝜎 (average = 𝑛/𝜎). What about
the position 𝑥(𝑡𝑛)? We know that 𝑥(𝑡𝑛) = 𝑥0 +

∑︀𝑛
𝑗=1 𝑎𝑗𝜏𝑗 . To compute this efficiently we sample from the

multinomial distribution ℳ(1/𝑁, . . . , 1/𝑁) with 𝑁 events and obtain positive integers 𝑛𝑗 that sum up to 𝑛
with the convention that 𝑛𝑗 will represent the number of times the value 𝑑𝑗 ∈ 𝒟 has been taken by some 𝑎ℓ.
So finally the term

∑︀𝑛
𝑗=1 𝑎𝑗𝜏𝑗 will be a sum of 𝑁 gamma distributions, with 𝑗-th term being of parameters 𝑛𝑗

and 𝑑𝑗/𝜎. The resulting procedure is described in the Algorithm 1.
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Algorithm 1. Aggregating collision escape sampling algorithm, normal approximation.
Inputs: no. directions 𝑁 , spatial size 𝐿, initial position 𝑥0, total time 𝑇𝑓 , collision parameter 𝜎, speed 𝑣, approximation
type 𝑎𝑝𝑟 ∈ {“𝑛𝑜𝑟𝑚𝑎𝑙′′, “𝑛𝑜𝑡𝑛𝑜𝑟𝑚𝑎𝑙′′}.

Outputs: space-time exit point 𝑥⋆, 𝑎⋆, 𝑡⋆, number of collisions 𝑐

1: procedure Single collision(𝑁, 𝐿, 𝑥, 𝑡, 𝑇𝑓 , 𝜎, 𝑣)
2: set 𝒳 = [0, 𝐿]
3: sample 𝜏 ≃ Exp(1/𝜎), 𝑎 uniform from 𝒟
4: if 𝑡 + 𝜏 < 𝑇𝑓 and 𝑥 + 𝑣𝑎𝜏 ∈ 𝒳 then
5: return (𝑡 + 𝜏, 𝑥 + 𝑣𝑎𝜏, 𝑎, “not escaped”)
6: else
7: compute time to escape when either 𝑇𝑓 , or 𝜕𝒳 are reached: Δ𝑡⋆ = min{𝜏, 𝑇𝑓 − 𝑡, 𝑑𝑖𝑠𝑡(𝑥,𝜕𝒳 )

𝑣𝑎
}

8: return (𝑡 + Δ𝑡⋆, 𝑥 + 𝑣𝑎Δ𝑡⋆, 𝑎, “escaped”)
9: end if

10: end procedure
11: procedure escape time sampling(𝑁, 𝐿, 𝑥0, 𝑇𝑡, 𝜎, 𝑣)
12: Set 𝑡 = 0, 𝑥 = 𝑥0, collision counter 𝑐 = 0, flag=“not escaped”,
13: if apr==“normal” then 𝑛𝒩 = 300
14: else 𝑛𝒩 = 50
15: end if
16: compute 𝑑𝑘 = cos(2𝜋𝑗/𝑁), 𝑗 = 0, . . . , 𝑁 − 1.
17: while flag=“not escaped” do
18: set 𝐷 := min{𝑥, 𝐿− 𝑥}, 𝑇 = 𝑇𝑡 − 𝑡.

19: if apr==“normal” then 𝑛𝑐 = min
{︁

𝑇𝜎 + 18− 6
√

𝑇𝜎 + 9, 1
25𝑁

(︀
𝐷𝜎
𝑣𝜍

)︀2}︁

20: else 𝑛𝑐 = max
{︁

𝑛 ≤ 𝑇𝜎/2
⃒⃒
⃒𝑛 ≤ 𝜎𝐷

2
− 31 or 𝑛[ln(𝑛) + 21.42]2 ≤ 1

45.61
𝐷2𝜎2

𝑣2

}︁

21: end if
22: if 𝑛𝑐 ≥ 𝑛𝒩 then:
23: sample 𝜏 ≃ Γ(𝑛, 1), 𝑛1, . . . , 𝑛𝑁 ≃ℳ(1/𝑁, . . . , 1/𝑁), 𝜏ℓ ≃ Γ(𝑛ℓ, 1), ℓ = 1, . . . , 𝑁
24: if 𝑡 + 𝜏/𝜎 > 𝑇 or 𝑥 +

∑︀𝑁
ℓ=1 𝑑ℓ𝜏ℓ/𝜎 /∈]0, 𝐿[ then

25: print “error in” apr “approximation”
26: (𝑡, 𝑥, 𝑎, 𝑓𝑙𝑎𝑔) = SINGLE COLLISION(𝑁, 𝐿, 𝑥, 𝑡, 𝑡 + 𝑇, 𝜎, 𝑣).
27: 𝑐 = 𝑐 + 1
28: else
29: set 𝑡 = 𝑡 + 𝜏/𝜎, 𝑥 = 𝑥 +

∑︀𝑁
ℓ=1 𝑑ℓ𝜏ℓ/𝜎

30: 𝑐 = 𝑐 + 𝑛𝑐

31: end if
32: else
33: (𝑡, 𝑥, 𝑎, 𝑓𝑙𝑎𝑔) = SINGLE COLLISION(𝑁, 𝐿, 𝑥, 𝑡, 𝑡 + 𝑇, 𝜎, 𝑣).
34: 𝑐 = 𝑐 + 1
35: end if
36: end while
37: return (𝑡, 𝑥, 𝑎), 𝑐
38: end procedure

3. Numerical results

3.1. One dimension two directions

We start with the 1D case where the number of directions is 𝑁 = 2, i.e., the 𝑆2 model. This model is
interesting in itself and not necessarily as a discretization of the situation when 𝒟 is the unit sphere (see the
introduction).

For the numerical tests, we set the segment length to 𝐿 = 0.01 cm, final time to 𝑇 = 4 × 104 fs, speed
𝑣 = 3.0 × 10−5 fs/cm, and 𝜎 ∈ {10−2, 10, 104, 106} (unit is cm−1). The values have been chosen to see all
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Table 2. Values of 𝑇𝜎 and 𝐷𝜎/𝑣 for simulations in Section 3.1.

𝜎 = 10−2 𝜎 = 101 𝜎 = 104 𝜎 = 106

𝑇𝜎 4× 102 4× 105 4× 107 4× 1010

𝐷𝜎/𝑣 10
6

104

6
107

6
1011

6

regimes (see also results below): for 𝜎 = 10−2 there are very few collisions while for 106 there are a large number
of them. Then the sampling inside these bounds is to obtain an almost log-uniform 𝑇𝜎 grid (mean number
of collisions). The initial point is in the middle of the spatial interval (𝑥0 = 𝐿/2) thus 𝐷 = 𝐿/2. We plot in
Figure 2 some examples of trajectories and in Figure 3 the resulting escape laws. The values of the parameters
𝑇𝜎 and 𝐷𝜎/𝑣 at the initial time are given in Table 2.

For 𝜎 = 10−2 (first row of Figs. 2 and 3) the particle has very few collisions (here 2) and exists the spatial
domain well in advance of the final time 𝑇𝑓 . The aggregation mechanism is never activated. The escape distri-
butions concentrate on the borders 𝑥 = 0 and 𝑥 = 𝐿; the middle column depicts the escape law conditional to
having escaped because final time is reached; here this column has no mass at all.

For 𝜎 = 101 (second row of Figs. 2 and 3) the computation can be accelerated by aggregating several collisions,
up to ≃ 4×104 for an average of 399918/187 = 2138 collisions per step. The particular trajectory depicted here
exists because final time is reached but ≃ 14% of trajectories exit because the spatial border is touched first.

For 𝜎 = 104 and 𝜎 = 106 (last two rows of Figs. 2 and 3) the particle undergoes an important number of
collisions. The proposed procedure turns out to be very useful with a number of collisions per aggregated step
being 399987252

266 = 1.503×106 and 39999999269
118 = 3.390×108 respectively. The procedure reaches thus acceleration

factors of up to 108 and the numerical resolution is very expensive without it. All particles exit because the
time is up, none exists through the spatial borders: the particle behavior is that of a random walk around the
initial point.

3.2. One dimension, 𝑁 directions

We take now 𝑁 > 2 directions, i.e., the 𝑆𝑁 model. Such a model can for instance be used as a discretization of
the situation when 𝒟 is the whole unit sphere. We will not test the same things as before but instead investigate
the two possible sources of error: the fact that 𝑁 is finite (so 𝒟𝑁 is not a perfect representation of the unit
sphere) and the fact that we used the normal approximation. Moreover we will take the most difficult test
case which is the situation of a long time and a moderate value of 𝜎, neither in the ballistic (small 𝜎) nor in
the diffusion (large 𝜎) regime: 𝑇 = 2 × 104 fs, 𝜎 = 1. The initial point is in the middle of the spatial interval
(𝑥0 = 𝐿/2).

We consider several test cases: parameters 𝑁 = 10 can be or 𝑁 = 100; the 𝑛𝒩 parameter (that decides when
the normal approximation is to be used) can be 𝑛𝒩 = 50, 𝑛𝒩 = 300 or 𝑛𝒩 = 1000. In each case we compute
104 escape points 𝑡, 𝑥, 𝑎. The nominal values are: 𝑛𝒩 = 300 cf. Table 2 and 𝑁 = 100. The results for these
nominal parameters are given in Figures 4 and 5. It is seen in Figure 4 that in this case all escape sides are
populated, i.e., the particle can escape either through 𝑥 = 0 or 𝑡 = 𝑇 or 𝑥 = 𝐿. As expected the situation is
symmetric and this is confirmed by the fact that the probability to exit though 𝑥 = 0 is the same as that for
𝑥 = 𝐿 (up to precision 10−2). The Figure 5 presents an example of trajectory. It is seen that the aggregation
procedure has been effective because it reduced the total number of steps as can be seen comparing the total
number of collisions with the actual number of steps taken. As expected, when the trajectory (the leftmost plot)
approaches the boundary the collisions are treated one by one and when the trajectory is close to the middle of
the interval circa 600 collisions are aggregated together.

We make now variations around the nominal parameters. The results for 𝑛𝒩 = 1000 and 𝑁 = 100 are given
in Figures 6 and 7. Here 𝑛𝒩 is large enough so that all collisions are treated alone, no aggregation is used so the
result is the one that we could have obtained without any aggregation procedure, cf. Figure 7 middle where the
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Figure 2. Examples of trajectories for the 1D 𝑆2 test case with 𝐿 = 0.01 cm, 𝑇𝑓 = 4× 104 fs,
𝑣 = 3.0× 10−5 fs/cm, 𝜎 ∈ {10−2, 10, 104, 106} (cm−1), 𝑥0 = 𝐿/2, initial direction +1 (oriented
towards right). Each row is a single trajectory, each trajectory corresponding to a different
value of 𝜎. First column plots the particle evolution 𝑥(𝑡) with ordinate axis being the time and
abscissas the location in the [0, 𝐿] segment. Second column displays the histogram of the 𝑛𝑐
values (cf. Algorithm 1). The third column gives information on the total steps taken and total
number of collisions treated. The abscissas are the number of collisions and the ordinate axis
is time in femtoseconds. The particle in the first row has an exit direction 𝑎⋆ = +1 because
no collision takes place. The particles in the last three rows have a exit direction 𝑎⋆ that will
be drawn at random from {−1, 1} because in all cases exit is due to the fact that time was
consumed.
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Figure 3. The escape laws corresponding to Figure 2. Same convention for the signification of
the rows is used. For the middle column the abscissas are time values expressed in femtoseconds;
for all other plots the abscissas are 𝑥 values in the segment [0, 𝐿]. Each column is a conditional
distribution: in the first column are drawn histograms of 𝑡⋆ for escape points with 𝑥(𝑡⋆) = 0
(escape through the left extremity of the domain), second column draws histograms of 𝑥⋆ =
𝑥(𝑇 ) for escape points with with 𝑡 = 𝑇 (escape because time is consumed) and third histograms
of 𝑡⋆ for escape points with 𝑥(𝑡⋆) = 𝐿 (escape through the right extremity of the domain). The
probability of escape for each alternative is given above the plot. When a histogram is void
there is no escape for the alternative the histogram is supposed to represent. For instance, in the
third row, first column one expects to see the histogram of escape time 𝑡⋆ conditioned by the
fact that escape occurred through the left side i.e., 𝑥(𝑡⋆) = 0 (before time 𝑇 and before reaching
the right side). But this never happens because in this case 𝜎 is too large, many collisions occur
and the particle does not have the time to reach the left side (the right side neither in fact)
before time 𝑇 .
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Figure 4. Results for the setting in Section 3.2 for 𝑛𝒩 = 300, 𝑁 = 100. The histograms of
the escape distributions 𝑡, 𝑥, 𝑎 are plotted as follows: first column are histograms of the time
values 𝑡⋆, second column the positions 𝑥⋆ and third the directions 𝑎⋆. Each row is a conditional
distribution: the first row are escape points with 𝑥⋆(𝑡⋆) = 0 (escape through left side), second
row with 𝑡⋆ = 𝑇 (escape due to total time 𝑇 being consumed) and third with 𝑥⋆(𝑡⋆) = 𝐿
(escape through the right side).

Figure 5. One example trajectory corresponding to results in Figure 4, i.e., 𝑛𝒩 = 300, 𝑁 =
100. Left plot : the trajectory 𝑥(𝑡) of the particle, 𝑦 axis is the time. Exit direction is 𝑎⋆ = −1.
Middle plot : the distribution of the number of collisions that have been aggregated. Right plot :
the number of collisions with time in the 𝑦 axis. Many are equal to 1 but some go as high as
600–800.
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Figure 6. Results for the setting in Section 3.2 for 𝑛𝒩 = 1000, 𝑁 = 100.

Figure 7. One example trajectory corresponding to results in Figure 6, i.e., 𝑛𝒩 = 1000,
𝑁 = 100. Signification of the plots is as in Figure 5.

histogram is a Dirac mass in 1. On the other hand Figure 6 shows that the escape distributions are very similar
to that in Figure 4 which shows that the aggregation procedure obtains comparable quality at lower costs. We
have also tested 𝑛𝒩 = 50 and 𝑁 = 100 and the results (not shown here) are the same as in Figure 4 showing
that our estimate 𝑛𝒩 = 300 is actually a conservative one.

As a final test we will lower the parameter 𝑁 to inquire whether the escape distributions are sensitive to the
discretization of the number of directions in 𝒟. We take 𝑁 = 10, 𝑛𝒩 = 300, results are in Figures 8 and 9.
Of course, the distribution in the third column of Figure 8 is very discrete (only 10 directions are possible and
some of them coincide). But the reassuring result is that the other two columns look very much like that in
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Figure 8. Results for the setting in Section 3.2 for 𝑛𝒩 = 300, 𝑁 = 10.

Figure 9. One example trajectory corresponding to results in Figure 8, i.e., 𝑛𝒩 = 300, 𝑁 = 10.
Exit direction is 𝑎⋆ = −1. Signification of the plots is as in Figure 5.

Figure 4 which shows that the discrete nature of 𝒟 does not seem to play an important role in the shape of the
escape distributions.

4. Conclusions

We presented a method that accelerates the sampling of the escape times, position and directions for parti-
cles undergoing collisions separated by exponentially long times. The procedure works by aggregating several
collisions into a single step. The advantage of the method is that it does not uses any model or Brownian walk
approximation and therefore can treat in the same way a large range of collision parameters including those
where the Brownian walk approximation (as used in [4,9]) may not work well. The procedure operates by esti-
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mating conservatively the number of collisions that can safely be made before escaping the time-space domain;
once this number estimated, the resulting position after those collisions is sampled exactly. The empirical results
show that the method shows promising results for substantially diminishing the numerical cost while retaining
excellent quality for the escape distribution.

The method was demonstrated in one dimension. Extensions to multi-dimensional domains or more general
forms are left for future works. We have reasons to be optimistic because, in the worse case scenario, when the
domain is a rectangle in high dimensions one can work by projecting on each of the dimensions and the setting
will be that of a 1𝐷 segment; the number of aggregate collisions will be the minimum over each dimension;
when the domain is not a rectangle one can consider the largest rectangle included in the domain. Finding even
more efficient approaches in high dimensions is left for future work.
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