
HAL Id: hal-04746121
https://hal.science/hal-04746121v1

Submitted on 21 Oct 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

Deep-Learning for Rapid Estimation of the Out-of-Field
Dose in External Beam Photon Radiation Therapy – A

Proof of Concept
Nathan Benzazon, Alexandre Carré, François de Kermenguy, Stéphane

Niyoteka, Pauline Maury, Julie Colnot, Meissane M’Hamdi, Mohammed El
Aichi, Cristina Veres, Rodrigue Allodji, et al.

To cite this version:
Nathan Benzazon, Alexandre Carré, François de Kermenguy, Stéphane Niyoteka, Pauline Maury, et
al.. Deep-Learning for Rapid Estimation of the Out-of-Field Dose in External Beam Photon Radiation
Therapy – A Proof of Concept. International Journal of Radiation Oncology, Biology, Physics, 2024,
120 (1), pp.253 - 264. �10.1016/j.ijrobp.2024.03.007�. �hal-04746121�

https://hal.science/hal-04746121v1
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr


1 
 

Deep-learning for rapid estimation of the out-of-field dose in external beam 

photon radiotherapy – A proof of concept 

Nathan Benzazon1, 2PhD, Alexandre Carré1, 2PhD, François de Kermenguy1, 2MsC, Stéphane Niyoteka1, 2PhD,  

Pauline Maury1, 2PhD,  Julie Colnot1,2,3PhD, Meissane M’hamdi1, 2MsC, Mohammed El Aichi1, 2MsC, Cristina 

Veres1, 2MsC, Rodrigue Allodji4PhD, Florent de Vathaire4PhD, David Sarrut5PhD, Neige Journy4PhD, Claire 

Alapetite6MD PhD,  Vincent Grégoire7MD PhD, Eric Deutsch1, 2MD PhD, Ibrahima Diallo1, 2, †PhD, Charlotte 

Robert1, 2, †PhD 

1 : Unité Mixte de Recherche (UMR) 1030 Radiothérapie Moléculaire et Innovation Thérapeutique, 

ImmunoRadAI, Université Paris-Saclay, Institut Gustave Roussy, Inserm, Villejuif, France 

2 : Department of Radiation Oncology, Gustave Roussy, Villejuif, France 

3 : THERYQ, PMB-Alcen, Peynier, France 

4 : Unité Mixte de Recherche (UMR) 1018 Centre de Recherche en épidémiologie et Santé des 

Populations (CESP), Radiation Epidemiology Team, Université Paris-Saclay, Institut Gustave Roussy, 

Inserm, Villejuif, France 

5 : Université de Lyon; CREATIS; CNRS UMR5220; Inserm U1294; INSA-Lyon; Université Lyon 1, 

Léon Bérard cancer center, Lyon, France. 

6 : Department of Radiotherapy, Institut Curie, Paris, France. 

7 : Department of Radiation Oncology, Centre Léon-Bérard, Lyon, France.  

† : Shared last authorship 

 

Abstract 

Background and purpose  

 The dose deposited outside of the treatment field during external photon beam radiotherapy 

treatment, also known as out-of-field dose, is the subject of extensive study as it may be associated with 

a higher risk of developing a second cancer, and could have deleterious effects on the immune system 

which compromise the efficiency of combined radio-immunotherapy treatments. Out-of-field dose 

estimation tools developed today in research, including Monte Carlo simulations and analytical 

methods, are not suited to the requirements of clinical implementation because of their lack of versatility 

and their cumbersome application. We propose a proof of concept based on deep learning for out-of-

field dose map estimation that addresses the above limitations. 

Materials and methods 
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 For this purpose, a 3D U-Net, considering as inputs the in-field dose, as computed by the 

treatment planning system, and the patient's anatomy, was trained to predict out-of-field dose maps. The 

cohort used for learning and performance evaluation included 3151 pediatric patients from the FCCSS 

database, treated in 5 clinical centers, whose whole-body dose maps were previously estimated with an 

empirical analytical method. The test set, composed of 433 patients, was split into 5 subdatasets, each 

containing patients treated with devices unseen during the training phase. Root mean square deviation 

(RMSD) evaluated only on non-zero voxels located in the out-of-field areas was computed as 

performance metric.  

Results 

 RMSD of 0.28 and 0.41 cGy.Gy-1 were obtained for the training and validation datasets, 

respectively. Values of 0.27, 0.26, 0.28, 0.30 and 0.45 cGy.Gy-1 were achieved for the 6 MV linac, 16 

MV linac, Alcyon cobalt irradiator, Mobiletron cobalt irradiator, and betatron devices test sets, 

respectively.  

Conclusion 

 This proof-of-concept approach using a convolutional neural network has demonstrated 

unprecedented generalizability for this task, although it remains limited, and brings us closer to an 

implementation compatible with clinical routine. 

 

Introduction 

 In external beam radiotherapy with photons, non-zero doses are inevitably delivered outside the 

treatment field; this is often referred to as out-of-field or peripheral dose. The 5% isodose of the 

prescribed dose is the most commonly used threshold to differentiate between in-field and out-of-field 

regions 1–6. While the out-of-field dose is mostly less than 4 Gy, questions remain about the potential 

association between this low dose exposure and adverse events such as second malignant neoplasms 7, 

immunological dysfunction 8,9, cardiovascular disease 10 and neurological effects 11. In particular, it has 
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recently been shown that even very low dose exposures from computed tomography (CT) scans have 

been associated with the development of subsequent cancer 12. In radiotherapy, this topic is currently 

experiencing renewed interest, particularly as modulated treatments (such as volumetric modulated arc 

therapy (VMAT) or intensity-modulated radiation therapy (IMRT)) are now routinely used in clinical 

care and tend to result in higher peripheral doses due to longer beam on times and larger irradiated 

volumes when compared to three-dimensional conformal radiotherapy (3D-CRT) 13–16. Recent studies 

have yielded inconsistent results, with varying effects observed across different populations, and were 

largely limited by too short duration of follow-up to detect any impact of advances in RT on the risk of 

radiation-related second cancers which are typically reported after decades of latency times 17–22. In a 

very different context, the assessment of out-of-field doses seems increasingly crucial for optimizing 

radiotherapy treatments in the near future. The recent awareness of the immunomodulatory role of 

radiotherapy, coupled with the observation of a link between radiation-induced lymphopenia and patient 

response to treatment in several solid tumor sites, suggests the need to spare lymphocyte-rich structures 

as much as possible 23,24. Indeed, the fact that the lethal doses reported by several independent groups 

are of the order of a few gray 25–27 is a strong argument for the need to characterize the dose in the 

periphery to the primary field. 

 Treatment planning systems (TPS) are used in clinical routine to estimate in-field dose 

distribution, but have been shown to systematically underestimate out-of-field dose for 3D-CRT, IMRT, 

VMAT, and CyberKnife treatments (Accuray, Sunnyvale, USA) 2,13,28–30. Thus, despite clear clinical 

potential, the out-of-field dose computation is currently not available in clinical practice. Two methods 

are currently used in the literature for out-of-field dose estimation for research purposes: Monte Carlo 

(MC) simulations, which are based on a stochastic approach and aim to estimate the average dose per 

voxel and its associated variance by simulating the tracking path of millions of incident particles 

knowing cross-sections of particle-matter interaction, and analytical approaches, which mathematically 

model the out-of-field dose, either based on physical or empirical models 31. MC simulations and 

analytical methods can provide accurate out-of-field dose estimation 29, but are today inappropriate for 

clinical routine implementation. On the one hand, MC simulations are hardware- and time-intensive, 
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especially when it concerns the evaluation of low doses, and require detailed modeling of the irradiator 

, which can be tedious when the technical drawing of the device is not available. On the other hand, 

analytical models, which most of the time require new experimental measurements to adjust intrinsic 

parameters, are not suitable for large retrospective studies, which often legacy linear accelerators (linacs) 

or cobalt irradiators that are no longer available for experimental measurements.  

 In recent years, artificial intelligence, especially technology rooted in deep learning, has 

drastically changed the clinical practice of radiotherapy through the automation of several time-

consuming tasks such as segmentation 32, treatment planning 33, and generation of virtual images 

(synthetic CT 34). These examples demonstrate that deep learning can identify complex hierarchical 

features from spatially structured data 35, a capability which might also be exploited for estimation of 

out-of-field dose. Out-of-field dose consists of three main components: the patient scatter component, 

which corresponds to secondary photons resulting from a Compton interaction in the treatment field of 

primary photons, depositing their energy in the area outside the treatment field, the collimator scatter 

(or head scatter) component which results in doses deposited outside the treatment field by particles that 

have interacted with the collimator or other parts of the irradiating device head, and the leakage 

component which is made up of primary particles that have not been intercepted by collimation parts. 

The patient scatter component depends mainly on the size of the irradiated volume and the beam 

spectrum, and is the largest component close to the field 36, the two other components depend mostly on 

the geometry of the irradiation device and its configuration during the treatment. The leakage component 

appears to be the dominant component far from the field 36, and its amplitude is strongly dependent on 

the distance from the isocenter, as it depends on the angular shielding properties of the machine in a 

general way, i.e. integrating the attenuation properties of the jaws and the multi-leaf collimator. While 

it is obvious that the information relating to the patient scattering component is included in the in-field 

area, the absorbed dose generated by the head scattering component also generates signal in the field as 

the photons resulting from the Compton interaction are scattered throughout the volume 37. The leakage 

component is ultimately a signature of the irradiation device, making the task undoubtedly more 

complex for a neural network. Based on the assumption that the in-field dose map associated with the 
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patient's anatomy contains most of the information needed to calculate the out-of-field dose, our 

objective was to evaluate the ability of a single algorithm based on deep learning to adapt to a wide 

variety of configurations, bringing an answer to the problems of computation time, information 

extraction, and versatility. Even if major publications providing out-of-field dose data for specific 

treatment modalities are available and have been of great interest for this research topic 38, the interest 

of artificial intelligence via its generalization capabilities seems to us to be a promising field for. On the 

one hand, it can propose a solution that is not limited to the treatment configurations presented in the 

data tables; and, on the other hand, making it possible to predict the out-of-field dose map specific to 

each linac and to the patient's anatomy thanks to information extracted from the in-field dose map and 

the use of the 3D representation of the patient. In this paper, we present a proof of concept applied to 

high-energy photon irradiations. 

Material and methods 

1. Description of the dataset 

 The French Childhood Cancer Survivor Study (FCCSS) cohort, whose primary aim is to study 

long-term effects of treatments for cancer on children and adolescents, has been used in this work. More 

than 7000 patients under 21 years of age treated in 5 French centers between 1945 and 2000 for solid 

cancer or lymphoma composed this cohort. With the goal to develop a deep learning model for out-of-

field dose estimation suitable for high-energy photon irradiation, the following inclusion criteria were 

considered: 1) patients treated with a photon beam 2) treatments using linacs with a high voltage > 1 

MV or cobalt irradiators. A total of 3310 patients were selected at this stage. For all cohort members, 

whole body dose map was reconstructed using an analytical method originally developed for bone 

marrow dose analysis 39. This empirical method concatenated the 3D dose map as estimated by the 

Isogray TPS (Dosisoft, Cachan, France) in in-field areas; each treatment plan having being re-simulated 

by an experienced operator based on the treatment details ; to an out-of-field dose estimation obtained 

device-wise. Out-of-field dose were estimated using reference percentage of depth dose values (known 

in function of depth in tissue, field size and source to skin distance) 40 extended to off-axis-ratio area by 
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in-water phantom measurements performed and gathered since the mid-1980s 41,42, and the absorbed 

dose on the beam central axis at maximum dose depth for reference source to skin distance and field 

size. Comprehensive description with mathematical support of the model can be found in 39. 

Experimental measurement campaigns have been carried out since the mid-1980s on exhaustively all 

the devices listed in the cohort (see Supplemental Table 1). Each measure was used to fit the analytical 

model under different specific characteristics of the device studied 41–43. In the present work, we did not 

carry out new measurements to validate the analytical dose maps, as the data have already been validated 

and used extensively in a large number of previous publications 44–48. The process of dose 

reconstructions, considered various factors such as patient gender, age, height, weight, thickness at the 

target volume level, treatment position, treatment machine type, beam energy, irradiation technique, 

field size and shape, gantry angle, collimator angle, presence of accessories like wedges, target volume 

location, and the actual dose administered to the target volume. All 3D whole body dose maps had 

voxels dimensions of 2 × 2 × 2 mm3. The exclusion criteria applied to these whole-body dose maps 

were as follows: 1) outlier dose maps, i.e. maps presenting local doses higher than 100 Gy, which had 

no physical justification in view of the doses prescribed (N = 104) were deleted 49, 2) corrupted dose 

maps (N = 2) were removed. At the end, data from 3151 patients were kept for this study. Table 1 

summarizes the distribution by center of these patients. Twenty-five irradiation devices were grouped 

into 3 categories: standard linacs, cobalt units and betatron units. The subset included 38 different 

pathologies, of which the most represented were nephroblastoma and other nonepithelial renal tumors 

(695 patients), Hodgkin lymphomas (449 patients) and astrocytomas (235 patients). 
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Table 1: Characteristics of the patients selected in this work from the FCCSS cohort described by center.  

2. Data preprocessing 

 Several preprocessing steps were applied to the analytical dose maps to make them deep-

learning compliant. These included: 1) padding into [370, 242, 1131] matrix sizes, 2) resampling of 

padded files (originally in Statistical Analysis System (SAS) format) to [128, 128, 512] sizes, 3) 

extraction of in-field and out-of-field dose maps from whole-body dose maps (a 5% isodose threshold 

was chosen in this goal considering the maximum dose per patient as the reference dose), 4) creation of 

binary masks from the whole-body dose maps by a thresholding method separating the background from 

the foreground. An on-the-fly preprocessing pipeline was then applied using Medical Open Network for 

Artificial Intelligence (MONAI 0.8.0) 50, including in the following order: loading, normalization, 

resampling, and concatenation. During the normalization step, 3D dose maps intensities were 

normalized by 100 Gy, to provide the neural network with values within [0,1]. The on-the-fly 

resampling step was implemented to test the impact of batch size as a function of available VRAM 

(video random-access memory). A nearest neighbor interpolation strategy was used for the resampling 

step.  

 Finally, an adjustment of data was implemented to align with the input parameters required by 

the neural network. This adjustment involved transforming the data to fit a multi-dimensional structure 

denoted as B×2×H×W×D. In this expression, B refers to the batch size used during the training phase 

of the process. C indicates the number of channels present, while H, W, and D correspond to the height, 

width, and depth of the matrix, respectively. The channel, distinguished by its two-dimensional 

Center 

Gustave 

Roussy, 

Villejuif 

Institut Curie, 

Paris 

Institut Claudius-

Regaud, Toulouse 

Institut 

Godinot, 

Reims 

Centre Antoine 

Lacassagne, 

Nice 

 

Total 

Number of patients 2676 237 199 68 24 3204 

Male 

Female 

1447 

1229 

135 

102 

121 

78 

43 

25 

17 

7 

1763 

1441 

Mean age ± std [years] 7.3 ± 4.9 6.3 ± 5.0 7.2 ± 4.7 7.9 ± 5.0 6.8 ± 4.7 7.2 ± 4.9 

 

Irradiation device 

(Number of 

patients/Number 

of devices/High 

voltage range or 

Mean energy) 

Linac 1040 / 12 

4-25 MV 

110 / 4 

6-25 MV 

25 / 2 

20-25 MV 

32 / 2 

16-25 MV 

0 / 0 

NA 

1207/14 

4-25 MV 

Cobalt 

irradiator 

1532 / 5 

1.25 MeV 

86 / 7 

1.25 MeV 

174 / 4 

1.25 MeV 

36 / 2 

1.25 MeV 

24 / 3 

1.25 MeV 

1852/10 

1.25 MeV 

 

  Betatron 

90 / 1 

1.25 MV 

2 / 1 

1.25 MV 

0 / 0 

NA 

0 / 0 

NA 

0 / 0 

NA 

92/1 

1.25 MV 
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structure, encompasses the conjoined data from the whole-body binary masks and the in-field dose maps. 

Figure 1 summarizes the preprocessing pipeline. 

3. Neural network training  

A conventional 3D U-Net 51–53, composed of four down-sampling blocks followed by four up-

sampling blocks, was implemented (Figure 1). The Mean Square Error (𝑀𝑆𝐸, see Equation 1) evaluated 

only on the foreground voxels outside the 5% isodose, i.e. only in the region considered in this paper as 

the out-of-field dose, was selected as loss function.  

                                 𝑀𝑆𝐸 =
1

𝑛
∑ (𝐷𝑛𝑛,𝑖 − 𝐷𝑔𝑡,𝑖)²
𝑛
𝑖=1                        (1) 

 With Dnn,i and Dgt,i the normalized doses to the voxel i estimated respectively with the neural 

network and from the ground truth analytical method, and 𝑛 the number of voxels considered. 
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Fig 1. Dose map preprocessing pipeline and comprehensive design of the implemented 3D U-

Net. Dose maps are displayed using logarithmic scale. 

Learning rate and weight decay were considered in the ranges [1𝑒 − 7, 1𝑒 − 3] and 

[1𝑒 − 8, 1𝑒 − 4], respectively, with 1e-4 and 1e-6 providing the optimal results. The Adam optimizer 

was used to update the network parameters. Instance normalization was preferred. Batch size of 20 

corresponding to a resampled size of 64 × 64 × 256 was selected. The 3D U-Net was trained for 600 

epochs (~50 hours) on a Nvidia RTX A6000. No early stopping was used. Weight based on best 

performance on validation loss were saved. 

 The dataset of 3151 patients was conventionally split into training (N = 2213), validation (N = 

505), and test cohorts (N = 433) as shown in Table 2. As one of our main objectives was to test the 

hypothesis of generalization of the trained network to unseen machines, data splitting was performed in 

a controlled manner. Thus, the data were stratified so that 18 different irradiation devices formed the 

training set (including classic linacs and cobalt irradiators), while 2 unseen machines were part of the 

validation set exclusively (one cobalt irradiator, and one Sagittaire linac operating at 25 MV). For the 

validation, we chose to select two devices: a conventional linac and a cobalt irradiator, each associated 

with more than 100 patients treated, with the aim of monitoring the performance of the neural network 

on a large selection of patients for 2 different technologies in the training set. On the basis of these 

observations, we chose the Sagittaire linac as it is the accelerator operating at the highest energy in our 

database, and enables us to test the generalizability of our approach in this energy range, and arbitrarily 

a cobalt irradiator. The test set was divided into 5 subcohorts, including two classic linacs (names of 

accelerator model unavailable) operating at 6 MV and 16 MV, two cobalt irradiators (called Alcyon and 

Mobiletron), and finally a betatron operating at 1.25 MV. All patients treated with betatron devices were 

voluntarily kept into the test set, because of its very specific design compared with a conventional linac 

or a cobalt unit. No stratification on clinical data was applied. Supplemental Table 1 provides a full 

description of the dataset. 

We also carried out two additional deep learning experiments. The first aimed at evaluating if 

the inclusion of betatron-treated patients in the training set could improve performance for a subgroup 
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of 46 patients here considered as a new sub-test set (the 46 patients were randomly selected from the 

test set 5 comprising 92 patients). Inference of the previously trained neural network on these 46 

identified patients was considered as a benchmark. We then performed network retraining from scratch 

using the already identified hyperparameters on the original training data, to which were added the other 

46 betatron patients not used for the benchmark, and tested the performance of this new network on the 

46 patients kept aside from the training. The second additional deep learning experiment aimed to study 

the benefits of a custom model, compared with the use of a generalized model. In this aim, we selected 

100 of the 128 patients treated with an Alcyon cobalt irradiator (Test set 3), and trained the 3D U-Net 

from scratch considering only these data. Training was carried out during 2000 epochs, using the same 

hyperparameters as for training the original generalized model, with the exception of a batch of 4. We 

then tested the performance of this custom-model on the 28 remaining Alcyon patients. We compared 

these results with the inference performance of the original generalized model on the same 28 patients 

(considered as our benchmark here). Finally, as a last deep learning experiment, we fine-tuned the 

original model using the 100 Alcyon cobalt irradiator training patients for 2000 epochs and tested the 

performance of this fine-tuned model on the 28 Alcyon cobalt irradiator patients included in the test set. 

Because the root mean square deviation (𝑅𝑀𝑆𝐷, Equation 2) is used as performance evaluation 

metrics by a lot of research teams developing analytical models for out-of-field dose estimation 16,31,54–

58, this measure was selected for the reporting of the results. To study the impact of the field size on the 

neural network performance, the results were also analyzed in subgroups, for which the threshold 

corresponded to the median size of the in-field volumes in the training set (3767 cm3). Similarly, RMSD 

values were computed in two different zones: we differentiated the area outside the radiation field into 

a near-field area and a far-field area. The 1% isodose was chosen to distinguish these two zones. Finally, 

the mean absolute dose differences between the predictions and the ground truth were estimated per 

patient. Medians and min-max ranges were computed for the validation and test sets, also distinguishing 

between the near-field zone and the far-field zone. 

                                                      𝑅𝑀𝑆𝐷 = √
1

𝑛
∑ (𝐷𝑛𝑛,𝑖 −𝐷𝑔𝑡,𝑖)²
𝑛
𝑖=1                         (2) 
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All manipulations on data have been implemented in Python 3.7.7.  

 

 

Table 2: Distribution of patients and devices included into training, validation and testing processes.  

Results 

 Best performances were achieved at epoch 467/600. Learning curves for the training and 

validation sets are presented in Supplemental Figure 1. Table 3 presents the 𝑅𝑀𝑆𝐷 results obtained on 

training, validation and test sets for hyperparameters presented in the material and methods section. 

Table 4 summarizes the median of absolute dose differences per patient on validation and test sets. 

 

 Total Training Validation 

Test 

Subtest 1 

6 MV 

Neptune 

Subtest 2 

16 MV 

Subtest 3 

Alcyon 

cobalt 

irradiator   

Subtest 4 

Mobiletron 

cobalt irradiator  

Subtest 5 

Betatron 

Linac 1207 683 365 103 56 0 0 0 

Cobalt 

irradiator 
1852 1530 140 0 0 128 54 0 

Betatron 92 0 0 0 0 0 0 92 

Subtotal 3151 2213 505 433 

 

Training Validation 

Test 

Subtest 1 

6 MV 

Neptune 

Subtest 2 

16 MV 

Subtest 3 

Alcyon 

cobalt 

irradiator   

Subtest 4 

Mobiletron 

cobalt 

irradiator 

Subtest 5 

Betatron 

 

 

 

 

 

RMSD ± 

Standard 

deviation 

(cGy.Gy-1) 

Out-of-field 

area 
0.28 ± 

0.08 
0.41 ± 0.26 

0.32 ± 0.15 

0.27 ± 0.06 0.26 ± 0.07 0.28 ± 0.06 0.30 ± 0.12 0.45 ± 0.25 

Close from 

the field area 

(>1 % 

isodose) 

 0.49 ± 0.29 

0.40 ± 0.20 

0.41 ± 0.13 0.39 ± 0.13 0.33 ± 0.13 0.31 ± 0.16 0.54 ± 0.31 

Far from the 

field area (<1 

% isodose) 

 0.22 ± 0.12 

0.25 ± 0.08 

0.24 ± 0.06 0.23 ± 0.07 0.27 ± 0.06 0.30 ± 0.14 0.22 ± 0.07 

Large 

irradiation 

field 

 
0.37 ± 0.23 

(N = 262) 

0.28 ± 0.11 

0.25 ± 0.08 

(N = 36) 

0.26 ± 0.08 

(N = 23) 

0.26 ± 0.07 

(N = 48) 

0.31 ± 0.15 

(N = 27) 

0.39 ± 0.13 

(N = 18) 

Small 

irradiation 

field 
 

0.43 ± 0.28 

(N = 242) 

0.33 ± 0.11 

0.29 ± 0.06 

(N = 67) 

0.26 ± 0.07 

(N = 33) 

0.29 ± 0.06 

(N = 80) 

0.29 ± 0.10 

(N = 27) 

0.46 ± 0.26 

  (N = 74) 
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 Table 3: Performances of the 3D U-Net for the out-of-field dose map estimation task.  

 

Fig 2. Histograms of the 𝑅𝑀𝑆𝐷 metric computed patient-wise obtained on the validation dataset (a) and 

the test dataset detailed for each machine (b). 

 𝑅𝑀𝑆𝐷 of 0.28 ± 0.08 and 0.41 ± 0.26 cGy.Gy-1 were obtained for the training and validation 

datasets, respectively. Values of 0.27 ± 0.06, 0.26 ± 0.07, 0.28 ± 0.06, 0.30 ± 0.12 and 0.45 ± 0.25 

cGy.Gy-1 were achieved for the 6 MV linac, 16 MV linac, Alcyon cobalt irradiator, Mobiletron cobalt 

irradiator, and betatron devices test sets, respectively, demonstrating overall performance similar to or 

better than that of the validation set, except for the fifth test set, corresponding to the betatron device. 

The same observations are obtained by analyzing the medians of the dose differences per patient with 

values of 0.31, 0.27, 0.23, 0.27, 0.30 and 0.33 Gy obtained for the validation sets, linac 6 MV, linac 16 

MV, Alcyon cobalt irradiator, Mobiletron cobalt irradiator and betatron devices, respectively (Table 4). 

Similarly, betatron is associated with the highest maximum dose difference of the test sets (maximum 

value equal to 1.07 Gy). The results observed in the validation and test sets as a function of distance 

from the irradiation field show better 𝑅𝑀𝑆𝐷 values far from the field than close to it, except for the 

fourth (corresponding to the Mobiletron cobalt irradiator). For example, far from the field 𝑅𝑀𝑆𝐷 values 

of 0.22 ± 0.12 and 0.25 ± 0.08 cGy.Gy-1 are reported for respectively the validation and the test sets, 

while 0.49 ± 0.29 and 0.40 ± 0.20 cGy.Gy-1 are reported for area close from the field. Finally, the results 

of the validation set comparing dose maps for large fields and small fields suggest that the neural 
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network performs better for large irradiation fields (0.37 ± 0.23 cGy.Gy-1 to be compared with 0.43 ± 

0.28 cGy.Gy-1), but this difference is less pronounced than the differences observed in the previous 

results between areas close to the field and areas far from the field, especially when taking into account 

standard deviation of 𝑅𝑀𝑆𝐷 results. This trend is also observed in the fifth test set (0.39 ± 0.13 cGy.Gy-

1 to be compared with 0.46 ± 0.26 cGy.Gy-1), while the other four test sets showed fairly similar results 

between large and small irradiation fields. The same observation can be drawn for absolute dose 

differences, with higher values obtained for the near-field zone for both the validation and test sets 

(median dose differences equal to 0.33 Gy and 0.24 Gy for the test set in the near-field and far-field 

zones, respectively). Based on this metric, the subset of patients treated with the Mobiletron cobalt 

irradiator obtained the poorest results in the far-field zone and was associated with the highest maximum 

dose difference (0.85 Gy). 

 Histograms of the 𝑅𝑀𝑆𝐷 metric computed patient-wise on the validation set (Figure 2a) and on 

test sets (Figure 2b) were plotted, leading to heavy-tailed distributions, and more specifically to log-

normal distributions. On the basis of these figures, an RMSD threshold value of 0.6 cGy.Gy-1 was 

considered to separate good from poor out-of-field dose reconstructions. 87 out of 505 patients showed 

weaker performances in the validation set; 85 of whom being treated with a single device: a Sagittaire 

linac operating at 25 MV. This value was equal to 24 (out of 433 patients) in the test set, with 21 of the 

24 patients identified having been treated with the betatron accelerator. 

 

Validation 

Test 

Subtest 1 

6 MV 

Neptune 

Subtest 2 

16 MV 

Subtest 3 

Alcyon 

cobalt 

irradiator  

Subtest 4 

Mobiletron 

cobalt 

irradiator  

Subtest 5 

Betatron 

 

 

Median dose 

difference 

(Mininum / 

Maximum ) 

(Gy) 

 

Out-of-field 

area 

0.31 

(0.12 / 1.75) 

0.28 

(0.12 / 1.07) 

0.27 

(0.13 / 0.41) 

0.23 

(0.18 / 0.43) 

0.27 

(0.12 / 0.43) 

0.30 

(0.14 / 0.89) 

0.33 

(0.16 / 1.07) 

Close from the 

field area (>1 % 

isodose) 

0.38 

(0.11 / 1.79) 

0.33 

(0.12 / 1.24) 

0.37 

(0.18 / 0.91) 

0.37 

(0.18 / 0.71) 

0.30 

(0.16 / 0.68) 

0.27 

(0.12 / 0.94) 

0.40 

(0.15 / 1.24) 

Far from the 

field area (<1 % 

isodose) 

0.19 

(0.04 / 0.87) 

0.24 

(0.07 / 0.85) 

0.23 

(0.12 / 0.43) 

0.21 

(0.17 / 0.42) 

0.26 

(0.07 / 0.41) 

0.26 

(0.14 / 0.85) 

0.20 

(0.13 / 0.58) 
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Table 4: Median and range of dose differences between predicted dose maps and ground truth. 

 

Figure 3 shows the out-of-field dose maps obtained for 3 representative patients from the testing 

sets: one with good performance (Patient a, 𝑅𝑀𝑆𝐷 = 0.16 cGy.Gy-1), one with median performance 

(Patient b, 𝑅𝑀𝑆𝐷 = 0.29 cGy.Gy-1) and one with poor performance (Patient c, 𝑅𝑀𝑆𝐷 = 1.00 cGy.Gy-

1). Associated axial dose profiles are presented in Figure 4. Applying our entire pre-processing pipeline 

including data loading, neural network application and data saving takes an average computation time 

of 2.59 ± 0.09 seconds, 0.047 ± 0.008 seconds being necessary for the out-of-field dose calculation itself. 

For Patients a and b, doses are well predicted in the near-field dose gradient, with mean relative 

dose differences, evaluated along the profiles (Figure 4), equal to 23.1 % and 26.3 % up to 20 cm from 

the edge of the field. For Patient a, the continuous component far from the field is correctly reconstructed 

(average dose of 0.23 Gy for the ground truth compared with 0.26 Gy for the prediction by the network 

between 20 and 155 cm), but with a jump in dose that is not correctly predicted. For patient b, the 

continuous component far from the field is not predicted as well (average dose of 0.06 Gy for ground 

truth compared with 0.30 Gy for network prediction between 20 and 153 cm). For patient c, treated on  

a betatron machine, we note that the neural network has weaknesses in dose prediction not only in areas 

close to the field, but also in more distant areas, where, for example, it fails to predict the local increase 

in dose on the patient's legs associated with this specific linac. 
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Fig 3. Comparison of out-of-field dose maps predicted by the 3D U-Net and computed by the analytical 

model, the ground truth, for 3 patients of varying performance (test set only). Patient a (Test set 1 – 

𝑅𝑀𝑆𝐷 = 0.16 cGy.Gy-1, into the 5% percentile of the distribution) corresponds to a 15-year-old girl 

diagnosed for a primary pathology of retinoblastoma in 1982 and treated with a Neptune 6 MV device. 

Patient b (Test set 3 - 𝑅𝑀𝑆𝐷 = 0.29 cGy.Gy-1, in ± 1% of median of the distribution) is also a 15-year-

old girl who was diagnosed and treated in 1982 for an intracranial neoplasm using an Alcyon cobalt 

irradiator. Patient c (Test set 5 – 𝑅𝑀𝑆𝐷 = 1.00 cGy.Gy-1, below 95% percentile of the distribution) is a 

year-old girl diagnosed in 1982 treated the same year with a 1.25 MV betatron device for an astrocytoma. 

 

Fig 4. Head-foot dose profiles of the whole body dose maps predicted by the U-Net 3D network (in 

green) compared with the dose profile of the associated ground truth dose map (in red). Profiles were 
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plotted only in the out-of-field dose areas, for three same patients as in Figure 3 (Patient a (a), Patient b 

(b) and Patient c (c)). The doses were normalized to the maximum value obtained from the ground truth 

out-of-field dose maps (analytical model). 

 Finally, Figure 5 establishes a link between the doses predicted by the network and the ground 

truth doses for each of the 3 patients, the objective being a linear curve passing through 0 with a slope 

of 1. The visualization confirms the observations made earlier from the profiles. In particular, for Patient 

a, the points corresponding to lower dose values show greater clustering around the linear trend than for 

the other patients. Figure 5.b clearly illustrates the overestimation of doses far from the field. Figure 5.c 

shows a more scattered distribution of the points, in line with previous observations. 

 

Fig 5. Doses predicted by the 3D U-Net as a function of the ground truth doses. Each point corresponds 

to a voxel wise dose evaluation. Scatter plots were drawn for Patient a (a), Patient b (b) and Patient c 

(c). 

In additional deep learning experiments, we sought to evaluate the benefits of adding betatron data to 

the training set, to test its influence on the model's performance on other betatron data, and to test the 

development of a machine-specific method. For the first deep learning experiment, a mean RMSD of 

0.26 ± 0.11 cGy.Gy-1 was obtained on the 46 betatron test patients as a benchmark value. The model 

retrained on the original patient training set plus the 46 betatron patients kept aside, resulted in a mean 

RMSD of 0.64 ± 0.41 cGy.Gy-1. For the second deep learning experiment, mean RMSDs of 0.16 ± 0.01 

cGy.Gy-1, 0.53 ± 0.22 cGy.Gy-1 and 0.13 ± 0.05 cGy.Gy-1 were obtained for the benchmark 

configuration, configuration considering training with only the 100 Alcyon cobalt irradiator training set 
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patients, and configuration considering the original model fine-tuned with the 100 Alcyon cobalt 

irradiator training set patients, respectively. 

Discussion 

 Our aim in this proof of concept was to demonstrate the feasibility of out-of-field dose prediction 

for high-energy photon irradiations using a deep learning neural network, while demonstrating that this 

approach is an appropriate response to the limitations in terms of computing time, difficulties in 

accessing experimental measurements and the lack of versatility inherent in analytical and MC methods, 

which ultimately limit access to out-of-field dose maps for routine clinical use. 

 Firstly, the results were analyzed in terms of RMSD, which is the most used metric for assessing 

out-of-field doses31. Conventionally, RMSD values were calculated in the training, validation and test 

sets, in order to assess the ability of the algorithm to generalize to the anatomy of new patients, new 

tumor locations, and new irradiation geometries, for new irradiation devices. The results are rather 

encouraging, with RMSD values of the same order of magnitude in the test sets (mean value of 0.32 ± 

0.15 cGy.Gy-1 in the test set) as in the validation set (0.41 ± 0.26 cGy.Gy-1) or the training set (0.28 ± 

0.08 cGy.Gy-1) (Table 3), suggesting that the neural network has acquired a strong degree of robustness 

and generalization. However, a closer look at the results for the different test sets shows that significantly 

lower results were observed for test set 5, which corresponds to the betatron accelerator. The same 

observation applies by examining the differences in median absolute doses (Table 4) per patient, where 

the betatron test set was associated with the highest median absolute error (0.33 Gy). In addition, most 

of the poorest results in the validation set concerned patients treated with the Sagittaire accelerator 

operating at 25 MV. As a reminder, the highest voltage of the linacs considered in the training set was 

equal to 20 MV (Supplemental Table 1). These results logically highlight the fact that the generalization 

capabilities of the neural network cannot be extended to non-conventional or highly atypical linacs, as 

long as they have not been considered during the training phase, i.e. with different shielding properties 

and internal geometries. Similarly, the ability to generalize is limited at very high voltages, as this 

implies in particular an increase in the pair production cross-section. For example, the betatron device, 
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which more closely resembles cyclotron systems than conventional devices, and the unique very high-

voltage operation of the Sagittaire facility in our dataset contribute to this limited generalization 

capability.  

The first additional deep learning experiment shows that adding betatron patients to the training 

set resulted in an unexpected decline in performance for the betatron device (0.26 ± 0.11 cGy.Gy-1 for 

the benchmark compared to 0.63 ± 0.41 cGy.Gy-1 when considering betatron patients in the training set). 

We hypothesize that the small number of betatron dose maps in the training set was insufficient to allow 

the neural network to converge towards a solution tailored to these accelerators, and that these 

accelerators may be too unusual and confuse the network. The results obtained from the second 

additional deep learning experiment demonstrated that the model developed from 100 Alcyon cobalt 

irradiator patients showed poorer averaged performance on the 28 Alcyon cobalt irradiator test patients 

than the original model, trained without any Alcyon cobalt irradiator data, but on more than 2000 patients 

(0.53 ± 0.22 cGy.Gy-1 for the custom model versus 0.16 ± 0.01 cGy.Gy-1 for the benchmark). This 

suggests that the inclusion of a wider variety of patient anatomies and irradiation configurations allows 

the network to better predict out-of-field dose distributions than focusing on a model that has been 

trained on data from a single irradiation device, but with a smaller number of patients cases and diversity 

of treatment conditions. The results of the fine-tuned model nevertheless demonstrate the benefits of 

specializing the model to a certain extent. Indeed, the fine-tuned model makes it possible to achieve 

hitherto unequalled performance (0.13 ± 0.05 cGy.Gy-1). This approach appears to be the most 

promising since it enables both optimizing performance on a particular machine of interest and using 

the vast diversity of treatment conditions found in the original database. 

Despite achieving better 𝑅𝑀𝑆𝐷 results in areas distant from the field compared to those near 

the field (Table 3), the neural network does not seem to correctly recover very low dose values as 

depicted in Figures 3, 4, and 5. This consistent pattern observed in all dose maps generated by the neural 

network can be explained by two factors. Firstly, the chosen loss function (MSE) tends to minimize the 

absolute differences in dose between the predicted values and the ground truth. While some dose 

differences close to the field can be tolerated, because they are moderate in terms of relative differences, 
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these same differences become more problematic when it comes to predicting very low doses far from 

the field. Secondly, it is reasonable to assume that near-field doses, mainly influenced by the patient 

scatter component, are comparatively easier to predict for the network than the other components. In 

fact, this component depends mainly on the dose within the irradiation field and the irradiated volume, 

which is information readily available in the in-field dose map. On the other hand, very low doses in 

remote regions are mainly influenced by the leakage component, which is certainly only very partially 

present in the input data, apart from the fact that it is a signature of the irradiation device. This 

observation also explains the association between larger irradiation fields and improved values (Table 

3), thanks to more usable information available. 

 Some publications using analytical models for out-of-field dose estimation reported 𝑅𝑀𝑆𝐷 

results similar to the performance achieved by our neural network (such as 0.91 cGy.Gy-1 and 1.67 

cGy.Gy-1 58, 0.75 cGy.Gy-1 55, 4.1 cGy.Gy-1, 5.6 cGy.Gy-1, 4.6 cGy.Gy-1 and 6.5 cGy.Gy-1 54, 1.04 

cGy.Gy-1 56, 3.7 mGy.Gy-1 59, 0.094 cGy.MU-1, 0.279 cGy.MU-1, and 0.410 cGy.MU-1 57). We note that 

our average test result (0.32 ± 0.15 cGy.Gy-1) is in the middle of the performance range. However 

making a direct comparison may be complex. Indeed, apart from the differences in the normalization 

process employed, which is a general problem in the context of out-of-field dose evaluation 31, our 

analysis involves comparing the predictions of a deep learning neural network to out-of-field dose maps 

obtain from analytical computation, while the studies previously mentioned compared the predictions 

of analytical models with experimental measurements or MC simulation. The next stage of our work 

will therefore be to carry out experimental measurements in order to compare them with the predictions 

of the network.  

Admittedly, in this work, the analysis of the aleatoric and epistemic uncertainties of the neural 

network has not been undertaken 60. Indeed, given that our learning database is based on analytical 

computations derived from experimental measurements, it is reasonable to assume that the uncertainties 

associated with these experimental measurements will have the most impact on the uncertainty 

associated with dose predictions. According to Vu Bezin et al, the minimum overall uncertainty in out-

of-field dose measurements, whatever the detector used, is of the order of 15% 61. A future study will 
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involve combining the uncertainties associated with the ground-truth databases with the uncertainties of 

the network itself, in order to be able to associate final uncertainties with the presented results. 

To further enhance the capabilities of the neural network, it would be advantageous to have a 

database that encompasses even more diverse data, including information from recent radiotherapy 

treatments involving recent linacs and intensity modulation irradiation techniques. Indeed, a first 

limitation of this work is that the database used only contains patients treated with older techniques and 

irradiation devices, not representative of current patient care. Also, the analytical method used to 

estimate the whole-body dose maps used as ground truth could also be refined, given that analytical 

methods have evolved since then, especially recently 31. The use of MC simulation with our modern 

hardware capabilities also now seems to be a good candidate for the generation of a learning database. 

Finally, even if simple estimation of out-of-field dose can be sufficient when studying integral dose 

trend, a local and more precise estimation can be needed. Indeed, the significance of a high resolution 

required by an out-of-field dose estimation tool is contingent upon the specific medical question at hand, 

as for instance when studying apparition and severity of radio-induced lymphopenia and dose to lymph 

nodes closest to the treatment field. For instance, advancements in neural network strategies beyond our 

current architecture, such as adversarial auto-encoder, successfully used for extension of 

anatomopathological whole slide images 62, hold potential for further refining our approach.  

Conclusion 

  Based on this proof of concept, we have shown that deep learning is a relevant tool for 

addressing the limitations of analytical methods or MC simulation for out of field dose estimation. 

Thanks to its generalization capabilities and short inference times of just a few seconds, this tool should 

make it possible to move forward for routine clinical application and mass application in retrospective 

studies. We are convinced that a tool for estimating out-of-field dose in clinical routine would be a 

powerful aid for optimizing modern radiotherapy treatments. 
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