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Abstract

Glioblastoma is a highly aggressive form of brain cancer characterized by
rapid progression and poor prognosis. Despite advances in treatment, the
underlying genetic mechanisms driving this aggressiveness remain poorly un-
derstood. In this study, we employed multimodal deep learning approaches to
investigate glioblastoma heterogeneity using joint image/RNA-seq analysis.
Our results reveal novel genes associated with glioblastoma. By leveraging a
combination of whole-slide images and RNA-seq, as well as introducing novel
methods to encode RNA-seq data, we identified specific genetic profiles that
may explain different patterns of glioblastoma progression. These findings
provide new insights into the genetic mechanisms underlying glioblastoma
heterogeneity and highlight potential targets for therapeutic intervention.

1. Introduction

Glioblastoma (GB) is the most aggressive primary brain tumor and is not
curable [I] despite of treatment associating surgery when possible followed
by radio-chemotherapy [2] and more recently Tumor treating Fields [3] lead-
ing to a median overall survival (OS) of 20.9 months and a progression free
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survival (PFS) around 7 months. Despite being a minor population of can-
cer cells, the cancer stem cells that are identified in glioblastoma (GSCs) are
thought to be the major driving force behind glioblastoma biological hetero-
geneity and are likely to explain the high rates of glioblastoma recurrence. In
the STEMRI clinical trial aiming to study GB heterogeneity and the enrich-
ment of GSC in certain areas defined by multimodal MRI (NCT01872221)
[4] different GSC sub-populations extracted from tumor samples obtained by
multimodal MRI guided surgery were xenografted into mice brain to study
their invasion patterns as well as their aggressiveness. RNA-seq on each
tumor bulk samples was also performed. The observed differences in mice
survival according to the GSC implanted confirm the heterogeneous nature
of tumor cells lineage.

In this study, we set out to determine potential genetic markers associated
with glioblastoma aggressiveness using multimodal deep learning. Our re-
sults reveal genetic targets already identified in medical literature but also
highlight new potential targets. We leverage the extensive recent develop-
ments in multimodal data analysis, namely image and text, and adapt these
techniques to whole slide images (WSI) and RNA-seq data. Training uses
public data from The Cancer Genome Atlas (TCGA) [5] but also WSI and
RNA-seq data from the STEMRI trial. Furthermore, we introduce a new
RNA-seq encoding technique where genes are grouped based on biological
pathways prior to encoding and show better performance in comparison to
mere position based grouping.

Overall, our results can be used to test new GB treatment strategies. Our
main contributions can be summarized as follows:

i Identify genetic profiles leading to unique GB patterns.
ii Novel method to encode RNA-seq data for use in deep learning models.

iii Novel method to combine WSI and RNA-seq data for use in deep learn-
ing models.

This paper is structured as follows. Section [2] details the developed algo-
rithms, the datasets and training strategies. Section [3| showcases our exper-
imental results followed by our main findings.



2. Material and methods

2.1. Datasets

Two datasets are used to train our models. The TCGA public dataset is
used to pre-train RNA-seq encoders. This dataset contains around 10k RNA-
Seq gene expression samples from multiple sites (breast, brain, prostate, blad-
der, etc.).

51 RNA-seq samples from the STEMRI trial complete this data. These corre-
spond to 16 patients and bulk tumor RNA from metabolically heterogeneous
regions identified by spectral MRI, as explained in [4]. This corresponds
to 51 different tumor cell lineages. To insure data homogeneity, only genes
common to both STEMRI and TCGA were kept. Genes expressions with
relatively low variance were also removed and all data was then normalized.
Tumor cells from these 51 different lineages were xenografted onto mice
brains. Cells from the same lineage were used onto more than one mouse
whenever possible, as culture was not always successful. This led to a total
of 116 mice. Whole slide images of mice brain slices were used at x10 magni-
fication factor (ﬁg. after each mouse’s death. These images are in average
composed of 16k x 21k RGB pixels and human tumor cells are highlighted
using specific coloration.

Observation data contains patient OS and PFS and mouse survival time in
days.

2.2. RNA-seq encoding

RNA-seq data is a vector representing protein expressions for roughly
19K protein coding genes. Moreover, attention-based encoders are currently
state-of-the-art for vision [0] and language [7]. Combining these two obser-
vations, we leveraged the Protein-to-Protein interaction (PPI) graph [] to
regroup protein scores before computing attention scores. The PPI graph is
a directed graph and [9] propose a clustering algorithm that considers the
directed nature of PPL.

The reader can refer to [9] for more detail about the directed Louvain algo-
rithm but in brief, the aim is to maximize modularity [10] Q)4 which in the
case of a directed graph, can be defined by:

in Jout

Qa = %Z[Aij ——l10(ci, ¢5) (1)




m is the total number of edges. A;; indicates the presence of an edge between
nodes ¢ and j. di" (resp. d?') is the in-degree (resp. out-degree) of node
i. The degree is the number of incoming (resp. outgoing) edges. 6(c;,¢;)
indicates whether nodes ¢ and j are in the same cluster. Connected edges
with low degrees contribute significantly to modularity when they are in the
same cluster as this is much less likely than a connection between edges of
high degrees, regardless of cluster assignment.

Applying this algorithm to PPI leads to 11 clusters. Clusters with signifi-
cantly less nodes were then grouped together, leading to 7 final clusters with
an average of 2905 genes per cluster (ranging between 1514 and 3182).
Genes in each cluster constitute a sub-vector that is projected to a common
size. The result is 7 sub-vectors of the same size, each as a separate token
as input to a masked-autoencoder [II]. During training, one token is ran-
domly masked and the decoder uses the cls token and the remaining tokens
to reconstruct it, as illustrated in fig[I] This results in a first loss term:

1 N
v = O I — % 2)
=1

where N is the batch size, x; represents RNA-seq vector ¢ and X; its recon-
struction. |[htbp| In our experiments, we compared this encoding strategy to
a similar strategy but where genes where clustered according to their chro-
mosome. The second loss term L%, 4 is obtained using pairwise contrastive
learning [12]: a positive pair is obtained from two RNA sub-vectors cor-
responding to the same tumor cell lineage, and a negative pair is obtained
using two sub-vectors corresponding to two different tumor cell lineages. This
forces the encoder to learn lineage specific features. Given a pair of repre-
sentations z; and z, with batch size N, temperature 7, the loss term [; is
therefore:

exp(z; 2;/7) 3)
> exp(z z;/7)
y(i,i") = 1 for a matching pair and 0 for negative pairs (i.e. different cell
lineages). Hence,

li = —y(i,i") log

N
RNa = Z l; (4)
i=1
The final loss for RNA-seq encoding is:
Lrna = Lrya+ Lrya ()
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Figure 1: RNA-seq encoding. The original vector is reorganized according to directed
graph clustering from the PPI knowledge graph. Sub-vectors are projected to a common
embedding size. A token is randomly masked. The decoder reconstructs the RNA-seq
vector using the remaining tokens and the cls token.

2.8. WSI encoding

All images are split into sequential, non-overlapping patches of 256x256
RGB pixels, which results in roughly 5K patches per image and a total of
100K patches for the whole dataset. All patches are converted to hue, satura-
tion, luminance, space (HSL). HSL conversion makes it easier to distinguish
non-tumor and tumor cells (colored in brown). Patches with a majority of tu-
mor cells can hence be easily extracted by computing an overall pixel score,
by counting pixels that respect a given hue interval, regardless of lighting
conditions. Patches can then be sorted based on that score, which correlates
with their tumor cells content. Only those with a brown colored pixel ratio
exceeding 20% are kept for training.

Training a masked autoencoder for tumor patches would require a very high
computational cost due to the size of the WSI dataset. We therefore rely
solely on contrastive learning as our experiments have proved that it was
enough to achieve very good performance. A 256x256 patch is split into
smaller 16x16 sub-patches and we use a ViT [6] transformer encoder to obtain
a global representation of the patch, using the cls token. This representation
serves then as an anchor in a triplet loss[I3]: the anchor (z;) is matched with



the representation of another patch of the same tumor cell lineage (z; ) and
it is contrasted with the representation of a patch from another tumor cell
lineage (z_).

N
. 1
1=1

where d is the margin and N is the batch size.

Figure 2: (Left) Example of a WSI of a mouse brain slice. (Right) Zoom on the upper-right
part of the left brain slice. Red square patches have a majority of tumor cells whereas
green square patches have a majority of non-tumor cells.

2.4. Multimodal training

Both the RNA and the WSI encoders are pre-trained using eq 5] and eq 6]
In order to consider both modalities, we draw inspiration from ALBEF[14].
A multimodal contrastive loss L£4;,, is used to align the modalities’ repre-
sentations before a cross-attention encoder. For a given RNA vector and a
256x256 WSI patch, let uy and uj, be the cls representations at the output
of their respective encoders, after linear projection to a common embedding
size. Order is irrelevant as the following equations treat u, and uj sym-
metrically. We use a similar pairwise loss as in eq[d] considering a pair of
RNA/WSI representations u; and uj, a temperature 7. and batch size N:

exp(ufug/n)
Iy = —y(k, k') log (7)
SN exp(ufuy/7.)




y(k, k") = 1 for a matching pair and 0 for negative pairs.

N
MM = Z lk (8)
k=1

Asis done in [I4], a cross-attention model is used to obtain a joint RNA /WSI
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Figure 3: Multimodal model. A pairwise contrastive loss aligns RNA and WSI represen-
tations. A cross-attention module is used to obtain a joint representation. The latter is
used for a classification head that matches data from the same tumor cells lineage and a
RNA decoder reconstructs the original RNA vector.

representation from the unimodal representations. The cross-attention model
is trained along with a classification head and a RNA decoder head. The
classification head is trained using a weakly supervised loss L}},, where a
label of 1 indicates samples from the same tumor cells lineage and 0 for
mismatching samples. The RNA decoder is trained using a reconstruction
loss Ly, similar to Eq2]

2.5. FEvaluation

Training the multimodal model leads to aligned WSI and RNA-seq repre-
sentations. Given a WSI patch not used during training, it becomes possible
to retrieve the closest RNA-seq vector amongst all the 51 RNA-seq vectors
by measuring its cosine similarity, as shown in fig[]

The main evaluation criteria is therefore matching accuracy, computed
over a subset of WSI patches (from a total of 100K patches) not used during
training but that are drawn evenly amongst corresponding cell lineages and
patients. Let Z = {1..51} be the set of all the 51 RNA-seq samples, zy g5 be
the output of the image encoder for a given WSI patch, and u; be the output

7
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Figure 4: RNA-seq retrieval using a WSI patch.

of the RNA encoder for sample i (i € Z). The predicted sample p is given by

eq@ .
. Zyy s Qg
p=argmax ———>——— 9
M Tzl - Tl ©)

3. Experiments

RNA-encoding. After pre-training the RNA-seq encoder depicted in §2.2) us-
ing TCGA data, we plotted the t-SNE two dimensional projections for both
TCGA data and STEMRI data (ﬁg. Nearly all STEMRI data points lie
very close to TCGA data points corresponding to brain tumors.

RNA retrieval. Table[] lists RNA-seq retrieval accuracy considering tumor
cell lineage and patient of origin. The best results are obtained using pathway
based clustering as explained in , and using only a matching loss (without
a RNA decoder and a reconstruction loss). Results show a near perfect
accuracy for both patient and cell lineage matching tasks. This indicates
that our model has learned unique genetic features that can be matched
against unique cellular microscopic patterns.

Model Accuracy (patient) Accuracy (lineage)
Random initialization 0.050 0.006
Lha + LS + Ly (frozen RNA-Image encoders) 0.29 0.199
Lhyr + LSar + LT (all modules are trainable) 0.946 0.941
LS + L7, (all modules are trainable/chromosome gene groups) 0.890 0.913
L0 + L7, (all modules are trainable/pathways gene groups) 0.970 0.968

Table 1: Lineage and patient retrieval results. The table lists WSI patch/RNA-seq match-
ing accuracy by considering cell lineage or patient of origin, in several configurations.
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Figure 5: 2D t-SNE projections of RNA-seq representations of primary tumor locations,
combining public TCGA data (circles) and STEMRI data (stars). The figure clearly
showcases a strong similarity between public brain RNA-seq data and STEMRI data.



Genetic analysis. Grad-CAM [I5] is a common technique to analyse deep
neural networks’ response. We used grad-CAM to determine genetic po-
sitions that have the greatest contribution in the WSI/RNA-seq matching
process. For each WSI in the validation set, we sort gene expressions accord-
ing to their importance as computed using grad-CAM. Keeping the 15 most
occurring gene expressions leads to the results in table[2l The highlighted

Gene Occurrence Symbol
0  ENSG00000198964.14 2344 [SGMIST
1 ENSG00000120008.16 2151 VDRI
2 ENSG00000111670.16 1759 GNPTAB
3 ENSG00000078098.14 1669 [EAP
4 ENSG00000143147.14 1639 |GPRI6T
5 ENSG00000070061.16 1463 |EDPH
6  ENSG00000139624.14 1350 |CERSH
7 ENSG00000077254.14 1347 |[USP38l
8  ENSG00000138614.15 1249 INTS14
9  ENSG00000090054.15 1202 |[SPERCH
10 ENSG00000183036.11 1187 |PCPA
11 ENSG00000130717.13 1177 UCK1
12 ENSG00000184164.15 1157 |[CREED2
13 ENSG00000125633.11 1138  CCDC93
14 ENSG00000128829.12 1112 EIF2AK4

Table 2: Key genes in the WSI/RNA-seq matching process. Highlighted genes have been
found in glioblastoma literature.

genes have already been identified in literature as playing an important role
in the occurrence or development of glioblastoma [16] 17, 18, 19] 20] (most of
them playing a role in metabolism, micro-environment and invasion), other

brain cancer types [2I] and cancer in general [22] 23, 24] 25| 20, 27, 28].

4. Conclusion

In conclusion, our study demonstrates the effectiveness of multimodal
deep learning approaches in identifying genetic profiles that explain different
glioblastoma patterns. By leveraging joint image/RNA-seq analysis and in-
troducing novel methods to encode RNA-seq data, we have shed new light
on the heterogeneous nature of this aggressive brain tumor. Our findings

10



not only confirm existing medical literature but also highlight new potential
targets for therapeutic intervention. These results have significant implica-
tions for the development of personalized medicine strategies for glioblastoma
patients and underscore the importance of continued research into the appli-
cation of Al algorithms in cancer biology.
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