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Daily Electricity Consumption Forecasting: A Comparative Study of
Neural Network and Radial Basis Function Models

Agresa Qosja1, Didier Georges2, Eralda Gjika3, Ligor Nikolla4, Arben Cela5

Abstract— Electricity consumption forecasting stands as a
critical research domain within electrical engineering, with myr-
iad of traditional forecasting models and artificial intelligence
techniques undergoing rigorous examination. This paper is
devoted to a comparison of three Machine Learning approaches
to surrogate modelling and forecasting of the daily electricity
consumption in Tirana, Albania: A Radial Basis Function
(RBF) approach, a feed forward Neural Network approach and
a Recurrent Neural Network approach. Through meticulous
experimentation across four distinct scenarios encompassing
variations in training/testing splits, historical data utilization,
and hyper parameter optimization, we thoroughly evaluate
the performance of each model. Comparative analysis is con-
ducted based on model fit, computational efficiency, and error
measurement metrics. Our findings highlight the remarkable
performance of the RBF ARX approach, underscoring its
effectiveness in accurately forecasting electricity consumption.

Key-words: Electricity consumption forecasting, neural net-
work modelling, Radial Basis Function modelling.

I. INTRODUCTION
The ability to predict electricity demand is a key element

in improving the management of power generation facilities,
particularly in the context of the introduction of renewable
energy sources and climate change. In light of this, there
exists a necessity for novel applied models tailored to the
nuanced circumstances of the Albanian context, forming the
foundation of this study. Albania predominantly relies on
renewable energy generation, ranging from 53.3% in the
least favorable production scenario in 2022 to 71.3% in the
optimal scenario of 2016 [1]. Applying an accurate model for
the next day’s consumption helps the respective institutions
to determine the precise amount of energy the country
needs to import from interconnected lines. As production
is predominantly reliant on precipitation or reserved water,
with 99% sourced from hydropower plants, consumption is
influenced by temperature fluctuations typical of the Mediter-
ranean climate region.

The prediction of electricity consumption has emerged as
a prominent area for the application of innovative techniques
stemming from recent advancements in neural network re-
search. In their study, [2], the authors showcase the efficacy
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of deep learning models in short-term load forecasting using
deep neural networks. The demonstrated accuracy of these
models suggests potential for further applications in the field.

In a comprehensive analysis of the relationship between
electricity consumption and economic activities [3], re-
searchers investigated long- and short-run dynamics using
panel data spanning 160 countries over a 30 year period. This
study, which accounted for variables such as per capita GDP,
degree of electricity dependence, and urbanization levels,
revealed nuanced insights into the electricity-growth nexus
across different regions and income level. The correlation be-
tween economic activity and electricity consumption, partic-
ularly influenced by household heating and cooling systems,
is introduced by [4]. Authors used ANN models to predict
over 12 regions in Turkey, emphasizing the importance of
incorporating temperature as an exogenous variable.

In the line of considering the influence of exogenous
variables on electricity consumption, researchers in [5] un-
derscore the significant impact of weather on electricity
demand, particularly within the context of Mediterranean
climate change in Italy over a 15-year period. By employing
various regression models that incorporate temperature, wind
speed, relative humidity, and cloud cover, the study endeav-
ors to forecast electricity demand up to one month ahead. The
findings emphasize the superior accuracy of models utilizing
temperature as a primary input compared to alternative
models. Neural networks models are largely used in the
field of electricity consumption forecasting for short- and
long-term scenarios. From the analysis over [6] we have that
Machine Learning models combined with the dimensionality
reduction techniques have a better performance than other
pure machine learning models.

Recurrent Neural Network (RNN) models can enhance
prediction results by iteratively refining information in each
row of the hidden layers, leveraging connections with the
previous rows to capture temporal dependencies and improve
forecasting accuracy [7]. From the applications of RNN
models in electricity consumption, [8] provides a comparison
and overview of these models in short-term load forecasting,
suggesting that Long Short Term Memories (LSTM) and
Gated Recurrent Units (GRU) layers exhibit superior perfor-
mance in capturing highly nonlinear relationships between
datasets. Also the results from [9] employ deep learning
algorithms, including LSTM, GRU, and RNN, to forecast
electrical loads based on current measurements, with the
GRU model achieving the highest accuracy and lowest error.
Furthermore, forecasting electricity consumption involves
various models, as evidenced by research on an engineering



company in Russia [10]. This study covers RNN, SVM-
RBF, SVM linear, and statistical models, emphasizing their
relevance for analyzing hourly data within the period under
consideration. The results from [11] compare RNN models
with classical statistical approaches using monthly testing
periods, showing that neural networks outperform the classi-
cal methods. This research focuses on identifying variables
with the most significant impact on the prediction model. The
evaluation of model performance is conducted across various
monthly periods throughout the year. The applications of
statistical models and artificial neural networks over a three-
year dataset in the Albanian case, are presented in [12].
The findings indicate that hybrid neural networks outperform
classical statistical models. While the the economical activity
effect is reflected in the real dataset over the week days and
week-end days. This is related with the feature of seasonality
in variables.

This paper investigates the effectiveness of different ma-
chine learning methods for predicting day-ahead electric-
ity consumption, utilizing historical consumption data and
temperature as an exogenous variable, with a focus on
a data-driven case study spanning 34 months in Tirana,
Albania. Our study encompasses the use of state-of-the-art
methodologies including a feed forward Neural Network
(ANN), a Recurrent Neural Network (RNN) with simple
layers or gated Recurrent Unit (GRU) layers, and Radial
Basis Function Networks with a Gaussian kernel function
(RBF). These models have played a pivotal role in enhancing
the accuracy and efficiency of predicting energy consumption
patterns, thereby facilitating optimized grid operation and
energy management.

The paper is structured as follows: The Methodology
section describes the Machine Learning techniques used
in this paper, including a Radial Basis Function Network,
a feed forward Neural Network, and a Recurrent Neural
Network, for predicting energy consumption. The Dataset
section provides an overview of the dataset features. The
Results section presents the findings and discrepancies ob-
served across different scenarios. This is followed by the
Conclusions section, which outlines the conclusions drawn
from the models’ performance and offers suggestions for
future work.

II. METHODOLOGY

This paper employs both neural networks and radial basis
functions to forecast day-ahead electricity consumption while
considering the average temperature as an exogenous vari-
able within a daily dataset. Specifically, we explore the fol-
lowing models: A RBF network, A feed forward Neural Net-
work, a Recurrent Neural Network with a simple structure,
or incorporating Gated Recurrent Unit (GRU) layers. Across
all models, we adopt a three-layer architecture comprising an
input layer, a hidden layer, and an output layer. These models
are designed to capture the complex relationships between
variables and generate accurate predictions of electricity
consumption.

Our main objective is to forecast energy consumption at a
given day t, C(t), on the basis of a nonlinear auto regressive
(ARX) model, defined as a function of both historical energy
consumption and the impact of temperature variations in
the city. The general prediction function is represented as
follows:

C(t) = F
[
C(t −1),C(t −2), . . . ,C(t −NC),

T (t −1),T (t −2), . . . ,T (t −NT )
] (1)

where
• C - is the consumption variable,
• T - is the exogenous variable, in this case, temperature,
• t - is the daily index time
• NC - is the number of past daily samples of the energy

consumption
• NT - is the number of past daily samples of the

temperature

A. RBF Approach

RBFs have demonstrated exceptional effectiveness for
nonlinear scattered data interpolation with multi resolution
capabilities in high dimensions [13], [14], [15]. In our
proposed approach, we harness the capabilities of RBFs to
build a surrogate model of the energy consumption.

In our work, radial basis functions are used to estimation
F in (1), as a linear combination of radial basis functions,
as

F(X)≈
M

∑
i=1

fiφ(∥X −Yi∥),

where the Yi’s are M center points used to define the M
basis functions based on a kernel φ that defines the nature
of the Radial Function used. The Yi are chosen from a
quasi-random (low-discrepancy) Sobol sequences [16] whose
bounds are given by the minimal and maximal values of
the temperature and consumption time-series. By doing so
and unlike most RBF approaches in the literature, we avoid
introducing hyper-parameters that lead to solving a nonlinear
regression problem that may be ill-conditioned and requires
solving a nonconvex optimisation problem.

Several experiments conducted with our data set showed
that the Gaussian RBF kernel φ(r) = e−ε2r2

, with r = ∥X −
Y∥, provides very good results. ε denotes a shape parameter
to be properly tuned to improve the problem conditioning.
However depending on the application, other RBF can be
used, such as the multiquadric RBF φ(r) = (1+ ε2r2)1/2,

the inverse multiquadric RBF φ(r) =
1

(1+ ε2r2)1/2 , or the

Poly Harmonic Splines φ(r) = r2k+1, with k = 0,1,2....
If we denote X(t) = (C(t − 1),C(t − 2), ...,C(t −

NC),T (t),T (t − 1),T (t − 2), ...,T (t −NT )), as the vector of
the combination of the consumption and temperature vari-
ables over a historical window defined by NC and NT , and
θ , the set of the fi’s, the learning process consists in solving
the following problem:



min
θ

N

∑
t=1

(C(t)−
M

∑
i=1

fiφ(∥X(t)−Yi∥))2. (2)

This problem can be reformulated as the following linear
regression problem

min
θ

∥Ȳ − Φ̄θ∥2, (3)

where Ȳ is the vector of the N C(t)’s and Φ̄ is a
(N,M) matrix in which each row is defined by (φ(∥X(t)−
Y1∥),φ(∥X(t)−Y2∥, ...,φ(∥X(t)−YM∥)).

The unique solution of problem (3) is given by

θ = (Φ̄T
Φ̄)−1

Φ̄
T Ȳ , (4)

provided that Φ̄ has full rank.

An interesting feature of using predefined center points
for RBFs is the possibility of training the model using a
recursive Kalman Filter instead of using the batch approach
(3), with solution (4). The potential advantage of using a
Kalman Filter is its ability to take non stationary phenomena
into account.

The estimation model is given by

θ(t +1) = θ(t)+ v(t),

y(t) = Φ(X(t))θ(t)+w(t),

where Φ(X(t)) = (φ(∥X(t) − Y1∥),φ(∥X(t) −
Y2∥, ...,φ(∥X(t) − YM∥)), v(t) is the state noise, which
is a Gaussian process with zero-mean and a covariance
matrix Q, w(t) is the output noise, which is also a Gaussian
process with zero-mean and variance r.

The associated Kalman filter is given by

θ̂(t +1) = θ̂(t)+L(t)(y(t)−Φ(X(t))θ̂(t)),

L(t) = P(t)Φ(X(t))T/(r+Φ(X(t))P(t)Φ(X(t))T ),

P(t +1) = Q+[Id −L(t)Φ(X(t))]P(t), P(0) = P0,

where P(t) is the covariance matrix of the estimation error
θ(t)− θ̂(t) and P0 , the covariance matrix of the initial error.
In practice, P0, Q can be chosen as diagonal matrices: P0 =
bId , Q = qId , with b,q,r > 0.

However, in this paper, only the batch approach (with the
pseudo-inverse solution (4)) has been considered. The imple-
mentation of the Kalman Filter approach will be investigated
in the future.

B. Feed Forward Neural Network Approach

In this paper, we will use ’Simple Artificial Neural Net-
work - sANN’ to refer to a feedforward neural network [17].
The inputs to this network consist of daily electricity con-
sumption and temperature, while the cpredicted consumption
is the single output of the network.

If we again denote X(t) = (C(t − 1),C(t − 2), ...,C(t −
NC),T (t),T (t − 1),T (t − 2), ...,T (t −NT )), as the vector of
the combination of the consumption and temperature vari-
ables over a historical window defined by NC and NT , the
model of a feed forward neural network with L− 1 hidden
layers is given as follows:

z0 = X(t)

zk = σ(W kzk−1 +bk), 1 ≤ k ≤ L−1
C(t) = zL =W LzL−1 +bL

Each output vector zk of a layer k is defined in Rnk , where
nk denotes the number of neurons in layer k. W k ∈ Rnkxnk−1

denotes the weight matrix of neurons in layer k. bk ∈Rnk is
the offset vector of the k layer. σ is the activation function
of the neurons (for example, tanh). The output vector zL of
the last layer L is the predicted consumption C(t).

In this application, it appeared that using several hidden
layers rather than a single hidden layer does not improve the
quality of the prediction. Considering the computation time
all the models with more than one hidden layer require more
time to be performed. While the accuracy performance of the
several layers model over training part is the same with the
single layer models.

C. Recurrent Neural Network Approach

Recurrent Neural Networks (RNN) [18] represent a dis-
tinct group of neural networks characterized by their ability
to process sequential data efficiently by retaining memory of
past information through a feedback loop within the network.
This memory allows RNNs to learn patterns based on context
and make predictions on time series data. However, simple
RNNs can struggle with long-term dependencies due to the
vanishing gradient problem. [19] Recurrent Neural Networks
with GRU layers are different form the SRNN model for
the way how they pursue the information in the cell state.
Their use come as a solution of the problem with Long-
Short-Term-Memory layers in the state of the improving the
weights in order to update the information for the produced
result and the real values.

At time step t, information represented by X(t) enters
the cell. Upon application of the sigmoid function in the
reset gate, the information undergoes a bifurcation: a portion
is transmitted through the forget gate, while the remaining
portion, deemed significant, proceeds to the subsequent step.
This significant information traverses through the cell state,
contributing to the update of the cell by undergoing multi-
plication with the information derived from the previous cell
state. Subsequently, the tanh function is applied to update the
information based on new weights, which is then reintegrated
into the cell state. The updated cell state is further modified
through addition with the new information derived from the
current step, thereby completing the information processing
cycle within the GRU model as it is illustrated in schema 1.



Fig. 1. RNN-GRU Schema

III. DATASET
Our study utilizes a real dataset sourced from Tirana,

Albania, encompassing daily records spanning 34 months
from March 2020 to December 2022. The dataset com-
prises two daily variables, including electricity consumption
(MW/h) and average temperature (°C) . The figure below
illustrates the relationship between two variables. The rela-
tion between temperature and consumption is positive during
the summer period, indicating that higher temperatures cor-
respond to increased consumption. While, during the winter
periods of decreasing temperatures values of consumption
are rising, representing a negative relation between them.
The methodology applied to the dataset commenced with

Fig. 2. Daily electricity consumption and average temperature relation

analyses employing techniques for handling missing data. We
identified three days of missing temperature variables (11-
02-2021, 12-02-2021, 20-02-2021) and one month (March

2022) of missing energy consumption data within the dataset.
In both cases, linear interpolation models were employed
to address missing data. These models were utilized to
estimate the missing values based on the trend observed in
the surrounding data points.

IV. RESULTS

In this section, we delve into the outcomes derived from
our comprehensive analysis, which encompasses four distinct
scenarios encompassing all scenarios examined. We evaluate
the performance, computation time, and error measurements
across these scenarios, providing a holistic understanding of
their implications. First, we compare how the data used for
training differs from the data used for testing. Second, we
scrutinize the effect of varying historical windows for each
variable, discerning their implications on predictive accuracy
and robustness. By studying these scenarios, we aim to better
understand how different factors affect the performance of
our models. The primary objective of including two scenarios
in training and testing datasets is to facilitate forecasting with
a long-term prediction horizon, covering 10% of the data
equal to 103 days, alongside short-term predictions made on
a monthly basis.

TABLE I
SCENARIO COMBINATIONS

Scenario NC NT Training Testing
1 7 7 90% of data 10% of data
2 7 1 90% of data 10% of data
3 7 7 33 months 1 month
4 7 1 33 months 1 month

The models are applied over a scaled dataset using the
standard scalar method.

For the neural network models, the hyperparameters are
set as follows: 100 epochs, 150 neurons in the hidden
layer, a learning rate of 0.005, and Tanh activation func-
tion. The batch size is set to 32, and the optimizer used
is the Adam optimizer. These hyperparameter values are
optimized through an error measurement between real data
and predictions, considering intervals of [50, 100, 150] for
epochs and number of nodes, and values of learning rate
ranging from [0.002, 0.003, 0.005]. The activation function
is selected from the performances of ReLU, SoftMax, and
Sigmoid, and the loss is evaluated using mean squared error
(MSE) technique.

For the RBF model, the shape parameter ε of the Gaussian
kernel is set to 0.001, tuned within the interval of [0.0001
to 10], and the number of basis sets (M) is set to 16, tuned
between 8, 16, 32, 64, 128, and 256. The construction of the
RBF model involves utilizing a simple Sobol sequence for
selecting center points, contributing to the optimization and
effectiveness of the model.

The optimization process involves exploring the combina-
tions of the hyperparameter space by assigning their values



from predefined sets. The optimal set of hyperparameters is
determined by selecting the combination of them that yields
the lowest error between the predicted and real values.

The results from scenario 1, presented in Fig. 3 demon-
strate how well the first model combination performed when
tested on the dataset. Across all methods utilized, there
is minimal deviation from the actual consumption values,
indicating consistent performance.

Fig. 3. Predicting over the 10% of the dataset, Scenario 1

In the scenario 2, Fig. 4, we notice that altering the
historical data for temperature, focusing solely on the day
prior to prediction, results in improved performance for the
RNN model. However, this modification doesn’t notably
impact the performance of the sANN and RBF methods.

Fig. 4. Predicting over the 10% of the dataset, Scenario 2

The outcomes from scenario 3, presented in Fig.5, where
the models predict over the last month of the dataset.
Similar to scenario 1, in Fig.3, the sRNN model experiences
comparable effects when incorporating the temperature data
from the last 7 days.

From the last scenario presented in Fig. 6, it is evident that
the performance of the RNN model has improved compared

Fig. 5. Predicted results over the last month, Scenario 3

to same results from scenario 3, despite considering only the
temperature value from the day preceding the prediction.

Fig. 6. Predicted results over the last month, Scenario 4

Assessing model performance in relation to computa-
tional time

Table II presents the computational performance for each
method across all scenarios, measured in seconds. The first
two scenarios consistently exhibit the same ordering of
methods across all scenarios. However, the third and fourth
scenarios reveal distinct performances among standard neural
networks. Overall, the RBF method emerges as the top-
performing model across all scenarios and methods.

TABLE II
MODEL COMPUTATION TIME (SEC)

Method Scenario 1 Scenario 2 Scenario 3 Scenario 4
RNN-GRU 46.26 47.02 16.64 12.37

sRNN 25.43 22.45 53.95 16.96
sANN 14.26 11.06 27.42 21.69
RBF 0.78 0.84 1.54 1.44

In the last evaluation across all applied models, we analyze



the error measurements computed against the real consump-
tion data and the corresponding predicted results over this
segment of the dataset.

The performance of these models was evaluated using the
following error measurement metrics, while the variable c is
the real electricity consumption and the Ĉ is the predicted
electricity value:

• MAE (Mean Absolute Error):

MAE =
1
n

n

∑
i=1

|Ci −Ĉi|

• RMSE (Root Mean Squared Error):

RMSE =

√
1
n

n

∑
i=1

(Ci −Ĉi)2

• MAPE (Mean Absolute Percentage Error):

MAPE =
100%

n

n

∑
i=1

∣∣∣∣Ci −Ĉi

Ci

∣∣∣∣
In the first scenario, we observe that RBF exhibits the low-

est values of RMSE and MAPE. However, it is noteworthy
that sANN achieves the lowest MAE value in this scenario.

For the second, third, and fourth scenarios, RBF consis-
tently outperforms other models, demonstrating significantly
lower values across all error measurements compared to
alternative models.

TABLE III
ERROR METRICS

Model Error Method sANN sRNN RNN-GRU RBF

Scenario 1
RMSE 1,475.0 1,443.6 1,500.8 158.0
MAE 60.7 241.9 223.0 122.7

MAPE 18.29 17.54 18.34 1.97

Scenario 2
RMSE 1,464.0 1,444.1 1,470.3 78.1
MAE 63.1 84.7 921.9 55.0

MAPE 18.18 18.01 16.09 0.83

Scenario 3
RMSE 649.9 610.8 624.5 138.2
MAE 121.4 234.7 324.9 90.1

MAPE 6.86 6.37 6.51 1.14

Scenario 4
RMSE 663.0 642.7 645.6 135.6
MAE 110.4 300.8 127.5 97.3

MAPE 6.99 6.82 6.80 1.24

V. CONCLUSIONS
This paper explores three machine learning approaches

for forecasting electricity consumption, leveraging historical
data while integrating temperature effects from the past 7 or
1 day(s). The scaling of historical data and testing models in-
troduces a novel technique for adjusting variable importance
within the model. Prioritizing fewer variables with significant
impact results in three notable enhancements: simplification
of the model, reduced reliance on extensive historical data,
increased accuracy in results, and decreased computational
time in model processing. Based on our findings, we rec-
ommend the adoption of the RBF model for electricity con-
sumption prediction. The RBF model demonstrates superior
performance in model fitting over real data, boasts lower
computational time, and exhibits significant improvements
in error measurement values. Additionally, the technical and

theoretical implementation of the RBF approach is simpler
compared to neural networks, as it relies on a linear regres-
sion problem rather than the inherently nonlinear regression
problem associated with neural networks. Looking ahead,
future work will explore the performance differences of
these models in regions with diverse correlations between
variables, and consider the incorporation of additional exoge-
nous variables and new models. Additionally, other methods
such as cross-validation for testing and training, as well as
variations in prediction horizons, will be evaluated for their
potential incorporation into these models.
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