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ABSTRACT 

Interest in the use of machine learning for pep-
tide fragmentation spectrum prediction has been
strongly on the rise over the past year s, especiall y
for applications in challenging proteomics identifi-
cation workflows such as immunopeptidomics and
the full-proteome identification of data independent
acquisition spectra. Since its inception, the MS 

2 PIP
peptide spectrum predictor has been widely used
f or v arious do wnstream applications, mostl y thanks
to its accuracy, ease-of-use, and broad applicabil-
ity. We here present a thoroughly updated version
of the MS 

2 PIP web server, which includes new and
more performant prediction models for both tryptic-
and non-tryptic peptides, for immunopeptides, and
for CID-fragmented TMT-labeled peptides. Addition-
all y, we ha ve also added ne w functionality to greatl y
facilitate the generation of proteome-wide predicted
spectral libraries, requiring only a FASTA protein
file as input. These libraries also include retention
time predictions from DeepLC. Moreover, we now
pr o vide pre-b uilt and read y-to-do wnload spectral li-
braries f or v arious model organisms in multiple DIA-
compatible spectral library formats. Besides upgrad-
ing the back-end models, the user experience on the
MS 

2 PIP web server is thus also greatly enhanced,
extending its applicability to new domains, includ-
ing immunopeptidomics and MS3-based TMT quan-
tification experiments. MS 

2 PIP is freely available at
https:// iomics.ugent.be/ ms2pip/ . 
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GRAPHICAL ABSTRACT 

INTRODUCTION 

Over the past decade, the ever-broadening scope of di-
verse proteomics workflows has engendered greatly in-
cr eased inter est in the field. Howe v er, these ne w applica-
tions each come with their specific challenges. For example,
imm unopeptidomics m ust address the non-tryptic nature
of imm unopeptides, w hereas isobaric labelling for quantifi-
cation can result in reduced identification efficiency ( 1 , 2 ).
These specialized a pproaches, w hich build on sample prepa-
ration and proteomics acquisition innovations, ther efor e
also r equir e nov el de v elopments in data analysis to maxi-
mally exploit the value of the corresponding data. 

One data analysis innovation that has impacted nearly all
of the new proteomics workflows is the machine learning-
based prediction of accurate peptide fragmentation spec-
tra, as pioneered by MS 

2 PIP and others ( 3 , 4 ). Indeed,
we hav e pre viousl y showcased the wide a pplicability of
MS 

2 PIP predictions ( 5–7 ) ( https://iomics.ugent.be/ms2pip ),
and how these can be le v eraged to boost the yields from
various proteomics identification strategies ( 8 ). Interest-
ing use cases of these predictions include the rescoring
 en.degroe v e@vib-ugent.be 
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f peptide-spectrum matches (PSMs) ( 8 , 9 ), the creation of 
roteome-wide spectral libraries for data-independent ac- 
uisition (DIA) ( 10 , 11 ) and streamlining the design of tar- 
eted proteomics experiments ( 12 , 13 ). While MS 

2 PIP al- 
eady supported a wide variety of fragmentation methods, 
nstruments, and labelling techniques, the de v elopment of 
arious novel impactful proteomics workflows resulted in a 

lear demand for additional, specialized MS 

2 PIP models. 
We have ther efor e further expanded MS 

2 PIP with the 
 equisite new pr ediction models, which now include support 
or tryptic- and non-tryptic peptides, for immunopeptides, 
nd for collision-induced dissociation (CID) spectra of pep- 
ides treated with tandem-mass-tag (TMT) quantification 

abels. These new models allow MS 

2 PIP to be applied in 

lternati v e digestion e xperiments, in immunopeptidomics 
xperiments, and in MS3-TMT-based quantification stud- 
es. We have updated the MS 

2 PIP w e b server to include 
hese new prediction models, alongside several new features, 
uch as the integration of our state-of-the-art retention time 
redictor DeepLC ( 14 ), the option to generate proteome- 
ide spectr al libr aries starting from only a FASTA file, and 

he availability of pr ebuilt, r eady-to-download spectral li- 
raries for ten common model organisms in multiple DIA- 
ompatible file formats. These updates will further stream- 
ine downstream use of MS 

2 PIP, allowing e v en wider adop- 
ion and utility. 

EW IN THE 2023 VERSION OF THE MS 

2 PIP WEB 

ERVER 

pdated MS 

2 PIP core library with increased availability 

ince the previous MS 

2 PIP w e b server publication, we 
ave drastically improved the availability and usability of 
S 

2 PIP’s core library. It is now available as a standalone 
ython package that can be easily installed on all major 
S platforms with PyPI, with Bioconda, or as a BioCon- 

ainer. In addition to the command line interface (CLI), 
 new Python interface now allows MS 

2 PIP to be eas- 
ly integrated into other tools and workflows. To com- 
ute correlations between observed and predicted spec- 
ra, MS 

2 PIP now supports both MGF and mzML spec- 
rum file formats. MS 

2 PIP now also seamlessly integrates 
he state-of-the-art retention time predictor DeepLC. Fur- 
hermore, we have implemented two new operating modes 
or MS 

2 PIP: (i) the f asta2spec lib command allows users to 

enerate proteome-wide predicted spectral libraries, start- 
ng from only a FASTA proteome file and (ii) the single- 
rediction command allows users to quickly predict a single 
pectrum directly from the CLI. The MS 

2 PIP core package 
s open-source under the permissi v e Apache2 license, and is 
reely available at https://github.com/compomics/ms2pip/ . 

xtended and impr ov ed MS 

2 PIP web server 

or an optimal, user-friendly experience, MS 

2 PIP is made 
vailable as an online w e b server. Since its previous pub- 
ication, we have significantly extended the MS 

2 PIP w e b 

erver functionality. First, the w e b server contains all new 

eatures of the MS 

2 PIP core library, most notably including 

he new prediction models (see below). Second, without any 

dditional configuration, users can opt to include accurate 
etention time predictions in the predicted libraries from 

ur retention time predictor DeepLC. Third, the w e b server 
ow also accepts –– next to the existing peptide list input –– a 

rotein FASTA file with ‘search space’ settings that define 
hich peptides will be included in the libr ary. Configur able 

ettings include the cleavage rules for in silico digestion, 
he number of allowed missed cleavages, the precursor m / z 
ange, and common residue modifications. Fourth, we now 

rovide ready-to-download spectral libraries for ten com- 
on model organism UniProt r efer ence proteomes, includ- 

ng Homo sapiens , Esc heric hia coli and Arabidopsis thaliana . 
ach library is available in the MSP and SSL / MS2 file for- 
a ts, ensuring compa tibility with major DIA search en- 

ines, such as DIA-NN ( 15 ) and Skyline ( 16 ). 

ew prediction models for (non-)tryptic peptides, im- 
unopeptides and MS3 quantification experiments 

e have updated MS 

2 PIP with three new prediction mod- 
ls. The 2019 model for HCD fragmentation was originally 

nly trained on tryptic peptides. Non-tryptic peptides, how- 
 v er, lack the basic lysine or arginine on their C-terminus, 
 hich heavil y influences fragmenta tion pa tterns ( 17 ). As 
 result, the existing MS 

2 PIP models performed sub opti- 
ally for non-tryptic peptides. To allow MS 

2 PIP to be ap- 
lied to proteomics workflows that yield non-tryptic pep- 
ides, such as alternati v e-digestion and biopeptidomics e x- 
eriments, we have trained a new and improved HCD model 
apable of both tryptic and non-tryptic peptide predictions. 
his model was validated on external evaluation data sets 
ontaining peptides from both trypsin- and chymotrypsin- 
igestion. Importantly , this new , much more generic model 
utperforms the previous model on both tryptic and non- 
ryptic peptides. Additionally, we have trained a special- 
zed model for immunopeptides to be used in immunopep- 
idomics experiments. This model was validated on both 

LA class I and HLA class II peptides. 
In quantitati v e mass spectrometry, MS3 acquisition of 

MT-labeled spectra has been gaining popularity over tra- 
itional MS2 acquisition ( 18 ). Howe v er, the combination 

f CID fr agmentation, ion tr ap acquisition of MS2 spec- 
ra, and of TMT-labelling substantially alters fragmenta- 
ion patterns, which is detrimental for the performance of 
oth the existing CID and HCD-TMT MS 

2 PIP models. 
her efor e, we have trained and validated a new CID-TMT 

odel to allow for applications of MS 

2 PIP in MS3-TMT- 
ased quantification studies. 
Train, test, and evaluation data was downloaded from 

RIDE ( 19 , 20 ) and converted to MS 

2 PIP input files (Sup-
lementary Table S1) –– except for the CID-TMT train- 

ng data, which was generated in-house and is available 
rom PRIDE with identifier PXD041002 (see supplemen- 
ary methods). While not explicitly considered for intensity 

rediction, the train and test data also included common 

odifications such as oxidation of M, carbamidomethyla- 
ion of C and acetylation of the amino termini. To guar- 
ntee fully external unseen evaluation data sets, overlap- 
ing peptidoforms between train and test sets wer e r emoved 

rom the test set. Similar to the 2019 MS 

2 PIP models ( 7 ) all
ew models were trained with a gradient boosting machine 

earning algorithm (see Supplementary Table S2) as imple- 

https://github.com/compomics/ms2pip/
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Figure 1. Distribution of Pearson correla tion coef ficients per spectrum (y-axis) for each newly trained model and the relevant existing models, evaluated 
on various external unseen data sets (x-axis). Each color r epr esents a model, with the target model for each evaluation data set shown with black borders 
and the other models shown with grey borders. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

mented in the XGBoost Python package (see supplemen-
tary methods). 

Performance of the new MS 

2 PIP models 

To evaluate the newly added MS 

2 PIP models, we selected
se v eral unseen, e xternal e valua tion da ta sets to compare
the predictions with observed spectra and calculate Pear-
son correla tion coef ficients (PCC) per spectrum. The se-
lected orbitrap HCD data sets consist of trypsin-digested,
chymotrypsin-digested, HLA class I and HLA class II pep-
tides, respecti v ely. We compared the performance of the
new MS 

2 PIP HCD and immunopeptide models with the
2019 MS 

2 PIP model on each of these evaluation data sets.
Both new models showed substantial increases in perfor-
mance on their respecti v e target data sets, with a median
PCC of 0.93 and 0.88 for the 2021 HCD model on trypsin
and chymotrypsin and a median PCC of 0.94 and 0.91 for
the immunopeptide HCD model on HLA-I and HLA-II
data (Figure 1 ). Notab ly, e v en when evaluated on a trypsin-
digested peptide data set, the new, more generic HCD model
still shows an increase in performance, suggesting that com-
bining tryptic and non-tryptic data for training leads to an
over all better gener alized model. Furthermore, the lower
performance of the specialized immunopeptide model on
chymotrypsin-digested peptide da ta indica tes tha t these two
types of non-tryptic peptides are likely very different. In-
deed, separating predicti v e performance by peptide length
shows a significant drop in accuracy for peptides longer
than 17 amino acids for the immunopeptide model, while
the new general HCD model shows a consistently high
performance across peptide lengths (Supplementary Figure
S1). When examining the prediction accuracies for HLA
type I and type II in a similar manner, we observe an im-
proved performance across all peptide lengths and for both
HLA types, compared to the 2019 HCD model (Supple-
mentary Figure S2). 

Previously we have shown that acquisition modes and iso-
baric labelling techniques can heavily alter peak intensity
patterns ( 7 ). This is especially the case for ion trap-based
CID acquisition of TMT-labelled spectra. Evaluation on a
CID-TMT data set shows that neither the existing CID nor
the existing HCD-TMT MS 

2 PIP models generalized well
for this type of peptide spectra. Interestingly, the HCD-
TMT model still outperforms the CID model, suggesting
that the labelling method has a larger influence on peak
intensity patterns than the fragmentation method (Supple-
mentary Figure S3). This can be confirmed by correlating
observed spectra directly for each type. Indeed, observed
HCD-TMT spectra correlate slightly better with CID-TMT
spectra than with unlabeled CID peptide spectra. Ne v er-
theless, as both correlations are low, there was a need for a
specialized CID-TMT prediction model. The newly trained
CID-TMT model vastly outperforms current models with
a median PCC of 0.84 (Figure 1 ). 

CONCLUSION AND FUTURE PERSPECTIVES 

The use of machine learning-based predicti v e models for
analyte behavior has become an indispensable part of pro-
teomics, as is reflected by the number and popularity of
machine learning tools – including MS 

2 PIP – that have
been published in the past years ( 3 , 4 ). Among these tools,
the prediction of fragment intensities and peptide reten-
tion times hav e prov en highly valuable useful to improve
the confidence in peptide identification ( 9 ). While recently
many deep learning-based spectrum predictors have been
de v eloped, the use of the gradient tree boosting (XGBoost)
machine learning algorithm allows us to easily build accu-
rate prediction models for specialized use cases where less

art/gkad335_f1.eps
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raining data might be available. Additionally, MS 

2 PIP does 
ot r equir e graphical processing units and can be run on 

irtually any computer system. Ne v ertheless, with the up- 
ated MS 

2 PIP w e b server w e aim to make both MS 

2 PIP and
eepLC e v en more easily accessible to the entire proteomics 

ommunity. The updated MS 

2 PIP w e b server is the first to 

llow users to generate proteome-wide spectral libraries on- 
he fly directl y from a FASTA file and additionally provides 
re-built spectral libraries for ten model organisms. Fur- 
hermore, thanks to the addition of three new, highly perfor- 
ant peptide spectrum prediction models, MS 

2 PIP contin- 
es to support and push forward innovations in proteomics 
nd its various established and emerging subfields. 

A T A A V AILABILITY 

he MS 

2 PIP w e b serv er is freely availab le at https://
omics.ugent.be/ms2pip/ . The core library is open source, 
icensed under the permissi v e Apache-2.0 license, avail- 
ble as a package on PyPI, Bioconda, and BioContainers, 
nd hosted on https://github.com/compomics/ms2pip/ and 

ublished on https://doi.org/10.5281/zenodo.7669701 . All 
cripts for model training, evaluation, and figure generation 

re available on https://github.com/compomics/ms2pip/ 
ree/v3.11.0/manuscripts/2023/ . All training and evalua- 
ion data is available on Zenodo at https://doi.org/10.5281/ 
enodo.7669701 . The newly generated CID-TMT data is 
vailable from PRIDE with identifier PXD041002 ( https: 
/www.ebi.ac.uk/pride/archi v e/projects/PXD041002 ). 
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