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Abstract
The study of time-to-event data is essential in fields such as biology and medicine, particularly for improving
patient outcomes. For example it enables the evaluation of survival times in cancer patients or the duration
until a relapse occurs. In liver transplantation, which is crucial for treating end-stage liver diseases, the
increasing demand for grafts and the limited availability of donors have led to the use of extended criteria
donors. This approach, while addressing the graft shortage, also increases the risk of graft failure. Traditional
survival models are often insufficient for these high-risk scenarios and as a result, there is a critical need
for highly advanced models that can reliably predict the success or failure of transplantations under these
increasingly complex conditions. In parallel, a significant amount of data collected over recent years offers
valuable insights into graft failures and patient survival. This wealth of data has generated numerous
indicators, yet only a limited number are utilized in practice. Moreover, the diversity within the transplant
patient population has introduced a significant heterogeneity in the data, which must be carefully managed to
ensure accurate analysis and application. To effectively utilize this data, advanced statistical tools are needed.
The Cox proportional hazards model, a well-established method in survival analysis, can be instrumental in
this regard. This model and its extensions, such as mixture models or penalization techniques, provide robust
frameworks for predicting patient outcomes and understanding the factors influencing survival.
This article proposes a Deep Penalized Cox Mixture model (DPCM). The application of such a mixture of L1-
penalized Cox model to liver transplant data will enable us to simultaneously establish patient subgroups with
similar behavior and select the most relevant variables for determining survival time from the extensive data
available today. This approach not only enhances our understanding of the factors contributing to graft failure
but also improves the prediction of survival time for each patient within the entire population, ultimately
leading to better outcomes in liver transplantation. Moreover, our model delivers better results compared to
existing approaches that utilize only the mixture part or the penalty part, offering a more effective solution.
This approach aims to enhance decision-making and improve patient care in the context of liver transplanta-
tion.
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1 INTRODUCTION AND MOTIVATION

The study of time-to-event data is nowadays essential to the development of scientific disciplines such as medicine. In this
field, where predicting outcomes over time is vital, such analyses are crucial for improving patient care and treatment strategies.
Time-to-event data is indispensable for evaluating patient survival rates, or treatment effectiveness, ultimately guiding clinical
decision-making and improving outcomes. In this context, our focus will be on liver transplantation, which is currently the only
treatment to cure end-stage liver diseases.
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Some prognosis scores were developed to estimate patient survival and to sort and prioritize patients on the waiting list such
as the MELD/PELD score (Model for End-Stage Liver Diseases/ Pediatric End-Stage Liver Diseases)1, the D-MELD score
(Donor Age - Model for End-Stage Liver Diseases)2 and the DRI score (Donor risk index)3 to name but three.

For example, the MELD score1 is calculated using the values of serum bilirubin, serum creatinine, and INR (a measure of
blood coagulation) and is given by the formula: R = 9.57 × log(creatinine mg/dL) + 3.78 × log(total bilirubin mg/dL) + 11.2 ×
log(INR) + 6.43. These values —serum bilirubin, serum creatinine, and INR— are recognized as crucial indicators of liver
function. Elevated bilirubin reflects impaired liver processing, while an increased INR indicates reduced production of clotting
factors by the liver. Although creatinine primarily measures kidney function, its inclusion is relevant due to the impact of liver
disease on the kidneys. While these three indicators are essential for the MELD score, advances in medical diagnostics now
allow for the evaluation of additional factors that could provide a more complete picture of liver disease. Liver allocation is
currently based on the MELD score, since the United Network for Organ Sharing (UNOS) ‡ adopted and approved the MELD
score to allocate organs for patients awaiting liver transplantation in the United States in 2002.

However, for several years, the demand for transplants has been steadily increasing, while the number of available donors has
not kept pace proportionally, creating a shortage of grafts. This recent shortage of transplants has led to the use of expanded-
criteria donors4. To increase the number of donors, surgeons are resorting to the use of grafts from expanded criteria donors,
however this approach carries a higher risk of graft failure, and the models currently used in practice to evaluate patient survival
are not well-suited for these cases. This underscores the need for the creation of more performant models capable of better
predicting outcomes in such high-risk scenarios.

A notable advancement is the extensive accumulation of data over recent years, which is now available to enhance our
understanding of graft failures and to develop predictive models for patient survival using advanced statistical tools. Despite
this wealth of information, physicians and surgeons cannot utilize all the data real-time during transplantation procedures.
Therefore, a critical selection process is required to determine which data are most relevant for clinical decision-making. This
selection process can be significantly improved through the development of new survival models, which will aid physicians in
comprehending the patient populations they treat and identifying key factors that influence survival outcomes.

Indeed, the main challenge of survival analysis is to estimate and understand the time until the occurrence of an event of
interest, such as the survival time of a patient following surgery. There are numerous survival analysis methods available today
such as the Kaplan-Meier estimator5, random survival forests6, and parametric survival models7. Among all of them, Cox
proportional hazards model8 is the most frequently used survival estimation method for problems involving the presence of
covariates. This is explained by the robustness, flexibility and the explanability aspect of the model where the impact of the
covariates on the survival probability can be measured. Introduced by Cox D.R. in 19728, this semi-parametric model, estimated
by partial likelihood maximization9, allows to estimate the hazard risk of patient death. This model is particularly valued for
its ability to handle censored data without assuming a specific baseline hazard function, making it highly versatile in various
applications.

Since then, this model has been extensively studied, and numerous extensions have been made to improve its performance.10.
In our research, we are particularly interested in the modeling of groups of patients that are inherently heterogeneous—due to

variations in factors such as age, gender, ethnicity, physical condition, and medical history. This variability needs to be carefully
considered in the modeling process. One simple method method would be to manually create subgroups of patients and apply
separate models to each. However, this approach is not optimal, as it is difficult to objectively determine which criteria —such as
age, medical history, or donor type— should define the subgroups. A more robust solution is to allow the model to automatically
detect these subgroups, eliminating the bias of manual selection. Mixture models11 offer a particularly powerful framework for
this, as they enable the model to identify distinct subgroups and capture the complex relationships between patient characteristics
and survival outcomes.

The mixture of Cox models was introduced by Rosen et al.12. The approach has been further developed and refined, offering
a robust framework for handling heterogeneous data in survival analysis. The most recent advancements include the work by
Nagpal, et al.13, which leverages deep learning techniques to enhance the flexibility and accuracy of these models. Additionally,
Ng et al.14 provide comprehensive insights and methodologies related to mixture modeling in the medical field, offering a
thorough foundation for applying these models in practice.

The second challenge identified in our study on liver transplantation is managing the extensive amount of patient data available.
In clinical practice, it is neither feasible nor realistic for physicians to consider all variables in real-time decision-making, and

‡ https://unos.org/
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including too many variables in a model can lead to overfitting, which compromises the accuracy of the results15. To address this
issue, we focus on reducing the dimensionality of the data while ensuring that the model remains interpretable for clinicians. This
is achieved through the application of an L1 penalty, which forces some model parameters to zero when they are not significant,
allowing us to reduce the dimensionality without sacrificing the model interpretability.

The penalized Cox model, incorporating the L1 penalty, represents therefore a key extension of the traditional Cox model,
particularly following the development of LASSO regression. Tibshirani’s seminal paper16 introduced the application of the L1

penalty to the likelihood function of the Cox model. Since then, new methods for estimating the penalized Cox model have
emerged, incorporating more advanced optimization algorithms. Notable contributions include the optimization improvements
by Goeman17 and Simon et al.18. These developments significantly enhance the practicality and effectiveness of penalized Cox
models in handling high-dimensional data, making them particularly valuable for our application.

To further improve modeling, there is a need to simultaneously identify patient subgroups and determine the most relevant
features for these groups. Integrating the mixture of Cox models with an L1-penalty addresses this need by uncover distinct
patient groups and select important features. Such a model holds great potential for real-world applications by addressing
multiple challenges simultaneously and represents a significant advancement, as demonstrated by Webb et al.19, who explored
the benefits of combining these methodologies. However, their work was limited to only two subgroups and fixed the number of
components, which highlights the potential for further exploration and flexibility in applying these methods. This limitation
presents an opportunity for improvement, for which the model proposed in this article serves as a solution.

In liver transplantation, adopting such a model could have substantial clinical benefits. It could reveal previously unknown
subgroups of patients who exhibit similar behaviors but are not yet identified by current medical practices. Additionally, the
model could uncover new factors that influence patient survival post-transplant, providing insights beyond the existing organ
allocation criteria. By better understanding these new subgroups and their characteristics, the model could enhance donor-
recipient matching and improve care at transplantation centers, ultimately leading to better-targeted interventions and improved
transplant outcomes.

The remainder of this paper is structured as follows: After an overview of the background on the Cox proportional hazards
model and its extension to the mixture case in Section 2, our proposed inference process, named Deep Penalized Cox Mixture
(DPCM) is presented in Section 3. Then, in Section 4, DPCM is compared to competitors on a set of benchmarks, and finally in
Section 5 on the Scientific Registry of Transplant Recipients (SRTR) § database to interpret the results on liver transplantation.
The paper concludes with a discussion of the findings and explores their implications as well as potential future research
directions based on the results.

2 BACKGROUND

In survival analysis, the goal is to predict the time until an event occurs, such as the survival time of patients. When we have
additional information or covariates—such as age, treatment type, or biological factors—it is crucial to incorporate them into
the model. To achieve this, we turn to the Cox proportional hazards model, a powerful and widely recognized tool specifically
designed to assess the impact of covariates on survival time. In this section, we detail the mathematical tools required to build
the Cox model (Section 2.1), followed by its extension to Cox mixture models (Section 2.2) and a non-linear variant (Section
2.3). These concepts are essential for understanding the inference of the Deep Cox Mixture model using the DPCM method
presented in Section 3.

2.1 The Cox proportional hazard regression

The Cox regression8 is a semi-parametric model used to design the occurrence of events (such as the death of a patient) over
time, as a function of covariates. The survival time (the duration from a starting time t0 until the event of interest occurs) is
modeled by the hazard function λ as:

λ(t, X) = λ0(t) exp(βTX),

§ https://www.srtr.org/
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where t ∈ R+ is the time, X ∈ Rp the vector of covariates, β ∈ Rp the vector of regression coefficients and λ0(t) is the so-called
baseline hazard function (i.e. the hazard function of event when all covariates are zero). In the semi-parametric setting, no
specific form is assumed on λ0(t).

The hazard function λ is directly linked to the survival function S, which represents the probability that an individual survives
beyond time t, with the following relation:

f (t|X) = λ(t, X)S(t|X),

where f (t|X) is the probability density function of the random variable T , which represents the time until the event occurs for an
individual with covariates X.

Moreover, survival data can be subject to right-censoring. Censoring occurs when the exact date of death is unknown. In such
cases, the date of the last follow-up is used to calculate the survival time instead of the date of death, indicating that the patient
was known to be alive up until that date, after which information is no longer available. We denote by δi the censoring indicator
associated with each individual’s survival time (δi = 0 if the individual is censored, 1 otherwise).

Based on the observation of a sample (X1, . . . , Xn, δ1, . . . , δn), the estimator β̂ is obtained by maximizing the log-likelihood ℓ:

ℓ(β, X1, . . . , Xn, δ1, . . . , δn) =
n∑

i=1

f (ti|X)δi S(ti|Xi)1–δi ,

corresponding respectively to the the survival function for censored individuals (δi = 0) and the density function for uncensored
individuals (δi = 1).

Once the parameter of the hazard risk function have been estimated, the probability of survival for the individuals can easily
be calculated by the relationship20:

S(t|X) = exp
(

– exp(βTX)
∫ t

0
λ0(u|X) du

)
.

Employing a single model for a population assumes homogeneity across individuals. Due to this assumption, the practice is
typically to pre-select homogeneous patient groups (based on criteria such as age or medical history). One way of overcoming
these difficulties is to use a mixture of Cox models14. This method accounts for patient heterogeneity by creating population
subgroups, and then the components of the mixture can be analyzed a posteriori to identify new criteria that define these
homogeneous groups.

2.2 Mixture of parametric Cox models

To study heterogeneity within individuals and identify population subgroups, a commonly used method is mixture modeling14.
We focus on a mixture with g ∈ N components. The survival function is expressed as the sum of the survival function Sh of each
component mixture multiplied by their respective proportions πh (h = 1, . . . , g):

S(t|X) =
g∑

h=1

πhSh(t|X).

The same applies to the density function f of the random variable T , expressed as the sum of the probability density function fh
of each component mixture multiplied by their respective proportions πh (h = 1, . . . , g) :

f (t|X) =
g∑

h=1

πhfh(t|X).

Since the hazard function is defined as the ratio between the density function f and the survival function S, the shapes of the
density functions of the mixture are easily found by the relation fh(t|Xt) = λh(t, X)Sh(t|X) .

As mentioned in Section 2.1, the baseline hazard function is generally unknown in the semi-parametric Cox model. However,
in certain cases, we can assume a specific form for λ0, based on a particular distribution or functional form. In this study,
focusing on patient lifetime data, we opt for a parametric approach by specifying the form of λ0. This choice simplifies the
model inference process, especially when dealing with mixture models, and allows for more straightforward estimation.

Assuming that the baseline hazard follows a Weibull distribution, the function can then be written as:

λ0(t) = lαtα–1,
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with l,α > 0.
Let Θ be the whole set of parameters to be estimated: Θ = (π1, . . . ,πg–1,βT

1 , . . . ,βT
g ,αT

1 , . . . ,αT
g , lT1 , . . . , lTg , ). The choice of

the form of λ0 is not restrictive since it allows us, with a Weibull distribution, to be for the baseline function either increasing
(when α > 1) or monotomous (when α = 1) or decreasing (when α < 1) according to the value of α. In this case, it allows the
real risk of patients after surgery to be correctly represented: Indeed the hazard function can be segmented into three overlapping
temporal phases. Initially, there is an early phase immediately following treatment where the risk is relatively high but gradually
declines. This is followed by a middle phase where the risk remains constant over time. Finally, a late phase occurs, during
which the risk of failure begins to rise slowly as the patient ages14.

2.3 Non-linear case

In the Cox model, the logarithm of the hazard function is explained as a linear function of the covariates. However, a non-linear
variant21 offers the potential to capture more complex relationships between predictors and survival outcomes. This non-linear
version enhances the model’s flexibility by introducing non-linear effects, allowing for a richer representation of the data that
may uncover patterns overlooked by linear models. The goal is to provide a deeper understanding of survival dynamics by
extending beyond the constraints of linearity, improving model performance and flexibility.

To capture non-linear relationships between the covariates and the survival outcome, the model21 uses transformations of the
covariates. For example, terms such as polynomial functions may be included. Let ϕ(βTXi) denote a non-linear transformation
of βTXi. The hazard function in this case can be expressed as:

λ(t, Xi) = λ0(t) exp
(
ϕ(βTXi)

)
.

The non-linear model used is the Deep Cox Mixture (DCM), which assumes a mixture of non-linear Cox models, integrates
a neural network to capture complex relationships in survival data. The introduction of non-linear effects leads to a loss of
interpretability, which may pose challenges when applying the model to real-world data. Understanding and interpreting the
results of non-linear models can be more delicate, requiring careful consideration of how these advanced techniques influence
the insights derived from the data.

3 INFERENCE OF THE DEEP COX MIXTURE MODEL

This section focuses on the inference of the linear model, drawing on methodologies utilized for the inference of the mixture
model14 and the penalized model17. By integrating concepts from both the mixture and penalized models, the DPCM inference of
the Deep Cox Mixture model will be presented. This approach represents a significant contribution to the field, as it simultaneously
addresses the challenges of clustering and variable selection within survival analysis. Given the clinical imperative to tailor
models for specific patient subgroups predictions while maintaining interpretability, thereby meeting a critical need in medical
research and practice (for example it is recognized that certain patients need customized models22 based on factors such as age
and donor type; however, the specific variables required for accurately predicting survival in these patients are still unclear).

The likelihood L of the mixture model (in the parametric case) can be rewritten as follows:

L(β, l,α, x, t, δ) =
n∏

i=1

f (xi, ti,β, l,α)δj S(xi, ti,β, l,α)1–δj , (1)

=
n∏

i=1

( g∑
h=1

πhfh(xi, ti,βh, lh,αh)

)δj
( g∑

h=1

πhSh(xi, ti,βh, lh,αh)

)1–δj

, (2)

where (x, t, δ) = (x1, . . . , xn, t1, . . . , tn, δ1, . . . , δn) represents the set of individuals with their respective lifetimes and censoring
indicators and (β, l,α) = (β1, . . . ,βg, l1, . . . , lg,α1, . . . ,αg) the set of parameters according to each component of the mixture
model.

In high dimensional survival analysis, the standard Cox proportional hazards model can encounter challenges when the number
of covariates is large, even if it does not exceed the number of individuals. To enhance model performance and facilitate variable
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selection, penalization techniques, such as the L1-penalty16, are employed. The penalized Cox model16 improves interpretability
and reduces the risk of overfitting by focusing on a manageable number of covariates.

Dimension reduction is also crucial for this study, as it addresses the abundance of variables and enhances model interpretability.
Given that this work is aimed at a clinical and medical audience, maintaining the interpretability of the results is essential. Thus,
dimension reduction methods that alter the nature of the variables, such as PCA, are not appropriate. Instead, the L1-penalty is
preferable to select the most relevant variables for survival estimation.

When the number of covariates is large, we aim to reduce their number while maintaining the interpretability of the results.To
do this, following the approach of Goeman17, a L1-penalty is applied to the log-likelihood function of the Cox mixture model.
The penalized log-likelihood ℓpen can then be written as follows:

ℓpen(β, l,α, x, t, δ) =
n∑

i=1

[δi log(
g∑

h=1

πhfh(xi, ti,βh, lh,αh)) + (1 – δi) log(
g∑

h=1

πhSh(xi, ti,βh, lh,αh))] – η

g∑
h=1

p∑
j=1

|βj
h|. (3)

where the strength of the penalty is determined by the η ≥ 0 parameter.
Note that a decision was made to apply a single penalty term across all components of the mixture model. This means that the

penalty term will have the same value for each component, regardless of differences between them. This choice was made to
reduce model complexity and will be discussed in Section 6.

The model parameters Θ = (π1, . . . ,πg–1,βT
1 , . . . ,βT

g ,αT
1 , . . . ,αT

g , lT
1 , . . . , lT

g , ) are estimated by maximizing the penalized
log-likelihood (3).

Given our focus on the parametric case, all the model parameters are estimated by maximum likelihood using an Expectation-
Maximization (EM) algorithm, as the presence of a mixture makes direct analytical maximization impossible. Therefore the EM
numerical algorithm is particularly well-suited for this context. The EM algorithm iteratively alternates the two following steps:
the E-step, which involves calculating the conditional expectation of the complete likelihood ℓc,pen given the observed data, and
the M-step, which maximizes this conditional expectation with respect to the model parameters. This process is repeated until
the likelihood converges.

A latent binary variable Zih is introduced, where Zih = 1 if individual i belongs to class h, and 0 otherwise. The penalized
complete log-likelihood of the Deep Cox Mixture model can then be written as follows:

ℓc,pen(β, l,α, x, t, δ, Z) =
n∑

i=1

g∑
h=1

Zih[δi log(πhfh(xi, ti,βh, lh,αh)) + (1 – δi) log(πhSh(xi, ti,βh, lh,αh))] – η

g∑
h=1

p∑
j=1

|βj
h|. (4)

(E-step) Let E(Zih|x, t, δ) = τih , representing the conditional expectation of Zih. The E-step consists of calculating the probability
for an individual i to belong to the h component of the mixture model, as part of the conditional expectation of the penalized
complete likelihood ℓc,pen. The formula for τih can be expressed as follows:

τih =
(1{δ=1}fh(xi, ti,βh, lh,αh) + 1{δ=0}Sh(xi, ti,βh, lh,αh)) × πh∑g

l=1(1{δ=1}fl(xi, ti,βl, ll,αl) + 1{δ=0}Sl(xi, ti,βl, ll,αl)) × πl
. (5)

(M-step) Updating the parameters (π1, . . . ,πg–1) at iteration k is classically done by:

π(k+1)
h =

n∑
j=1

τ (k)
ih

n
, ∀h ∈ {1, . . . , g}, (6)

Due to the presence of the absolute value of βj
h in Formula (3) the likelihood presented here is not differentiable at all points. In

contrast, the other parameters, α and l, are not affected by this issue. Consequently, it becomes necessary to define a directional
derivative17 specifically for βj

h. The directional derivative is written as follow:

ℓ′pen(β, l,α, x, t, δ; v) = lim
t→0

1
t

((ℓpen(β + tv, l,α, x, t, δ) – (ℓpen(β, l,α, x, t, δ)), ∀v ∈ Rp.

Let us note vopt the optimal direction that maximizes ℓ′pen(β, l,α, x, t, δ; v), then the gradient g can be define as:

g(β) =
{
ℓ′pen(β, l,α, x, t, δ; vopt)vopt if ℓ′pen(β, l,α, x, t, δ; vopt) ≥ 0,
0 otherwise.
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Finally, the gradient g(β) can be define for each component h = 1, . . . , g of the mixture from the unpenalized log-likelihood
gradient h(β) such as:

gj(βh) =


hj(βh) – ηsign(βj

h) if βj
h ̸= 0,

hj(βh) – ηsign(hj(βh)) if βj
h = 0 and |hj(βh)| > η,

0 otherwise.
,

where hj(βh) =
∂ℓ(βj

h, lh,αh, x, t, δ)

∂βj
h

.

The update is so performed using the gradient ascent algorithm on each component of the mixture during the M-step of the
EM algorithm. The update for βh at step k + 1 is given by:

β(k+1)
h = βh + ρ g(β(k)

h )

where ρ ∈ R is the learning rate of the gradient ascent (this parameter controls the step size during updates and can significantly
affect convergence speed and stability. It is typically chosen through tuning methods, making it a hyperparameter of the method).

When it comes to the parameters (α(k+1)
h , l(k+1)

h ), the update is done by maximizing the log-likelihood function, i.e. by cancelling
its gradient. After calculation and in the case where the baseline function follows a Weibull distribution, the new values of
(α(k+1)

h , l(k+1)
h ) are obtained by solving the following non-linear system:

∑n
i=1 τ

(k)
ih

(
δi

l(k)
h

– exp
(

xT
i β

(k+1)
h

)
l(k)
h tα

(k)
h

i

)
= 0,

∑n
i=1 τ

(k)
ih

(
δi

α(k)
h

+ δi log(ti) – exp
(

xT
i β

(k+1)
h

)
l(k)
h tα

(k)
h

i log(ti)

)
= 0.

This non-linear system does not have an analytic solution, so in practice, numerical optimization algorithms are employed to
find an approximate solution.

The algorithm stopping criterion is defined as the relative change in the penalized log-likelihood being less than a predefined
threshold, typically set at 0.001. Initialization is performed using random values for each parameter of the model. Convergence
properties explain the necessity of multiple initializations, as the EM algorithm can converge to different local optima based
on initial values. To mitigate this, the algorithm is run multiple times with different initializations values (ypically run 10 to
20 times). The number of groups is chosen based on the optimization of the selected evaluation metric (specific details on the
evaluation metric provided in Section 4).

The same DPCM inference technique with the EM algorithm can be applied to non-linear Cox regression, as it follows a
similar approach to the linear case, with the primary difference being the last system of equations that needs to be solved. In the
non-linear case, the system is adapted to accommodate the additional complexity introduced by non-linear transformations, and
we employ a neural network to model these non-linear effects. Despite these changes, the same type of numerical algorithm is
used to optimize the parameters, ensuring consistency in the inference process.

4 APPLICATIONS

The Deep Penalized Cox Mixture method presented in the previous section enables innovative and promising studies to be
carried out in the medical field. In this section, the first part will be devoted to the evaluation of the model on a benchmark of
known, open-access health datasets, while the second part will focus on the analysis of the model results on data provided by
the SRTR and targeting patients who have undergone liver transplantation in the past few years. The implementation of the
inference algorithm was done by extending the code developed by Nagpal et al. for the Deep Cox model13. It is important to
note that the available code for the Deep Cox model13 provides an implementation where both linear effects (as in the classic
Cox model) and non-linear effects (corresponding to their DeepCox model) can be considered. Starting from their code, we
modified it in order to incorporate an L1 penalization into the inference.
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Protocol
To evaluate the performance of the DPCM method across various datasets, we performed 10 estimations of the model parameters
for each configuration. The dataset was split into 60% for training, 20% for validation, and 20% for testing. Four models are
evaluated:

1. CPH : Standard Cox proportional hazards model (i.e., with a single mixing component and no penalty)8.
2. Mixture CPH : Mixture of Cox models14 (without penalization), with k the number of components h ∈ {2, 3} (will be

extended to 5 for application to liver transplantation).
3. Penalized CPH : Penalized Cox model17 (without mixture) with the penalty hyperparameter η acrossing the following

values: η = {0, 0.001, 0.1, 0.5, 1, 10, 100}.
4. DPCM : Our proposed Deep Penalized Cox Mixtures inference technique, with variations in both the number of components

k and the penalty hyperparameter α in the same range as above.

For all models, the learning rate was tuned between the two values: {1e – 3, 1e – 4}.
Additionally, we extended the evaluation of the four previous model cited above to a non-linear framework as mentionned in

Section 2.3 to assess its robustness and effectiveness. For this purpose, we employed the same methodology as described above,
with the inclusion of a neural network layer. The neural network configurations included two variations of the number of layers:
(i) with a single hidden layer containing 100 units, (ii) with two hidden layers, each containing 100 units. The learning rate for
these models remained consistent with the aforementioned values.

Evaluation metric
To evaluate the model’s performance on each of these datasets, the integrated Brier score23 was used as our metric. Indeed, the
Brier score allows to evaluate the accuracy of a predicted survival function at a given time t; it represents the average squared
distances between the observed survival status and the predicted survival probability. It is an extension of the mean squared error
to censored data, whose formula is shown below:

BS(t) =
1
N

N∑
i=1

(1(ti > t) – S(t, xi))2

where 1(ti > t) is the indicator function taking a value of 1 if the individual i is still alive at time t (i.e. (ti > t)) and 0 otherwise.
The Integrated Brier Score (IBS) is an extension of the Brier score, which is calculated by integrating the time-dependent

Brier Score BS(t) over the interval [t1; tmax] where t1 is the starting time of interest (usually 0) and tmax s the maximum follow-up
time, and using the weighting function w(t) = t

tmax
:

IBS =
∫ tmax

t1
BS(t)dw(t) =

1
tmax

∫ tmax

t1
BS(t)d(t) (7)

The integral in Formula (7) typically lacks an analytical solution and is therefore usually computed through numerical approx-
imation methods, such as Simpson’s rule. Thus, minimizing the IBS leads to optimize the model selection. Additionally, it
provides the selection rates of variables for penalized methods and the number of components for mixture models.

4.1 Benchmark study

This section introduces the benchmark datasets used to evaluate the performance of the different models cited above. These
datasets provide a diverse and robust foundation for assessing the model’s accuracy and reliability. By benchmarking our
approach against these datasets, we aim to demonstrate its effectiveness in various scenarios and establish a standard for
comparison with other models.

4.1.1 Datasets presentation

Three benchmark data sets are considered:
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• PBC dataset: This data set come from a Mayo Clinic trial conducted between 1974 and 1984, involving 424 patients with
Primary sclerosing cholangitis (PSC) who participated in a randomized, placebo-controlled trial of the drug D-penicillamine.
PSC is an autoimmune disease that progressively destroys the small bile ducts in the liver, leading to cirrhosis and liver
decompensation over time. The PBC dataset consists of 1,945 individuals and 20 variables.¶

• Framingham dataset: The Framingham Study aims to investigate the incidence and prevalence of CardioVascular Disease
(CVD) and its risk factors, trends over time, and familial patterns. Additionally, it seeks to estimate disease incidence rates and
describe the natural history of CVD, including the sequence of clinical signs before it becomes clinically recognizable and
the progression of the disease once it manifests. The data set includes information from the first 32 clinical exams, selected
ancillary data, and event follow-up through 2018. The Framingham dataset consists of 11,627 individuals and 29 variables.#

• SUPPORT dataset: This dataset originates from a Vanderbilt University study aimed at estimating survival for seriously ill
hospitalized adults. It is a random sample of patients drawn from Phases I & II of the SUPPORT study (Study to Understand
Prognoses, Preferences, Outcomes, and Risks of Treatment). The SUPPORT dataset consists of 9,105 individuals and 24
continuons and categorical variables. After binarization of the categorical variables, the total number of variables increases to
38.∥

4.1.2 Results

Table 1 presents the IBS results (average and standard deviation over the 10 training/validation/test sampling) for the four models
cited in Section 4.

As we are currently working the estimation of a penalized mixture of Cox models, it involves significant computational costs.
Detailed running times for the experiments conducted are therefore presented in Appendix A.

Regarding the results on the PBC dataset, the impact of penalization on the IBS score stands out as the most significant among
the experiments. This can likely be explained by the small number of patients in this dataset, making dimension reduction a
particularly important step. The limited sample size necessitates careful variable selection, which is effectively achieved through
penalization, leading to improved model performance in this context.

Examining the results in Table 1, we observe that the DPCM method consistently achieved better IBS scores across all
datasets: for example with the PBC dataset, in the standard Cox model the IBS score was 0.1605± 0.0297, and with penalization
this improved to 0.1520 ± 0.0220. Further enhancements were observed with the addition of penalization and mixture in the
linear model, resulting in scores of 0.1428 ± 0.0198. When it comes to a non-linear framework using neural network layers, the
performance significantly improved, with scores values of 0.1373 ± 0.0251, 0.1335 ± 0.0254, and 0.1254 ± 0.0199, respectively.
Using the standard Cox model as a baseline, the results clearly demonstrate the importance of incorporating both penalization
and clustering techniques to enhance the model performance.

In contrast, the limited impact of penalization on the IBS score for the Framingham dataset can be attributed to the relatively
small number of variables compared to the large number of individuals. This also explains why the variable selection percentage
is nearly 100%. In this context, the addition of clustering appears to have a more significant effect. The IBS score improves from
0.1026 ± 0.0033 in the linear baseline Cox model to 0.1020 ± 0.0034 with penalized mixture CPH. Further enhancement is
observed in the non-linear models, where the score improves from 0.1005 ± 0.0032 to 0.0998 ± 0.0033, demonstrating the
significant impact of clustering in this context. Finally, the results on the SUPPORT dataset are particularly interesting, as they
demonstrate the model’s effectiveness in handling categorical data. The dataset includes six categorical variables that were
one-hot encoded, and the results show that both penalization and clustering contribute to improvements in the IBS score. This
indicates that the model performs well even with categorical predictors, highlighting its versatility across different types of data.

5 APPLICATION TO LIVER TRANSPLANT DATA

Following the results of our benchmark study, which examined various models using real-world data, attention is now directed
toward to a more specific application. This section examines liver transplant data, focusing on its unique features and how they
affect outcome modeling.

¶ Refer to https://paperswithcode.com/dataset/pbc for the original datasource.
# Refer to https://clinicaltrials.gov/study/NCT00005121 for the original datasource.
∥ Refer to http://biostat.mc.vanderbilt.edu/wiki/Main/SupportDesc. for the original datasource.
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5.1 SRTR Database

To apply the DPCM method to liver transplantation outcomes, the Scientific Registry of Transplant Recipients (SRTR)∗∗

database was utilized. The SRTR is a comprehensive database managed in the United States, collecting and analyzing data on
organ transplantation nationwide. It serves as a critical resource for monitoring transplant outcomes and improving clinical
practices. This study specifically focuses on liver transplantation data extracted from the SRTR, providing a robust foundation
for analyzing pre- and post-transplant variables and outcomes.

This section focuses on the analysis conducted using this data, specifically examining transplantations that occurred between
2020 and 2022. This timeframe was chosen to ensure the relevance of the data by reflecting recent advancements in medical
techniques and practices. The decision to focus on this period also helps in managing the size of the dataset effectively. Despite
this, the selected timeframe provides valuable insights, particularly since recent studies24,25 highlight the importance of survival
rates at one, two, and three years post-transplant. Thus, even though our follow-up period extends to only four years, the data
remains highly relevant to current clinical interests. The resulting dataset comprises a total of 17,064 individuals, providing a
substantial sample for analysis.

In terms of variable selection, the analysis concentrated exclusively on pre-transplantation variables pertaining to the candidates,
donors, and the preservation of the organs. Variables that directly provided the Model for End-Stage Liver Disease (MELD)
score were excluded from the analysis to avoid redundancy and potential biases. However, the biomarkers that contribute to the
calculation of the MELD score were retained to ensure that essential clinical information was preserved. This approach yielded a
set of 116 continuons and categorical variables prior to encoding, which expanded to 881 variables after the encoding process
was completed. Missing values in the dataset were addressed using single imputation: numerical variables were filled with the
mean of the corresponding covariates, while categorical variables were replaced with the most frequent modality.

This careful selection and preparation of the dataset were undertaken to ensure the robustness and relevance of the subsequent
analyses, providing a strong foundation for the exploration of the proposed models within a controlled and well-defined context.

Linear
CPH 0.0376 ± 0.0032

Penalized CPH
0.0374 ± 0.0031

rate var selected: 78.58% ± 17.32

Mixture CPH
0.0363 ± 0.0030

nb comp selected: 3 ± 0.6324
0.0361 ± 0.0030

DPCM rate var selected: 24.68% ± 35.25
nb comp selected: 2.8 ± 1.0

T A B L E 2 IBS for the SRTR Database: Linear Cox Models, Trained 10 Times, Showing Mean and Standard Deviation. The
baseline Cox Proportional Hazards Model (CPH) is compared with the Mixture of Cox Proportional Hazards Model (Mixture
CPH), Penalized Cox Proportional Hazards Model (Penalized CPH), and our proposed Deep Penalized Cox Mixtures inference
technique (DPCM) .

5.2 Protocol and results

The experimental protocol for this analysis follows the previously established approach, with the exception of excluding the non
linear models to enhance explicability and interpretability within the clinical and medical context. Moreover, the number of
components tested for these data was increased going from 1 to 5, thus enabling a more precise clustering of the population. The
results, as shown in Table 2 , demonstrate strong reliability for the DPCM inference technique, achieving an average integrated
Brier score of 0.0361, which is lower than its competitors.

∗∗ https://www.srtr.org/
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5.3 Interpretation of results

We now turn our attention to DPCM method (with h = 2 components). This model enables detailed analysis of the various
variables in the data and the individuals grouped within the identified clusters.

While the number of components might be unexpected given the known heterogeneity of the population (one might have
expected more groups) it may be explained by the relatively small number of patients included in the dataset, as we are working
with only two years of transplantation data (representing 9,5% of the total number of patients in the database). Furthermore, the
small representation of identified subgroups in the data, such as children—for whom we know the donor/recipient matching
process cannot be handled in the same way as it is for adults26 and who only represent 4.3% of the entire dataset population—may
also have contributed to the selection of fewer components. The small number of children might be insufficient to have justified
creating a distinct subgroup for them.

F I G U R E 1 Evolution of weight of SRTR variables according to η

Analyzing the selected variables is then essential for the clinical field, as it helps in understanding the factors influencing the
success and failure of graft transplantation. The graph presented in Figure 1 illustrates the evolution of variables weight in the
model as the η values increase. This analysis is crucial because it not only deepens our understanding of why graft failures occur
but also helps us identify key factors that contribute to both the success and failure of transplantation. Moreover, it confirms
that the model behaves as expected by penalizing the weight of variables as η increases. These insights are vital for improving
survival rates after transplantation, as they are not currently considered in the MELD score.

Notably, some of these variables, such as candidate’s bilirubin creatinine or sodium, are identical to those used in calculating
the MELD score, which is currently employed in clinical practice. Additionally, variables like SGOT (glutamic-oxaloacetic
transaminase) provide information about the immunological status of patients, which is critical for donor-recipient matching
during transplantation.

These findings validate the DPCM method by confirming existing knowledge within the medical community, indicating that the
model’s predictions are consistent with established practices. Furthermore, the study introduces novel elements by highlighting
variables about ischemia time (warm and cold), which are linked to the preservation conditions during the transplantation process.
These variables are not typically considered in current survival time evaluations but are known to be crucial during operations.
Our study thus proposes a statistical model that incorporates both traditional factors, such as the MELD score, and new variables
related to organ preservation, offering a more comprehensive approach to predicting patient survival.
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6 PERSPECTIVES

In this study, we investigated various Cox models, highlighting the significance of incorporating both population heterogeneity
and penalization techniques. Accounting for heterogeneity in Cox models provides a deeper insight into survival data by
identifying distinct subgroups with diverse risk profiles. This approach is essential for real-world scenarios, where patient
populations are typically heterogeneous. By capturing and modeling these variations, we can achieve more precise and tailored
survival predictions, enhancing the practical value of the models.

Additionally, integrating penalization techniques into the Cox framework presents notable benefits, particularly in handling
high-dimensional data. Penalization helps reduce dimensionality, which is especially beneficial for identifying the most relevant
variables in health-related datasets, where practitioners such as doctors or surgeons need to focus on a manageable set of
predictors. Effective variable selection ensures that the models provide actionable insights without overwhelming clinicians with
excessive information.

The combination of addressing heterogeneity and applying penalization represents a significant advancement in survival
analysis. This dual strategy not only enhances predictive accuracy but also improves model interpretability and robustness.
The flexibility of the DPCM method in adapting to different population structures and managing extensive predictor sets
makes it particularly valuable for analyzing transplantation data. The findings of this study highlight the importance of these
methodologies and support their continued development and application in understanding complex survival outcomes in the
context of transplantation.

However, there are additional aspects that warrant further exploration. One area is the development of a penalization strategy
that varies depending on the components of the mixture model, which could enhance model accuracy while maintaining
interpretability. To achieve this, the penalization term should be made dependent on the components of the mixture model. This
would allow for varying penalty strengths across different subgroups of the population, potentially leading to more precise
results. However, this approach would significantly increase computational costs, as the optimization process would become
more complex—requiring the determination of both the optimal number of components and the appropriate penalty factor
for each. While this is a promising avenue for exploration it will be crucial to carefully plan how to manage the increased
computational demands.

Additionally, while accounting for population heterogeneity is crucial for our model, the current method requires manual
analysis of the identified subgroups to understand why each patient belongs to a specific cluster. This manual process is vital
for predicting the survival time of new patients, as we must determine their appropriate cluster before applying the model. A
significant advancement would be to develop a model that also predicts the subgroups for new patients as part of the inference
process, rather than relying on subjective assignment. To achieve this, attention should focus on mixture of experts models27,
where the assignment of individuals to groups depends on their covariates. Such a model would simplify the prediction process
and enhance the practical utility of our approach.

Another critical issue is the handling of missing data within the model, an aspect that is often encountered in clinical
datasets. Addressing missing data is essential, as it can lead to biased estimates, reduced statistical power, and weakened
model performance if not properly managed. In survival analysis, the naive approach of replacing missing values with a single
imputation, such as the mean, can introduce bias, causing parameter estimates to shrink toward zero28. To overcome these issues,
more advanced methods like multiple imputation29 or techniques that incorporate the prediction of missing values during model
inference should be utilized. Specifically, in our case, handling missing data within the EM algorithm by treating them as hidden
variables to be estimated is an interesting approach. This method could significantly enhance the model’s performance and
would be especially useful in clinical settings where doctors may not have complete information about a patient but still need to
predict survival time before transplantation.

In conclusion, the integration of mixture Cox models with L1 penalization presents a powerful framework for analyzing
complex survival data, particularly in the context of liver transplantation. While these advancements offer significant potential,
addressing challenges such as component-specific penalization, mixture of experts, and the handling of missing data is crucial for
further improving model accuracy and applicability. By refining these methods, we can enhance the predictive power and clinical
relevance of survival models, ultimately contributing to better patient outcomes in transplantation and other medical fields.
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APPENDIX

A COMPARAISON OF RUNNING TIMES

This appendix presents the running times for each of the models discussed in the main paper.

PBC Framingham SUPPORT SRTR
CPH (Linear) 1m 29s 10m 28s 4m 53s 26s

CPH (Non-Linear) 3m 1s 27m 3s 12m 34s N/A
Penalized CPH (Linear) 9m 31s 52m 27s 31m 40s 25m 34s

Penalized CPH (Non-Linear) 17m 38s 2h 2m 6s 1h 12m 37s N/A
Mixture CPH (Linear) 3m 7s 24m 13s 14m 42s 30m 26s

Mixture CPH (Non-Linear) 6m 9s 36m 6s 41m 7s N/A
DPCM (Linear) 21m 36s 2h 28m 35s 1h 44m 17s 208m 14s

DPCM (Non-Linear) 1h 1m 40s 4h 17m 7s 4h 24m 26s N/A

T A B L E A1 Running times for each datasets (PBC, Framingham, SUPPORT, SRTR): Trained 10 times on linear and non-
linear baselines for Cox Proportional Hazards Model (CPH), Mixtures of Cox Proportional Hazards Model (Mixture CPH),
Penalized Cox Proportional Hazards Model (Penalized CPH), and Deep Penalized Cox Mixtures model (DPCM).

From details in Table A1 models incorporating penalization or mixture components consistently show longer training times
compared to their basic counterparts. For example, Penalized Mixture CPH models generally require the most time to train, due
to the increased computational complexity associated with both penalization and the mixture components.

Non-linear models tend to have longer running times than their linear counterparts. This is evident across all datasets, where
non-linear versions of both basic and penalized models take significantly more time to compute.

For smaller datasets like PBC, the difference in running times between linear and non-linear models is notable, with non-
linear models often taking approximately twice as long. For larger datasets such as SUPPORT, the time differences are more
pronounced, with non-linear and penalized models extending training times to several hours.

The analysis of running times highlights a consistent trend across all datasets: penalized models and non-linear configurations
generally require more time to train compared to their non-penalized and linear counterparts. This can be largely explained by
the extensive range of penalty terms tested (η = {0, 0.001, 0.1, 0.5, 1, 10, 100}), which introduces additional complexity into the
training process. Furthermore, the limited number of mixture components tested ( k = {2, 3}) may have restricted the models’
potential complexity compared to configurations with higher numbers of components.

The faster times observed for the SRTR database can be attributed to the use of only a portion of the complete dataset,
suggesting that training times would be substantially longer if the entire database were utilized.
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