
HAL Id: hal-04745701
https://hal.science/hal-04745701v1

Preprint submitted on 21 Oct 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Approximation Algorithms for Scheduling with/without
Deadline Constraints where Rejection Costs are

Proportional to Processing Times
Olivier Beaumont, Rémi Bouzel, Lionel Eyraud-Dubois, Esragul Korkmaz,

Laércio Lima Pilla, Alexandre van Kempen

To cite this version:
Olivier Beaumont, Rémi Bouzel, Lionel Eyraud-Dubois, Esragul Korkmaz, Laércio Lima Pilla, et al..
Approximation Algorithms for Scheduling with/without Deadline Constraints where Rejection Costs
are Proportional to Processing Times. 2024. �hal-04745701�

https://hal.science/hal-04745701v1
https://hal.archives-ouvertes.fr


1

Approximation Algorithms for Scheduling
with/without Deadline Constraints where Rejection

Costs are Proportional to Processing Times
Olivier Beaumont, Rémi Bouzel, Lionel Eyraud-Dubois, Esragul Korkmaz,

Laércio Lima Pilla, Alexandre Van Kempen

Abstract—We address two offline job scheduling problems,
where jobs can either be processed on a limited supply of energy-
efficient machines on the edge, or offloaded to an unlimited supply
of energy-inefficient machines on the cloud (called rejected in our
context). The goal is to minimize the total energy consumed in
processing all tasks. We consider a first scheduling problem with
no due date (or deadline) constraints, and we formulate it as a
scheduling problem with rejection, where the cost of rejecting a
job is directly proportional to its processing time. We introduce
a novel 5

4
(1 + ε) approximation algorithm BEKP by associating

it with a Multiple Subset Sum problem for this version. Our
algorithm is an improvement over the existing literature, which
provides a ( 3

2
− 1

2m
) approximation for scenarios with arbitrary

rejection costs. In the second scheduling problem, jobs have due
date (or deadline) constraints, and the goal is to minimize the
weighted number of late jobs. In our context, if a job is late, it is
offloaded (rejected) to an energy-inefficient machine on the cloud,
which incurs a cost directly proportional to its processing time of
the job. We position this problem in the literature, and introduce
a novel (1 − (m−1)m

mm
)-approximation algorithm MDP for this

version, where we got our inspiration from an algorithm for the
interval selection problem with a (1 − mm

(m+1)m
) approximation

ratio for arbitrary rejection costs. We evaluate and discuss the
effectiveness of our approaches through a series of experiments,
comparing them to existing algorithms.

Keywords: Scheduling with rejection, computing continuum,
approximation algorithm, energy minimization

I. INTRODUCTION

CLOUD computing has been a central topic of research
for decades, with studies revealing the trade-offs involved

in offloading computational tasks to machines hosted in dis-
tant datacenters [1]. To address these challenges, fog and
edge computing infrastructures have been introduced, placing
computing and storage resources closer to end-users [2]. By
positioning resources at the network edge, these infrastruc-
tures help reduce latency and alleviate network congestion,
as data can be processed locally before being sent to the
cloud. Harnessing cloud, edge, and fog computing resources
enables the creation of a unified infrastructure that optimizes
these resources usage across all layers. So-called computing
continuum systems [3] can provide optimal balance between
resource utilization and performance by dynamically allocat-
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ing computations to the most appropriate resource within this
continuum.

Beyond improving efficiency, such computing continuum
systems offer opportunities for better energy management by
exploiting their geo-distributed nature. Computing resources
located at the network edge allow for the reuse of energy,
particularly in the form of heat, in areas where it is needed.
For example, some providers, like Qarnot Computing1 [4],
deploy computing units in water boilers, generating hot water
for heating networks, swimming pools or facilities while
running computations. This approach significantly reduces
energy waste by eliminating the need for cooling infrastructure
and lowering carbon emissions. However, there might not
be enough of these energy-efficient edge resources for large
computations, necessitating the offloading of excess workloads
to more conventional, less energy-efficient cloud providers
when necessary.

This paper draws inspiration from such architectures, where
computational tasks can either be sent to a limited set of
energy-reusing edge resources or to a more abundant pool of
high-carbon-footprint resources in traditional datacenters. The
challenge lies in job scheduling, specifically in deciding which
jobs to reject from the energy-efficient resources and how to
minimize the energy impact of processing these rejected jobs
on traditional cloud systems. We explore scheduling problems
where job rejection is an option, and the cost of rejection
is directly proportional to the job’s processing time. This
concept of scheduling with rejection has practical applications
in a variety of real-world scenarios [5], [6], and this paper
investigates it within the context of energy-efficient computing
continuum systems.

In this paper, we propose scheduling algorithms for two
scenarios where the rejection cost of a job is proportional to its
processing time. This is an extension of our previous work [7]
that focused only on the scenario where jobs have no dead-
lines. There, we presented a 5

4 (1+ε)-approximation algorithm
for any positive ε, whereas the best-known algorithm for this
problem (with arbitrary rejection costs) had an approximation
factor of 3

2 [8]. In this extension, we also consider the scenario
where jobs have deadlines, and the objective is to maximize the
occupation of edge boilers while respecting the jobs’ deadlines
(i.e., minimize the total rejection cost). We present a new
(1 − (m−1)m

mm )-approximation algorithm based on iteratively

1https://qarnot.com/

https://qarnot.com/
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scheduling jobs to each individual machine optimally, which
we compare to the (1 − (m)m

(m+1)m )-approximation algorithm
proposed by Berman and DasGupta [9]. We can summarize
our main contributions as follows:
• we present a 5

4 (1 + ε) approximation algorithm for
scheduling with rejection without deadlines [7] (Sec-
tion III);

• we propose a (1− (m−1)m
mm )-approximation algorithm for

scheduling with rejection with deadlines (Section IV);
• we evaluate the quality of their schedules against state-

of-the-art solutions using simulation (Section V); and
• we discuss ideas on how to improve the current approx-

imation ratios of our algorithms (Section VI).
The remainder of the paper includes a review of related

work in Section II, and concluding remarks and perspectives
in Section VII.

II. RELATED WORK

For a comprehensive review of the literature on scheduling
with rejection problems, we refer the reader to the survey
papers by Slotnick [10], Shabtay et al. [5] and Adamu and
Adewumi [11].

Bartal et al. [12] introduced the problem of scheduling with
job rejection, with arbitrary rejection costs (penalties). Their
objective is to minimize the makespan of accepted jobs plus
the sum of penalties associated with rejected jobs. For the
online setting, they present a (1 + φ)-competitive algorithm,
where φ is the golden ratio. For the offline setting, they provide
a fully polynomial approximation algorithm for fixed m and
a polynomial approximation algorithm for arbitrary m. In
particular, they propose a (2 − 1

m ) approximation algorithm
for the offline problem with O(n log n) complexity.

Ou et al. [13] improve the approximation of Bartal et al.
with a heuristic that achieves a worst-case bound of 3

2 + ε
with a complexity of O(n log n+ n

ε ). Liu and Lu [8] provide
a ( 32 −

1
2m ) approximation algorithm with O(n3logn) com-

plexity, improving on the work of Ou et al. [13]. In addition
to this solution for the identical release date problem, Liu and
Lu also present solutions for the single machine and parallel
machine problems in the presence of release dates.

In this paper, we present a heuristic to improve on the ( 32 −
1

2m ) approximation provided by Liu and Lu [8]. In our setting,
the rejection cost is proportional to the processing time of the
jobs. We relate the problem to a Multiple Subset Sum Problem
(MSSP) and build on ideas of Caprara et al. [14] to obtain a
5
4 (1 + ε) approximation algorithm.

The problem of scheduling with rejection has also been
studied, with the goal of optimizing the sum of the weighted
completion times of scheduled jobs plus the sum of the
penalties for rejected jobs. Engels et al. [15] propose gen-
eral techniques for solving offline scheduling with rejection
problems with this objective. Epstein et al. [16] focus on
the single-machine online problem, where jobs have unit
processing times and the weight of each job’s completion time
is equal to 1. Liu [17] considers the single-machine problem
with partial rejection and provides both polynomial-time and
pseudopolynomial-time optimal algorithms.

In their work, Mor and Shabtay [18] explore two different
objectives in scheduling with rejection for single-machine
problems. One is to minimize the sum of the total late work
and the total rejection cost, while the other is to focus only on
minimizing the total rejection cost, providing an upper bound
on the total late work.

In the context where jobs have deadlines, the corresponding
problem is similar to scheduling to minimize the weighted
number of late jobs (where weights can be seen as penalties),
where rejected jobs are processed at the end of the schedule
rather than on additional cloud resources. A survey by Adamu
and Adewumi [11] provides a comprehensive literature review
on this topic. Another related topic is Interval Scheduling
(see [19] for a survey), where each job is given one (or more)
possible start times, and the problem is to select a subset of
jobs that can be scheduled together. Most of the literature
assumes that jobs also have release dates.

The problem of minimizing the number of late jobs (a
special case where all jobs have the same penalty cost) has
been studied from a practical perspective by Ho et al. [20],
who proposed a number of heuristics, and from a theoreti-
cal perspective by Briskorn et al. [21], who proved several
approximation ratios for these heuristics.

For arbitrary weights, most of the literature focuses on
complex, exponential-time exact algorithms. Chen et al. [22]
formulate the problem as an Integer Linear Programming prob-
lem and rely on Dantzig-Wolfe reformulation and branch-and-
bound techniques to solve it optimally. Some approximation
algorithms have also been proposed: Bar-Noy et al. [23] devel-
oped two algorithms with approximation ratio 1 +

(
m
m+1

)m
,

one for unitary weights based on a greedy algorithm and
the other for arbitrary weights based on rounding a Linear
Programming relaxation. Berman and DasGupta [9] indepen-
dently proposed an algorithm with the same approximation
ratio based on a greedy algorithm for the interval scheduling
problem on a single machine.

In this paper, we consider a special case of the problem
where all jobs have the same release date and where the
penalty cost of each job is proportional to its processing time.
We obtain an improved approximation ratio 1 +

(
m−1
m

)m
,

which holds for arbitrary job weights.

III. SCHEDULING WITH REJECTION WITHOUT DEADLINES

In this section, we consider the problem where the jobs
have no due dates (deadlines). The problem formulation and
the necessary notations are provided in Section III-A. In
Sections III-B and III-C we describe our solution BEKP ,
provide a proof of its approximation ratio, and discuss its
computational complexity.

A. Problem Formulation

We consider a scheduling problem where a set of non-
preemptive jobs J are to be scheduled on m identical ma-
chines. Each job i is characterized by its processing time pi
and can either be processed on one of the energy-efficient
machines of the edge boilers or rejected at a cost ρ · pi.
This rejection cost represents the cost of offloading the job to
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TABLE I: Notation employed for the scheduling problem
without deadlines.

m Number of machines
n Number of jobs
J Set of jobs
pi Processing time of job i for i ∈ {1, 2, ..., n}
W Area of all jobs in J (W =

∑
i∈{1,2,...,n} pi)

ρ Rejection cost coefficient
CS Makespan of the accepted jobs in schedule S
AS Area of the accepted jobs in schedule S
RS Area of the rejected jobs in schedule S
ZS Cost of the schedule S: ZS = mCS + ρRS

OPT An optimal schedule which minimizes the cost
R∗(T ) Minimum possible area of rejected jobs within

makespan T (minS, CS≤TR
S )

another computing resource on the cloud, which are assumed
to be in unlimited supply. Table I provides a summary of the
notation used in this section.

A solution S specifies (i) whether each job is accepted
or rejected, and (ii) assigns each accepted job i to a ma-
chine j ≤ m. The makespan CS of a solution is the
maximum load on any energy-efficient machine, CS =
maxj≤m

∑
i assigned to j pi. Since jobs are independent and

available from the start, knowing the set of jobs running on
each machine is enough to determine the makespan, since
their relative execution order does not affect it. We denote
by RS the total processing time (or area) of the rejected jobs
in S: RS =

∑
i rejected pi. Our objective is then to minimize the

cost ZS , defined as the sum of the utilization of any energy-
efficient machine plus the overall rejection cost:

ZS = m · CS + ρ ·RS . (1)

Given a target makespan T , we denote with R∗(T ) the
smallest possible area of rejected jobs among the solu-
tions of makespan at most T . More formally, R∗(T ) =
minS,CS≤T R

S . This definition leads to the following result:

Lemma 1. For two values T1 and T2, if T1 ≤ T2, then
R∗(T2) ≤ R∗(T1).

B. Scheduling with a Bound on Makespan

In this section, we present an algorithm called
FillMaxArea which, given a set of jobs J , a number
of machines m and a makespan bound T , outputs a solution
S with CS ≤ 5

4T and RS ≤ R∗(T ).
1) Job Types: The problem of scheduling with rejection is

related to the Multiple Subset Sum Problem (MSSP), where
the goal is to allocate a set of n items with weights wi
into m identical bins, each with a positive capacity c, so as
to maximize the total allocated weight. Caprara et al. [14]
proposed an algorithm for MSSP that guarantees to achieve
at least a fraction of 3

4 of the maximum possible weight. This
algorithm works by excluding small items from the instance,
and by classifying the other items in different categories
depending on their weights.

For scheduling with rejection, when the weight of a job is
proportional to its processing time, the problem of assigning
jobs within a given makespan T is actually equivalent to
MSSP. However, we are interested in providing an approxi-
mate solution in a different way: instead of selecting a set of
jobs that fits within T with a 3

4 guarantee with respect to the
accepted weight, we aim to select a set of jobs that fits within
5
4T and whose total weight is at least as much as the best
possible weight that can be accepted within time T .

For this purpose, we group jobs from J according to
their processing time, with cutoff values (with different cutoff
values compared to the solution by Caprara et al. [14]), as
described below:

G = {i | 3
4
T < pi ≤ T} N1 = {i | 1

2
T < pi ≤

3

4
T}

N2 = {i | 3
8
T < pi ≤

1

2
T} N3 = {i | 1

4
T < pi ≤

3

8
T}

P = {i | pi ≤
1

4
T}

Jobs in G, N1, N2, and N3 are called long jobs, while
jobs in P are called short jobs. We define a combination
(Set1, Set2, ...) as a mapping of jobs to a machine, where
exactly one job from each set (a set can occur multiple
times) is scheduled onto the same machine. For example,
(N3, N3, N2) represents two jobs from N3 and one job from
N2 assigned to a machine in any order.

Lemma 2. In a schedule with maximum makespan of T , only
the following combinations of long jobs are valid:

(G), (N1), (N2), (N3)

(N2, N1), (N3, N1), (N2, N2), (N3, N2), (N3, N3)

(N3, N3, N2), (N3, N3, N3)

Proof. Consider one machine in a schedule with makespan at
most T . We split the proof depending on the number l of long
jobs this machine handles.

For l = 1, any long job guarantees that the makespan bound
T is respected. Thus, singleton possibilities are (G), (N1),
(N2) and (N3).

For l = 2, the combination (N1, N1) can not be assigned to
that machine: indeed, jobs in N1 are such that pi > 1

2T , so that
processing any two of them is not feasible within makespan T .
All other combinations of length 2 are valid. Thus, the possible
pairs are (N2, N1), (N3, N1), (N2, N2), (N3, N2), (N3, N3).

For l = 3, if two jobs from N2 are assigned to a machine,
even assigning one extra N3 job is not feasible since the total
processing time would exceed ( 38+

3
8+

1
4 )T = T . Thus, triplets

with longer jobs are not valid either. Therefore, the only
possible triplets are (N3, N3, N2) and (N3, N3, N3). Finally,
l ≥ 4 is not feasible, since any long job has pi > 1

4T .

In addition, it is possible to bound the maximum total
processing time of any of these combinations.

Lemma 3. The overall processing time of any valid combi-
nation described in Lemma 2 is at most 5

4T .

Proof. The proof is trivial, by enumerating all valid com-
binations and summing the upper bounds for each element,
depending on its specific subset of long jobs.
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2) Algorithm: FillMaxArea is based on these two lem-
mas. By guaranteeing that long jobs assigned to each machine
obey one of the combinations in Lemma 2, we can guarantee
that the resulting solution S satisfies CS ≤ 5

4T .
Our long job assignment algorithm is based on the

AssignFrom routine, whose pseudocode is given in Algo-
rithm 1. Given the list of combinations and the number l
of machines, AssignFrom creates l machine assignments by
successively picking the jobs with the largest processing times
from the first combination of available jobs. For example,
AssignFrom({(N2, N1), (N3, N1), (N2, N2)}, l) selects the
largest job from N2 and the largest job from N1 until one
of them is empty, and then proceeds with the combination
(N3, N1), and so on.

Algorithm 1 AssignFrom(combs, l)

1: Result← ∅
2: Remove all combinations from combs where at least one

set within the combination is empty
3: while |Result| ≤ l and combs is not empty do
4: Denote by (K1,K2, ...,Kk) the first combination in
combs

5: j1 ← the largest job from K1

6: j2 ← the largest remaining job from K2

7: Continue until jk ← the largest remaining job from
Kk

8: Result = Result ∪ (j1, j2, ..., jk)
9: Remove all combinations from combs where at least

one set within the combination is empty
10: return Result

F illMaxArea, whose pseudocode is given in Algorithm 2,
starts by scheduling the long jobs first, and then completes the
schedule with a greedy assignment of the short jobs without
exceeding the makespan bound 5

4T . To decide which long jobs
to accept, we set values for l0, l1, l2, and l3 that represent the
number of machines running no long job, one long job, two
long jobs, and three long jobs, respectively. For each of these
quadruplet l0, l1, l2, l3), we use the AssignFrom routine with
a careful ordering of the combinations identified in Lemma 2.
If we run out of jobs in this process, we discard the current
solution with quadruplet j = (l0, l1, l2, l3) and move on to
the next possible quadruplet solution. Once an assignment
has been computed for all possible quadruplets, the result of
FillMaxArea is the one that maximizes the total processing
time of assigned jobs.

3) Proof: We now prove a guarantee on the solution
produced by FillMaxArea: its makespan is at most 5

4T , and
it rejects not more work (in terms of total processing time)
than any solution with makespan at most T .

Lemma 4. For any T , let S be the solution obtained by
FillMaxArea(J,m, T ). Then, CS ≤ 5

4T and RS ≤ R∗(T ).

Proof. CS ≤ 5
4T is a direct consequence of Lemma 3. We

focus on proving RS ≤ R∗(T ). Let us denote by S0 any
solution with makespan at most T : we aim to prove that RS ≤
RS0 , or equivalently AS ≥ AS0 .

Algorithm 2 FillMaxArea(J,m, T )

1: Generate G, N1, N2, N3 and P subsets of J
2: for each j = (l0, l1, l2, l3) such that l0 + l1 + l2 + l3 = m

and l1 + 2l2 + 3l3 ≤ n do
3: Xj ← ∅
4: Xj ← Xj∪AssignFrom({(G), (N1), (N2), (N3)}, l1)
5: Xj ← Xj ∪ AssignFrom({(N2, N1), (N3, N1),

(N2, N2), (N3, N2), (N3, N3)}, l2)
6: Xj ← Xj ∪ AssignFrom({(N3, N3, N2),

(N3, N3, N3)}, l3)
7: if l0 + |Xj | < m then
8: Discard Xj and continue
9: Add jobs from P greedily (in any order) to Xj ,

keeping makespan ≤ 5
4T

10: X∗ = {Xj |max
j

AXj}
11: return X∗

Lemma 2 defines the list of valid combinations for long jobs
in S0. Let j = (l0, l1, l2, l3) denote the number of machines
with zero, one, two, and three long jobs in S0, respectively,
and consider the solution Xj constructed by FillMaxArea
for this particular quadruplet. By construction, AS ≥ AXj .
Let us now prove that AXj ≥ AS0 .

Let us consider the small jobs first, and distinguish between
two possibilities.
• If at least one small job in P is rejected in Xj , since

a small job is only rejected if it cannot be scheduled to
finish before 5

4T , and since the processing time of any
short job is at most 1

4T , this ensures that all machines
have a workload of at least T . Thus, the total number of
accepted jobs satisfies AXj ≥ m ·T ≥ AS0 , since S0 has
a makespan of at most T .

• If all small jobs are accepted in Xj , then we can ignore
the small jobs and we prove that AXj ≥ AS0 when
restricted to long jobs. Indeed, since S0 cannot accept
more small jobs than Xj , this will imply AXj ≥ AS0 for
all jobs.

In the following, we denote as singleton, pair, and triplet
a machine that processes one, two, and three long jobs,
respectively. Both Xj and S0 have l1 singletons, l2 pairs, and
l3 triplets. In the rest of the proof, we show that S0 can be
transformed into a solution that uses the same number of each
type of jobs as Xj , without decreasing the total accepted area,
where the type of a job refers to the specific long job subset
to which it belongs. We will use two possible transformations:
replace, where an accepted job is exchanged for a rejected job
with a longer processing time, and swap, where two accepted
jobs assigned to different machines are swapped. The first
operation increases the total accepted area, while the second
does not modify it. Along with the transformations, we will
make sure to use only valid combinations from the list of
Lemma 2.

We start the transformation by considering the l1 singletons.
In Xj , the jobs assigned to these machines are the l1 longest
jobs from J . We build S1 from S0 by applying a transforma-
tion for each of these longest jobs:
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1) If it is rejected in S0, we replace it with the smallest job
in a singleton of S0. This increases the total accepted
area of S0.

2) If it is scheduled either in a pair or triplet in S0, we
swap this large job with the smallest job in a singleton
of S0.

The resulting schedule is denoted S1, and satisfies (P1): its
singletons process the same set of jobs as the singletons of
Xj . In particular, the number of each type of job processed
by the singletons is the same.

Based on (P1), and given that FillMaxArea schedules as
many N1 jobs as possible in the pairs, the number of N1 jobs
present in a pair is not greater in S1 than in Xj . If the number
of N1 jobs processed on a pair is greater in Xj , then S1 must
contain more (N2, N2), (N3, N2), or (N3, N3) combinations
than Xj , and therefore rejects more N1 jobs (since N1 jobs
cannot be processed on a triplet). We can replace any job in
such a combination with a rejected N1 job until the number
of N1 jobs in pairs is the same as in Xj . This results in either
(N2, N1) or (N3, N1) combinations, both of which are valid.
The resulting solution is denoted S2 and satisfies (P1) and
(P2): it processes the same number of N1 jobs on pairs as
Xj .
Xj cannot use less N2 jobs than S2 for the pairs, because

FillMaxArea prioritizes N2 jobs over N3 jobs. Let us
assume that the number of N2 jobs processed on a pair is
greater in Xj than in S2. Then the missing N2 jobs in S2
can either be rejected or scheduled in a (N3, N3, N2) triplet.
We can swap all N2 jobs in a (N3, N3, N2) combination with
N3 jobs from (N3, N2) or (N3, N3). Here, the possible set
combinations we get are either (N2, N2) or (N3, N2) and
(N3, N3, N3), which are all valid. If Xj still uses more N2

jobs in pairs, then there are rejected N2 jobs in S2. We can
replace one N3 job from a (N3, N2) or (N3, N3) combination
with each of these rejected N2 jobs. This results in (N2, N2) or
(N3, N2) valid combinations. The resulting solution is denoted
S3 and satisfies (P1), (P2) and (P3): it processes the same
number of N2 and N3 jobs on pairs as Xj .

Finally, if Xj schedules more N2 jobs on triplets than S3,
this implies that there are rejected N2 jobs in S3. We can
replace one N3 job from a (N3, N3, N3) combination of S3
with each of these rejected N2 jobs. This results in a valid
(N3, N3, N2) combination. This solution is denoted S4, and
since it satisfies (P1), (P2), (P3) in addition to having the
same number of N2 jobs in triplets, we have shown that S4
uses the same number of G, N1, N2, and N3 jobs as Xj .

Finally, we use the fact that when choosing a job from a long
job set, FillMaxArea always chooses the largest available
job. This implies that AXj ≥ AS4 . Since all transformations
either increase or do not change the accepted area, we know
that AS4 ≥ AS0 , which concludes the proof.

From this lemma, we can deduce the following bound on
the cost of S:

Lemma 5. For any T , let S be the solution obtained by
FillMaxArea(J,m, T ). We can bound its cost by: ZS ≤
5
4Tm+ ρR∗(T ).

Proof. This follows directly from ZS = mCS + ρRS and
Lemma 4.

C. BEKP Approximation Algorithm

If we know an optimal solution OPT with respect to
the objective function Z, then we can compute the solution
FillMaxArea(J,m,COPT ). From Lemma 5 we get a 5

4 -
approximation. In this section we show how to get an approxi-
mation of COPT (with ε as the precision ratio) with controlled
complexity. In the end, we obtain BEKP , which is a 5

4 (1+ ε)
approximation algorithm for any positive number ε.

The idea behind BEKP is to first compute an upper bound
U and a lower bound L for the optimal makespan COPT ,
and then build different schedules with the FillMaxArea
algorithm for each makespan value Ci such that

Ci ∈ {L, (1 + ε)L, ..., (1 + ε)kL}. (2)

The number of iterations k is the smallest value such that
(1 + ε)kL ≥ U , and can be computed as k = dlog1+ε(UL )e.
We now present how to compute U and L so that the value
of U

L is bounded, thus providing a bound for k.
1) Computing Bounds on the Optimal Makespan: First, let

us define f(C) in Eq. (3), which represents the minimum
possible cost for a schedule with makespan of C, since R∗(C)
is the minimum possible area of rejected jobs for any schedule
with that makespan. We can then provide two lower bounds
on f(C). The first one is presented in Eq. (4). For the second
one, given the total workload W =

∑
i pi, we know that

Cm+ R∗(C) ≥ W , which implies that R∗(C) ≥ W − Cm.
Together with Eq. (3), this yields the lower bound shown in

Eq. (5). Let us also define a target value H =
4ρW

5
.

f(C) = Cm+ ρR∗(C) (3)
f(C) ≥ Cm (4)
f(C) ≥ ρW − (ρ− 1)Cm (5)

Makespan C

Cost Z

Cm

ρW − (ρ− 1)Cm

ρW f(C)

H

L U

Fig. 1: Sketch of the plot of f(C) (in red), highlighting how
the bounds U and L are computed

Let us sketch the possible plot of the cost function f(C) and
the two bounds in Fig. 1. The function f(C) is shown in red,
the first bound from Eq. (4) is shown with a blue line, while
the second bound from Eq. (5) is shown in brown. Finally, the
target value H is displayed as a green horizontal line.
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We define U and L as the values of C such that the first
and second bounds are equal to H . This is shown in Fig. 1,
and we get U = 4ρW

5m . Similarly, given the second bound and
the target, we can compute their intersection as L = ρW

5m(ρ−1) .
These values for U and L yield a ratio U

L = 4(ρ−1), which
provides a bound on the number of iterations k. For example, if
we assume a rejection cost coefficient ρ ≤ 10, then 4(ρ−1) ≤
36. For example, if the precision is set to 1 + ε = 1.05, then
Eq. (2) specifies 74 different makespan values, which leads to
a practical number of iterations. With these values, BEKP is
a 5

4 ∗ 1.05 = 1.3125 approximation algorithm. The tradeoff
between number of iterations and performance guarantee can
be adjusted when considering different values for ε.

2) BEKP Algorithm: BEKP is specified in Algorithm 3,
where ε is a fixed parameter. The algorithm considers several
possible schedules: the solution where all jobs are rejected,
denoted by X0, whose cost is ZX0 = ρW , and the result of
FillMaxArea(J,m,Ci) for each value Ci between L and U
as in Eq. (2). The result of BEKP is the lowest cost schedule
among all these candidates.

Algorithm 3 BEKP(J,m)

1: X0 = the solution where all jobs are rejected
2: U = 4ρW

5m and L = ρW
5m(ρ−1) and k = dlog1+ε UL e

3: for each Ci ∈ {L, (1 + ε)L, (1 + ε)2L, ..., (1 + ε)kL} do
4: Xi = FillMaxArea(J,m,Ci)

5: return schedule with the lowest cost among X0 and all
Xi

Theorem 1. For any positive ε, BEKP is a 5
4 (1 + ε)

approximation algorithm.

Proof. Consider an arbitrary set of jobs J to be scheduled on
m machines. Let OPT be a schedule for this instance with
optimal cost. We compare ZOPT with the cost of one of the
Xi schedules considered in BEKP . We analyze two cases,
depending on the value of COPT relative to L and U :

If COPT < L or COPT > U , we know from ZOPT ≥
f(COPT ) and our lower bounds (Eqs. (4) and (5)) that
ZOPT ≥ H = 4ρW

5 . In Fig. 1 this can be interpreted as
f(COPT ) being located in one of the red triangle areas. Since
ZX0 = ρW , we get ZX0 ≤ 5

4Z
OPT .

If L ≤ COPT ≤ U , then there exists an index i such that
COPT ≤ Ci ≤ (1+ε)COPT . Let us denote this solution as Xi.
By Lemma 5, we know that ZXi ≤ 5

4mCi + ρR∗(Ci). Since
COPT ≤ Ci, Lemma 1 states that R∗(Ci) ≤ R∗(COPT ).
Finally, since Ci ≤ (1 + ε)COPT , we obtain

ZXi ≤ 5

4
(1 + ε)mCOPT + ρR∗(COPT ) ≤ 5

4
(1 + ε)ZOPT

In both cases, we identify a schedule X considered by BEKP
that satisfies ZX ≤ 5

4 (1+ ε)Z
OPT . Since the result of BEKP

has a cost not greater than X , this concludes the proof.

3) Complexity of BEKP: As discussed in Section III-C1,
given the ratio U

L = 4(ρ − 1), the number of calls
to FillMaxArea in Algorithm 3 is O(log1+ε ρ). In
FillMaxArea (Algorithm 2), the number of quadruplets to

test is O(m3), and for each of them we call AssignFrom
and greedily schedule the jobs in P . For a quadruplet, the
complexity of all AssignFrom calls is O(m) in total. We
can assume that the jobs are sorted by increasing processing
time at the beginning of BEKP , which induces a one-time
O(n log n) complexity. Scheduling the jobs greedily can be
performed in O(n).

In total, the complexity of BEKP is O(m3(m +
n) log1+ε ρ). This can be compared to the algorithm proposed
by Liu and Lu [8], whose complexity is O(n3 log n). We
expect our approach to be significantly faster in scenarios with
fewer machines and a larger number of jobs.

IV. SCHEDULING WITH REJECTION AND DEADLINES

In this section, we consider the problem where jobs come
with due dates. This eliminates the need to find a target
value for the makespan as required in Section III-C, but
the additional due date constraints make the problem more
difficult. The problem formulation and necessary notations are
given in Section IV-A. Sections IV-B and IV-C present how to
build a solution for the single-machine and multiple-machines
cases, respectively. In the multiple-machines case, our solution
MDP also admits an approximation ratio and we establish
its complexity. Finally, in Section IV-D, we prove that the
approximation ratio of MDP is tight.

A. Problem Formulation

Using the notations in Table II, we consider a scheduling
problem where a set of non-preemptive jobs J must be sched-
uled onto m identical machines. Each job i is characterized
by its processing time pi and its deadline di. The objective is
to minimize the weighted number of late jobs in the schedule,
where the weight of a late job is proportional to its processing
times (wi = ρpi, ∀i ∈ J). This problem is equivalent to
maximizing the total weight of jobs that complete on time,
which can be written in Graham’s three-field notation as
P |dj |

∑
pj(1− Uj).

In the context of Qarnot, the late jobs represent the rejected
jobs on the edge boilers that must be offloaded to the unlimited
supply of energy-inefficient machines on the cloud to satisfy
QoS constraints. As a scheduling problem with rejection, we
will denote the late jobs as rejected and the dues dates as
deadlines, without loss of generality. Our goal is then to
maximize the utilization of the edge boilers while meeting the
deadlines of the jobs. A given solution S specifies (i) whether
each job is accepted or rejected and (ii) assigns each accepted
job to a machine while respecting its deadline. The profit
associated to such a solution is given by WS =

∑
i∈accepted

pi.

B. Solution for a single machine (DP)

In order to build a solution in the multiplemachines case,
we start by providing an optimal solution for the single-
machine case. This problem is similar to the job sequencing
problem [24], and a dynamic programming based algorithm,
denoted as DP , has been proposed by Lawler and Moore [25]
to solve it. Consider a set of jobs J , where jobs are sorted
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TABLE II: Notation employed for the scheduling problem with
deadlines.

m Number of machines
n Number of jobs
J Set of jobs
pi Processing time (and profit) of job i ∈ J
di Due date (deadline) of job i ∈ J
T max di, i ∈ J

DP Optimal solution on single machine
MDP Our solution on multiple machines

Jj Set of remaining jobs to be scheduled in iteration j of MDP
W ?

Jj Profit of an optimal solution of Jj on m machines
W ? Profit of an optimal solution for J on m machines
Mj Profit of MDP for J on j machines

in non-decreasing order of their deadlines, and denote T =
max
i∈J

di. We define W (i, t) as the sum of the processing times

of the on-time jobs among the jobs with indices {1, ..., i} that
can complete before time t. Considering t ≤ T , the recursive
solution for a single machine (of time complexity O(nT )) is
as follows

∀t ≥ 0,W (0, t) = 0 and ∀i ≥ 0,W (i, 0) = 0

W (i, t) = max

{
W (i− 1, t− pi) + pi, if pi ≤ t ≤ di
W (i− 1, t), otherwise

(6)

Lemma 6. Given a job set J , DP provides an optimal solution
for the single machine problem.

C. Solution on multiple machines (MDP)

Our solution for the multiple machine problem, called
MDP and described in Algorithm 4, is built by iteratively
calling DP for each machine with the set of jobs that have not
yet been assigned in the previous iterations of the algorithm.
This same kind of logic has been employed by Berman
and DasGupta [9] for a throughput maximization problem
for k identical machines. Nevrtheless, they rely on a 2-
approximation algorithm for the interval selection problem in
a single machine, whereas our solution relies on an optimal
algorithm at each iteration.
MDP has time complexity O(n log n+mnT ) due to the m

calls to DP and to the initial sorting of jobs by non-decreasing
deadlines.

Algorithm 4 MDP(J,m)

1: J1 = sort(J , non-decreasing deadlines)
2: MDP0 = ∅
3: for j ∈ [1, ...,m] do
4: DPj = DP(Jj)
5: Jj+1 = Jj \ {job|job ∈ DPj}
6: MDPj =MDPj−1 ∪DPj
7: return MDPm

1) MDP Approximation Ratio: To prove the approxima-
tion ratio of MDP in Theorem 2, we use the same kind
of argument used by Berman and DasGupta [9]. Consider a
particular iteration j in MDP , where the remaining jobs Jj
are to be scheduled (see Line 4 in Algorithm 4), and let us
denote by W ?

Jj the profit of an optimal solution with Jj on
m machines. W ? represents the optimal profit for J on m
machines, while M j represents the profit of MDP for J on
j machines.

Lemma 7. M j −M j−1 ≥ 1
mW

?
Jj .

Proof. M j − M j−1 is equal to the profit of DP when
assigning Jj to a single machine. Consider an optimal solution
with the same jobs on m machines: the highest profit assigned
to a single machine in this solution is at least 1

mW
?
Jj . Since

DP is optimal for a single machine (Lemma 6), the profit of
the DP solution is larger than or equal to the profit of this
single machine assignment.

Lemma 8. W ?
Jj ≥W ? −M j−1.

Proof. Consider A ⊆ J the set of accepted jobs of an optimal
solution for J on m machines, with profit W ?. Consider also
B, the set of jobs accepted by MDP on the first j − 1
machines, by definition B = J \ Jj , with profit M j−1.
Removing B from A yields a solution whose profit is at least
W ? −M j−1, with jobs in A ∩ Jj . Since this solution uses
only jobs in Jj , its profit is at most W ?

Jj .

Theorem 2. MDP is an (1− (m−1)m
mm )-approximation algo-

rithm.

Proof. Using Lemma 7 and Lemma 8, we get the inequality
in Eq. (7), which can be transformed to Eq. (9).

M j −M j−1 ≥ 1

m
(W ? −M j−1) (7)

(W ? −M j−1)− (W ? −M j) ≥ 1

m
(W ? −M j−1) (8)

(m− 1)

m
(W ? −M j−1) ≥W ? −M j (9)

We get Eq. (10) by recursively replacing M j−1 and, since
M0 = 0, we get the inequality in Eq. (11). The theorem is
proved by replacing j by m, where Mm is the profit of the
solution returned by MDP .

(m− 1)j

mj
(W ? −M0) ≥ (W ? −M j) (10)

M j ≥ (1− (m− 1)j

mj
)W ? (11)

D. Tightness of the Approximation Ratio

We now demonstrate the tightness of the (1 − (m−1)m
mm )

approximation ratio. We first define a problem instance, then
show that it accepts a valid schedule with profit mm. We
finally exhibit a valid MDP solution with profit mm− (m−
1)m. These three steps are presented in the following sections.
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...

...
m

mT1 T2 T3 Tm

...mT1 T2 T3 Tm

...mT1 T2 T3 Tm

...mT1 T2 T3 Tm

Time

Machines

d1 d2 d3 dm

m

m-1

m-2

1

Fig. 2: An optimal schedule that accepts all jobs.

1) Problem Instance: For any m, we consider the problem
instance containing the m2 jobs enumerated in Table III, to be
scheduled on m machines. Each row represents m jobs of a
given type that share the same processing times and deadlines.

TABLE III: Jobs used in the tightness demonstration.

Count Type Processing Time Deadline
m T1 p1 = (m− 1)m−1 d1 = p1

m T2 p2 = (m− 1)m−2m0 d2 = mp2
m T3 p3 = (m− 1)m−3m1 d3 = mp3
. . . . . . . . . . . .
m Ti pi = (m− 1)m−imi−2 di = mpi
. . . . . . . . . . . .
m Tm pm = (m− 1)0mm−2 dm = mpm

Remark 1. The latest deadline within a job set is an upper
bound on the optimal profit for the single machine problem.

Remark 2. By construction, all deadlines and processing
times (except for jobs of Type T1) satisfy di−1 = di − pi
and pi = di

m , respectively.

Remark 3. The smaller the index i of type Ti, the earlier the
deadline di.

2) Optimal Schedule with Profit mm: Consider a schedule
that assigns exactly one job of each type to each machine in
the order (T1, T2, ..., Ti, ..., Tm). This means that each job
finishes exactly on its deadline (Remark 2). This schedule is
illustrated in Fig. 2.

a) Schedule Validity: We can establish the validity of the
schedule by focusing on a single machine. The first job (of
type T1) starts at time 0 and finishes at time d1 = p1. The start
time for the job of type Ti for i > 1 is di−pi (which is equal
to di−1, as by Remark 2) and its finish time is exactly di.) In
other words, each job of type Ti starts as soon as the job of
type Ti−1 finishes, and each job finishes on its deadline, with
no idle time in between. Since there are no overlaps and all
deadlines are met, the schedule is valid.

b) Profit of the Optimal Schedule: The last job assigned
on each machine finishes at time dm. By definition dm =
mm−2 ·m = mm−1. Thus, the sum of all processing times on
all machines is

∑m
j=1 dm = m ·mm−1 = mm.

3) ValidMDP Solution with Profit mm − (m− 1)m: As
MDP greedily builds in order an optimal schedule for each
machine with the remaining jobs, let us consider a schedule
that assigns m jobs of type Tm−(j−1) to machine 1 ≤ j < m.
For the last machine (j = m), only one job of type T1 is
assigned. This schedule is illustrated in Fig. 3.

...m

T1

T2 T2 T2

T3 T3 T3

Tm Tm Tm
...m Tm

Time

Machines

d1

T2
...m

d2

T3
...m

d3 dm

m

m-1

m-2

1

Fig. 3: A schedule that focuses on providing an optimal
solution for each machine (in order) using the remaining jobs.

a) Schedule Validity: Let us first focus on a machine
index 1 ≤ j < m. We claim that scheduling m jobs of type
Tm−(j−1) on machine j is a valid and optimal solution with
the jobs that remain after the decisions made for the previous
machines.

For the first machine assignment (j = 1), assigning all the
jobs of type Tm (m jobs in total) is valid: the last job of Tm
on this machine completes at time pm · m = mm−2 · m =
mm−1 = dm. Since dm is the largest deadline among all jobs,
this is an optimal solution for this machine.

For machine j < m, assigning m jobs of Tm−(j−1) is valid:
m·pm−(j−1) = dm−(j−1). Moreover, since the largest deadline
among remaining jobs is dm−(j−1) (i.e., all other jobs with
later deadlines have already been scheduled in the previous
machines), this schedule with profit m·pm−(j−1) is an optimal
solution for machine j.

Finally, for machine m, only m jobs of type T1 remain.
Since p1 = d1, only one of the jobs is scheduled on this
machine, and this is obviously optimal. This shows that the
schedule depicted on Figure 3 is a possible output of MDP .

b) Profit of MDP Schedule: In total, all jobs are ac-
cepted, except for m− 1 jobs of type T1. Since accepting all
jobs, as seen in the optimal schedule, provides a profit of mm,
the resulting profit for this schedule is mm − (m− 1) · p1 =
mm−(m−1) ·(m−1)m−1 = mm−(m−1)m. Thus, the ratio
between theMDP schedule and the optimal schedule for this
problem is 1− (m−1)m

mm , proving that the approximation ratio
of MDP presented in Section IV-C1 is tight.

V. EXPERIMENTS

In this section, we evaluate the quality of the solutions
obtained by our algorithms for scheduling with rejection
without deadlines (Section III) and with deadlines (Section IV)
in comparison to other state-of-the-art approaches.

All experiments were run sequentially on the Miriel nodes
(each consisting of two Intel Xeon E5-2680v3 12-core 2.50
GHz processors with 128 GB of memory) of the PlaFRIM
platform2. We used Python3 for programming and testing the
various algorithms, and Gurobi for computing bounds with
linear programming.

We generated random instances in which job processing
times follow a lognormal distribution with mean 3. We use
three different values for the standard deviation σ: 0.5, 0.7,
and 1.0. As σ increases from smaller to larger values, the

2https://www.plafrim.fr

https://www.plafrim.fr
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variance in processing times between jobs also increases. The
deadlines in Section V-B are tied to the processing times: the
deadline of a job with processing time pi follows a uniform
distribution with values between pi and 3pi. For each case,
we generate 30 different random sets of jobs. The results for
each method over the 30 random instances are shown with
a boxplot showing the median, first and third quartiles, with
whiskers extending to the lowest and highest values, and small
black dots representing outliers.

A. Experiments with BEKP (without deadlines)
We evaluate BEKP in terms of the total solution cost

(Eq. (1)). To provide reference points, we consider two ex-
isting solutions: a naive solution LPT that accepts all jobs
and schedules them using the Longest Processing Time-first
method, and the algorithm proposed by Liu and Lu [8],
denoted LIULU . In addition, we also compute a lower bound
on the solution cost with an Integer Linear Programming
formulation that evaluates the makespan of a set of jobs with
the standard lower bounds maxi pi and

∑
i pi
m , and optimally

decides which jobs to accept. This can be formulated with a
boolean variable xi equal to 1 if the job is accepted and 0
otherwise, as follows

minimize Cm+
∑
i∈J

ρ(1− xi)pi

subject to ∀i ∈ J,C ≥ xipi
C ≥

∑
i∈J

(xipi)/m

For these experiments, we set the number of machines m to
20 and use two values of ρ: 1.5 and 4. Larger values of m give
similar results. The results are shown in Fig. 4, where each grid
column corresponds to a different rejection cost coefficient,
while each row corresponds to a different number of jobs.
The horizontal axis represents the different standard deviations
used to generate the processing times, and the vertical axis
represents the relative cost of each method compared to the
lower bound (where a limit is set for better visualization).

We can observe in Figure 4 that the naive solution LPT
tends to lead to solutions with higher costs than the other two
methods, especially when there is a small number of jobs and
a large variance in their processing times. This result illustrates
the importance of sometimes rejecting jobs (i.e., running them
on the cloud instead of on the edge boilers), since accepting
all jobs can lead to high occupation costs (m · CS ). In our
experiments, the high cost of some of the solutions obtained
by LPT reached up to four times the value of the lower bound.

On the other hand, both BEKP and LIULU provide low-
cost solutions thanks to their rejection capabilities, with neither
exceeding the lower bound by more than a factor of 1.2. With
the exception of the 40 jobs scenario, BEKP consistently
achieved results with similar or better cost than LIULU .
These results show that BEKP not only provides a better
approximation ratio, but also better schedules in practice.

B. Experiments with MDP (with deadlines)
We evaluateMDP in terms of the total solution profit (sum

of the processing times of the on-time jobs). As a benchmark,
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Fig. 4: Comparing LPT , LIULU , and BEKP using m = 20.

we compare it to the algorithm proposed by Berman and
DasGupta [9], denoted BERMAN . We compute an upper
bound on the solution profit with a Linear Programming
formulation that allows fractional and parallel assignment of
jobs at different time intervals. For this purpose, we first define
each interval j as the time interval between consecutive values
of 0 and unique deadlines in the given job set (assuming that
the deadlines are sorted in non-decreasing order). The length
of the interval j is denoted by lj . The decision variable xi,j is
defined as the processing time of job i during interval j and
is only valid if deadline di is after the end of interval j. The
upper bound is given by the following formulation

maximize
∑
i,j

xi,j

subject to ∀j,
∑
i

xi,j ≤ m · lj

∀i,
∑
j

xi,j ≤ pi
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Fig. 5: Comparison of BERMAN and MDP .

For these experiments, we vary the number of machines m
between 10 and 20. Fig. 5 illustrates these results, where each
grid column corresponds to a different number of machines
and each row corresponds to a different number of jobs. The
horizontal axis represents the different standard deviations
used to generate the processing times, and the vertical axis
represents the relative profit of each method compared to the
upper bound (where a limit is set for better visualization).

We can note in Fig. 5 thatMDP produces generally higher
profits than BERMAN in all scenario variations. While
MDP produces median profits relative to the upper bound
of about 0.85 or above, BERMAN often produces median
profits below 0.8. In other words,MDP is able to keep more
jobs (more specifically, more processing time) on the edge
boilers instead of pushing them to the cloud.

In further analysis, when we directly compare the profits of
both algorithms for each problem instance, we find thatMDP
provides higher profits in the vast majority of cases (and has
slightly lower profits than BERMAN in the other rare cases).
Since both algorithms follow the same logic of scheduling jobs

sequentially on each machine, these results illustrate the value
of using an optimal algorithm (DP) to make local scheduling
decisions.

VI. EXTENSIONS TO THE ALGORITHMS

During the development of this work, we have identified
possibilities to improve the approximation ratio of the pro-
posed algorithms at the expense of longer execution times, or
to extend their applicability. In this section, we discuss some
of these possibilities.

A. Improving the Approximation Ratio of BEKP
Besides the ε parameter, the approximation ratio of BEKP

depends on the thresholds used to group long jobs and
the combination of long job assignments in FillMaxArea
(Section III-B1). In FillMaxArea (Algorithm 2), we were
able to limit the complexity of exploring all quadruplets of
machines to O(m3) by enforcing a strict order of singletons,
pairs, and triplets. Lemma 4 shows that this strict ordering
ensures that we get the best possible choice of combinations
without testing them all. Without this ordering, we would have
to iterate over all possible counts of the combinations listed
in Lemma 2, resulting in a complexity of O(m11).

If we were to define more sets of jobs with different
thresholds and their proper combinations, we could improve
the approximation ratio of BEKP . For example, if we define
small jobs to be are those with pi ≤ 1

5T , and list all valid
combinations whose total processing times are at most 6

5T ,
we would get a 6

5 approximation for the resulting algorithm.
However, it is not clear that an equivalent of Lemma 4 can
be established, and this would lead to more set combinations
and thus to higher complexity. We have decided to limit
FillMaxArea to its current expression in order to keep it
practical both in terms of computational complexity and im-
plementation feasibility, but the study of better approximations
is left as an open problem.

B. Improving the Approximation Ratio of MDP
It is possible to generalize DP so that it provides an optimal

solution on κ machines (instead of a single machine) for a
given set of jobs. Define W (i, t1, ..., tκ) as the sum of the
processing times of the on-time jobs with indices {1, ..., i}
that can finish before time tj on machine j ∈ {1, ..., κ}. Then
∀i, t1, ..., tκ > 0, Eq. 12 returns the value of W (i, t1, ..., tκ).
This generalized DP solution has a complexity of O(nTκ).

max


W (i− 1, t1 − pi, ..., tκ) + pi, if pi ≤ t1 ≤ di
...

W (i− 1, t1, ..., tκ − pi) + pi, if pi ≤ tκ ≤ di
W (i− 1, t1, ..., tκ), otherwise.

(12)

By using this new version of DP , MDP can iteratively
schedule simultaneously the remaining jobs optimally on
κ machines (over m

κ iterations). This approach leads to a
(1 − (

m
κ −1
m
κ

)
m
κ )-approximation of the optimal solution with

a complexity of O(nlogn+mnTκ).
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C. Extending MDP to Arbitrary Profits
Our objective so far has been to minimize the weighted

number of late jobs for scenarios in the context of Qarnot,
where the weights (profits) are proportional to the processing
times (section IV-A). However, both DP and MDP can still
be used in scenarios where the weights are arbitrary. DP
can find schedules with optimal profits for these scenarios
simply by changing the way profits are computed in Eq. (6)
to Eq. (13).

W (i, t) = max

{
W (i− 1, t− pi) + wi, if pi ≤ t ≤ di
W (i− 1, t), otherwise

(13)
This change does not affect the approximation ratio of

MDP presented in Theorem 2, and its tightness, explored
in Section IV-D, still holds.

VII. CONCLUDING REMARKS

In this paper, we consider two offline job scheduling prob-
lems where jobs are to be assigned to a limited set of energy-
efficient machines at the edge, with the option of offloading
them to less energy-efficient machines on the cloud when nec-
essary. These problems can be viewed as scheduling problems
with rejection, where rejection means using the less energy-
efficient machines with an energy overhead proportional to the
job processing time.

For the scenario where jobs have no deadlines, we intro-
duce BEKP , a 5

4 (1 + ε)-approximation algorithm with time
complexity O(m3(m+n) log1+ε ρ), where the objective is to
minimize the cost ZS , defined as the sum of the utilization
of energy-efficient machines plus the rejection cost. For the
scenario where jobs have deadlines, we propose MDP , a
(1− (m−1)m

mm )-approximation algorithm with time complexity
O(nlogn + mnT ), where the objective is to maximize the
profit of accepted jobs while meeting their deadlines.

In both scenarios, the proposed algorithms provide better
approximation ratios than the state of the art with equivalent
or better time complexity. Our experimental evaluation also
shows that our algorithms produce good quality solutions in
practice. BEKP yielded similar or lower costs than Liu and
Lu’s approach [8], while MDP yielded higher gains than
Berman and DasGupta’s algorithm [9].

We envision some challenges to be addressed as future
work. With respect to the jobs, there are issues related to
imprecise or probabilistic processing times that should be
addressed. With respect to machines, there is the question
of potential heterogeneity between cloud, fog, and edge re-
sources, as well as between edge resources themselves, which
would require new approaches. There is also the issue of data
locality, where input data may be closer to some resources
than to others. Finally, there is the challenge of making online
job scheduling decisions, which remains to be explored.
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