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Abstract—This work proposes a novel approach to channel
sensing in cognitive radio systems, drawing inspiration from re-
inforcement learning theory. While the adversarial Multi-Armed
Bandit framework is commonly used to manage diverse channel
sampling, it struggles to accurately assess resource occupancy due
to geographical variations in channel availability across devices.
To address this limitation, collaboration among devices is essen-
tial and can be effectively achieved through Federated Learning
(FL). FL integrated into a Multi-Armed Bandit framework
addresses key challenges, including data heterogeneity, the high
cost of data centralization, privacy concerns, and biased learning.
We enhance the widely-used Exponential-weight algorithm for
exploration and exploitation (EXP3) by incorporating federation,
allowing learning devices to collectively identify channels with less
interference. Our simulation results demonstrate the effectiveness
of the federated EXP3 (F-EXP3) algorithm by comparing it
with the traditional EXP3 and the federated Upper Confidence
Bound (UCB). The experiments reveal that F-EXP3 overcomes
the limitations of individual learning, leading to superior channel
selection performance.

Index Terms—Federated Learning, Non-Stochastic Multi-
Armed Bandit, Cognitive Radio, Channel Sensing.

I. INTRODUCTION

Federated Learning (FL) enables decentralized Machine
Learning, enhancing privacy and cost-effectiveness [1], [2],
particularly when data is spread across various devices and
centralizing it to reduce learning error would be too expensive
[3]. An innovative extension of FL is the Federated Multi-
Armed Bandit (FMAB), which combines FL with sequential
decision-making [4]. Unlike traditional Multi-Armed Bandit
(MAB) models focused solely on the exploration-exploitation
trade-off, the federated bandit approach also addresses chal-
lenges like data heterogeneity, the high cost of data central-
ization, and the need for privacy protection.

In FL, data available to individual clients typically comes
from non-IID (independent and identically distributed) dis-
tributions, requiring collaboration among clients to derive
meaningful insights from the aggregated global model. As in
traditional federated settings, a central server orchestrates the
learning process among clients. To address privacy concerns,
clients do not transmit raw data; instead, they only send the
learned model weights to the central server for aggregation.

In this paper, we examine a cognitive radio framework
where a base station (BS) is responsible for selecting the least
occupied channel from a designated set within its coverage
area. Channel availability is known to vary across different ge-

ographical locations, with the overall availability often treated
as the ground truth—an average across the entire coverage
area. However, the BS, being fixed at a specific location,
cannot independently determine this global availability. To
overcome this limitation, a common strategy is to delegate the
task to randomly positioned devices, such as mobile phones or
IoT devices, dispersed throughout the coverage area to assess
channel availability. The data collected by these devices is then
aggregated at the BS, offering a more comprehensive view of
channel usage.

The existing literature on Federated Bandit algorithms pre-
dominantly addresses the stochastic bandit setting, as demon-
strated in foundational works such as [4], [5], and [6]. Some
extensions explore cases where the expected reward is a linear
function of the selected arm, as seen in [7] and [8], or scenarios
involving an infinite number of arms, as discussed in [9].
However, these methods often fall short when dealing with
realistic scenarios where clients’ datasets are non-IID, leading
to diverse local objectives. In such cases, particularly in non-
stochastic environments, the adversarial Multi-Armed Bandit
(MAB) framework is more appropriate [10]. Unlike stochastic
MAB, the adversarial MAB framework does not depend on
any predefined distribution of rewards, making it better suited
for handling variability in clients’ data.

In this paper, we propose F-EXP3, a federated version of
the EXP3 algorithm designed for non-stochastic settings. Our
results show that F-EXP3 performs comparably to centralized
EXP3, with bounded regret relative to the best fixed choice. It
also effectively identifies optimal channels, mitigating biases
from devices geographical locations. Additionally, we demon-
strate F-EXP3’s advantages over the federated stochastic MAB
approach, particularly the federated Upper Confidence Bound
(UCB) [4].

The remainder of the paper is organized as follows: section
II introduces the network model and formulates the prob-
lem. Section III describes the F-EXP3 algorithm. Section IV
presents the simulation results. Finally, section V outlines the
conclusion.

II. NETWORK MODEL AND PROBLEM FORMULATION

A BS in a cognitive radio network aims to autonomously
select the most suitable channels with the minimum received
interference power level from a predefined set, while remain-
ing responsive to variations in shared resource utilization



and radio channel quality. Given that the BS is stationary
and channel availability fluctuates across different locations,
collaborating with randomly positioned devices in a federated
manner can significantly enhance learning efficiency.

In the Federated Multi-Armed Bandit (FMAB) framework
depicted in Fig. 1, the central server, referred to as the
central base station (BS*), aims to identify the least utilized
channel among J neighboring BSs. This is achieved through
interactions with clients, which are individual devices. Each
device, denoted as m where m € 1,..., M, operates on K
channels, analogous to the arms in a standard Multi-Armed
Bandit (MAB) setup. All clients share the same set of K arms,
known as local arms at this level [4]. Each client interacts
exclusively with its own local MAB model, and does not
communicate directly with other clients. Although the learning
objective is centered on the server’s MAB model, known as
the global model, the server does not have direct access to
it; instead, it relies on feedback from clients about their local

observations.
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Fig. 1. System model for federated MAB.

Within a time horizon 7T, each client m aims to select the
most available channel k (where 1 < k < K) to maximize its
expected cumulative reward G shown below:

T
G™ = (1), $))
t=1

where the channel k; is randomly chosen according to a
distribution governed by EXP3, as described in Algorithm 1.

We denote the reward as r}’ € (0, 1], for sensing channel
k by device m as follows:

Pm
r}g”:l_Pm—’jW. 2
k

P/ represents the received power from other network(s) j €
1,..,J, on channel k sensed by device m, expressed as:

Pl'=Py-Y Gk Yk (%)B +Pn. Q)

jeJ m,j
Py denotes the transmitted power per channel, while Py
represents the thermal noise power per channel. Additionally,
Yk,; are 1.i.d. random variables (with unit mean) that depict
the impact of fast fading experienced on channel k, as sensed

by BS j. These variables follow an exponential distribution
to model Rayleigh fading [11]. G; is the antenna gain of BS
7, B represents the path-loss factor, and dfn’ ; 1s the distance
between BS j and device m sensing channel k. Finally, the
variable xy, ; serves as a binary indicator defined as follows:

Tk,j = IL{BSj selects channel k}+ (4)

P,g”mw represents the highest value of P;* that can be
achieved expressed as P/*""" = Py-> jeg Gj+Pn. Itserves
as a normalization factor to ensure that the reward remains
below 1.

The cumulative reward is usually compared with the largest
reward given by the best fixed choice denoted by g™ and
expressed below:

T
g" = max_ ; i (t). (5)

The regret RT' is defined as the difference between g™ and
G™ of any device m as follows:

7 i=g" —E[G"], ©

where the averaging is taken w.r.t. the probabilistic choices of
device m.

III. FEDERATING THE EXP3 MAB

We begin by introducing the standard Exponential-weight
Algorithm for Exploration and Exploitation (EXP3) [12],
which is utilized by each device m in the network. In
this setup, each device m, at each time step t, selects a
channel £ from a set of K available channels, and receives
a corresponding reward 7}"(t). We consider a vector space
{0, 1}%, where the strategy space for each device m is defined
as S,, € {0,1}¥ of size K. Following this, we present
our Federated EXP3 (F-EXP3) algorithm, which operates at
the central BS™ that integrates learning feedback from all
participating devices.

A. The EXP3 Algorithm

The EXP3 algorithm, detailed in Algorithm 1, was origi-
nally introduced in [13] to tackle sequential allocation prob-
lems. At each time step ¢ within a time horizon T, a device m
executes the EXP3 algorithm. Initially, each device m assigns
an equal weight to each channel, setting wy(1) = 1 for all
channels £ € 1, .., K. Subsequently, the device selects a chan-
nel k{" at random, using a probability distribution calculated as
described in line 2 of Algorithm 1. This probability distribution
is a combination of a uniform distribution, which ensures
exploration of all K channels, and an exponential distribu-
tion that assigns probabilities proportional to the estimated
cumulative reward of each channel.



B. The F-EXP3 Algorithm

The F-EXP3 algorithm, outlined in Algorithm 2, is executed
in parallel by the devices and the central server. At each
iteration ¢, each device m runs the EXP3 algorithm (Algorithm
1) to select a channel, and update its weights w™ (¢) (lines 4
to 6). These updated weights are sent to the central server
BS*, which aggregates them by summing (lines 8 and 9).
The aggregated weights are then sent back to the devices as
the global initial weights for the next iteration ¢ + 1 (line 10).

Notably, only the weights are exchanged between the de-
vices and the central server in F-EXP3, enhancing privacy
compared to previous methods like in [4], where actual re-
wards are transmitted.

Algorithm 1 EXP3 applied by any device m

1: INPUT: + a real parameter in (0, 1], and w(t)
2: fori=1to K do

pi(t) =

oy w0
S PRI

(N

3: end for

4: Device m selects randomly channel ;"
probabilities pi*(t), .., pi2(t)

5: Device m receives reward i (t) for drawn channel ;"

6: fori=1to K do

based on the

Tm(t) e sm
L ifi=1
P () = P ! 8)
®) {O otherwise
am
W't +1) = wi(t) exp(”r}(( ) ©

7: end for
8: OUTPUT: w™(t+ 1)

Algorithm 2 F-EXP3 applied by the central server B.S™

1: INPUT: Let v be a real parameter in (0, 1]
2: INITIALIZATION Set initial channel weights w;(1) = 1
for every channel 7 € {1,.., K}

3: fort=1to T do

4: for m=1 to M do

5: w™(t) = EXP3(y, w(t)), using Algorithm 1

6: end for

7: BS* receives weights w™(t) from devices m =
1 M

geeey

8: for i=1 to K do

M
@it) = 47 ﬂ;wi () (10)
9: end for
10: w(t+1)=a(t)
11: end for

Additionally, F-EXP3 is fully decentralized, computation-
ally efficient, and guarantees bounded regret, ensuring strong
performance as detailed in Theorem3.1.

Theorem 3.1: Regardless of the reward functions, F-EXP3
guarantees that the expected regret is bounded by:

Klog(K

(1)
RT 1@ the mean regret across all devices, defined as Ry =
M E , U7, while g is a bound on the maximum cumulative
reward, hmlted by T'. The proof is provided in the Appendix.

IV. SIMULATION RESULTS

In this section, we demonstrate the effectiveness of the
proposed F-EXP3 algorithm compared to the EXP3 algorithm
and the Federated Stochastic UCB from [4], where the local
models are stochastic realizations of the global model. We
evaluate performance based on the probability of selecting the
best channel and the regret across various scenarios.

We consider a cognitive radio network with M = 100 de-
vices uniformly distributed around a central B.S*. The network
has K available channels, and the central B.S* collaborates
with its devices to select the optimal channel. The devices also
monitor the channel utilization of J neighboring networks,
with each neighboring base station BS; located 1 km apart.
Each BS; assigns channels based on a uniform distribution,
with a usage ratio of & ; = E(xy ), which is unknown to
the learning devices. While neighboring cells use resources
randomly, BS* employs intelligent learning.

The simulation parameters are as follows: the mean antenna
gain G; for each neighboring base station (BS;) and the
transmission power (Fp) are both normalized to 1, with the
noise power set to Py = Py x 10~%. The path-loss exponent

is 8 = 3. We use the optimal value of -, as derived in [12],
given by v = 4/ %ﬁ The simulation results are generated

using a discrete event simulator implemented in SimPy [14].
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Fig. 2. F-EXP3 vs. EXP3: variation in the probability distribution of selected
channels with utilization rates £0,0 = 40%, 1,0 = 60%, 0,1 = 80%, and
Z1,1 = 20%.

Figs. 2 and 3 show the variation in the probability dis-
tribution, as defined in (7), over T' = 5000000 iterations.
We compare the performance of F-EXP3 with EXP3 for two
neighboring BSs (J = 2, BS, and B.S;) across four devices:



do, di, dg2, and d3. Devices dy and d; are positioned close
to BSy and BSi, respectively, while d2 and d3 are randomly
placed.

In Fig. 2, BSy and BS] use the K = 2 available channels
with specific proportions: BSy uses channel 0 (Cp) with
Z0,0 = 40% and channel 1 (C;) with £19 = 60%, while
BS; uses Cy with 291 = 80% and Cy with &1 1 = 20%. We
notice that Only EXP3 applied to device d;, which is close
to BS1, outperforms F-EXP3. Device dy, despite being near
BS), fails to identify the best channel due to the fair sharing
of both channels used by its neighboring BSy, and the far
distance from BS;. For devices ds and d3, EXP3 shows slower
convergence compared to F-EXP3.

In Fig. 3, we adjust the channel usage ratios of neighboring
BSs to 9,0 = 50% and &1 = 80%. All devices (do, di, do,
ds), and F-EXP3 successfully identify the optimal channel C}.
We observe F-EXP3 outperforming EXP3 applied to dy, ds,
and d3, while EXP3 applied to d; converges faster due to its
proximity to BS7, which heavily utilizes Cj.

1.0 1
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—— dy N EXP3 G,
—— dyinEXP3 Cy
d, in EXP3 Co
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Fig. 3. F-EXP3 vs. EXP3: variation in the probability distribution of selected
channels with utilization rates 0,0 = 50%, &1,0 = 50%, Z0,1 = 80%, and
Z1,1 = 20%.

We conclude that relying on a single device to execute the
EXP3 algorithm is not a reliable solution.

In Fig. 4, we compare the complexity of F-EXP3 to EXP3
by examining the number of iterations required to achieve a
probability of 0.8 for selecting the optimal channel C, using
the same channel utilization ratios as in Fig.3. The results
show that EXP3 applied to d; requires the fewest iterations
(< 0.5-10%) due to its proximity to BS;, which predomi-
nantly uses Cy. However, F-EXP3 requires significantly fewer
iterations (< 1.5 - 10%) than EXP3 applied to do, da, and ds.
Additionally, EXP3 shows a high error interval for dgy, dao,
and d3 due to fluctuating channel conditions (channel fading),
highlighting the benefit of device cooperation in F-EXP3
for improving channel selection accuracy in non-stochastic
wireless environments.

In Fig. 5, we examine the cumulative regret per device,
as calculated in (6), for both EXP3 and F-EXP3 over the
time horizon 7', using the same channel utilization ratios as

in Fig. 3. F-EXP3 consistently results in lower cumulative
regret for devices dp, d2, and ds compared to EXP3, with
regret staying below the theoretical bound. However, d; shows
higher cumulative regret with F-EXP3 than with EXP3, due
to its proximity to BSj, which heavily utilizes Cj. In this
optimal position, d; can effectively identify the best channel
using EXP3 alone, as seen in Figs. 2 and 3. On the other
hand, devices like do and d3, which are randomly placed, or
do, which is near BS; with balanced channel usage, struggle
to find the optimal channel using EXP3 independently. F-
EXP3 enables these devices to collaborate by sharing sensing
feedback, thereby improving detection accuracy and reducing
average cumulative regret (shown by the yellow curve).
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Fig. 4. F-EXP3 vs. EXP3: variation in the number of iterations required
to achieve a probability value of 0.8 for selecting C'1, with utilization rates
To,0 = 50%, T1,0 = 50%, To,1 = 80%, and T1,1 = 20%.
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Fig. 5. F-EXP3 vs. EXP3: variation in the cumulative regret with utilization
rates .’i‘(),() = 50%, il,O = 50%, .'2‘0,1 = 80%, and 351,1 = 20%.

In Fig. 6, we examine how the number of devices involved
in the F-EXP3 algorithm influences the iterations needed to
achieve a 0.8 probability of selecting the optimal channel
(C1). We analyze four networks with 5, 20, 50, and 100
devices, conducting 20 realizations for each scenario. The
results show that as the number of devices increases, fewer
iterations are required to reach the target probability. For
example, with 100 devices, the median number of iterations
is 6.7 x 10°, compared to 7.88 x 10° with only 5 devices.
Additionally, increasing the number of devices reduces the
error bar, highlighting the importance of device distribution.
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Fig. 7. EXP3 on d;, vs. F-EXP3 vs. Federated UCB: variation in the
probability of selecting channel C'1 as a function of the presence of channel
fading.

A larger number of uniformly distributed devices leads to a
more stable federated learning process, improving convergence
to the optimal channel.

In Fig. 7, we compare the performance of the F-EXP3
algorithm with the traditional EXP3, applied to a randomly
selected device d,,, and the Federated UCB algorithm [4]
in selecting the optimal channel (C7) over T' = 1,000, 000
iterations across 20 realizations. We assess two scenarios:
one without channel fading (stochastic setting) and one with
channel fading (non-stochastic setting). The network consists
of J = 4 base stations (BSy, BS1, BSs, BS3) and K = 4
channels, with each base station selecting channels in the
proportions JAJOJ' = 30%, j317j = 10%, :i?g)j = 30%, and
Z3,; = 30%. Our results show that F-EXP3 consistently
outperforms both EXP3 and Federated UCB in selecting
C1, regardless of channel fading. Notably, Federated UCB
is designed for stochastic environments, where it struggles
with the unpredictability of fading channels. In contrast, our
proposed F-EXP3 algorithm is specifically designed to adapt
cffectively to the variability of realistic channels. Specifically,
in the absence of fading, both F-EXP3 and EXP3 achieve a
probability close to 1, whereas Federated UCB stagnates at
0.8. With fading, F-EXP3 maintains a probability of 0.85,

surpassing EXP3 at 0.7 and Federated UCB at 0.44. These
results highlight the effectiveness of F-EXP3 in adapting to
varying channel conditions and improving channel selection
performance.

Fig. 8 illustrates the probability of selecting the optimal
channel (C1) over T = 1,000,000 iterations across 20
realizations in four different environments: J = 2 BSs with
K = 2 channels, J = 4 BSs with X = 4 channels, J = 6
BSs with K = 6 channels, and J = 8 BSs with kK = 8
channels. In each scenario, C; is less utilized by each BSj.
As the number of channels increases, UCB struggles to select
the less utilized channel (C7) due to channel fading, with
its probability dropping from 0.9 with 2 channels to less
than 0.4 with 8 channels. In contrast, F-EXP3 and EXP3
consistently identify C'; regardless of the number of available
channels, with F-EXP3 performing better (e.g., probabilities
of 0.83 for F-EXP3 and 0.72 for EXP3 with 4 channels).
This demonstrates the effectiveness of F-EXP3 in leveraging
device cooperation to select C; more efficiently than EXP3.
However, as the number of available channels increases, both
algorithms see reduced probability values, indicating a need
for more iterations with increasing channel number to achieve
higher probabilities of selecting the optimal channel.
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Fig. 8. EXP3 on d,, vs. F-EXP3 vs. Federated UCB: variation in the
probability distribution of selecting channel C; as a function of the number
of available channels.
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V. CONCLUSION

In this work, we introduced a novel framework for the
federated multi-armed adversarial bandit problem in channel
selection. Our framework addresses key challenges, such as
the heterogeneity of local learning objectives due to the non-
IID nature of wireless channel sampling, and the lack of access
to a global objective for both clients (devices) and the central
server (base station). To tackle these issues, we proposed the
F-EXP3 algorithm, capable of handling non-stochastic local
objectives. Our results demonstrated the superiority of this
federated adversarial bandit approach over both centralized
and federated stochastic bandit methods. We showed that fed-
erating non-stochastic reinforcement learning across diverse
devices enhances resource utilization efficiency. Future work
will explore applying smart F-EXP3 to all base stations, and



assess its impact on convergence rates. We anticipate that using
F-EXP3 across all base stations will increase randomness in
reward generation, making the adversarial federated Multi-
Armed Bandit even more appropriate.

VI. APPENDIX

The proof of Theorem 3.1 follows that of the classical
proof of EXP3 regret bound in [12]. We denote by W, :=
LS M Wi (t). Note that pi(t) in (7) boils down to
pr(t) after weights aggregation. We use the following simple
facts:

() < pi"l(t) - pxcl(t) <% (12)
Sory () () = i (b) (13)

Sy pe(t) - ()2 = Sy i (t) - (1)
<HE(E) =i ) (14)

The proof is based on the following sequence of equations:

W, w t+1 w 1
%:MZk IZml kWt)_MZk IZml kv:(/zlLS))
=Mzkihlﬁ%inMm@» (16)
:MZk 1Zm 1%&@(1)( ) 7)

Equation (16) uses the definition of p}*(¢) in (7). Then, when
x <1, we have e® < 1+ + (e — 2)?; hence, Equation (17)
can be rewritten as inequality (18).

thl Sw Zk 1 Zm 1 pk(t é (1+ 27 () +
(e - )( (t))z) (18)

<1+ Wﬁ E kg" (t)
taREa (;(22()17 7 > ket Zm () a9

Taking logarithm and since log(1 + x) < z, (19) implies:
Wy
log( t1> SILIKl W)Z 1 T (1)

+M K2(1 ’y) Sorey Yo P (E)

Summing from £ =1 to t =T, and owing to (1), we get:

W M m
log (U5 ) <z iy Tt G
e—2)y2 T K M m
% D imt 37 ket Lo TR (8) (2D)

We know that log (va,f) amounts to the following:

(20)

log (WTH): 10g (57 ey Yot Wi (¢ + 1)) — log(K)
(22)
> L3 log(X e, wit(t + 1)) — log(K)
(23)
> LS log(wpr(t+ 1)) — log(K)  (24)
> 2 LM ST () - log(K) (25

Owing to the concavity of the logarithm function, we can go

from (22) to (23). In (24), we use one term to lower bound (any

channel or arm k). Finally, from (9) we can deduce that w}* (t+

1) = exp(L S°/_, #(t)) which gives (25). Combining the

two inequalities in (21) and (25) yields:

M Zm 1G> Zm 1 Et VTR (t) — _(1_W)K10g(K)
<e Y Y X ) (26)

Taking the expected value on both sides with respect to the
distribution of < k7", ..., k7" > for all devices:

M m 1— M T . m
3 2ome1 E[G™] >w Dome1 21 T (1) =
e—2
— 5 Eim X X
Since the channel k& was chosen arbitrarily, and since
T K m m
Dt 2 T () S K- g

We obtain E[G] > (1 —~v)g— £ log(K) — (e — 2)7vg, which
finally gives g — E[G] < (e — 1)g + % log(K).
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