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A B S T R A C T

Sound attenuation along a waveguide is intensively studied for applications ranging from
heating and air-conditioning ventilation systems, to aircraft turbofan engines. In particular,
the new generation of Ultra-High-By-Pass-Ratio turbofan requires higher attenuation at low
frequencies, in less space for liner treatment. This demands to go beyond the classical acoustic
liner concepts and overcome their limitations. In this paper, we discuss an unconventional
boundary operator, called Advection Boundary Law, which can be artificially synthesized
by electroactive means, such as Electroacoustic Resonators. This boundary condition entails
nonreciprocal propagation, meanwhile enhancing noise transmission attenuation with respect
to purely locally-reacting boundaries, along one sense of propagation. Because of its artificial
nature though, its acoustical passivity limits are yet to be defined. A thorough numerical study
is provided to assess the performances of the Advection Boundary Law, in absence of mean
flow. An experimental test-bench validates the numerical outcomes in terms of passivity limits,
non-reciprocal propagation and enhanced isolation with respect to local impedance operators.
Guidelines are outlined to properly implement the Advection Boundary Law for optimal noise
transmission attenuation. Moreover, the tools and criteria provided here can also be employed
for the design and characterization of other innovative liners.

. Introduction

The acoustic problem of interest here, is the noise transmission mitigation in an open duct, by treatment of the parietal walls with
so-called liner. Examples of industrial fields where this problem is particularly felt are the Heating and Ventilation Air-Conditioning
ystems (HVAC) and the turbofan aircraft engines. The new generation of Ultra-High-By-Pass-Ratio (UHBR) turbofans, in order to
omply with the significant restrictions on fuel consumptions and pollutant emissions, present larger diameter, lower number of
lades and rotational speed and a shorter nacelle. These characteristics conflict with the equally restrictive regulations on noise
ollution, as broadband noise becomes more significant, and noise signature is shifted toward lower frequencies, which are much
ore challenging to be mitigated. The acoustic liner technology applied nowadays for noise transmission attenuation at the inlet and

utlet portions of turbofan engines is the so-called Single or Multi-Degree-of-Freedom liner, whose working principle relates to the
uarter-wavelength resonance, and demands larger thicknesses to target lower frequencies. They are made of a closed honeycomb
tructure and a perforated plate which is used to provide the dissipative effect, to add mass in order to decrease the resonance
requency, and also to maintain the aerodynamic flow as smooth as possible on the internal wall of the nacelle. As the honeycomb
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structure is impervious, propagation is prevented transversely to the wall, therefore it can be considered as locally reacting as long
as the incident field wavelength is much larger than the size of the honeycomb cells [1].

A first interest for active control is the possibility to tune the resonators to different frequencies. Many adaptive Helmholtz
resonator solutions have been proposed by varying either the acoustic stiffness (i.e. the cavity as in [2]), or the acoustic mass
(i.e. the orifice area, as in [3]), or combining electroactive membranes with Helmholtz resonators [4], but these techniques tended
to present complex structure, excessive weight and high energy consumption [1].

Active Noise Cancellation (ANC) has provided alternative solutions for achieving higher attenuation levels. From the seminal
idea of Olson and May [5], first active impedance control strategies [6,7] proposed an ‘‘active equivalent of the quarter wavelength
esonance absorber’’ for normal and grazing incidence problems, respectively. The same technique was slightly modified in [8], in
he attempt to reproduce the Cremer’s liner optimal impedance for the first duct modes pair [9,10]. As such impedance could not
e achieved in a broadband sense, this approach remained limited to monotonal applications.

These are examples of impedance control achieved through secondary source approaches combined with passive liners, but
he collocation of sensor and actuator suggested also another avenue: the modification of the actuator (loudspeaker or else) own
echano-acoustical impedance. The objective shifts from creating a ‘‘quiet zone’’ at a certain location, to achieving an optimal

mpedance on the loudspeaker diaphragm. This is the Electroacoustic Resonator (ER) idea, which have found various declinations,
uch as electrical-shunting [11], direct-impedance control [12] and self-sensing [13]. In order to overcome the low-flexibility
rawback of electrical shunting techniques, minimize the number of sensors, meanwhile avoiding to get involved into the electrical-
nductance modelling of the loudspeaker, a pressure-based current-driven architecture proved to achieve the best absorption
erformances in terms of both bandwidth and tunability [14]. It employs one or more pressure sensors (microphones) nearby
he speaker, and a model-inversion digital algorithm to target the desired impedance by controlling the electrical current in the
peaker coil. Compared to classical ANC strategies, the impedance control is conceived to assure the acoustical passivity of the
reated boundary, and hence the stability of the control system independently of the external acoustic environment [15]. Despite
he physiological time delay of the digital control, which can affect the passivity margins at high frequencies [16], such ER strategy
as demonstrated its efficiency for both room-modes damping [14,17] and sound transmission mitigation in waveguides [18–26].
he model-inversion algorithm has also been extended to contemplate nonlinear target dynamics at low excitation levels [27–29].

All the afore-mentioned boundary treatments for noise mitigation were conceived in terms of target (locally-reacting) behaviours.
n [30], for the first time, a boundary operator involving the spatial derivative was targeted by distributed electroacoustic devices.
t was the first form of the Advection Boundary Law (ABL), then implemented on ER arrays lining an acoustic waveguide in
23,24,31–33], where it demonstrated non-reciprocal sound propagation. Non-reciprocal propagation is a highly desirable feature
or many physical domains and applications [34]. In addition, the non-reciprocity allows the ABL to potentially break through
ypical constraints on the transmission attenuation of reciprocal media [35]. Nevertheless, because of its spatial non-locality, the
onceptual categories defining the passivity of a surface impedance (see [36]) do not apply to the ABL. From that, comes the need
o reformulate ad-hoc passivity conditions. Moreover, since the ABL lacks any analogue in nature, the physical interpretation of the
BL performances is not immediate. In addressing such points, overlooked in the previous references, is the main motivation and
ontribution of this manuscript.

Section 2 introduces the ABL from a theoretical point of view and provides a physical parallel which can help in the interpretation
f the ABL performances. We arrive to a general definition of the ABL, composed of a convolution impedance operator 𝜁Loc, and
convection term proportional to the advection speed 𝑈𝑏. In Section 3, the ABL is analysed in open-field to retrieve the oblique

ncidence absorption coefficient, as function of 𝑈𝑏 and of the angle of the incident field. In Section 4, the duct-mode eigenproblem
s solved by Finite Elements (FEs) for the first modes propagating in a 2D infinite waveguide lined on both sides by the ABL.
modal group velocity on the boundary is defined, which allows to introduce the modal passivity, as a relaxed version of the
bsolute passivity criteria. Moreover, the role played by the group velocity angle at the boundary gives the proper understanding
f the physical mechanism behind the enhanced attenuation achieved with the ABL. The scattering performances are computed
n Section 5 for a 2D duct in the plane wave regime without flow, and a very good correlation is observed with respect to the
uct mode analysis. Then, in Section 6, we simulate a 3D waveguide lined by ERs synthesizing the ABL, confirming its enhanced
solation performances, along with its passivity issues. In Section 6, we also present the control law employed to enforce the ABL
n the ERs. The effect of discrete pressure estimations by quasi-localized microphones, as well as the impact of time delay in the
ontrol algorithm, are briefly discussed. Finally, in Section 7, experimental results are provided to demonstrate the enhanced noise
ttenuation performances, the broadband nonreciprocal propagation, and the passivity limits of the ABL. The main novelties of this
aper stay into the full characterization of the ABL and in the definition of a unique parameter to establish both passivity and noise
solation performances for grazing incidence problems. The nice physical interpretation provided by such parameter, can have an
mportant impact in future designs of acoustic liners.

. Theoretical conception

The greatest difficulty for the parietal treatment of a waveguide is, antonomastically, that it applies on the parietal walls 𝜕
see Fig. 1), whereas the noise propagates along the longitudinal axis 𝑥 which is clearly parallel to 𝜕. Such problem is usually
eferred to as grazing incidence problem. C. Bardos, G. Lebeau and J. Rauch [37] demonstrated that a sufficient condition for the
oundary to fully control the wave propagation is that every ray of the acoustic field must interact with the boundary. But in case of
he grazing incidence problem, there will always be some rays not directly interacting with the boundary, therefore not controllable.
2

his is also the reason why the effectiveness of any liner in noise transmission attenuation, degrades if the cross-section area of
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Fig. 1. A cylindrical waveguide along coordinate 𝑥, with cross section  of arbitrary shape. In (a), overview of the waveguide. In (b), detail of the cross-section
and its contour 𝜕. 𝐧(𝛾) is the local exterior normal at each point of the contour, with tangential coordinate 𝛾.

Fig. 2. Interface 𝜕𝛺 between two semi-infinite domains: 𝛺air and 𝛺f ict . 𝛺air is filled with non-convected air, and extends indefinitely toward ±𝑥 and −𝑦. 𝛺f ict
extends indefinitely toward ±𝑥 and +𝑦, and is an anisotropic acoustic medium characterized by Eq. (3).

the waveguide increases, as less number of acoustic rays will directly interact with the boundary. Nevertheless, even if the grazing
incidence problem is not fully controllable, it should still be possible to determine an optimal liner behaviour achieving the maximum
attenuation of transmitted noise.

Morse [38], in 1939, recognized the normal surface impedance as the quantity characterizing the acoustic behaviour of a
locally reacting boundary. It is defined as the ratio of Laplace transform of the local sound pressure and the normal velocity:
𝑍𝑠(𝑠) = 𝑝(𝑠)∕𝑣(𝑠), where 𝑠 is the Laplace variable, set to j𝜔 (where j =

√

−1) in the stationary regime. However, a generic boundary
might present non-locally reacting, non-linear or even time-variant acoustical response, and in that case the operator describing its
acoustical behaviour cannot be reduced to an impedance transfer function. The assumption of locally-reacting behaviour, and its
consequent modelling by means of a surface impedance, is common practice in acoustics. Therefore, optimization theories have often
considered locally-reacting behaviours of acoustic liners. This is the case for the Cremer’s optimal impedance [9], after retrieved
by Tester [10]. Such impedance, formulated in the frequency domain, does not correspond to any real function in time domain (by
inverse Fourier transformation), as it does not satisfy the so-called reality condition [36]. Attempts to achieve it in a broadband
sense [39] resulted in very large filters, limiting its practical implementation to single tones attenuation [40].

To the authors knowledge, general spatial non-local operators have never been targeted for sound transmission attenuation.
Nevertheless, Morse himself [38], in 1939, introduced the locally reacting surface as a degeneration of a more general interface 𝜕𝛺
(see Fig. 2) between two propagative media. The first one 𝛺air is characterized by the wave equation in air:

𝑐20∇
2𝑝 = 𝜕2𝑡 𝑝 in 𝛺air , (1)

with ∇2 the Laplacian operator and 𝑐0 the sound speed. The other propagative domain, 𝛺f ict (fictitious) is represented by an
anisotropic wave equation, which in 2D reads:

𝑐2𝑥𝜕
2
𝑥𝑝 + 𝑐

2
𝑦𝜕

2
𝑦𝑝 = 𝜕2𝑡 𝑝 in 𝛺f ict , (2)

where 𝑐𝑥 and 𝑐𝑦 are the phase speeds along the tangential 𝑥 and normal 𝑦 coordinates with respect to the boundary 𝜕𝛺. Observe that
in [38], Eq. (2) is written in terms of refractive indices rather than phase speeds. Let us generalize such anisotropic wave equation
to take into account a convection speed 𝑈𝑏 along 𝑥, in 𝛺f ict :

𝑐2𝑥𝜕
2
𝑥𝑝 + 𝑐

2
𝑦𝜕

2
𝑦𝑝 = (𝜕𝑡 + 𝑈𝑏𝜕𝑥)2𝑝 in 𝛺f ict . (3)

Following Morse, a locally reacting surface could be interpreted as the interface between air and a domain 𝛺f ict , characterized by
3

Eq. (3) with 𝑐𝑥 = 𝑈𝑏 ≪ 𝑐𝑦, such that both convection and propagation along 𝑥 can be neglected. This way, Eq. (3) degenerates into
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a 1D wave equation, where wave propagation in 𝛺f ict is allowed only along the normal direction 𝑦 to the surface 𝜕𝛺, with a phase
speed equal to 𝑐𝑦. The boundary 𝜕𝛺 would then be seen as a locally-reacting surface by 𝛺air , with characteristic impedance 𝜌f ict𝑐𝑦,
with 𝜌f ict the density in 𝛺f ict . For 𝛺f ict extending to infinity along the +𝑦 direction, then the characteristic impedance becomes
the surface impedance of the locally-reacting surface 𝜕𝛺. By contemplating complex values of 𝑐𝑦 and/or 𝜌f ict , complex impedances
would be reproduced on the interface 𝜕𝛺. Usually, non-locally reacting surfaces are attained because 𝑐𝑥 is different from zero in
Eq. (3). It is the case of classical passive non-locally reacting liners (as porous layers), where the 𝑦-dimension of 𝛺f ict is bounded
by a rigid back wall [41,42].

In the following discussion, 𝛺f ict will be considered as extending indefinitely from the boundary 𝜕𝛺 toward both coordinate
directions (±𝑥, +𝑦), as showed in Fig. 2 for the 2D case. The definition of a boundary operator corresponding to a rear semi-infinite
propagative domain is the so-called Dirichelet-to-Neumann (DtN) mapping [43], commonly employed in computational methods for
simulating unbounded radiation. The DtN approach is retrieved in [30] where, by passing through the Fourier space, the pseudo-
differential boundary operator (relating sound pressure and its normal derivative), which maps a semi-infinite domain 𝛺f ict on the
interface with 𝛺air , is computed in case of 𝛺f ict with same propagation characteristics as 𝛺air (𝑐𝑦 = 𝑐𝑥 = 𝑐0, 𝑈𝑏 = 0). Following the
same steps as [30], we can enlarge the pseudo-differential operator presented in [30] to contemplate an anisotropic and convected
propagation in 𝛺f ict as the one described by Eq. (3), and obtain:

𝑐𝑦𝜕𝑦𝑝 = −
[

√

(𝜕𝑡 + 𝑈𝑏𝜕𝑥)2 − 𝑐2𝑥𝜕2𝑥

]

𝑝 on 𝜕𝛺. (4)

In case of 𝑈𝑏 = 0 and 𝑐𝑥 = 𝑐𝑦, we retrieve the pseudo-differential operator for perfect absorption given in [30], while in case
of 𝑐𝑥 = 𝑈𝑏 = 0, we fall back into the local impedance operator. Observe that Eq. (4) gives the relationship between pressure
and its normal derivative, at the interface with a propagative and convected medium. Such relationship is found by imposing the
continuity of pressure and normal velocity between the two media [30,38]. In real life, the presence of convection and viscosity,
would entail a vortex sheet [44–46] and the continuity of displacement, rather than velocity, at the interface. Nevertheless, as long
as we are referring to a fictitious domain 𝛺f ict , this can be assumed inviscid and purely potential, and the continuity of velocity can
be maintained as in [47].

Supposing 𝑐𝑥 = 0, Eq. (4) degenerates into:

𝑐𝑦𝜕𝑦𝑝 = −(𝜕𝑡 + 𝑈𝑏𝜕𝑥)𝑝 on 𝜕𝛺. (5)

Eq. (5) is the ABL. Therefore, we can finally interpret the ABL as the DtN map of a semi-infinite domain 𝛺f ict , characterized by
potential wave propagation only along the direction 𝑦 normal to the boundary (as for locally reacting surfaces), but where such
propagation is convected along 𝑥 with advection speed 𝑈𝑏. Note that in [30], 𝑐𝑦 was taken as equal to 𝑐0 and Eq. (5) was not
introduced as a degeneration of the general boundary operator (here provided in Eq. (4)) mapping a convected anisotropic domain
on the boundary. Hence, the introduction of the ABL lacked of a proper physical interpretation.

Using the Euler equation of acoustics projected along the 𝑦-axis (normal to 𝜕𝛺), in absence of mean-flow [48]:

𝜌0𝜕𝑡𝑣𝑦 = −𝜕𝑦𝑝, (6)

with 𝑣𝑦 the velocity along 𝑦 (normal to the boundary), Eq. (5) writes:

𝜌0𝑐𝑦𝜕𝑡𝑣𝑦 = 𝜕𝑡𝑝 + 𝑈𝑏𝜕𝑥𝑝 on 𝜕𝛺. (7)

Observe that, for 𝑈𝑏 = 0, Eq. (7) retrieves a locally reacting boundary of surface acoustic impedance 𝑍Loc = 𝜌0𝑐𝑦. To introduce
a general complex local impedance 𝑍Loc(j𝜔), we can define the corresponding differential operator in time domain 𝑍Loc(𝜕𝑡) (same
notation as [49]), convoluting (∗) the local normal acceleration 𝜕𝑡𝑣𝑦. So, Eq. (7) rewrites:

𝑍Loc(𝜕𝑡) ∗ 𝜕𝑡𝑣𝑦 = 𝜕𝑡𝑝 + 𝑈𝑏𝜕𝑥𝑝 on 𝜕𝛺. (8)

In the following, the effects of such BC are investigated first analytically on a semi-infinite domain 𝛺air , then numerically on a
waveguide of infinite and finite lengths, finally experimentally in a duct lined by programmable ERs.

3. Advection boundary law in open field

As a first case study, we compute the absorption coefficient of the ABL interfacing a semi-infinite air domain (an open field),
𝛺air = [−∞,∞] × [−∞, 0], as in Fig. 3. The treated boundary extends on all the 𝑥 axis.

Assuming a time-harmonic sound field in the usual complex notation (j𝜔𝑡), the incident wave can be expressed as:

𝑝̄𝑖(𝑡, 𝜔, 𝑥, 𝑦) = 𝑝𝑖0(𝜔)𝑒j𝜔𝑡−j𝑘0 cos 𝜃𝑖𝑥−j𝑘0 sin 𝜃𝑖𝑦, (9)

where 𝑝̄𝑖 is the complex representation of 𝑝𝑖 = Re{𝑝̄𝑖}, 𝑘0 = 𝜔∕𝑐0 is the wavenumber of a plane wave, 𝑐0 is the speed of sound,
and 𝜃𝑖 is the incident angle of the plane wave on the treated boundary. The reflected wave field is supposed to respect the classical
Snell–Descartes law of refraction, according to which the reflected plane wave propagates with a specular angle with respect to the
incident one, i.e. 𝜃𝑟 = −𝜃𝑖. The presence of a transport at the boundary gives no reason to modify this assumption, in an analogous
way to the case of air-flow in the acoustic domain [44], or to the case of interface with a convected propagative medium [46].
4
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Fig. 3. ABL interfacing a semi-infinite domain.

Hence, the complex reflected wave from an ABL can be written as:

𝑝̄𝑟(𝑡, 𝜔, 𝑥, 𝑦) = 𝑅(j𝜔)𝑝𝑖0𝑒j𝜔𝑡−j𝑘0 cos 𝜃𝑖𝑥+j𝑘0 sin 𝜃𝑖𝑦, (10)

with 𝑅 the reflection coefficient at the oblique incidence 𝜃𝑖. The acoustic velocity 𝑣𝑦 normal to the boundary is obtained by the
Euler equation of acoustics projected along 𝑦 (Eq. (6)), with 𝑝 = 𝑝𝑖 + 𝑝𝑟. Replacing Eq.s (9) and (10) in 𝑝𝑖 and 𝑝𝑟 respectively, we
find the normal complex velocity on the boundary 𝑦 = 0:

𝑣̄𝑦(𝑡, 𝑥) =
sin 𝜃𝑖
𝜌0𝑐0

𝑝𝑖0

(

1 − 𝑅(j𝜔)
)

𝑒j𝜔𝑡−j𝑘0 cos 𝜃𝑖𝑥. (11)

Also, the ABL of Eq. (8) can be applied to the total pressure 𝑝 = 𝑝𝑖 + 𝑝𝑟 to give:

𝑣̄𝑦(𝑡, 𝑥) =
𝑝𝑖0

𝑍Loc(j𝜔)

(

1 +𝑀𝑏 cos 𝜃𝑖

)(

1 + 𝑅(j𝜔)
)

𝑒j𝜔𝑡−j𝑘0 cos 𝜃𝑖𝑥, (12)

where 𝑀𝑏 = 𝑈𝑏∕𝑐0. Equating Eq. (11) and (12), we find the reflection coefficient:

𝑅(𝜔) =
1 −

(

1 −𝑀𝑏 cos 𝜃𝑖

)

𝜂Loc(j𝜔)∕ sin 𝜃𝑖

1 +
(

1 −𝑀𝑏 cos 𝜃𝑖

)

𝜂Loc(j𝜔)∕ sin 𝜃𝑖

, (13)

where 𝜂Loc(j𝜔) = 𝜌0𝑐0∕𝑍Loc(j𝜔) is the normalized local mobility. Observe that for 𝑀𝑏 = 0, the reflection coefficient of classical
locally-reacting surfaces is retrieved. Eq. (13) suggests the possibility to define an effective normalized mobility 𝜂eff (j𝜔,𝑀𝑏, 𝜃𝑖) =
(

1 −𝑀𝑏 cos 𝜃𝑖

)

𝜂Loc(j𝜔), which is equivalent to the ABL operator for the far-field reflection from an infinite boundary 𝜕𝛺. Observe
that 𝜂eff depends also on 𝑀𝑏 and 𝜃𝑖. In particular, it is interesting to notice that for 𝑀𝑏 = −1, if 𝜃𝑖 → 0 then 𝜂eff → 2𝜂Loc, whereas
if 𝜃𝑖 → 𝜋 then 𝜂eff → 0. This result preliminarily demonstrates the non-reciprocal propagation achieved by the ABL in grazing
incidence, which is treated in the next sections.

Based on 𝜂eff , we can write the absorption coefficient:

𝛼(𝜔) =
4 Re{𝜂eff (j𝜔, 𝜃𝑖,𝑀𝑏)∕ sin 𝜃𝑖}
|

|

|

|

1 + 𝜂eff (j𝜔, 𝜃𝑖,𝑀𝑏)∕ sin 𝜃𝑖
|

|

|

|

2
. (14)

From Eq. (14), we can apply the classical passivity condition for locally-reacting boundaries [36] to 𝜂eff (j𝜔, 𝜃𝑖,𝑀𝑏):

Re
{

𝜂eff (j𝜔, 𝜃𝑖,𝑀𝑏)
}

≥ 0 i.e. Re
{

𝜂Loc(j𝜔)
}(

1 −𝑀𝑏 cos 𝜃𝑖

)

≥ 0. (15)

Eq. (15) is valid as long as Re{𝜂Loc(j𝜔)} ≥ 0 (the local impedance operator should be passive) and 𝑀𝑏 ≤ 1∕ cos 𝜃𝑖. For the passivity
to hold independently of the angle of incidence, it must be 𝑀𝑏 ≤ 1. Such acoustical passivity condition signifies that acoustic energy
enters the boundary, rather than being radiated from it. Let us write the acoustic intensity [48] normal to the boundary, 𝐼𝑦:

𝐼𝑦(𝜔) =
1
2
Re{𝑝̄∗(𝜔, 𝑥)𝑣̄𝑦(𝜔, 𝑥)} =

(

1 − |𝑅(𝜔)|2
)

|𝑝𝑖0(𝜔)|
2

2𝜌0𝑐0
sin 𝜃𝑖 = 𝛼(𝜔)

|𝑝𝑖0(𝜔)|
2

2𝜌0𝑐0
sin 𝜃𝑖 = 𝛼(𝜔)𝐼𝑖,𝑦(𝜔), (16)

where 𝐼𝑖,𝑦(𝜔) =
|𝑝𝑖0(𝜔)|2

2𝜌0𝑐0
sin 𝜃𝑖 is the component along 𝑦 of the incident acoustic intensity, and the superscript ∗ indicates the complex

conjugate. Therefore, for a given incident field, the normal component of the acoustic intensity gives the absorption at the boundary.
The ABL absorption coefficient versus the angle of incidence is plotted in Fig. 4 for 𝜂Loc = 1 and different values of 𝑀𝑏 < 0. Notice

that the range of angles of incidence 𝜃𝑖 for which 𝛼 < 0, enlarges as |𝑀𝑏| is increased above 1. Moreover, such loss of acoustical
passivity for 𝑀 < −1, happens only for 𝜋∕2 < 𝜃 < 𝜋, meaning that the ABL is non-passive only for incident sound fields coming
5

𝑏 𝑖
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Fig. 4. ABL absorption coefficient versus 𝜃𝑖, in open field, for 𝜂Loc = 1 and various 𝑀𝑏 ≤ 0.

from the right side of Fig. 3, that is, for incident waves with sgn(𝑘𝑥) = sgn(𝑀𝑏). The dependence upon the angle of incidence of ABL
acoustical passivity is another unique feature of the ABL with respect to classical liners. This angle-of-incidence dependency of ABL
acoustical passivity manifests in a duct-mode dependent stability, which is the subject of the next section.

4. Duct modes analysis in 2D waveguide

After having defined the passivity condition of the ABL on a semi-infinite domain, let us investigate the passivity and attenuation
performances into an acoustic waveguide starting from the duct mode analysis. Duct modes are fundamental to understand the
propagation characteristics in a waveguide. The general formulation of the duct-mode eigen-problem is provided in Appendix A,
along with the special treatment reserved to the ABL for the FE numerical resolution of our eigen-problem. The FE mesh has been
built sufficiently fine to have large number of elements in the cross section and accurately resolve for each duct-mode shape of
interest. We consider a 2D duct of section width ℎ = 0.05 m, with both upper and lower walls lined by the ABL. According to
the assumption of duct mode eigen-solution 𝑝̄𝑚(𝑡, 𝜔, 𝑥, 𝑦) = 𝐴𝑚𝜓𝑚(𝑦, 𝜔)𝑒j𝜔𝑡−j𝑘𝑥,𝑚(𝜔)𝑥, the duct mode analysis consists in computing
the duct-mode eigenvalues (𝑘𝑥,𝑚) and eigenvectors (𝜓𝑚), while 𝐴𝑚 can be normalized at will. The duct-mode representation of the
acoustic field, gives the occasion to define modal acoustic intensities and modal group velocities. In particular, the local modal acoustic
intensity vector is given by:

𝐈𝑚(𝑥, 𝑦, 𝜔) =
1
2
Re{𝑝̄∗𝑚(𝑡, 𝜔, 𝑥, 𝑦)𝐯𝑚(𝑡, 𝜔, 𝑥, 𝑦)}, (17)

where the superscript ∗ indicates the complex conjugate, and 𝐯𝑚 is the modal acoustic velocity, related to the modal acoustic
pressure 𝑝̄𝑚 by the Euler equation of acoustics −𝜌0j𝜔𝐯𝑚 = ∇𝑝̄𝑚, where ∇ is the gradient operator. We can then compute the 𝑥 and 𝑦
components of 𝐈𝑚:

𝐼𝑥,𝑚(𝑥, 𝑦, 𝜔) = 𝑒2Im{𝑘𝑥,𝑚𝑥} 1
2𝜌0𝑐0

Re{𝑘𝑥,𝑚}
𝑘0

|𝜓𝑚(𝑦, 𝜔)|
2 (18)

𝐼𝑦,𝑚(𝑥, 𝑦, 𝜔) = 𝑒2Im{𝑘𝑥,𝑚𝑥} 1
2𝜌0𝑐0

Re
{

𝜓∗
𝑚(𝑦, 𝜔)𝜕𝑦𝜓𝑚(𝑦, 𝜔)

}

(19a)

We can now define the average acoustic intensity vector on the duct cross section:

𝐈𝑚,𝐴𝑣𝑒(𝑥, 𝜔) =
1
ℎ ∫

ℎ

0
𝐈𝑚(𝑥, 𝑦, 𝜔)d𝑦. (20)

It is easy to verify that, for symmetric duct modes (for which 𝜓𝑚(ℎ, 𝜔) = 𝜓𝑚(0, 𝜔)), we get ∫ ℎ0 𝐼𝑦,𝑚(𝑥, 𝑦, 𝜔)d𝑦 = 0. So:

𝐈𝑚,𝐴𝑣𝑒(𝜔) =
1
ℎ

(

∫

ℎ

0
𝐼𝑥,𝑚(𝑦, 𝜔)d𝑦

)

𝐱 = 𝑒2Im{𝑘𝑥,𝑚}𝑥 1
2ℎ𝜌0𝑐0

Re{𝑘𝑥,𝑚}
𝑘0

(

∫

ℎ

0
|𝜓𝑚(𝑦, 𝜔)|

2d𝑦
)

𝐱, (21)

where 𝐱 is the unit vector along 𝑥.
We can now define the local modal group velocity as:

𝐜𝑚(𝑦, 𝜔) =
𝐈𝑚(𝑥, 𝑦, 𝜔) , (22)
6

𝐸𝑚,𝐴𝑣𝑒(𝑥, 𝜔)



Journal of Sound and Vibration 590 (2024) 118603E. De Bono et al.
Fig. 5. Stability regions of duct-modes in the (Re{𝑘𝑥}, Im{𝑘𝑥})-plane.

where 𝐸𝑚,𝐴𝑣𝑒(𝑥, 𝜔) is the average modal kinetic energy, defined as:

𝐸𝑚,𝐴𝑣𝑒(𝑥, 𝜔) =
𝜌0
2ℎ ∫

ℎ

0
𝐯∗𝑚 ⋅ 𝐯𝑚d𝑦

= 𝑒2Im{𝑘𝑥,𝑚𝑥}

2ℎ𝜌0𝑐20

(

|𝑘𝑥,𝑚|
2

𝑘20
∫

ℎ

0
|𝜓𝑚(𝑦, 𝜔)|

2d𝑦 + 1
𝑘20

∫

ℎ

0
|𝜕𝑦𝜓𝑚(𝑦, 𝜔)|

2d𝑦
)

.
(23)

We can then compute the average modal group velocity:

𝐜𝑚,𝐴𝑣𝑒(𝜔) =
1
ℎ ∫

ℎ

0
𝐜𝑚(𝑥, 𝑦, 𝜔)d𝑦 =

1
ℎ
∫ ℎ0 𝐈𝑚(𝑥, 𝑦, 𝜔)d𝑦
𝐸𝑚,𝐴𝑣𝑒(𝑥, 𝜔)

= 𝑐0
Re{𝑘𝑥,𝑚(𝜔)}

𝑘0

( ∫ ℎ0 |𝜓𝑚(𝑦, 𝜔)|
2d𝑦

|𝑘𝑥,𝑚|2

𝑘20
∫ ℎ0 |𝜓𝑚(𝑦, 𝜔)|

2d𝑦 + 1
𝑘20

∫ ℎ0 𝜕𝑦|𝜓(𝑦, 𝜔)|
2d𝑦

)

𝐱,
(24)

Observe that neither the local or the average modal group velocities depend upon 𝑥. From the average modal group velocity
expression, we can deduce that each duct mode propagates along 𝑥 with a sign given by Re{𝑘𝑥,𝑚}, i.e. Re{𝑘𝑥,𝑚}> 0 means a +𝑥
direction of propagation, and vice-versa. The Im{𝑘𝑥,𝑚} instead, gives the attenuation (or amplification) rate of the modal acoustic
intensity along the duct mode 𝑥-propagation, as it can be seen from the Eq. (21). The regions of duct-mode stability are illustrated in
Fig. 5, for clarity. However, we are interested in defining a unique dimensionless quantity able to characterize both the attenuation
and stability of a duct mode. Inspired by the work of Rice [50], we propose to consider the propagation angle of the local modal
group velocity at the boundary, given by:

𝜃𝑏,𝑚(𝜔) = atan
( 𝑐𝑛,𝑚(𝜔, 𝑦𝑏)
𝑐𝑥,𝑚(𝜔, 𝑦𝑏)

)

, (25)

where 𝑐𝑛,𝑚 is the local modal group velocity component along the normal 𝐧 to the boundary, and 𝑦𝑏 is the value of the 𝑦 coordinate
at the boundary. Clearly, a dissipative liner entails acoustic intensity that enters the boundary, i.e. a positive 𝑐𝑛,𝑚(𝜔, 𝑦𝑏) and a
0 < 𝜃𝑏,𝑚 < 𝜋. Therefore, we propose to define the following absolute acoustical passivity criteria of a generic BC for in-duct
grazing-incidence problems:

sin 𝜃𝑏,𝑚(𝜔) ≥ 0, ∀ 𝜔 > 0 and ∀𝑚 ∈ Z+. (26)

Such absolute passivity criteria could be relaxed to introduce a more general modal acoustic passivity criteria:

sin 𝜃𝑏,𝑚(𝜔) ≥ 0 ∀ 𝜔 > 0 and certain 𝑚 ∈ Z+, (27)

Such quantity sin 𝜃𝑏,𝑚 very well correlates also with the attenuation levels achieved by the ABL, as it will be showed in the
following. Observe that this quantity differs from the modal propagation angle considered by Rice [50] to correlate with the acoustic
liner performances. In [50], the modal propagation angle at the boundary was computed from the wavenumber, and not from
𝐜𝑚. Indeed, the group velocity was considered only in case of air-flow in the duct. Moreover, he proposed a geometric approach
employing the open-field reflection coefficient computed for an incident angle equal to such modal propagation angle, to estimate
the attenuation rate along the duct, achieving good approximation only for nearly hard walls (locally-reacting liners with 𝜂Loc ≈ 0).
Moreover, the separation between incident and reflected fields cannot be operated in a duct-mode analysis, therefore such open-field
reflection coefficient actually provides very poor estimations of the attenuation rates for general BCs of interest.
7
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Fig. 6. Dispersion plots, in terms of real (top) and imaginary (bottom) parts of 𝑘𝑥, relative to the first four duct modes propagating in both senses, in case of
oundary advection law with 𝜂Loc = 1 and 𝑀𝑏 = −1.

The solutions, both in terms of wavenumbers 𝑘𝑥,𝑚 and mode-shapes 𝜓𝑚(𝑦) reported here, are computed for a 2D waveguide with
cross section width ℎ = 0.05 m (to conform with the experimental test-rig of Section 7), lined on both sides by our ABL. The results
will be accompanied by the plots of sin 𝜃𝑏,𝑚 to demonstrate the perfect correlation of duct-mode stability with the modal passivity
criteria of Eq. (27), and the good correlation with the attenuation rate given by Im{𝑘𝑥,𝑚}.

.1. Real local impedance 𝜁Loc

In this Section, the local impedance, and hence the local normalized mobility 𝜂Loc, is considered as purely real. In Figs. 6 and
the first eight solutions in terms of wavenumbers and corresponding duct modes respectively, are plotted. The frequency span is

imited between 150 and 3000 Hz to focus on the same frequency range as the experimental results. It is evident that the mode-shapes
ropagating towards +𝑥 present a shorter wavelength along 𝑦 with respect to those propagating toward −𝑥. Moreover, one can notice

that mode 1+ is attenuated (Im{𝑘𝑥,1+} < 0), while mode 1− is a plane wave (𝜓−
1 = 1, 𝑘𝑥,1− = −𝑘0). This demonstrates the breaking of

he reciprocity principle [51] in the plane wave regime, as it will be clearer in the following.
In this paper we study just the first forward and backward propagating mode (1+ and 1−), as we are interested in the isolation

erformances in the plane wave regime of a rigid duct. Indeed, the first modes are also the least attenuated ones, therefore mostly
uling the noise transmission when the liner is applied in a segment of a rigid duct [9,52]. Fig. 8 shows the frequency plots of
in 𝜃𝑏,𝑚, Re{𝑘𝑥,𝑚} and Im{𝑘𝑥,𝑚}, for modes 𝑚 = 1+ and 𝑚 = 1−. Looking at Fig. 8(b), we observe that for 𝑀𝑏 = −1, mode 1−

ecomes a plane wave, while for 𝑀𝑏 < −1 we have non-stable duct mode propagation, confirmed by a sin 𝜃𝑏,1− < 0. Notice that the
ttenuation rate (Im{𝑘𝑥,1−}) follows the same trend as sin 𝜃𝑏,1− < 0 with 𝑀𝑏, and also with frequency. Looking at Fig. 8(a), notice
he monotonic increase of both sin 𝜃𝑏,1+ and Im{𝑘𝑥,1+} with |𝑀𝑏|, confirming the good correlation between these two quantities, and
he higher attenuation performances achievable thanks to the ABL with 𝑀𝑏 < 0 with respect to local impedance operators (𝑀𝑏 = 0).

Nevertheless, at high frequencies, Im{𝑘𝑥,1+} for 𝑀𝑏 = −1.5 seems to almost coalesce with 𝑀𝑏 = −1 and 𝑀𝑏 = −0.5, which is not the
ame for sin 𝜃𝑏,1+ . We can then state that the correlation between sin 𝜃𝑏,1+ and the attenuation rate is very high at lower frequencies.

Fig. 9(a) shows the variation of the mode 1+ shapes for various ABL Mach numbers 𝑀𝑏 < 0, at 500 Hz. Looking at the mode-
hapes 𝜓1+ (𝑦), it is evident how the wavelength along 𝑦 is significantly reduced for higher absolute values of 𝑀𝑏 < 0. This means
higher normal derivative at the boundary, hence an increase in the modal group velocity along 𝑦. The normalized vectors 𝐜1+ at

he boundary 𝑦𝑏 = ℎ are also reported in Fig. 9(a) to illustrate their rotation with 𝑀𝑏 varying. For higher absolute values of 𝑀𝑏 < 0,
the modal group velocity at the boundary rotates towards the normal to the boundary itself. Fig. 9(b) shows the mode 1− shapes
for various ABL Mach numbers 𝑀𝑏 < 0, at 500 Hz. Observe that for 𝑀𝑏 = −1, 𝜓1− = 1 is a plane wave, with group velocity at
the boundary directed toward −𝑥. Notice also that for 𝑀𝑏 = −1.5, 𝑐1− (ℎ) has a slightly negative component along 𝑦. Indeed, for
𝑀𝑏 < −1, it is sin 𝜃𝑏,1− < 0 and the propagation of mode 1− is unstable.

Now, we want to check the effect of 𝜂Loc = 1∕𝜁Loc on the attenuation performances and passivity limits. In Fig. 10, the spectra
of sin 𝜃𝑏,𝑚, Re{𝑘𝑥,𝑚} and Im{𝑘𝑥,𝑚}, with varying 𝜂Loc and 𝑀𝑏 = −1, are plotted for mode 𝑚 = 1+. Observe that both sin 𝜃𝑏,1+ and
|Im{𝑘𝑥,1+}| increases with 𝜂Loc, though the tendency with frequency is different especially at high frequencies as already noticed
efore. Moreover, 𝜂Loc does not affect the stability of mode 1+ for 𝑀𝑏 = −1. Fig. 10 shows the same plots but relative to mode 1−.
bserve how 𝜂Loc has no impact on such mode in case of 𝑀𝑏 = −1. Indeed, for 𝑀𝑏 = −1, mode 1− is a plane wave independently
f the value assumed by 𝜂Loc (see Fig. 11) .

In Fig. 12, the same quantities are plotted but for a fixed frequency (500 Hz), against 𝜂Loc and for varying 𝑀𝑏 < 0, for mode 1+.
+

8

pparently, increasing 𝜂Loc improves the attenuation level of mode 1 , and its stability is preserved. Fig. 13 reports the same plots
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Fig. 7. First four duct mode-shapes 𝜓𝑚(𝑦), propagating toward positive and negative 𝑥 direction, normalized with respect to the maximum value, for ABL treated
boundaries with 𝜂Loc = 1 and 𝑀𝑏 = −1, at 500 Hz.

Fig. 8. Spectra of sin 𝜃𝑏,𝑚, Re{𝑘𝑥,𝑚} and Im{𝑘𝑥,𝑚}, with 𝜂Loc = 1 and varying 𝑀𝑏 < 0, for mode 𝑚 = 1+ (a) and 𝑚 = 1− (b).

but for mode 1−. Notice the plane wave solution (𝑘𝑥,1− = −𝑘0) for 𝑀𝑏 = −1 which is independent from 𝜂Loc. Also notice that the
stability of mode 1− is lost when 𝑀𝑏 < −1, independently of 𝜂Loc, as long as 𝜂Loc is purely real and positive. This result confirms
the passivity limits found in open field (see Eq. (15)). Hence, we can finally affirm that the ABL passivity limits in open-field (see
9
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Fig. 9. Shapes of modes 1+ (a) and 1− (b) at 500 Hz, and corresponding polar plots of the group velocities normalized to 1, for 𝜂Loc = 1 and different 𝑀𝑏 < 0.

Fig. 10. Spectra of sin 𝜃𝑏,𝑚, Re{𝑘𝑥,𝑚} and Im{𝑘𝑥,𝑚}, with varying 𝜂Loc and 𝑀𝑏 = −1, for mode 𝑚 = 1+ (a). In (b) the zoom of sin 𝜃𝑏,1+ close to 1.

Fig. 11. Spectra of sin 𝜃𝑏,𝑚, Re{𝑘𝑥,𝑚} and Im{𝑘𝑥,𝑚}, with varying 𝜂Loc and 𝑀𝑏 = −1, for mode 𝑚 = 1−.
10
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Fig. 12. Plots of sin 𝜃𝑏,𝑚, Re{𝑘𝑥,𝑚} and Im{𝑘𝑥,𝑚}, versus 𝜂Loc, with varying 𝑀𝑏 < 0, for mode 𝑚 = 1+ (a). In (b) the zoom of sin 𝜃𝑏,𝑚 close to the maximum value,
and Im{𝑘𝑥,𝑚} close to the minimum value.

Fig. 13. Plots of sin 𝜃𝑏,𝑚, Re{𝑘𝑥,𝑚} and Im{𝑘𝑥,𝑚}, versus 𝜂Loc, with varying 𝑀𝑏 < 0, for mode 𝑚 = 1− (a). In (b) the zoom of sin 𝜃𝑏,𝑚 and Im{𝑘𝑥,𝑚} close 0.

Section 3) coincides with the absolute passivity limits of the ABL in the guided grazing incidence problem, in case of purely real
𝜂Loc.

In Fig. 14(a), we report the mode 1+ shapes for 𝑀𝑏 = −1 and varying 𝜂Loc, along with the modal group velocity at the boundary.
These plots help to visualize the effect of increasing 𝜂Loc, which is very similar to the increase of the absolute value of 𝑀𝑏 < 0, as
long as mode 1+ is concerned. Fig. 14(a) confirms that mode 1− stays a plane wave independently of 𝜂Loc, as long as 𝑀𝑏 = −1.

From the duct mode analysis presented in this section, in case of purely real 𝜂Loc, we can affirm that the ABL absolute passivity
limits coincide with the passivity limits in open field. The physical quantity sin 𝜃𝑏,𝑚, other than allowing to define a modal passivity
criteria, very well correlates with the attenuation rates for mode 1+, and could hence be employed for optimization purposes.
Moreover, it can help in the interpretation of the physical mechanism behind the enhancement of the attenuation rate achieved
by the ABL with respect to purely local impedances. The physical explanation of the influence of 𝑀𝑏 upon the modal propagation
angle at the boundary results to be quite intuitive, if compared to the instance of natural convection induced by air-flow blowing
into a duct. In that case, waves are naturally convected downstream, with the modal propagation angle increasing for upstream
propagating modes [50]. This phenomenon explains why, when the duct boundaries are treated by (reciprocal) acoustic liners, and
in presence of air-flow, the upstream propagation is more attenuated with respect to the downstream one. In our case, there is no
air-flow blowing in the duct. Nevertheless, we can induce an increase of the propagation angle of mode 1+ at the boundary, for
11
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Fig. 14. Shapes of modes 1+ (a) and 1− (b) at 500 Hz, and corresponding polar plots of the group velocities normalized to 1, for 𝑀𝑏 = −1 and different 𝜂Loc.

Table 1
Model parameters of the ER. The values of 𝑅0 and 𝐵𝑙∕𝑆𝑒 are provided for results shown in
Sections 6 and 7.
Model parameters 𝑀0 𝑅0 𝐾0 𝐵𝑙∕𝑆𝑒
Units kg∕m2 Pa s∕m Pa∕m Pa A−1

Values 0.342 133 2.96 × 106 846

a fixed 𝜂Loc, by introducing an artificial boundary convection against the propagation of mode 1+. This is what an ABL does with
𝑀𝑏 < 0.

4.2. Complex local impedance 𝜁Loc

In this Section, the local impedance component of the ABL is taken as a SDOF resonator, which is the case for most of the actual
tunable liners, as the ERs. The mass and stiffness terms of 𝜁Loc are taken proportional to the acoustic mass and stiffness of the
open-circuit ER prototype employed in the experimental test-bench of Section 7, while the resistance term is taken as a fraction of
the characteristic air impedance 𝜌0𝑐0. This convention follows the one provided in [16]. Hence:

𝜁Loc(j𝜔) =
1
𝜌0𝑐0

(

𝑀𝑑 j𝜔 + 𝑅𝑑 +
𝐾𝑑
j𝜔

)

, (28)

where 𝑅𝑑 = 𝑟𝑑𝜌0𝑐0 is the desired resistance, while the desired reactive components are defined as 𝑀𝑑 = 𝜇𝑀𝑀0 and 𝐾𝑑 = 𝜇𝐾𝐾0, with
𝑀0 and 𝐾0 the acoustic mass and stiffness of the open-circuit ER prototype employed in the experimental test-bench of Section 7.
Their values are reported in Table 1. The resonance frequency of 𝜁Loc can be varied by tuning either the stiffness 𝜇𝐾 or the mass
𝜇𝑀 parameters, as 𝑓𝑑 = 𝑓0

√

𝜇𝐾∕𝜇𝑀 , with 𝑓0 being the resonance frequency of the open-circuit ER (468 Hz). Reducing 𝜇𝑀 = 𝜇𝐾 ,
or increasing 𝑟𝑑 , allows to reduce the quality factor of the SDOF resonator.

Fig. 15 shows the dispersion plots of 𝑘𝑥(𝜔) for 𝜇𝑀 = 𝜇𝐾 = 0.5, 𝑟𝑑 = 1, and 𝑀𝑏 = −1. The modes are not labelled referring to
their sense of propagation (positive or negative) as the Re{𝑘𝑥} happens to change its sign with frequency, while sign of Im{𝑘𝑥} is
unaltered. Mode 1𝑏 corresponds to the backward propagating plane wave always present for 𝑀𝑏 = −1. Mode 1𝑎 is the first mode
propagating toward +𝑥. Nevertheless, Re{𝑘𝑥,1𝑎} becomes negative between approximately 500 and 870 Hz, which means a reverse in
the direction of propagation. In such frequency range, Re{𝑘𝑥} and Im{𝑘𝑥} present the same sign, which means unstable propagation.
Therefore, we can state that, for 𝜇𝑀 = 𝜇𝐾 = 0.5, 𝑟𝑑 = 1 and 𝑀𝑏 = −1, the ABL does not fulfil the modal passivity criteria for any
mode, except for mode 1𝑏. Hence, the absolute passivity conditions Re{𝜁Loc} ≥ 0 and |𝑀𝑏| < 1, sufficient in case of open-field or
purely resistive 𝜁Loc, will not be sufficient in case of reactive 𝜁Loc. As this phenomenon does not happen for purely real 𝜁Loc (see
Section 4.1), neither in case of locally-reacting boundary (𝑀𝑏 = 0), we expect that the ABL could restore modal passivity by reducing
the reactive character of 𝜁Loc, or by decreasing 𝑀𝑏. It is interesting to highlight that such non-passive behaviour cannot be detected
in open-field, suggesting also the influence of the cross-section dimension in the duct-modes stability.

Fig. 16(a) shows the spectra of sin 𝜃𝑏,1𝑎 and of the real and imaginary parts of 𝑘𝑥,1+ , with varying 𝑀𝑏 < 0. Increasing |𝑀𝑏| leads
to higher values of Im{𝑘𝑥,1𝑎} around resonance (as in case of purely resistive 𝜁Loc). Though, for 𝑀𝑏 = −1 and −1.5, the Re{𝑘𝑥,1𝑎}
changes its sign in a frequency range starting just above resonance. The higher |𝑀𝑏|, the larger is such frequency band of non-passive
behaviour. Indeed, while for 𝑀𝑏 = −1 passivity is restored at about 900 Hz, in case of 𝑀𝑏 = −1.5, passivity is never restored in
the frequency range under study. It is remarkable the correlation of sin 𝜃𝑏,1𝑎 with both the acoustical passivity and the attenuation
rate. Indeed, the frequency bandwidth where Re{𝑘 } changes its sign, coincides perfectly with the bandwidth where sin 𝜃 < 0.
12
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Fig. 15. Dispersion plots, in terms of real (top) and imaginary (bottom) parts of 𝑘𝑥, relative to the first eight duct modes in case of ABL with complex 𝜁Loc(j𝜔)
given by Eq. (28). The control parameters are set to 𝜇𝑀 = 𝜇𝐾 = 0.5, 𝑟𝑑 = 1, and 𝑀𝑏 = −1. In dashed red is the line Re{𝑘𝑥} = 0. (For interpretation of the
eferences to colour in this figure legend, the reader is referred to the web version of this article.)

oreover, in the passivity regions, sin 𝜃𝑏,1𝑎 is higher when Im{𝑘𝑥,1𝑎} presents larger values, thus confirming the correlation with the
attenuation rate. In Fig. 16(b), the same modal quantities are plotted with varying 𝑀𝑏 < 0, but for mode 1𝑏. Notice the plane wave
solution for 𝑀𝑏 = −1. For 𝑀𝑏 = −1.5, the Im{𝑘𝑥,1𝑏} becomes negative as the Im{𝑘𝑥,1−} in case of purely real 𝜁Loc (check Fig. 8(b)).
Nevertheless, the Re{𝑘𝑥,1+} changes its sign, therefore restraining the non-passive behaviour up to about 950 Hz. After this frequency,
passivity gets restored. Once again, check the perfect correlation of the dispersion solutions with the values of sin 𝜃𝑏,1𝑏, both in terms
of passive bandwidth and attenuation rates. Fig. 17 shows the effect of the quality factor of 𝜁Loc upon the modal quantities of mode
1𝑎, for 𝑀𝑏 = −1. In particular, Fig. 17(a) shows the effect of the reactive terms 𝜇𝑀 = 𝜇𝐾 , while Fig. 17(b) shows the effect of the
resistive one 𝑟𝑑 . As expected, by reducing the quality factor of 𝜁Loc (by decreasing 𝜇𝑀 = 𝜇𝐾 and/or augmenting 𝑟𝑑), we can restore
the acoustical passivity. Once again, both passivity limits and attenuation rates are perfectly captured by sin 𝜃𝑏,1𝑎.

Finally, we want to check the effect of the duct cross-section width ℎ. In Fig. 18, ℎ is halved and doubled with respect to the
default value, demonstrating that such non-passive behaviour is strictly related to the duct cross-section size. The narrower the duct
cross-section is, the larger is the bandwidth of passivity loss. It is also interesting to remark that sin 𝜃𝑏,1𝑎, despite perfectly capturing
he frequency ranges of non-passive behaviour, is not able to capture the variation of attenuation level (Im{𝑘𝑥,1𝑎}) with ℎ. It looks

like the boundary modal group velocity (which gives sin 𝜃𝑏,1𝑎) is not informed by the variation of the duct cross section size, except
f ℎ leads to a change of direction of propagation. A deeper analysis of the modal group velocity 𝐜𝑚 on the boundary, and the effect
f ℎ upon it, is out of the scope of the present paper, but it will be retrieved in a future study. Nevertheless, as ℎ is not a parameter
elated to the boundary operator, the quantity sin 𝜃𝑏,𝑚 can still be employed for liner optimization purposes.

. Scattering simulations in 2D waveguide

In this section the ABL is analysed in terms of scattering performances in the plane wave regime. The liner is considered to
xtend for an axial length 𝐿 = 0.3 m in a 2D acoustic waveguide of cross-section height ℎ = 0.05 m, without flow. Such dimensions
orrespond to the experimental setup that will be presented in Section 7. The scattering problem is illustrated in Fig. 19, where
he reflection 𝑅𝑔 and transmission 𝑇𝑔 coefficients are defined for incident field directed toward either +𝑥 or −𝑥. The subscript 𝑔
s employed to differentiate the present grazing incidence from the oblique incidence scattering of Section 3. The ABL is applied
ontinuously on the boundary of the waveguide in the lined segment. The scattering matrix is defined in Eq. (29) for the plane wave
egime of a hard-walled duct.

[

𝑝+2
𝑝−1

]

=

[

𝑇 +
𝑔 𝑅−

𝑔
𝑅+
𝑔 𝑇 −

𝑔

]

[

𝑝+1
𝑝−2

]

. (29)

The superscript signs + or − in Eq. (29), indicate the direction of propagation of the incident plane wave (toward either +𝑥 or
𝑥). The results in terms of scattering matrix coefficients, have been obtained by FE simulations in Comsol. As in the duct mode
nalysis, the FE mesh has been built sufficiently fine to fully resolve both longitudinal and transversal pressure field up to 𝑓𝑚𝑎𝑥 = 3
Hz. The scattering coefficients 𝑇 ±

𝑔 and 𝑅±
𝑔 are computed, by exciting first the left and then the right termination. In the scattering

roblem, high noise isolation toward +𝑥 (−𝑥) corresponds to low values of 𝑇 +
𝑔 (𝑇 −

𝑔 ). The acoustical passivity, in the plane wave
regime, corresponds to positive values of both 𝛼+𝑔 and 𝛼−𝑔 .

As in the duct mode analysis, we differentiate the case of purely real or resonant 𝜁 in the ABL.
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Fig. 16. Spectra of sin 𝜃𝑏,𝑚, real and imaginary parts of 𝑘𝑥,𝑚, for mode 1𝑎 (a) or 1𝑏 (b), with 𝑀𝑏 varying. The other parameters are set to 𝜇𝑀 = 𝜇𝐾 = 0.5, 𝑟𝑑 = 1,
and the duct cross section width is ℎ = 0.05 m. The dashed red lines separate passive and non passive conditions. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)

Fig. 17. Spectra of sin 𝜃𝑏,𝑚, real and imaginary parts of 𝑘𝑥,𝑚, for mode 1𝑎, with varying 𝜇𝑀 = 𝜇𝐾 (a) or 𝑟𝑑 (b). The default parameters are set to 𝜇𝑀 = 𝜇𝐾 = 0.5,
𝑟𝑑 = 1, 𝑀𝑏 = −1, and the duct cross section width is ℎ = 0.05 m. The dashed red lines separate passive and non passive conditions. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 18. Spectra of sin 𝜃𝑏,𝑚, real and imaginary parts of 𝑘𝑥,𝑚, for mode 1𝑎, with varying ℎ. The control parameters are set to 𝜇𝑀 = 𝜇𝐾 = 0.5, 𝑟𝑑 = 1 and 𝑀𝑏 = −1.
14
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Fig. 19. Lining segment and scattering coefficients definition in a 2D waveguide lined on both sides.

Fig. 20. Scattering coefficients in a 2D waveguide of cross section width ℎ = 0.05 m with lined segment of length 𝐿 = 0.3 m, lined on both sides by the boundary
advection law with 𝜁Loc = 1, and varying 𝑀𝑏.

5.1. Real local impedance 𝜁Loc

The scattering performances are presented in terms of power scattering coefficients for both positive and negative propagation.
The power scattering coefficients are defined from the power balance [41] which, in case of plane waves, reduces to:

1 = 𝛼±𝑔 + |𝑇 ±
𝑔 |

2 + |𝑅±
𝑔 |

2, (30)

where 𝑅𝑔 and 𝛼𝑔 are the reflection and absorption coefficients in grazing incidence, respectively. From |𝑇 ±
𝑔 |

2, it is possible to compute
the Transmission Loss (𝑇𝐿±

𝑔 )𝐿𝑖𝑛𝑒𝑟 = 10 log10(1∕|𝑇 ±
𝑔 |

2), and the Insertion Loss 𝐼𝐿±
𝑔 = (𝑇𝐿±

𝑔 )𝐿𝑖𝑛𝑒𝑟 − (𝑇𝐿±)𝑅𝑖𝑔𝑖𝑑 . As (𝑇𝐿±)𝑅𝑖𝑔𝑖𝑑 = 0 in
simulations, 𝐼𝐿± = (𝑇𝐿±

𝑔 )𝐿𝑖𝑛𝑒𝑟.
Fig. 20(a) shows the power scattering coefficients in case of 𝜁Loc = 1, for 𝑀𝑏 continuously varying from 0 to −2. Coherently with

the duct mode 1+ solution reported in Section 4.1, increasing the absolute value of 𝑀𝑏 < 0, brings about an increase in the 𝐼𝐿+
𝑔 ,

especially at low frequencies. Observe that such increase of 𝐼𝐿+
𝑔 is accompanied by a significant increment of the back-reflection and,

less intuitively, by a reduction of absorption. This means that, in such configuration of waveguide with both upper and lower sides
lined by the ABL, excited by plane waves propagating against the boundary advection speed, most energy is reflected back rather
being absorbed. In case of negative propagation, i.e. plane waves propagating concordant with 𝑀𝑏, perfect transmission is assured
for 𝑀𝑏 = −1, while for 𝑀𝑏 < −1, the loss of passivity (𝛼−1𝑔 < 0) of the ABL manifests itself by |𝑇 −

𝑔 | > 1 in agreement with the change
of sign of Im{𝑘𝑥,1+} showed in Fig. 8(b). The passivity limits are highlighted by dashed black line in Fig. 20. These results are totally
coherent with the results of Section 4.1 both in terms of attenuation performances and passivity. Moreover, perfect non-reciprocal
propagation is achieved for 𝑀𝑏 = −1, as 𝐼𝐿−

𝑔 = 0, while 𝐼𝐿+
𝑔 is very high. This, also, is in agreement with the dispersion solutions
15
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Fig. 21. Scattering coefficients for excitation coming from the left (a) or right (b) termination, in a 2D waveguide of cross section height ℎ = 0.05 m with lined
segment length 𝐿 = 0.3 m, and ABL applied on both sides of the duct, with 𝜇𝑀 = 𝜇𝐾 = 0.5, 𝑟𝑑 = 1 and varying 𝑀𝑏.

Fig. 22. Scattering coefficients for excitation coming from the left, in a 2D waveguide of cross section width ℎ = 0.05 m with an ABL lining both sides for an
extension of 𝐿 = 0.3 m, in case of 𝑀𝑏 = −1, and with varying 𝜇𝑀 = 𝜇𝐾 (a), or varying 𝑟𝑑 (b). The default values are 𝜇𝑀 = 𝜇𝐾 = 0.5 and 𝑟𝑑 = 1.

5.2. Complex local impedance 𝜁Loc

As in Section 4.2, we consider here the scattering problem in case of 𝜁Loc assuming the SDOF resonator form of Eq. (28), with
default mass and stiffness coefficients 𝜇𝑀 = 𝜇𝐾 = 0.5, and resistance term 𝑟𝑑 = 1. Fig. 21(a) shows the effect of varying 𝑀𝑏 in case
of incoming field from the left duct termination, indicated by + superscript. As expected, increasing the absolute value of 𝑀𝑏 < 0,
improves isolation (augments 𝐼𝐿+

𝑔 ). But, after the resonance of 𝜁Loc, 𝛼+𝑔 becomes negative for 𝑀𝑏 = −1, up to about 870 Hz. This
loss of passivity corresponds to a reflection coefficient higher than 1, in agreement with the change of sign of Re{𝑘𝑥,1𝑎} in Fig. 16(a),
which becomes negative at about 500 Hz, and comes back to be positive at about 870 Hz. Notice the interesting correlation between
an unstable propagation of mode 1𝑎 toward −𝑥 in the range 500 − 870 Hz, and the reflection coefficient higher than 1 in the same
frequency range. Since the duct mode instability manifests as a backward propagation, this translates into higher acoustic energy
reflected backward. Also for 𝑀𝑏 = −1.5 in Fig. 16(a), we have non-passive behaviour, as expected, corresponding once again to a
|𝑅+

𝑔 | > 1. Nevertheless, passivity is restored around 870 Hz, then lost again in a narrow bandwidth around 1000 Hz, and definitively
retrieved till 3 kHz. This behaviour is not simply related to the duct mode 1𝑎 solution, which, in fact, shows unstable propagation
from 500 till 3 kHz, in case of 𝑀𝑏 = −1.5. Indeed, both modes 1𝑎 and 1𝑏 participate in the scattering problem. In particular, mode
1𝑏 (check Fig. 16(b)) restores its passivity around 950 Hz. In order to fully identify the participation of duct modes solutions 1𝑎
and 1𝑏 (as well as of higher order modes), a mode-matching analysis will be carried out in a future dedicated study, where all
duct-mode solutions will be correlated to a multi-modal scattering problem. In case of 𝑀𝑏 = −1 instead, mode 1𝑏 is always a plane
wave (stable), therefore it does not affect the passivity of the ABL. Figs. 22 and 23 show the effect of varying the quality factor and
the duct cross section width, respectively. The advection speed is fixed with 𝑀 = −1, hence, as said before, only the duct mode 1𝑎
16
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Fig. 23. Scattering coefficients in a 2D waveguide of variable cross section width ℎ, lined segment of length 𝐿 = 0.3 m, lined on both sides by the ABL with
𝑀𝑏 = −1, 𝑅𝑑 = 𝜌0𝑐0 and 𝜇𝑀 = 𝜇𝐾 = 0.5.

is impacting the passivity in the scattering solution. Indeed, the scattering coefficients of Figs. 22 and 23 perfectly correlate with the
modal plots of Figs. 17 and 18, with the loss of passivity confined in a bandwidth starting above 𝜁Loc resonance. Fig. 22 confirms
that by reducing the quality factor (decreasing 𝜇𝑀 = 𝜇𝐾 or augmenting 𝑟𝑑) we can restore the acoustical passivity of the ABL in
grazing incidence. Therefore, for any duct cross-section width, the scattering solutions confirm the outcomes of modal analysis,
according to which it should always be possible to have a passive behaviour of the ABL in the frequency range of interest (here the
plane wave regime of the rigid waveguide) by either reducing 𝑀𝑏 or the quality factor.

Remark that, in the plane wave regime of the hard-walled duct, the scattering solutions give no information about the energy
exchanged with higher order rigid-duct modes. Indeed, those latter ones are not able to propagate along the rigid-duct segments
preceding and following the liner. Therefore, an apparent passive behaviour of the scattering coefficients in the plane wave regime,
is not correlated to an absolute passivity as it is defined in Eq. (26). Indeed, in order to assess absolute passivity from scattering
solutions, we should solve the scattering problem at all frequencies. In the case study reported in this paper, the passive behaviour
featured by the ABL in the plane wave regime, is actually related to the modal passivity defined in Eq. (27), relative to modes 1𝑎
and 1𝑏. Therefore, in order to assure no amplification of propagated energy in the frequency range of interest, the modal passivity
criteria defined in Eq. (27) plays an important role.

Finally, we remark that the loss of acoustical passivity always concerns propagation (either forward transmission or backward
reflection) in the same direction as 𝑀𝑏. This is so, in the open field case of Section 3, in the duct mode analysis of Section 4, and
in the scattering solution of the present Section.

6. Scattering simulations in 3D waveguide

In this section we simulate the scattering performances in the plane wave regime of a 3D acoustic waveguide, of square cross
section with 5 cm lateral sides, without flow. The ABL is applied along each side of the duct for a length of 30 cm. In order to
investigate the effect of discretizing the ABL by individual ERs lining the parietal walls of a rectangular cross section duct, as in
the experimental test-rig of Section 7, the ABL is applied on separate disks of diameter 3.6 cm, simulating the ERs (6 per each duct
edge), as showed in Fig. 24. The dynamics of each speaker is simulated according to the Thiele–Small SDOF model [53].

The loudspeaker model is reported in Eq. (31), in terms of the Laplace variable 𝑠:

𝑍0(𝑠)𝑣̄(𝑠) = 𝑝̄(𝑠) − 𝐵𝑙
𝑆𝑒
𝑖(𝑠). (31)

In Eq. (31), 𝑝̄(𝑠) and 𝑣̄(𝑠) are the acoustic pressure and velocity, respectively, on the speaker diaphragm, 𝑖(𝑠) is the electrical
current in the speaker coil, 𝑍0(𝑠) = 𝑀0𝑠 + 𝑅0 + 𝐾0∕𝑠 is the acoustical impedance of the loudspeaker in open circuit, with 𝑀0, 𝑅0
and 𝐾0 the corresponding acoustical mass, resistance and stiffness. The electrical current 𝑖(𝑠) is multiplied by the force factor 𝐵𝑙 to
get the electromagnetic force, and divided by the effective area 𝑆𝑒 to retrieve an equivalent pressure. Observe that the impedance
description of Eq. (31) is a lumped-element model, which is reliable as long as the wavelength of the acoustic field is sufficiently
larger than the size of the speaker diaphragm. This is true for any local impedance modelling. The upper frequency of validity of
the lumped-element assumption is much beyond the frequency range of validity of the SDOF loudspeaker-model, which lies around
the first speaker mode (around 468 Hz). Therefore, both the lumped-element assumption and the SDOF model are valid around the
principal resonance of the ER.

The ABL is implemented by defining the electrical current 𝑖(𝑠) as in Eq. (32):

𝑖(𝑠) = 𝐻 (𝑠) ̂̄𝑝(𝑠) +𝐻 (𝑠)𝜕 𝑝̄(𝑠), (32)
17
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Fig. 24. 3D geometry for scattering simulations, in case of ERs disks applied flush on the duct boundary.

Fig. 25. Sketch of the 4-microphones ER control, corresponding to Eq. (32).

where ̂̄𝑝(𝑠) and 𝜕𝑥𝑝̄(𝑠) are the estimated local pressure and its x-derivative on each speaker diaphragm, in the Laplace domain. The
local sound pressure is estimated by averaging the four microphones on the corners of each ER 𝑝̂ = (𝑝𝐴 + 𝑝𝐵 + 𝑝𝐶 + 𝑝𝐷)∕4, while the
x-derivative is estimated by a first-order finite difference 𝜕𝑥𝑝 =

(

(𝑝𝐶 +𝑝𝐷)−(𝑝𝐴+𝑝𝐵)
)

∕𝛥𝑥, with 𝛥𝑥 ≈ 4 cm the distance between the
18



Journal of Sound and Vibration 590 (2024) 118603E. De Bono et al.

m

Fig. 26. Comparison between local impedance control (𝑀𝑏 = 0) and ABL (𝑀𝑏 = −1), in terms of scattering coefficients in the 3D waveguide (a), and in terms
of sum of all ERs electrical current spectra ∑

|𝑖| and velocity spectra ∑

|𝑣̄| (b).

icrophones before (A,B) and after (C,D) each ER speaker, along the 𝑥-direction, as showed in Fig. 25. A time delay of 𝜏 = 2× 10−5

s between the pressure inputs and the electrical current, is considered by multiplying the microphones pressures by 𝑒−j𝜔𝜏 , in order
to simulate the physiological latency of the digital control algorithm of the ER [16].

The transfer functions 𝐻Loc(𝑠) and 𝐻grad(𝑠) are defined based upon the loudspeaker model of Eq. (31). Equating the velocity of
the speaker diaphragm from Eq. (31), and the velocity corresponding to the ABL (Eq. (8)), we get the expressions in the Laplace
space of 𝐻Loc and 𝐻grad, in Eq.s (33) and (34), respectively.

𝐻Loc(𝑠) =
𝑆𝑒
𝐵𝑙

(

1 −
𝑍0(𝑠)
𝑍Loc(𝑠)

)

, (33)

𝐻grad(𝑠) = −
𝑆𝑒
𝐵𝑙

𝑍0(𝑠)
𝑍Loc(𝑠)

𝑈𝑏
𝑠
𝐹ℎ𝑝(𝑠), (34)

where 𝐹ℎ𝑝(𝑠) in 𝐻grad(𝑠) is a high-pass filter necessary in order for 𝐻grad(j𝜔) not to become infinite for 𝜔 → 0. Notice also, that
a purely real 𝑍Loc would lead to non-causal 𝐻Loc and 𝐻grad, therefore we have employed the SDOF expression of Eq. (28) for
𝑍Loc (as in Sections 4.2 and 5.2) in the correctors 𝐻Loc and 𝐻grad. The synthesis of our corrector transfer functions, is also called
model inversion [54] approach, as the objective of the controller is to cancel out the loudspeaker proper dynamics, and replace it
with a desired acoustic behaviour. Both 𝐻Loc and 𝐻grad depends upon the loudspeaker own impedance model 𝑍0. Therefore, each
parameter appearing in Eq. (31) must be estimated. The so-called Thiele–Small parameters are identified by acoustic measurements,
as described in [55], and their values are reported in Table 1. Further details upon such control strategy can be found in [16,27].

Both Eqs. (33) and (34) are implemented in the Comsol model. From the microphones estimation of 𝑝̂ and 𝜕𝑥𝑝, the electrical
current 𝑖 is obtained from Eq. (32). Hence, the loudspeaker dynamics Eq. (31) is solved for 𝑣̄(𝑠), which is then imposed on the disks
representing the speaker membranes in the numerical model.

It is worthy to note that the control filters presented here in Eq.s (33) and (34) target a resonant 𝑍Loc, while in Refs. [30,31],
𝑍Loc was considered as just a mass term, limiting its applicability to frequencies above the loudspeaker resonance.

The model showed in Fig. 24 is solved for the scattering coefficients as in Section 5. The FE mesh elements have the same
maximum size as those in Section 5.

In Fig. 26(a), the scattering coefficients achieved by the ABL with 𝑀𝑏 = −1, are plotted along with the ones relative to local
impedance control (𝑀𝑏 = 0), applied on each ER. The 𝜁Loc parameters are set to 𝜇𝑀 = 𝜇𝐾 = 0.5 and 𝑅𝑑 = 𝜌0𝑐0. As in the 2D case, the
ABL demonstrates higher isolation capabilities, though being non-passive slightly after resonance. Notice also the loss of passivity
at high frequencies (above 2 kHz), which was not predicted by the 2D simulations. This is mostly due to the time delay [16]. In
Appendix B, we briefly check the effects of the finite difference approximation of 𝜕𝑥𝑝 and of time delay. In Fig. 26(b), the electrical
current spectra of all the ERs are summed up to visualize how the ABL requires a much higher level of electrical current (up to 3
times at some frequencies) with respect to the local impedance control. Also the sum of velocities on the 24 ERs is reported showing
once again higher vibrational amplitudes required by the ABL.

Fig. 27 compares the sound field at 500 Hz computed in the duct for an incident pressure of 1 Pa, when local impedance control
(Fig. 27(a)) or ABL (Fig. 27(b)) is applied on the ERs. Observe how the sound pressure field gets annihilated as soon as it enters the
segment lined by the ABL. The enhancement of sound transmission attenuation for 𝑀𝑏 = −1, with respect to the case of 𝑀𝑏 = 0, is
19

unequivocal.
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Fig. 27. 3D surface plots of the sound pressure field at 500 Hz, in case of local impedance control (a) or ABL with 𝑀𝑏 = −1 (b), on the ERs.

Fig. 28. ER prototype (a); waveguide (b) for the scattering evaluation, with internal view of the lined segment (c).

Fig. 29. Sketch of the test-bench.

7. Experimental results

In this section, the advection control law is experimentally tested on an array of 24 ER prototypes lining a squared cross-section
duct of about 0.05 m side, as illustrated in the photos of Fig. 28 and in the sketch of Fig. 29. The ERs are placed 6 per each side of
the duct, as showed in Fig. 28. Each ER has a surface area of about 0.05 × 0.05 m2, for a total lined segment length of about 0.3 m
in the duct. Both ends of the tube are filled with 45 cm of foam to reproduce quasi-anechoic conditions at the input and output of
the waveguide. An external acoustic source is placed flush with the duct surface on both sides of the waveguide, just ahead of the
foam terminations, sufficiently far from the lined segment and from microphone locations. The external sources are excited with a
sine-sweep signal from 150 Hz (lower limit of the source-loudspeakers) to 3 kHz (to stay below the cut-on frequency of the higher
rigid duct modes), in order to characterize the broadband scattering performances of the ABL.

Each ER is controlled autonomously, and the control architecture is illustrated in Fig. 30: the signals 𝑝̂ and 𝜕̂𝑥𝑝 on the speaker
diaphragm, after being digitally converted by the Analogue-Digital-Converter (ADC), are fed into a programmable digital signal
processor (DSP) where the output of the control is computed at each time step. The Howland current pump [56] allows to enforce
the electrical current 𝑖 in the speaker coil independently of the voltage at the loudspeaker terminals. It consists of an operational
20
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Fig. 30. Sketch of the ER architecture.

Fig. 31. Comparison between measurements (in red) and simulations (in blue) for ABL with 𝜇𝑀 = 𝜇𝐾 = 0.5, 𝑅𝑑 = 𝜌0𝑐0 and 𝑀𝑏 = −1. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)

amplifier, two input resistors 𝑅𝑖, two feedback resistors 𝑅𝑓 , and a current sense resistor 𝑅𝑠. The resistance 𝑅𝑑 and capacitance 𝐶𝑓
constitutes the compensation circuit to ensure stability with the grounded load [57]. More details can be found in [16].

All ERs and control interfaces have been produced in the Department of Applied Mechanics at FEMTO-st Institute. The control
laws have already been defined in Section 6, by Eq. (32), (33), (34), and the loudspeaker parameters provided in Table 1. The four
scattering coefficients have been estimated according to the two-source method [52].

In Fig. 31, the 𝐼𝐿+
𝑔 from measurement is compared to the one obtained from 3D simulations (given in Section 6), for 𝜇𝑀 = 𝜇𝐾 =

0.5, 𝑅𝑑 = 𝜌0𝑐0 and 𝑀𝑏 = −1. Observe how, despite the inevitable model uncertainties, the trends before and after the resonance
peak are well captured by the 3D simulations, except around 1.5 kHz where an additional speaker mode appears, as in [16]. The
peak of more than 100 dB of attenuation predicted by the simulations, is not visible experimentally. This is indeed due to the very
low signal-to-noise ratio at microphone 3 caused by the extreme isolation accomplished by the ABL. This prevents the detection of
very high 𝐼𝐿 values, as confirmed by the low level of coherence around resonance, of the transfer functions between microphones
on opposite sides with respect to the lined segment (check the coherence of transfer function 𝐻3,1 between microphones 3 and 1,
in Fig. 31).

Figs. 32(a) and 32(b) show the experimental scattering coefficients for incident field toward +𝑥, with varying 𝑀𝑏 and 𝑅𝑑
respectively. The default parameters are set to 𝜇𝑀 = 𝜇𝐾 = 0.5, 𝑅𝑑 = 𝜌0𝑐0 and 𝑀𝑏 = −1. Fig. 32(a) confirms the higher isolation
achieved by increasing the absolute value of 𝑀𝑏 < 0, though the 𝐼𝐿+

𝑔 for 𝑀𝑏 = −1.5 does not look significantly augmented with
respect to 𝑀𝑏 = −1. This, once again, can be explained by an excessively low signal-to-noise ratio of microphones after the lined
segment (microphones 3 and 4 for positive propagation), and the consequent low coherence of the corresponding transfer function.
21
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Fig. 32. Experimental scattering performances for incident field propagating toward +𝑥, achieved by the ABL with varying 𝑀𝑏 (a), or varying 𝑅𝑑 . The default
parameters are set to 𝜇𝑀 = 𝜇𝐾 = 0.5, 𝑅𝑑 = 𝜌0𝑐0 and 𝑀𝑏 = −1.

Fig. 33. Scattering performances relative to external incident field propagating toward +𝑥 (‘‘forward’’, in solid red) compared to the ones relative to ‘‘backward’’
incident field (in solid green), in case of ABL with 𝜇𝑀 = 𝜇𝐾 = 0.5, 𝑅𝑎𝑡 = 𝜌0𝑐0 and 𝑀𝑏 = −1. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

The reflection and absorption coefficients though, are still able to follow the expected trends, with the loss of passivity immediately
after resonance. Notice that the ABL allows to increase both isolation peak and frequency bandwidth, prospecting its efficiency for
both broadband and tonal noise attenuation when applied to turbofan noise. Fig. 32(b) also validates the numerical predictions
both in terms of isolation performances and passivity, demonstrating that increasing the quality factor brings about an excess in
the backward reflection, endangering passivity above resonance. Observe, in Fig. 32(a), the reduction of passivity from 1.8 kHz and
above with higher |𝑀𝑏|. This is due to a combined effect of time delay and the first order approximation of 𝜕̂𝑥𝑝, which is clearly
amplified for higher values of |𝑀𝑏|.

The broadband non-reciprocal character of the advective BC is evident by looking at Fig. 33, where the ‘‘forward’’ scattering
coefficients (corresponding to the first column of the scattering matrix of Eq. (29)), are plotted along with the ‘‘backward’’ scattering
coefficients (corresponding to the second column of the scattering matrix of Eq. (29)), in case of 𝜇𝑀 = 𝜇𝐾 = 0.5, 𝑟𝑑 = 1 and 𝑀𝑏 = −1.
Observe that, in the backward direction, we do not have perfect transmission. Indeed, because of time-delay and model-uncertainties
in the actual control system, the model-based correctors 𝐻Loc and 𝐻grad of Eq. (33) and (34) are not capable to fully cancel out
the actuator dynamics, leading to residual non-zero loudspeaker response and non-perfect transmission in the backward direction.
Further details on the limitation of such corrector synthesis approach can be found in [16]. Nevertheless, 𝐼𝐿−

𝑔 never overcomes
+
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18 dB, while for forward propagation 𝐼𝐿𝑔 is significantly higher than 25 dB from 300 to 700 Hz, and higher than 50 dB close to
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resonance. Notice that such non-reciprocal propagation is achieved in the bandwidth of 𝜁Loc, while in [31] it was accomplished only
above resonance. This is due to the different definitions of 𝐻Loc and 𝐻grad, which are here targeting the frequency range around
𝜁Loc resonance, allowing to significantly enhance both isolation and non-reciprocal performances in the target bandwidth.

8. Conclusions

In this article we have provided a detailed discussion of the Advection Boundary Law, which is composed of a local impedance
component and a convective term. Starting from its theoretical conception of Section 2, such operator is defined, for the first time,
as a degeneration of a Dirichelet-to-Neumann mapping of a semi-infinite non-isotropic propagative domain, on the boundary. As the
surface impedance operator can be seen as a special case of Advection Boundary Law, the general framework originally employed
by Morse [38] to introduce the surface impedance concept, is here retrieved and generalized to include our advective boundary
operator. The derivation based upon the Dirichelet-to-Neumann mapping, clarifies that the Advection Boundary Law cannot be
introduced by passive means. First of all, because introducing artificial advection clearly requires external energy to be provided
to the physical (non-convective) domain. Moreover, it is very hard to imagine a passive system allowing to reproduce the interface
with a semi-infinite domain which, at the same time, allows advection but not propagation along the axial direction, especially if
an advection speed close to the speed of sound is targeted as in the results reported here.

The semi-infinite approach naturally leads to the open-field scattering problem and the corresponding reflection coefficient
formula (Section 3). The open-field solution allows the definition of acoustical passivity in open field from the absorption coefficient
(related to the normal acoustic intensity at the boundary) which, in case of our Advection Boundary Law, depends upon the incidence
angle. Following a step-by-step increase in complexity, we discuss the duct-mode solutions in a 2D waveguide without flow in
Section 4. In particular, we first analyse the case of purely real local impedance term (Section 4.1), and then the case of complex
local impedance term (Section 4.2). The duct mode analysis leads to the distinction between absolute and modal passivity. In case of
purely real local impedance, the passivity limits in open-field assure the absolute passivity in grazing incidence. Indeed, in case of
purely real local impedance component 𝜁𝐿𝑜𝑐 , the scattering coefficients perfectly correlate with the first duct mode solutions, in terms
f isolation performances, modal passivity and non-reciprocal propagation. The enhancement of isolation performances induced by
he Advection Boundary Law, for excitation field propagating against the artificial advection, manifests itself with higher backward
eflection. Nevertheless, in case of reactive local impedance, the passivity limits in open-field do not assure absolute passivity in
razing incidence. In particular, for a boundary advection speed against the incident field, modal passivity is affected by both the
eactive component of the local impedance, and the boundary advection speed. Moreover, such impact is stronger for narrower
ucts. Nevertheless, for any duct-cross section sizes, it is always possible to restore stability of the duct-modes of interest, i.e. to
ssure the corresponding modal acoustical passivity of our Advection Boundary Law. The 2D duct-mode analysis is followed by the
esolution of the 2D scattering problem. The correlation between the two studies is evident, in terms of passivity, attenuation levels
nd non-reciprocal propagation. In particular, in case of complex 𝜁Loc, the loss of acoustical passivity related to a reversed direction

of duct-mode propagation (change of sign of Re{𝑘𝑥}), corresponds to a backward reflection coefficient higher than 1. The unstable
propagation always happens in the same sense as the artificial advection. A future study will be dedicated to the resolution of the
scattering problem by mode-matching techniques, allowing to visualize numerically the correlation between modal and scattering
solutions.

In order to guarantee no amplification of propagated energy in the frequency range of interest, the modal passivity plays an
important role. In this paper, we have provided a physical quantity able to assess both acoustical passivity limits and attenuation
levels, in Section 4. It is the sine of the elevation angle of modal local group velocity at the boundary. Such quantity can be employed
for liner optimization purposes. In case of the Advection Boundary Law, we demonstrated that the best choice (to avoid non-passive
behaviours and optimize isolation) of local impedance coefficients and advection speed are strictly related to the size of waveguide
cross section. Increasing the advection speed in the opposite direction with respect to the noise propagation of interest, leads to
higher elevation angles of modal group velocity at the boundary without narrowing the efficient frequency bandwidth. The optimal
advection speed will correspond to the maximum value of the sine of such elevation angle before it becomes negative, which
would mean non-passive boundary behaviour. Alternatively to the advection speed tuning, the quality factor of the local impedance
operator can be increased to sharpen the peak of isolation (but the frequency bandwidth will be reduced), or it can be decreased to
enlarge the passivity margin. As in the case of advection speed, the maximum allowable quality factor before non-passive behaviour,
corresponds to the value preceding the change of sign of the sine of elevation angle of the boundary modal group velocity. Notice
that, if both directions of propagation are of concern, the modal group velocity at the boundary should be analysed also for the
propagation in the same direction as the artificial advection.

The nice physical interpretation of the elevation angle of modal group velocity at the boundary, also allows to clarify the
mechanism leading to enhanced attenuation achieved by the Advection Boundary Law, and should be taken into account for the
design of next generation liners.

The final step of complexity in the numerical simulations, is the 3D scattering solution provided in Section 6, where the Advection
Boundary Law is discretized and implemented on Electroacoustic Resonators, composed of a loudspeaker and four microphones.
The 3D scattering results confirm that the enhanced isolation performances are still achieved despite the boundary discretization,
and provide an intermediate step before the experimental validation of Section 7. An array of programmable Electroacoustic
Resonators lining an acoustic waveguide allows to implement the Advection Boundary Law in real life. The measurements validate
the Advection Boundary Law accomplishments in terms of enhanced isolation, passivity and non-reciprocal sound propagation,
23

despite the physiological limitations of digital control algorithms.
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Because of its non-natural and non-local character, special attention must be given when implementing the Advection Boundary
aw. In this paper, we have provided a range of interpretational and numerical tools to guide the control users when implementing
uch special boundary control, in order to maximize its isolation performances, avoid non-passive behaviours, and/or achieve the
esired non-reciprocal propagation.

This first study has analysed the Advection Boundary Law in the plane-wave regime and in absence of mean flow. Such work has
ut the necessary bases for the Advection Boundary Law to tackle more complex guided propagation problems, including airflow
onvection and multi-modal propagation.
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Appendix A. Duct modes problem formulation

Consider an infinite duct of constant cross-section  in the plane 𝑦, 𝑧 (as in Fig. 1) with boundary 𝜕 and normal 𝐧. Assuming a
ime-harmonic sound field in the usual complex notation (+j𝜔𝑡) in the duct, the wave equation reduces to the Helmholtz equation:

∇2𝑝̄ + 𝑘20𝑝̄ = 0. (A.1)

Such sound field must also satisfy the generic BC (𝑝̄) = 0 on the wall 𝜕. The solution to this problem can be written as:

𝑝̄(𝑡, 𝜔, 𝑥, 𝑦, 𝑧) = 𝑒j𝜔𝑡
∞
∑

𝑚=0
𝐴𝑚𝜓𝑚(𝜔, 𝑦, 𝑧)𝑒−j𝑘𝑥,𝑚(𝜔)𝑥, (A.2)

where 𝜓𝑚(𝑦, 𝑧), the so-called duct modes, are the eigenfunctions of the transverse Laplace operator reduced to  satisfying the BC
[𝑝] = 0 on 𝜕, i.e. they are solution of the eigenvalue problem:

∇2
𝑦𝑧𝜓𝑚(𝑦, 𝑧) + (𝑘20 − 𝑘

2
𝑥,𝑚)𝜓𝑚(𝑦, 𝑧) = 0 for y, z ∈ 

[𝜓𝑚(𝑦, 𝑧), 𝑘𝑥,𝑚] = 0 for y, z ∈ 𝜕,
(A.3)

here ∇2
𝑦𝑧 denotes the Laplacian operator in 𝑦, 𝑧 (following the notation of [36]), whose eigenvectors and eigenvalues are the duct

ode shapes 𝜓𝑚(𝑦, 𝑧) and (𝑘20 − 𝑘
2
𝑥,𝑚), respectively. Observe that for classical liners, the BC does not involve the axial wavenumber

𝑥,𝑚.
We now formulate the duct mode problem in case of ABL as BC, in which the locally reacting liner is a special case (for 𝑀𝑏 = 0).

he duct-modes eigenvalue problem writes:

∇2
𝑦,𝑧𝜓𝑚(𝑦, 𝑧) − (𝑘20 − 𝑘

2
𝑥,𝑚)𝜓𝑚(𝑦, 𝑧) = 0 for 𝑦 ∈  (A.4)

𝐧 ⋅ ∇𝜓𝑚(𝑦, 𝑧) = −j𝜂Loc

(

𝑘0 −𝑀𝑏𝑘𝑥,𝑚

)

𝜓𝑚(𝑦, 𝑧) for 𝑦 ∈ 𝜕. (A.5a)

Notice the non-standard character of such eigenvalue problem, where the eigenvalue appears in the BC as well. Solutions for
uch eigenvalue problem can be found by FEs. The weak formulation of the eigenvalue problem of Eq.s is reported in Eq.s , where
24

̂ is the test function for the duct mode 𝜓𝑚. The integration by parts (application of Green formula) is given in Eq. (A.7), and the
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Fig. B.1. Scattering coefficients in a 3D waveguide of cross section width ℎ = 0.05 m lined with ABL (𝜇𝑀 = 𝜇𝐾 = 0.5, 𝑅𝑑 = 𝜌0𝑐0, 𝑀𝑏 = −1), in case of pressure
verage evaluation on speakers and no delay (in blue), in case of pressure evaluated from microphones averaging (see Fig. 25) and no delay (in red), and in
ase of pressure evaluated from corner microphones and with time delay (in yellow). (For interpretation of the references to colour in this figure legend, the
eader is referred to the web version of this article.)

inal expression, with the assimilation of our BC, in Eq. (A.8a). Hence, our eigenvalue problem with an eigenvalue-dependent BC,
an be solved directly in its weak-form, by FEs.

∫
𝜓̂∇2

𝑦,𝑧𝜓𝑚 d𝑦d𝑧 + (𝑘20 − 𝑘
2
𝑥,𝑚)∫

𝜓̂𝜓𝑚 d𝑦d𝑧 = 0 (A.6)

∫𝜕
𝜓̂𝜕𝑛𝜓𝑚 d𝑦d𝑧 − ∫

∇𝑦,𝑧𝜓̂ ⋅ ∇𝑦,𝑧𝜓𝑚 d𝑦d𝑧 + (𝑘20 − 𝑘
2
𝑥,𝑚)∫

𝜓̂𝜓𝑚 d𝑦d𝑧 = 0 (A.7)

− j𝜂Loc

(

𝑘0 −𝑀𝑏𝑘𝑥,𝑚

)

∫𝜕
𝜓̂𝜓𝑚 d𝑦d𝑧 − ∫

∇𝑦,𝑧𝜓̂ ⋅ ∇𝑦,𝑧𝜓𝑚 𝑑𝑦𝑑𝑧 + (𝑘20 − 𝑘
2
𝑥,𝑚)∫

𝜓̂𝜓𝑚 d𝑦d𝑧 = 0 (A.8a)

ppendix B. Effect of discrete pressure evaluation and time delay in the 3D numerical model

In order to assess the effect of the pressure estimation from the 4 corner microphones on each ER, in case of ABL, in Fig. B.1 we
eport the simulated scattering performances in a 3D waveguide, when 𝑝̂ and 𝜕̂𝑥𝑝 are retrieved from the average values on each ER
isk (solid blue), or when 𝑝̂ and 𝜕̂𝑥𝑝 are obtained from the 4 corner microphones (solid red). In dotted yellow, we also report the
imulations results when a time delay 𝜏 = 2×10−5 s is considered in the controller. Observe that, employing the corner microphones
o estimate 𝑝̂ and 𝜕̂𝑥𝑝 slightly affects the scattering performances around resonance and reduce the high-frequency passivity. The
ddition of a time delay in the control algorithm strongly affects the acoustical passivity at high frequencies, with 𝛼+𝑔 and 𝐼𝐿+

𝑔
ecoming negative, as expected [16].
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