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Reducing dynamic simulations of District Heating Networks computational costs.
Replacing predefined substation clusters with surrogate Artificial Neural Networks.
Validation with wide diversity of clusters in terms of topology and heating demands.
New hybrid simulation framework of the District Heating Networks.
Reduction of simulation time while satisfyingly preserving produced heat powers.
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A B S T R A C T

District heating networks (DHNs) provide an efficient heat distribution solution in urban areas, accomplished
through interconnected and insulated pipes linking local heat sources to local consumers. This efficiency is
further enhanced by the capacity of these networks to integrate renewable heat sources and thermal storage
systems. However, integration of these systems adds complexity to the physical dynamics of the network,
necessitating complex dynamic simulation models. These dynamic physical simulations are computationally
expensive, limiting their adoption, particularly in large-scale networks. To address this challenge, we propose
a methodology utilizing Artificial Neural Networks (ANNs) to reduce the computational time associated
with the DHNs dynamic simulations. Our approach consists in replacing predefined clusters of substations
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Graph-based formulation within the DHNs with trained surrogate ANNs models, effectively transforming these clusters into single
nodes. This creates a hybrid simulation framework combining the predictions of the ANNs models with the
accurate physical simulations of remaining substation nodes and pipes. We evaluate different architectures of
Artificial Neural Network on diverse clusters from four synthetic DHNs with realistic heating demands. Results
demonstrate that ANNs effectively learn cluster dynamics irrespective of topology or heating demand levels.
Through our experiments, we achieved a 27% reduction in simulation time by replacing 39% of consumer
nodes while maintaining acceptable accuracy in preserving the generated heat powers by sources.
1. Introduction

District Heating Networks (DHNs) are urban-scale heat distribution
systems. They offer an efficient way to transport heat energy from local
heat sources to local heat consumers through a network of insulated
pipes. This efficiency is further enhanced by the integration of decen-
tralized heat sources, including renewable sources [1], and thermal
storage systems. While improving the efficiency, the integration of
the systems also increases the complexity of the physical dynamics
of the DHNs. This complexity necessitates the use of dynamic based
simulation models. However, these models are computational expen-
sive, especially for large-scale DHNs. Two main factors contribute to
such high computational cost. First, these simulation models require
a complete topological representation of the entire DHN. Second, the
spatial discretization of the pipes leads to computationally demanding
matrix inversions. Developing methods to reduce these computational
costs is therefore crucial to enable wider adoption of DHNs dynamic
simulation models.

To address this computational cost, three main categories of meth-
ods have emerged. The first category focuses on the use of simplified
physical modeling [2] or pseudo-dynamic approach [3]. However, it
comes at the expense of accuracy in capturing the complex dynamic
behavior of the network. The second category includes Model Order Re-
duction (MOR) approaches which tackle topological complexity by pro-
jecting the physical state description onto a lower-dimensional space.
Techniques such as proper orthogonal decomposition [4] and Galerkin
projection [5] have been explored in this context. Rein et al. [6] noted
that achieving substantial gains often requires a significant reduction
in the dimensions of the space, sacrificing physical details. A recent
approach in this category involving network partitioning starts by
dividing the network into clusters (subsets of the substation nodes)
and applying MOR at the cluster level [7]. The third and last cate-
gory includes topology reduction based methods which simplify the
network topology itself. This approach also divides the network into
clusters but, in contrast to MOR approach, focuses on simplifying the
topology within each cluster, without altering the underlying physical
equations [8].

Topology or grid reduction methods aim to simplify the topology
of the clusters by removing specific connections (pipes) or nodes (sub-
stations). In the context of aggregation frameworks, the entire cluster
is replaced by a single node. For DHN applications, this translates
into substituting the original cluster, which includes its substations and
connecting pipes, with a single equivalent node. The key challenge lies
in preserving the physical equivalence between the original and re-
duced networks. This necessitates maintaining identical thermal power
distribution in the non-aggregated regions of both networks versions.
It ensures also similar generated thermal power by the heat sources.
Two major DHN aggregation methods are present in the literature:
the German [9] and Danish [10] methods. To conserve the thermal
equivalency, these methods empirically adjust the properties of the
pipes of the reduced network, allowing to have the same transport
delays and mass flow rates as the original network. These methods
have been successfully applied to operational optimization tasks [11],
demonstrating promising results in conserving the thermal power gen-
erated from heat sources and reducing the simulation time. However,
limitations have been identified, including the requirement for steady-
state conditions and the restriction to tree-shaped clusters [11]. A
2 
recent work by Kane et al. [12] attempts to address the tree-shaped
limitation by incorporating clusters with loop connectivity. However,
this approach still relies on steady-state physical models. Besides, it
is based on assumption that the mass flow rate of the water through
the pipes evolves proportionally, which may not reflect real-world
DHN operations. Although these aggregation methods show promising
results, these limitations hinder their widespread adoption.

The past decades have witnessed the remarkable performance of
Machine Learning (ML) models across various engineering disciplines.
The energy sector is no exception, although its adoption is still in its
early stages [13]. Unsupervised ML techniques, such as k-means [14]
and k-shape [15], have been explored to partition DHN into clusters of
substations that exhibit similar consumption patterns. Although these
methods have facilitated the application of control strategies at the
cluster level [15], they lack a mechanism to replace identified clusters.
A potentially more effective approach involves employing supervised
ML models to learn and replicate the physical dynamics of the clusters.
These trained models could then serve as surrogate models of the
clusters within the aggregation framework. In particular, there is a
lack of research investigating such ML-based aggregation approaches
specifically for DHNs. Artificial Neural Networks (ANNs) have indeed
demonstrated exceptional capabilities in learning complex non-linear
relationships [16], frequently observed in physical phenomena. Differ-
ent architectures of ANNs models, including Multi-Layer Perceptrons
(MLP) [17], Convolutional Neural Networks (CNN) [18], and Recurrent
Neural Networks (RNN) [19], have been applied to thermal networks.
However, prior studies have primarily focused on: replacing the entire
network with a ‘‘black-box’’ model [20] acting as surrogate model of
the simulation model, forecasting demand power [19], or estimating
specific physical properties such as thermal conductivity [18]. Our
research identified no existing methodology for learning and substitut-
ing substation clusters within the DHNs. This cluster-level substitution
approach offers a more efficient alternative to learning and replacing
the entire network. It requires less data and minimizes potential error
sources.

This paper addresses the identified knowledge gaps by proposing
an aggregation methodology to reduce the computational costs related
to the dynamic simulations of the DHN. Our approach focuses on
replacing predefined clusters of substations with trained ANNs models,
acting as surrogate models, in an aggregation framework. This method-
ology uses dynamic physical simulations of the DHN. Also, no prior
assumptions on the mass flow rate of the water and the topology of
the clusters are required. Furthermore, a hybrid simulation framework
is introduced which couples the surrogate ANNs models predictions
with the physical simulation. The remainder of this paper is structured
as follows. Section 2 presents the physical modeling of the DHN and
details our aggregation process. In Section 3, we explore the different
ANNs architectures considered for this work. To validate the effective-
ness of the proposed methodology, Section 4 describes the experiments
carried out, including details of the studied DHNs and the selected
clusters. Section 5 compares the performance of the various ANNs
architectures and evaluates the computational gains achieved through
the reduced DHN hybrid simulation. Finally, Section 6 summarizes the
key findings of the study and provides a comprehensive discussion of
their implications.
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2. Methodology

In line with the node method [21], the DHN is viewed as a directed
graph  = ( , ), where  and  represent the sets of nodes and edges

ithin the DHN, respectively.

.1. Notations

In our work, nodes are identified by letters (e.g., 𝑣) or by an integer
e.g., 1). While prior DHN modeling literature may use terms like
‘edge’’, ‘‘boundary’’, and ‘‘pipe’’ interchangeably to denote connec-
ions, this paper adopts a distinct definition. In our work, an ‘‘edge’’
epresents a pair of parallel pipes with identical properties but opposite
low directions: a supply pipe and a return pipe. An edge denoted
s (𝑢, 𝑣) indicates a connection between nodes 𝑢 and 𝑣, where the
upply pipe flows from 𝑢 to 𝑣 and the return pipe flows in the opposite

direction. Pipes oriented towards a node are termed incoming, while
those oriented away are termed outgoing. Time-varying values are
italic-bolded, while static values are italic-normal. Subscripts 𝑠 and 𝑟
enote the temperatures of the supply and return water, respectively.
dditionally, the superscripts 𝑖𝑛 and 𝑜𝑢𝑡 indicate the temperatures of

the water at the inlet and outlet of the pipes (supply and return),
respectively. We denote the sets of consumer and source nodes as 
and  , respectively, with their disjoint union corresponding to the set
of all the nodes within the DHN (i.e.,  =  ⊔  ).

2.2. Dynamic physical modeling of the DHN

Here, we introduce the dynamic physical modeling used to simulate
the DHN which leverages nonlinear partial derivative equations to
effectively capture the behavior of the DHN. The direction of the
edges arbitrarily follows the direction of the supply pipes. This sim-
ulation model is composed of a thermal model and a hydraulic model.
The nodes in the DHN represent either substations (heat exchangers)
or simply flow mixing locations, with the supply 𝑻 𝒔 and return 𝑻 𝒓
temperatures.

2.2.1. Thermal model
Substation nodes can act as sources (injecting heat) or consumers

(consuming heat). Prosumers (combined source-consumer nodes) and
storage nodes are not included in this work. Heat injection and con-
sumption are governed, respectively, by the Eqs. (1) and (2) where 𝑐𝑝
is the specific heat capacity of the water. Sources supply heat power
𝑷 into the network by injecting hot supply water with supply mass
flow rates �̇�𝑠 at generation supply temperatures 𝑻 𝑠𝑠 (see Fig. 1(a)).
Consumers extract heat power to satisfy their heating demands 𝑫,
achieved by consuming supply water with consumption mass flow rates
�̇�𝑐 and returning it at a fixed primary return temperature 𝑇𝑟𝑐 (see
Fig. 1(b)). Mixing nodes simply mix incoming flows. +

𝑣 (Eq. (3)) and
+
𝑣 (Eq. (4)) contain respectively the subsets of edges with incoming and

outgoing supply flows of a node 𝑣, respectively, which depend on the
direction of the edges in  and the signs of the traversing mass flow rate
�̇� of the water. Based on these subsets, we can derive the incoming and
outgoing return flows of the node 𝑣. Eqs. (6) and (5) ensure enthalpy
conservation at each node for both the supply and return sides. Heat
transport through the pipes (supply and return) is modeled by the
heat transport equation presented in Eq. (8) where 𝑻 indicates the
temperatures of the water through the pipes (supply and return). Pipes
characteristics values are presented in Table 1. 𝜌 represents the density
of the water. The heat transport equation breaks down into three key
components. First, the change in temperature over time, captured by
the partial derivative, reflects the heat accumulation within the pipes.
Second, the partial derivative with respect to the direction of flow (i.e.,
𝑥-axis) captures the transport of the heat by convection along the pipes.
The values of the mass flow rates of the water �̇�(𝑢,𝑣) are identical for

supply and return pipes along each edge (𝑢, 𝑣) due to mass conservation.

3 
Table 1
Pipes characteristics and corresponding physical units.

Parameters Physical name Physical unit

𝑑 Diameter [m]
ℎ Thermal convective loss coefficient [W.K−1 .m−2]
𝑙 Length [m]
𝑘 Pressure resistance coefficient m.s2 .kg−2

The upwind scheme and finite-volume discretization solve Eq. (8) with
boundary conditions imposed by enthalpy conservation (Eqs. (5)–(6))
and numerical continuity (Eq. (7)). According to such a resolution
approach, the required computation cost scales with the size of the
network (||, ||), the number of discretized finite volumes 𝑁volumes
nd the number of time steps 𝑁steps. It highlights the need for the DHN
opology reduction.

𝑠 ∈  , 𝑷 𝑠 = �̇�𝑠𝑠 𝑐𝑝(𝑻 𝑠𝑠𝑠 − 𝑻 𝑟𝑠 ) (1)

∀𝑐 ∈  , 𝑫𝒄 = �̇�𝑐𝑐 𝑐𝑝(𝑻 𝑠𝑐 − 𝑇𝑟𝑐𝑐 ) (2)

∀𝑣 ∈  , +
𝑣 =

{

(𝑢, 𝑣) ∈  , �̇�(𝑢,𝑣) > 0
}

∪
{

(𝑣,𝑤) ∈  , �̇�(𝑣,𝑤) < 0
}

(3)

∀𝑣 ∈  , −
𝑣 =

{

(𝑣,𝑤) ∈  , �̇�(𝑣,𝑤) > 0
}

∪
{

(𝑢, 𝑣) ∈  , �̇�(𝑢,𝑣) < 0
}

(4)

∀𝑣 ∈  ,
∑

(𝑢,𝑣)∈+𝑣

|�̇�(𝑢,𝑣)|𝑻 𝑠
𝑜𝑢𝑡
(𝑢,𝑣) + �̇�𝑠𝑣𝑻 𝑠𝑠𝑣 =

∑

(𝑣,𝑤)∈−𝑣

|�̇�(𝑣,𝑤)|𝑻 𝑠𝑣 (5)

∀𝑣 ∈  ,
∑

(𝑣,𝑤)∈−𝑣

|�̇�(𝑣,𝑤)|𝑻 𝑟
𝑜𝑢𝑡
(𝑣,𝑤) + �̇�𝑐𝑣𝑇𝑟𝑐𝑣 =

∑

(𝑢,𝑣)∈+𝑣

|�̇�(𝑢,𝑣)|𝑻 𝑟𝑣 (6)

∀(𝑢, 𝑣) ∈  , 𝑻 𝑠𝑣 = 𝑻 𝑠
𝑖𝑛
(𝑢,𝑣) and𝑻 𝑟𝑣 = 𝑻 𝑟

𝑖𝑛
(𝑣,𝑢) (7)

∀(𝑢, 𝑣) ∈  ,
𝜕𝑻 (𝑢,𝑣)

𝜕𝑡
= −

4�̇�(𝑢,𝑣)

𝜋𝜌𝑑2(𝑢,𝑣)

𝜕𝑻 (𝑢,𝑣)

𝜕𝑥
−

4ℎ(𝑢,𝑣)
𝜌𝑐𝑝𝑑(𝑢,𝑣)

(

𝑻 (𝑢,𝑣) − 𝑻 ground
)

(8)

2.2.2. Hydraulic model
The hydraulic model incorporates two key aspects: nodal mass

balance and pressure drops within the pipes. Eq. (9) enforces mass
conservation at every node and time step 𝑡. Pressure drops through
the pipes are modeled by pressure head 𝑯 losses between adjacent
nodes, governed by Eq. (10). This equation is derived from the Darcy–
Weisbach pressure loss equation [22]. The pressure-resistance coeffi-
cient 𝑘 (see Table 1) depends on both the mass flow rate of the water
through the pipes and their surface roughness [23].

∀𝑡, ∀𝑣 ∈  , ̇𝒎𝑡
𝑠𝑣
+

∑

(𝑢,𝑣)∈+𝑣

�̇�𝑡
(𝑢,𝑣) = �̇�𝑡

𝑐𝑣
+

∑

(𝑣,𝑤)∈−𝑣

�̇�𝑡
(𝑣,𝑤) (9)

∀(𝑢, 𝑣) ∈  , 𝑯𝑢 −𝑯𝑣 = 𝑘(𝑢,𝑣)�̇�(𝑢,𝑣)|�̇�(𝑢,𝑣)| (10)

2.3. ML aided topology reduction

The physics-based modeling provides a baseline and data to train
the proposed learning and aggregation framework. This framework
aims to simplify the DHN topology by replacing predefined consumer
clusters with surrogate ANNs models. These ANNs models are trained
to mimic the underlying physical dynamics of the clusters and act as
<<twin nodes>> of the original clusters. In this work, we only consider

clusters of consumer nodes, excluding source nodes.
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Fig. 1. Illustration of substation node modeling, for sources 1(b) and consumers 1(a).
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2.3.1. Graph formulation of the DHN
We extend the node method graph-based representation of the DHN

by assigning multivariate time series attributes to the nodes and the
edges. Attributes of the nodes include generated heat power (zero for
consumers), heating demands, supply and return temperatures forming
a four-feature vector 𝑿𝑣 =

{

𝑷 𝑣,𝑫𝑣,𝑻 𝑠𝑣 ,𝑻 𝑟𝑣

}

for every node 𝑣 ∈  .
n this graph-based representation, edge orientations follow the supply
lows. We assign to each edge (𝑢, 𝑣) ∈  a multivariate time series
eight 𝑾 (𝑢,𝑣) =

{

𝑾 𝑖𝑛
𝑠(𝑢,𝑣)

,𝑾 𝑖𝑛
𝑟(𝑢,𝑣)

,𝑾 𝑜𝑢𝑡
𝑠(𝑢,𝑣)

,𝑾 𝑜𝑢𝑡
𝑟(𝑢,𝑣)

}

, which are respectively
he inlet and outlet temperatures of the corresponding supply and
eturn pipes (i.e., based on the directions of the flows). These values
re defined in Eq. (11). Inlet temperatures are multiplied by a time-
ependent coefficient 𝝎(𝑢,𝑣) accounting for the characteristics of the
ipes and mass flow rates. This coefficient is derived from a steady-
tate thermal loss estimation method [24]. We use the same 𝝎(𝑢,𝑣) for
oth supply and return due to the similarities of the pipes and mass
onservation.

(𝑢, 𝑣) ∈  ,

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝝎(𝑢,𝑣) = exp
(

− 𝑑(𝑢,𝑣)𝑙(𝑢,𝑣)ℎ(𝑢,𝑣)
𝑐𝑝�̇�(𝑢,𝑣)

)

𝑾 𝑖𝑛
𝑟(𝑢,𝑣)

= 𝝎(𝑢,𝑣) ⊙ 𝑻 𝑖𝑛
𝑟(𝑢,𝑣)

𝑾 𝑖𝑛
𝑠(𝑢,𝑣)

= 𝝎(𝑢,𝑣) ⊙ 𝑻 𝑖𝑛
𝑠(𝑢,𝑣)

𝑾 𝑜𝑢𝑡
𝑟(𝑢,𝑣)

= 𝑻 𝑜𝑢𝑡
𝑟(𝑢,𝑣)

𝑾 𝑜𝑢𝑡
𝑠(𝑢,𝑣)

= 𝑻 𝑜𝑢𝑡
𝑠(𝑢,𝑣)

(11)

.3.2. Learning and aggregation framework
Given a cluster (C), its surrogate ANNs model predicts the tem-

eratures of outgoing flows of the water at the outlets of the pipes
supply and return), collectively designed by the output features 𝒀 . The
NNs model considers the temperatures of incoming flows of the water
t the inlets of the pipes and the heating demands of the consumer
odes composing the replaced cluster, collectively designed as input
eatures 𝒁. Crucially, identifying the input and output features of the

urrogate models of the aggregated clusters requires prior knowledge o

4 
f the external edges of these clusters. These are the edges between
cluster and adjacent nodes outside the cluster. Flows of the water

hrough these external edges, entering or exiting the cluster. In other
ords, external edges represent the interface between a cluster and

he rest of the network. To illustrate this aggregation framework,
onsider the example in Fig. 2. The cluster

(

𝑣1, 𝑣2, 𝑣3
)

of size three is
ggregated into its twin node 𝑣𝑐 . The physical states of the adjacent
odes

(

𝑣1, 𝑣5, 𝑣6
)

outside the cluster, connected through external edges
(𝑣1, 𝑣2), (𝑣3, 𝑣5), (𝑣4, 𝑣6)

)

, are preserved. Thermal equivalency between
he original network (Fig. 2(a)) and the reduced network (Fig. 2(b))
s ensured by learning and predicting outgoing flows temperatures 𝒀
orm the inputs 𝒁, defined in Eqs. (12) and (13) respectively. Notably,
he ANNs models do not use any internal temperatures of the original
luster as input features. Indeed, during simulations of the reduced
etwork, these internal temperatures will not be readily available. The
roposed learning and aggregation process is adaptable to any cluster
onfiguration. By construction, the number of output features is directly
elated to the number of external edges in the original cluster and
he directions of the flows of the water. Crucially, our framework
ssumes that no flow reversal occurs in the external edges through
he simulation. Currently, we categorize clusters based on their type,
efined by the combination of incoming and outgoing edges. This type
irectly reflects the number of outgoing flows and the temperatures that
he surrogate ANNs model needs to predict. For example, the cluster
n Fig. 2 is classified as type 1–2, indicating one incoming and two
utgoing edges.

=
{

𝑾 𝑜𝑢𝑡
𝑟(𝑣1 ,𝑣2)

,𝑾 𝑜𝑢𝑡
𝑠(𝑣3 ,𝑣5)

,𝑾 𝑜𝑢𝑡
𝑠(𝑣4 ,𝑣6)

}

(12)

=
{

𝑫𝑣2 ,𝑫𝑣3 ,𝑫𝑣4 ,𝑾
𝑖𝑛
𝑠(𝑣1 ,𝑣2)

,𝑾 𝑖𝑛
𝑟(𝑣3 ,𝑣5)

,𝑾 𝑖𝑛
𝑟(𝑣4 ,𝑣6)

}

(13)

.4. Hybrid simulation

Replacing the clusters with single twin nodes reduces the topology

f the DHN by reducing the number of physical pipes and nodes. To
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Fig. 2. Illustration of the proposed aggregation process on an example cluster.
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imulate such reduced networks, the ANNs models, associated to these
win nodes, communicate with the physical simulation. In a more de-
ailed way, the physical simulation of the remaining physical pipes and
odes give the input features of the ANNs models whose predictions
re fed back into the physical simulation to finish the network overall
imulation. This combined physical and ANNs models predictions is
eferred to as hybrid simulation. This proposed hybrid framework is
daptable and can be applied to any simulation model. It necessitates
nd involves the following data pipelines: (a) collecting the required
ata at each time step from the simulation models, (b) preprocessing
he collected data for use as inputs to the ANNs, (c) using the ANNs
o make predictions, and (d) feeding the predicted values back into
he DHN simulations to finalize the process. In our paper, we focus on
everaging data from DHN simulation models, although this approach
an be adapted to use field measurements. To evaluate the performance
f the hybrid framework, we concentrate on two aspects: accuracy
nd computational efficiency. We measure efficiency by the reduction
n simulation CPU time. To assess accuracy, we define two physics-
ased metrics. First, we measure the ability of the hybrid simulation
o conserve the thermal loads at the interfaces of the twin nodes, i.e.,

replaced clusters. In this work, the thermal loads refer to available heat
powers, upstream or downstream of the clusters. Our second accuracy
metric consists in measuring the ability of the hybrid simulation to
conserve the produced heat powers by the sources. Both metrics are
measured in absolute relative errors (%), averaged over time.

3. ANNs models

To effectively learn the complex physical dynamics of the clusters,
we evaluate three compact ANNs architectures: Gated recurrent neural
networks (GRU-NN), convolutional neural networks (CNN), and multi-
layer perceptrons (MLP). The following sections detail these architec-
tures, all selected to balance precision with computational efficiency.

3.1. GRU–NN architectures

RNN based models are indeed suitable for time series data. Gated
Recurrent Unit (GRU) [25] has been recently introduced to address
the vanishing gradients, a challenge in training vanilla RNN models.
These cells allow to capture long time dependency in temporal data. In
this work, we explore many-to-one RNN architecture relying on GRU
cells. To capture the transport delay time through the clusters, we use
input sequences of length 60, i.e., prediction horizon, containing input
features between time steps 𝑡−60 to 𝑡, to predict the output features at
time step 𝑡. Two versions of the GRU-NN architectures, shown in Fig. 3,
are compared. GRU cells have 20 units and use the hyperbolic tangent
as an activation function while dense layers with 60 units use Rectified
Linear Unit activation function.
5 
3.2. CNN architectures

For efficiency, 1D CNNs, also known as temporal convolutions,
are considered. 1D convolution, designed for 1D signals, requires less
computation than the 2D or 3D counterparts [26]. Similar to GRU-NNs,
CNN models use input sequences of length 𝛿𝑡, viewed as matrices, to
redict output features at time 𝑡. Also, we compare two versions of
he CNN architectures, shown in Fig. 4. Valid padding, 1 stride, and
caled exponential linear unit (selu) activation [27] are considered by
he convolution layers. Average pooling layers are placed after each
onvolution layer without strides.

.3. MLP architecture

While requiring computational load less than RNNs and CNNs,
LP based models traditionally handle single time steps predictions.
e explore two approaches for incorporating time series: time-to-

ime prediction and flattened sequences. Both are depicted in Fig. 5.
lattening the sequences, however, suffers from high dimensionality of
he input features, leading to large size of models. We compare these
nput features engineering for the same MLP architecture.

.4. Training procedures

Let 𝒁 ∈ RF×𝑁steps denote the input time-series and 𝒀 ∈ RO×𝑁steps

the output time-series for a given cluster, where F and O represent the
number of input and output features, respectively. Both 𝒁𝒇 ∈ R𝑁steps

and 𝒀 𝒐 ∈ R𝑁steps (feature vectors of the input and output time series)
are Min–Max normalized, along the time axis. The normalized �̄� is then
partitioned into sequences

{

𝑧𝑖 ∈ RF×𝛿𝑡
}𝑛
𝑖=1 of length 𝛿𝑡 along the time-

axis. Similarly, �̄� is partitioned, but only the last point of each sequence
is kept, resulting in output sets

{

𝑦𝑖 ∈ RO×1}𝑛
𝑖=1. 𝑛 indicates the total

number of data sets and corresponds to 𝑁steps − 𝛿𝑡 + 1. We temporally
split the data sets into training and test sets, representing 80% and
20% of the data sets respectively. Then the test and training sets are
shuffled along the sets. During the training phase, 20% of the training
sets are used as validation sets. The ANNs based models learn to
minimize the mean absolute error (MAE) on the training sets (Eq. (14))
between the ground-truth values 𝑦𝑖 from the physical simulation and
the predicted values �̃�𝑖. 𝑛𝑡 is the number of sets in the training batch.
Reported performances of our ANNs models in this paper are measured
on the test sets (in ◦C). We train the models on a maximum number
of epochs 100 using Adam optimizer and batch size of 100. An early-
stop callback monitors the improvement of the training metrics (i.e.,
MAE) in the validation sets and prematurely stops the training loop
if no improvement has been observed during the last 20 epochs. The
learning rate starts from 10−3 and sequentially decreases by a factor
of 0.1 every 20 epochs to 10−5. Indeed, we have noticed that these
step decreases of the learning rate improve convergence of the training
process. These training callbacks serve as safeguards against overfitting
the ANNs models to the training data, ensuring they can generalize
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Fig. 3. The considered GRU-NN architectures versions. The number of units per GRU and Dense layer are shown in the cases.
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imulation years.
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∑

𝑖=1

|

|

𝑦𝑖 − �̃�𝑖|| (14)

4. Experiments

To measure the performance and generalizability of our proposed
aggregation framework, we apply our learning methodology to a large
diversity of clusters. These clusters are selected from four different
synthetic DHNs, which serve as our case study DHNs in this work
(see Fig. B.1). Each cluster is learned independently using the pro-
posed ANNs architectures, regardless of the specific topology of the
DHN it originated from. The DHNs with fixed topology are simulated
using the previously described physical model with realistic heating
demands, generated using a heating law (more details in Appendix A).
The simulation data ranges from January to Mid-June of 2019 (5.5
months) with a 1-minute time step, resulting in 𝑁steps = 224, 540. The
considered outdoor temperatures are obtained from the NASA power
publicly available database [28]. The DHNs have two distributed heat
sources capable of supplying all heating demands of the consumers at
all time steps. The generation supply temperatures of the sources follow
a linear law in function of the outdoor temperatures (see Appendix A).
Additionally, 𝑁volumes = 200 is considered for all pipes. The training
and testing data for the ANNs models are derived from the simulations
of our four case-study DHNs, employing the data pipeline outlined in
Section 3.4.

4.1. User-driven clustering

To comprehensively evaluate the performance of our methodology
across diverse cluster configurations, exhaustively considering all pos-
sible clusters in a DHN is impractical due to the exponential growth
in the number of potential clusters within a graph. Therefore, we
focus on capturing a significant range of topological diversities and
 c

6 
heating demands levels. We employ a combined approach using visual
inspection and random-walk clustering [29] to select a diverse set of
clusters. We assess the diversity of these clusters in terms of both
topology (i.e., types and sizes) and cluster-level heating demand powers
(in MegaWatts, MW) averaged over time.

4.2. Hybrid simulation on new scenarios

This topology reduction method aims to significantly reduce com-
putational costs for District Heating Network (DHN) simulations. This
allows operators to efficiently test various operational scenarios. There-
fore, we assess the proposed hybrid simulation approach validity under
two simulation test scenarios, shown in Fig. 6. In first scenario, we
consider heating demands profiles from a week in August 2019 (outside
the training data), while keeping the generation supply temperature
profiles similar to used to generate the training data. In the second
scenario, we change the generation supply temperature profiles (con-
stant 90 ◦C and 100 ◦C), while considering heating demands from the
raining data (March 2019).

. Results

.1. Selected clusters

We select 220 clusters (54 from DHN1, 29 from DHN2, 57 from DHN3
nd 80 from DHN4) ensuring significant topological diversity (size and
ype) and heating demand variations (see Fig. 7). Clusters range from
ery small (2 consumers) to the largest topologically possible within
he networks, as shown in Fig. 7(a). Diversity in external connectivity
s reflected by the wide range of cluster types, shown in Fig. 7(b).
lso, Fig. 8 shows that the average heating demands of the selected
lusters span over a significant range of values. The heating demand of
he cluster is simply the sum of the heating demands of its individual

onsumer.
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Fig. 4. The considered CNN architectures versions. Number of filters along with their kernel sizes are shown in the 1D convolution layer cases.
Table 2
Our considered ANNs architectures complexities measured in terms of average number
of trainable weights and average inference time (in milliseconds ms). We note that
presented values are averaged over the selected clusters.

ANNs models Avg. number of weights Avg. inference time (ms)

MLP v1 7485 18
MLP v2 26955 21
GRU-NN v1 6635 21
GRU-NN v2 10175 23
CNN v1 𝟒𝟎𝟒𝟓 𝟏𝟖
CNN v2 8425 21

5.2. Learning performances

We evaluate the performance of the ANNs models on unseen data
(test sets) for each selected cluster. The evaluation metric is the de-
normalized Mean Absolute Error (MAE) in ◦C. We compare the distribu-
ions of these MAEs to assess the overall performance and generalizabil-
ty of each ANNs models architectures across the diverse clusters. Since
ur models have varying complexities, in number of trainable weights
nd inference times as detailed in Table 2, we assess both accuracy and

odel complexity when judging the final results.

7 
Table 3
Learning performances of the considered ANNs architectures, averaged
over the selected clusters.

ANNs models Using L1-regularizer MAEs (◦C)

MLP v1 No 0.797(±0.214)
Yes 0.884(±0.130)

MLP v2 No 0.788(±0.142)
Yes 0.940(±0.280)

GRU-NN v1 No 0.172(±0.07)
Yes 0.460(±0.16)

GRU-NN v2 No 0.189(±0.09)
Yes 0.300(±0.11)

CNN v1 No 0.132(±0.01)
Yes 0.254(±0.11)

CNN v2 No 𝟎.𝟏𝟏𝟓(±𝟎.𝟎𝟐)
Yes 0.198(±0.11)

5.2.1. Impact of the use of L1-regularizer
We report mean MAEs with confidence intervals for all ANNs mod-

els in Table 3. The results suggest that the use of L1 regularization
during training might decrease the model learning performance. To
statistically validate this, we employ non-parametric Mann–Whitney
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Fig. 5. The considered MLP architectures versions. Every shown dense layer uses Rectified Linear Unit activation function with shown number of units.
Fig. 6. Profiles of the aggregated heating demands 6(a) and generation supply temperatures 6(b) for both simulation test scenarios.
t
v
M
t
e
G
>
f
v
a
>
t
o

5

tests [30] to compare the MAE distributions. The null hypothesis
mplies that the MAE distributions of the ANNs models are similar
ith and without L1 regularization. We consider a confidence interval
f 95% corresponding to 𝑝-value lower than 0.05. All models except
LP v2 (𝑝-value = 0.257) show statistically significant performance

egradation with regularization of L1, having 𝑝-values lower than
.05 (MLP v1: 6.03 ∗ 10−9, GRU-NN v1: 1.76 ∗ 10−8, GRU-NN v2:
.83 ∗ 10−9, CNN v1: 1.31 ∗ 10−3, CNN v2: 1.9 ∗ 10−2). This might
uggest the potential challenging task of training architecture with high
umber of weights such as the MLP v2 with or without L1-regularizer.
t emphasizes also the use of compact ANNs architectures over large
rchitectures.

.2.2. ANNs models comparison
Table 3 suggests that MLP architectures which exhibit the highest

AEs are less suitable for capturing cluster underlying physics com-
ared to GRU-NN and CNN models, shown in Fig. 9. We further validate
 C

8 
his result statistically using the Mann–Whitney U tests. Obtained 𝑝-
alues for different tests are reported in Table 4. In mean values,
LP v1 performs slightly better than v2, which is validated with

he test result that produces the 𝑝-value < 0.05. However, both are
xcluded due to overall poor performances (Table 3). GRU-NN v1 and
RU-NN v2 do not show statistically significant differences (𝑝-value
0.05), suggesting that v1 performs similarly to v2 despite having

ewer weights and faster inference. However, CNN v2 outperforms CNN
1 (𝑝-value < 0.05), justifying its increased complexity. Finally, CNN v2
nd GRU-NN v1 show no statistically significant differences (𝑝-value
0.05). This suggests both models to be equally effective in learning

he clusters physics, with GRU-NN v1 offering an advantage in terms
f computational complexity as shown in Table 2.

.2.3. Analysis on the impacts of the clusters topology and heating demands
We further analyze how cluster properties affect GRU-NN v1 and

NN v2 performance (best identified models, see previous section).
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Fig. 7. Distributions of the selected clusters topology in function of their respective sizes 7(b) and types 7(b). We also show the number of selected clusters from the four different
synthetic District Heating Networks.
Fig. 8. Selected clusters average heating demand powers.

Fig. 9. Distributions of the MAEs performances of the considered ANNs architectures
without the use of L1-regularizer.
9 
Table 4
𝑃 -values of different statistical test using Mann–Whitney U-test
for different distribution MAEs comparisons. Null hypothesis
infers no statistical differences between the distributions.

ANNs differences compared 𝑝-value

MLP v1 and MLP v2 1 ∗ 10−3

GRU-NN v1 and GRU-NN v2 0.578
CNN v1 and CNN v2 6.98 ∗ 10−4

MLP v1 and GRU-NN v1 7.11 ∗ 10−27

MLP v1 and CNN v2 2.77 ∗ 10−23

GRU-NN v1 and CNN v2 0.695

• Cluster size: Fig. 10(a) shows similar model performance across
cluster sizes, further supported by a weak negative correlation
coefficient (−0.05). It implies that the sizes of the clusters do not
impact directly the ANNs models ability to learn the underlying
physics of the clusters. Besides, large clusters may potentially
provide larger computational cost reduction than small clusters.

• Cluster type: In general, the ANNs models perform significantly
better on type 1–0 clusters (Fig. 10(b)), due to the lower number
of temperatures profiles to learn and predict. However, perfor-
mance varies within the same type. On one hand, this result
suggests that our framework can handle diverse external connec-
tivity (i.e., types). On the other hand, further investigation on
the link between performances and the clusters topology metrics
might be beneficial, although outside of the scope of this study.

• Cluster heating demands: The amplitude of heat demands appears
to have minimal influence on the learning performance of the
ANNs model (Fig. 11). The MAEs distributions do not show a clear
correlation with the average cluster heating demand (MW). Low
Pearson correlation coefficients (0.03 for GRU-NN v1 and 0.02 for
CNN v2) support this observation. This suggests that our frame-
work can handle clusters with wide ranges of heating demands
levels, allowing for the replacement of low- or high-consumption
clusters without significant performance changes.

5.3. Hybrid simulation

We evaluate the hybrid simulation using case study DHN1. We
consider eight clusters, five of type 1–0 (K1–K5) and three of type 1–1
(K6–K8) (Fig. 12). Type 1–0 clusters are chosen due to their superior
learning performance (Section 5.2.3). However, type 1–1 clusters are
included to gauge the impact of cluster substitutions on the supply side.

The average mass flow rates of the water incoming to the clusters are
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Fig. 10. Distribution of the models GRU-NN v1 and CNN v2 learning performances (MAEs) over the selected clusters, with respect to their sizes and types.

Fig. 11. Distribution of the models GRU-NN v1 and CNN v2 learning performances (MAEs) over the selected clusters, with their averaged heating demands.

Fig. 12. Case study DHN1 with eight clusters (delimited in dashed lines) considered to validate the hybrid simulation framework.
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Table 5
Mass flow rates of the water (kg∕s) entering the clusters, averaged over time, on both simulation scenarios.

Clusters K1 K2 K3 K4 K5 K6 K7 K8

1st scenario 3.6 8.6 15.3 24.3 49.9 49.9 19.9 45.0
2nd scenario 5.1 12.2 21.9 36.4 73.2 73.2 28.4 66.0
Table 6
Accuracy performances of the hybrid simulations on the case study DHN1 by substituting the mentioned
clusters with their corresponding twin nodes, measured by physics-based metrics.

Clusters K1 K2 K3 K4 K5 K6 K7 K8
sizes 2 4 9 12 27 2 8 13

Thermal loads (%)
1st scenario

GRU-NN v1 0.043 0.119 0.087 0.054 0.115 0.084 0.294 0.093
CNN v2 0.045 0.125 0.085 0.057 0.122 0.086 0.326 0.110

2nd scenario
GRU-NN v1 0.007 0.016 0.024 0.016 0.031 0.033 0.161 0.038
CNN v2 0.007 0.018 0.023 0.016 0.027 0.037 0.149 0.044

Produced heat powers (%)
1st scenario

GRU-NN v1 0.012 0.014 0.025 0.035 0.088 0.030 0.033 0.039
CNN v2 0.013 0.015 0.024 0.037 0.093 0.033 0.036 0.053

2nd scenario
GRU-NN v1 0.002 0.002 0.007 0.011 0.024 0.021 0.019 0.021
CNN v2 0.002 0.002 0.006 0.010 0.020 0.021 0.018 0.018
Fig. 13. Distribution of errors by the hybrid simulations on preserving the temperatures
f the return water at the sources, measured in absolute differences.

resented in Table 5. These rates correspond to both supply entering
nd return leaving the clusters. The entering mass flow rates reflect the
eat consumption and losses within the clusters, leading to a positive
orrelation with cluster size for type 1–0 clusters. However, for type 1–
clusters, additional downstream thermal requirements also influence

he entering mass flow rates.

.3.1. Accuracy performances
Table 6 summarizes the accuracy performances of the hybrid simu-

ation results. Consistent with prior findings, GRU-NN v1 and CNN v2
11 
Table 7
Mean relative errors (%) on conserving the thermal loads (upstream | downstream) of
the type 1-1 considered clusters.

Clusters K6 K7 K8

1st scenario
GRU-NN v1 0.038 | 0.130 0.051 | 0.538 0.058 | 0.129
CNN v2 0.043 | 0.130 0.056 | 0.596 0.078 | 0.142

2nd scenario
GRU-NN v1 0.027 | 0.039 0.029 | 0.293 0.030 | 0.046
CNN v2 0.027 | 0.048 0.149 | 0.271 0.044 | 0.060

exhibit similar performance. Both models effectively preserve the tem-
peratures of outgoing water from replaced clusters in both scenarios,
reflected by low errors on the thermal loads. Indeed, lower errors on
predicting the temperatures of outgoing water result in lower errors on
the heat power at the interfaces of the clusters. These performances
do not directly correlate with size of the clusters. Instead, they re-
flect the surrogate ANNs models capability to capture the underlying
physics, supporting results in Section 5.2.3. Type 1–1 clusters have two
interfaces with the rest of the network (upstream and downstream).
Reported values in Table 6 represent the averaged errors on the thermal
loads at both interfaces which are individually reported in Table 7. In
contrast, the errors on the produced heat powers by the sources depend
on the propagation of errors in the leaving return temperatures predic-
tions, from the twin nodes back to the sources. Results in Tables 6 and
7 show that this error propagation is influenced by two contributions:
the level of upstream thermal load, linked to the mass flow rate of the
incoming water flows of the clusters, and errors on this upstream load
conservation, reflecting the errors on predicting outgoing return tem-
peratures. For type 1–1 cluster substitutions, an additional error comes
from the predictions of the outgoing supply temperatures. This error
can influence downstream substation consumption and consequently,
their return temperatures. Generally, we observe higher error values
and distributions under scenario 1 compared to scenario 2 (Fig. 13).
This is consistent with the greater variability of return temperatures
observed in scenario 1 compared to scenario 2 (Fig. 14). In contrast,
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Fig. 14. Profiles of the return temperatures at the source under both simulation scenarios using physical simulation and absolute errors from the hybrid simulations.
scenario 2 exhibits a more abrupt change in generation supply temper-
atures. However, according the errors distributions shown in Fig. 13,
such supply temperature profile change does not have major impact on
the clusters substitution performances, regardless the types (1–0 and
1–1). Although, we observe some wide outliers performances from the
replacement of cluster K6 which can be explained by its proximity to
the heat sources (see Fig. 12).

5.3.2. CPU time reduction
Beyond accuracy, we investigated the potential of hybrid simu-

lations to reduce computational time. Since both architectures have
similar inference times (Table 2), the CPU time for hybrid simulations is
independent of the chosen model (GRU-NN v1 or CNN v2). Therefore,
we focus on the CPU time of hybrid simulations using GRU-NN v1 for
comparison with the physical simulation (Fig. 15). This figure demon-
strates that using larger clusters leads to significant computational
gains. Smaller clusters substitutions do not compensate for the ANNs
model inference times with their reduced number of physical equations.
Consequently, our largest cluster (K5, 27 nodes, 39% of DHN1 nodes)
reduces CPU time by 27% (Fig. 15) while maintaining sources heat
power mean relative errors below 0.1%. While this simulation time
reduction might appear modest, our results reveal key factors crucial
for evaluating the profitability of this approach in real-world operation.
First, cluster learning, which takes roughly 30 min, is a one-time
investment (e.g., first implementation year). The true benefit lies in
the cumulative time saved through repeated predictions during the
multiple simulations needed for operational optimization. Second, as
shown in Fig. 15, computational gains become more significant as
cluster size increases. The strength of our approach lies in its ability to
effectively reduce simulation time for large District Heating Networks
(DHNs) by leveraging large type 1–0 clusters, all while maintaining
high accuracy.

6. Discussion and conclusion

This study investigated an aggregation framework using Artificial
Neural Networks (ANNs) to reduce the computational costs of sim-
ulating District Heating Networks (DHNs). By replacing user-driven
selected consumer clusters with surrogate ANNs models, the framework
simplifies the DHNs topology. Our experiments on four case study
DHNs demonstrate the ability of the ANNs models to learn the physical
dynamics of diverse clusters, regardless of topology or heating demand
levels. In particular, external connectivity appears to have a greater
impact on learning performance than cluster size or heating demand
level. We further coupled the predictions of the ANNs models with
physical simulations, achieving significant reductions in simulation
12 
Fig. 15. Comparison of the CPU time required by the hybrid simulations on different
reduced networks, using GRU-NN v1, and by physical simulation on original network.

Table A.1
Reference U-factors used. Each category contains approximately 33% of the substations
of the networks.

Substation categories U-factor value [Wm−2 K−1]

Ancient buildings 3.4
Recent buildings 0.84
Offices 2.5

time while maintaining accurate source power conservation. More
precisely, these reduction of simulation times correlate directly with
the size of the replaced clusters. However, the observed performance
gap between clusters indicates factors beyond type, size, and heating
demand are affecting the ability of the surrogate ANNs models to learn
the underlying physical dynamics of the clusters. To understand these
influences better, future research will explore additional metrics and
assess their impact on the learning performances. This could lead to
more relevant cluster identifications for the aggregation framework.
Furthermore, identifying the most influential features within the input
features of the ANNs models may allow for a reduction in computa-
tional cost by using fewer features. Future work would delve into this
possibility as well.
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Fig. B.1. Generated synthetic District Heating Networks (DHN) which serve as our case study networks. Consumers are in gray-filled nodes and sources are white nodes.
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Appendix A. Heating demands and generation supply tempera-
tures models

To mimic realistic heating demands of buildings and offices, we gen-
erate values based on an adapted heating law, governed by Eq. (A.1).
This law relates heating demands to outdoor temperatures 𝑻 outdoor. A
hreshold temperature 𝑇threshold of 18 ◦C is fixed. Domestic Hot Water
DHW) demands are uniformly distributed between 100 kW and 200
W. Three U-factors (heat exchange rates) are considered, representing
ncient buildings, recent buildings and offices, presented in Table A.1.
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Each consumer node is uniformly and randomly assigned to one of
these categories. The total heat exchanger surface area is denoted by
S. We use publicly available outdoor temperature data for Nantes city
center for the entire year 2019, obtained from the NASA Power web-
site [28]. During hot hours with 𝑻 outdoor(𝑡) ≥ 𝑇threshold for 𝑡 denoting
he hour, heating demands are assumed to be 20% of the peak demand,
btained at 𝑇outdoor = −6◦C (e.g., hot water domestic needs). Similarly,
eneration supply temperatures from the sources depend inversely on
he outdoor temperatures which is governed by Eq. (A.2). In this work,
he generation supply temperatures are bounded between 90◦C and
00◦C.

(𝑣 ∈  , 𝑡), 𝑫𝑣(𝑡)

= DHW +

{

U ⋅ 𝑆 ⋅
(

𝑻 outdoor(𝑡) − 𝑇threshold
)

if 𝑻 outdoor(𝑡) < 𝑇threshold

24 ⋅ 0.2 ⋅ U ⋅ 𝑆 if 𝑻 outdoor(𝑡) ≥ 𝑇threshold

(A.1)

(𝑝, 𝑡), 𝑻 𝑠𝑠𝑝 (𝑡) =

⎧

⎪

⎨

⎪

⎩

100 ◦C if 𝑻 𝑜𝑢𝑡𝑑𝑜𝑜𝑟(𝑡) ≤ −1◦C
𝑎 ⋅ 𝑻 𝑜𝑢𝑡𝑑𝑜𝑜𝑟(𝑡) − 𝑏 if 𝑻 𝑜𝑢𝑡𝑑𝑜𝑜𝑟(𝑡) ∈ ]−1, 15[ ◦C
90 ◦C if 𝑻 𝑜𝑢𝑡𝑑𝑜𝑜𝑟(𝑡) ≥ 15◦C

(A.2)

Appendix B. Synthetic district heating networks considered

See Fig. B.1.
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