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Abstract. Algorithmic fairness is a critical challenge in building
trustworthy Machine Learning (ML) models. ML classifiers strive to
make predictions that closely match real-world observations (ground
truth). However, if the ground truth data itself reflects biases against
certain sub-populations, a dilemma arises: prioritize fairness and po-
tentially reduce accuracy, or emphasize accuracy at the expense of
fairness. This work proposes a novel training framework that goes
beyond achieving high accuracy. Our framework trains a classifier
to not only deliver optimal predictions but also to identify potential
fairness risks associated with each prediction. To do so, we spec-
ify a dual-labeling strategy where the second label contains a per-
prediction fairness evaluation, referred to as an unfairness risk evalu-
ation. In addition, we identify a subset of samples as highly vulnera-
ble to group-unfair classifiers. Our experiments demonstrate that our
classifiers attain optimal accuracy levels on both the Adult-Census-
Income and Compas-Recidivism datasets. Moreover, they identify
unfair predictions with nearly 75% accuracy at the cost of expand-
ing the size of the classifier by a mere 45%.

1 Introduction
Machine learning (ML) systems are becoming increasingly pervasive
in our interconnected society, playing a crucial role in various appli-
cations, including predictive maintenance, autonomous driving, en-
ergy management, and supply chain. Additionally, they extend their
influence into judicial, socio-economic, and medical domains, ad-
dressing aspects such as loan allocation and recidivism prediction.
The broad spectrum of these applications [11, 8, 10, 17] underscores
the importance of ensuring fair predictions, especially when his-
torical data contains biases stemming from societal misconceptions
[13, 27, 12].

Several examples highlight the prevalence of unfairness and bias,
disproportionately impacting minorities, in different critical do-
mains, including eHealth [17, 10] or legal systems [9]. One first ex-
ample involves skin condition diagnostic tools, which may manifest
bias, resulting in misdiagnoses, especially for individuals with darker
skin tones [29]. The root of this bias often stems from the under-
representation of diverse skin types in the training datasets [32]. This
leads to inefficient risk assessments for specific diseases within mi-
nority groups, potentially compromising the precision of preventive
measures and exacerbating healthcare disparities [10, 8, 17]. In ju-
dicial instances, one prominent case revolves around the examina-
tion of recidivism risk prediction using the Propublica dataset. In
[11], Dressel and Farid point out that substantial bias within the pre-
dictive algorithms results in significant disparities when applied to

black defendants, and shed light on the broader implications of bi-
ased AI applications in legal contexts. To address such concerns, reg-
ulatory frameworks are being developed. One such effort is the Euro-
pean Union AI act1. This act establishes a common legal framework,
managing risks based on application type (minimal, limited, high,
or unacceptable). It also ensures AI use complies with pre-existing
EU regulations, emphasizing fair access and trustworthy AI develop-
ment.

Several works [9, 22, 14, 15, 36] show that ensuring fairness in
supervised learning is often framed as a trade-off between consider-
ing a fair representation or an accurate one, in terms of proximity to
ground-truth observations. An accurate classifier learns from histori-
cal records, generalizing observed statistical patterns to unseen data.
However, if these patterns involve many discriminatory records, the
classifier will adopt this biased behaviour. Achieving fair training of-
ten requires learning an alternative representation of data, generated
via pre-processing techniques to remove biases [22, 9, 19, 34]. This
alternative representation does not perfectly mirror reality. Conse-
quently, this distributional drift will inevitably degrade the utility of
a classifier trained on this alternative fair representation.

In this work, we study the tension between accuracy and fairness
from a different perspective. Rather than opting for a trade-off be-
tween training a classifier with prevailing accuracy or fairness, we
design a dual-objective classifier able to learn both representations
(i.e., accurate and fair). It provides an accurate classification associ-
ated with the unfairness risk of each prediction it delivers.

Contributions – The contribution of this paper is threefold:

• We introduce FairCognizer, a novel training framework that
makes a model learn a dual label (Ybin,Yfair); where Ybin is the
default class label, and Yfair is the fair class label. Yfair is obtained
from a partial de-correlation of Ybin from the sensitive attribute S.

• We introduce a novel sample-level unfairness risk measure, char-
acterizing a Vulnerable-Subset of records that are highly subject to
unfair classifiers. Additionally, we train discriminator classifiers to
identify this subset, showing that vulnerable records have distinct
statistical patterns, enabling them to be accurately classified.

• We conduct experiments on the Adult-Census-Income and the
Compas-recidivism-risk datasets (denoted as Adult and Compas,
respectively) that displayed the ability to maintain an optimal ac-
curacy (86% and 68% respectively) while delivering reliable fair-
ness insights, at the expense of increasing the size of the model by

1 https://artificialintelligenceact.eu



45%.

Paper organization – Section 2 introduces multi-output learning
and defines data and classifier (un)fairness. Section 3 reviews the
related work and Section 4 describes the proposed dual-label learn-
ing framework and presents the main predictive performance met-
rics. Section 5 introduces a novel sample-level fairness definition. It
also extends the proposed framework to identify a subgroup of data
records highly vulnerable to unfairness and propose another dual-
prediction classifier with optimal accuracy, and a predictive fairness-
risk assessment, before concluding in Section 6.

2 Background

In this section, we discuss supervised learning components. Then,
we introduce the concept of group fairness in ML and its metrics.

2.1 Supervised Learning

Supervised learning is a fundamental paradigm in machine learn-
ing where the algorithm learns from a labeled dataset. The latter
consists of paired inputs (features or attributes) and correspond-
ing outputs (labels). By analyzing this dataset, the algorithm learns
a mapping function that can generalize to unseen data. In a typ-
ical supervised learning scenario, we have a collection of tuples
D = {(x1, y1), . . . , (xn, yn)} where xi represents the input fea-
ture and yi denotes the output label. The goal is to learn a hypothesis
function h, such that h(xi) is as close as possible to yi for all xi ∈ D.

Supervised learning is expressed as an optimization problem,
seeking to minimize a loss (or cost) function that quantifies the dis-
crepancy between the prediction and the actual label. The hypothesis
function is parameterized, and the learning process involves iterative
adjustment of these parameters θ to minimize the loss:

2.2 Multi-output learning

Unlike traditional single-label classification, multi-output
classification predicts multiple outputs simultaneously
from the same input features. The learning process re-
quires data samples to be labeled accordingly. That is,
D = {(x1, y

(1)
1 , . . . , y

(k)
1 ), . . . , (xn, y

(1)
n , . . . , y

(k)
n )} and the

optimization is performed on the loss of every output and the
corresponding label, as such, at each learning iteration t :

Lj(θ) =
1

|B|
∑
xi∈B

L(xi, y
(j)
i , θt) ∀j ∈ {1, · · · , k}

and θt+1 = argminθ L(θ) =
1

k

k∑
j=1

Lj(θ
t)

For convex loss functions, a common approach for optimization is
to use Stochastic Gradient Descent (SGD). This iterative algorithm
processes data in batches (B ⊂ D) and updates the model parameters
(θ) through gradient descent. The learning rate (η) controls the step
size of these updates, guiding the parameters towards a minimum of
the loss function, such that:

gt = ∇L(θt) (Gradients computation)

θt+1 = θt − ηgt (Parameters update)

2.3 Fairness in Machine Learning

Group fairness investigates the behaviour of an algorithm with re-
spect to inputs belonging to different populations, defined by a sen-
sitive attribute S that can lead to discrimination, e.g., race or gender.
It refers to the statistical independence of the model’s prediction Ŷ
from the sensitive attribute S.

Removing the sensitive attribute from the training data does not
efficiently solve the problem, since indirect discrimination can still
occur due to other attributes that act as statistical proxies for the
sensitive attribute [4, 7]. These proxies can reproduce the same dis-
criminatory behaviour as the sensitive attribute. For example, the zip
code (a non-sensitive attribute) is highly correlated with ethnicity
(a sensitive attribute) in the USA [7]. Meanwhile, removing all at-
tributes that are correlated to the sensitive one will result in a signifi-
cant degradation in the model’s utility. In addition, artificially remov-
ing statistical correlations between sensitive and non-sensitive at-
tributes is challenging, and often results in a fairness-accuracy trade-
off [24, 31, 11]. Finally, a noteworthy cause is the unbalance of train-
ing datasets w.r.t. underrepresented groups that may lead to poor per-
formance of the model over inputs belonging to these minorities.

In the following, we present main fairness metrics at both data and
classifier levels, with respect to a sensitive attribute S2.

2.3.1 Data unfairness

We review the main metrics [?] for evaluating the discrimination in a
dataset when considering the joint distribution (X ,S,Y), such that
X is the set of non-sensitive attributes, and Y is the class label.

• Disparate Treatment refers to the distribution P (Y|S), and
therefore expresses the statistical correlations between the sensi-
tive attribute S and the label Y within a dataset. It is often mea-
sured as the ratio between the proportion of positively labeled el-
ements from group S = s0 and group S = s1:

DT (D,S) = P (Y = 1|S = s0)

P (Y = 1|S = s1)
.

Therefore, if S ⊥ Y than DT (D,S) = 1.
• Disparate Impact extends the source of discrimination to non-

sensitive attributes X , considering them as statistical proxies to
the sensitive ones. Hence, it models the distribution P (S|X ). A
common measure of disparate impact is quantified from the Bal-
anced Error Rate (BER) [14] of the best performing adversarial
classifier f̄ : X → S that infers the attribute S given X , as:

BER(f̄ ,S) = P (f̄(X ) = 1|S = s0) + P (f̄(X ) = 0|S = s1)

2
.

A low BER(f̄ ,S) indicates a high correlation between S and X ,
and therefore, high disparate impact in D.

2.3.2 Classifier unfairness

In this section, we review the main group fairness metrics for evalu-
ating the impact of data unfairness on a classifier’s behaviour.

• Statistical Parity Difference (SPD) [9] evaluates the proportion
of positive outcomes across different groups identified by a sensi-
tive attribute. For example, if males and females have equal quali-
fications for a job, the proportion of males and females being hired

2 Without loss of generality, we consider that S is a binary attribute with
values {s0, s1}.



should be roughly the same, i.e.,: P (Ŷ = 1|S = s0) = P (Ŷ =
1|S = s1). In this case, SPD will be equal to 0 as it satisfies:

SPD = |P (Ŷ = 1|S = s0)− P (Ŷ = 1|S = s1)|

However, SPD does not take into account the model’s accuracy. In
particular, a dummy model that systematically outputs 1 (h(x) =
1, ∀x) would perfectly satisfy the statistical parity evaluation.

• Equal Opportunity Difference (EOD) [18] quantifies the dispar-
ity in true positive rates between groups identified by a sensitive
attribute. It compares the odds of receiving a positive outcome for
individuals from different groups.

EOD = |P (Ŷ = 1|S = s0, Y = 1)−P (Ŷ = 1|S = s1,Y = 1)|

Other metrics focus on equalizing a model’s misperformances across
different groups. Hence, measuring disparities in false prediction
rates between privileged and protected groups, such as false positive
disparity FPD and the false negative one FND.

3 Related work
3.1 Fairness-aware Machine Learning

Three main approaches can be applied to improve group fairness:

Pre-processing These techniques identify and remove bias within
a collection of data records before training the models. Kariman and
Calders [22] propose two pre-processing strategies: (1) Massaging
the dataset changes the labels of a subset of data records to remove
the bias, and (2) Reweighing assigns weights to data records accord-
ing to their level of fairness with respect to a sensitive attribute. He et
al. [19] remove Pearson’s correlations between every non-sensitive
attribute and the set of sensitive ones (disparate impact) by inter-
preting independence as orthogonality in a vector space of attributes.
Maggio et al. [25] propose a framework that bridges the gap between
the statistical and geometric perspectives on data fairness. They vi-
sualize how the distributions of a sensitive feature and the model’s
predictions are related across different groups. Xu et al. [34] use a
Generative Adversarial Network (GAN) to train a generator network
under two constraints: imitate the true data distribution and remove
bias with respect to a sensitive attribute.

In processing Kariman and Calders [22] introduce a sampling ap-
proach to make every batch of data that is fed to the classifier in the
feedforward phase of the learning (almost) bias-free. Several works
[6, 36, 23, 1, 2] add a fairness-related term F(θ,B) to the loss func-
tion L(θ,B) to minimize. Beutel et al. [6] define the term F(θ, ·)
as a measure of correlation (mutual information) between the pre-
dictions of the model and the sensitive attributes of the data batch
B. Zafar et al. [36] express the unfairness as an additional optimiza-
tion constraint: minimize L(θ,B) such that : Ω(θ,B) < 0 where
Ω(θ,B) < 0 is a fairness-related constraint, ideally expressed as a
convex function to maintain the efficiency of the learning process.

Post-processing Works on achieving group fairness after training
a classifier aimed at modifying the decision boundaries for differ-
ent subgroups [5]. For instance, statistical parity between black and
white defendants in the Compas dataset can be achieved by carefully
lowering the decision threshold of the classifier for black defendants
when compared with the threshold for white defendants.

3.2 Accuracy vs fairness trade-off

The impact of fairness-aware training on the predictive performances
of a classifier has been widely studied. Most existing research [22,
24, 15, 34, 31] views the trade-off between accuracy and fairness as
an unavoidable challenge. However, Wick et al. [33] argue that under
specific conditions, achieving both high accuracy and fairness might
be possible. Kamiran and Calders [22] present a theoretical analysis
of this trade-off when learning a fairness-constrained classifier. They
establish a linear deterioration of accuracy as fairness improves with
pre-processing techniques. Meanwhile, Liu et al. [24] handle fairness
by formulating it as a multi-objective optimization problem such that
the corresponding Pareto fronts express the accuracy-fairness trade-
offs. Fish et al. [15] propose a generic method called shifted decision
boundary. This method leverages confidence-based predictions from
machine learning models to improve the fairness-accuracy trade-off.
It achieves this by strategically adjusting the decision boundary for
different groups within the data. Wang et al. [31] introduce several
fairness measures that capture the multi-task fairness-accuracy trade-
offs, and insights on group fairness in multi-task learning settings.
In conclusion, most of the proposed solutions show that prioritizing
fairness will decrease the model’s accuracy.

3.3 Delivering fairness insights along with prediction

Several recent works, including those in individual fairness [35, 16]
and explainable machine learning (XAI) [21, 3] have explored the
concept of combining fairness information with optimal accuracy
predictions. In the context of individual fairness, this concept is of-
ten framed as the maximum distance between an input sample x∗

and other samples that a classifier f predicts consistently, such that:

max
ϵ

∀x : d(x∗, x) ≤ ϵ and f(x) = f(x∗)

For instance, Yadav et al. [35] introduce the concept of a fairness
certificate per input. This certificate leverages a distance metric (d)
on the most important features of the prediction task. In explainabil-
ity, measuring fairness often involves the measure of features’ impact
on the prediction. For example, Jain et al. [21] compute Shapley val-
ues of the sensitive attributes to assess fairness3.

Maughan et al. [26] define the prediction-sensitivity measure as
the influence of the sensitive attribute on the prediction, and use it
to evaluate per-input group-fairness risks. This information is not di-
rectly learned from the classifier itself. It is rather computed post-
prediction by differentiating the classifier’s outputs with respect to
the values of the sensitive attributes for a given input x, hence defin-
ing a gradients’ vector whose norm is proportional to the unfairness
level of the classifier at a given input.

In this work, the main challenge is to develop classifiers that are
aware of their inherent fairness risk for each input. This risk requires
a clear definition and incorporation into the training data while en-
suring that classifiers will still learn properly.

4 Towards a dual label fair learning
In this section, we describe our proposed framework for dual-output
learning. We assume that we have a single binary sensitive attribute
S ∈ {s0, s1} and a set of non-sensitive attributes denoted X (as
presented in Figure 1).

3 Shapley values explain the influence of each feature on the prediction, in-
cluding those that are sensitive.
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Figure 1: Correlation properties of the generated fairness class labels.

We consider a first binary classification task with Y = Ybin ∈
{0, 1}. Ybin corresponds to the default classification task of the
trained model. Then, we propose to extract a second fairness class
label Yfair, that represents a fair-aware assignation of outcomes with
respect to groups S = s0 or S = s1.

4.1 Generating Yfair

We formulate the problem of finding fair-aware class labels, as find-
ing an optimal vector Yfair that maximizes the correlation with the
default labels Ybin, and minimizes the correlation with the sensitive
attribute vector S (as presented in Figure 1).

We select the Pearson correlation coefficient for generating Yfair

because it captures the linear relationship between variables. Sta-
tistically independent variables have a Pearson correlation of zero,
allowing us to model the influence of S on Ybin without incorporat-
ing an inherent correlation. Additionally, the linearity property of the
Pearson correlation coefficient makes it well-suited for optimization
tasks [20]. We recall that Pearson’s correlation satisfies:

Corr(X,Y ) =
Cov(X,Y )

σXσY

Where Cov(X,Y ) is the covariance of X and Y , and σX , σY are re-
spectively standard deviations of X and Y . Correlation values range
from -1 to 1. A correlation of both 1 and -1 indicates a determinis-
tic functional relationship between the two variables Y = f(X). A
positive correlation indicates that X and Y follow the same variation
(increasing f , when the correlation is equal to 1). Conversely, a nega-
tive correlation indicates opposite variations of X and Y (decreasing
f when the correlation is equal to -1).

We leverage the transitive property of Pearson’s correlation4. Since
Ybin reflects the non-sensitive labels (X ), maximizing its correlation
with the fair prediction (Yfair) helps maintain the relationship be-
tween Yfair and X . This leads to a high-performing classifier trained
on data containing sensitive attributes (S), non-sensitive attributes
(X ), and fair predictions (Yfair). Importantly, minimizing the corre-
lation between Yfair and the sensitive attribute (S ) reduces bias in
the fair predictions. This results in data with less disparate treatment
based on the sensitive attribute compared to the original data. These
requirements are expressed using the function Fλ defined as:

Fλ(Yfair) = dim(Ybin) | Corr(Yfair,S) | +
λ

| Corr(Yfair,Ybin) |
(1)

Where λ is a trade-off parameter that reflects the relation between
both terms of Equation 1. Figures 2a and 2b show Fλ with λ =
150 and λ = 300, respectively. These two values of lambda induce
different variations of the function. For example, a variation in the
x-axis (i.e., in the correlation of S and Yfair) has a larger impact on
Fλ when λ = 300.

4 Ybin acts as a statistical proxy of the non-sensitive labels X .

(a) λ = 150 (b) λ = 300

Figure 2: Impact of λ on Fλ as a function of | Corr(Ybin,Yfair) |, and
| Corr(S,Yfair) | with λ ∈ {150, 300}

We deduce from the previous observation that higher values of λ
result in highly fair-aware class label Yfair. But, they sacrifice the ac-
curacy of the induced classifier (trained on the (X ,S,Yfair) records)
due to the loss of useful correlations. Conversely, lower values of
λ prioritize the first term and, therefore, produce a highly accurate
classifier with slightly improved fairness.

4.2 Optimization strategy

The Fλ function can be categorized as a pseudo-Boolean function
according to the PBO definition. A pseudo-Boolean function f is a
function that maps a set of binary variables (0 or 1) to real numbers
such as f : {0, 1}n → R. Several approaches to solving non-linear
PBO problems are investigated, including the use of constrained in-
teger programming methods. These methods aim to minimize an ob-
jective function subject to constraints on the function variables.

In our case, we introduce hard constraints5 to limit the search
space to the binary space of dimension |D|. We use the Constraint
Optimization BY Linear Approximation (COBYLA) solver [28]
which is particularly suited for non-linear cost functions with hard
constraints. Since this solver does not handle equality constraints,
we define the constraints of the boolean solution as two inequality
constraints satisfying:

minimize : Fλ(Yfair)

subject to : Yfair[i] ≥ 1− ϵ or Yfair[i] ≤ ϵ (∀i ∈ [dim(Yfair)])

where ϵ = 10−5 characterizes the constraints on solutions within
narrow intervals around the values of 0 or 1. Finally, the solver is run
with a maximum of 10k iterations with Ybin given as the initial guess.

4.3 Learning the dual label

Once the fair class label Yfair are generated, the learning objective
becomes the mapping: X ,S → (Ybin,Yfair). Indeed, the classifier
makes two predictions for each data point (x):

• ŷbin: this prediction focuses solely on accurately matching the de-
fault label for the given input (x).

• ŷfair: this prediction represents a fairer and more ethical statistical
outcome with respect to the sensitive attribute (S).

This essentially converts the original binary classification task into a
multi-output classification. Figure 3 depicts a neural network archi-
tecture based on our proposed framework for dual labeling. Applied
to the Adultdataset, the figure illustrates how the network achieves

5 Hard constraints must be satisfied by all variables, while soft constraints
only impose penalties on variables that fail to meet them.
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Figure 3: FairCognizer architecture for Adult.

this task with two separate branches. Ideally, both predictions, ŷbin

and ŷfair, would be the same. However, in cases where these predic-
tions differ, the classifier identifies these discrepancies and acts as
a per-prediction unfairness alert system, prompting further human
evaluation of the specific data point.

4.4 FairCognizer implementation

To evaluate the performance of our framework, we conduct various
experiments on two datasets: Adult (25k samples) and Compas (5k
samples). For our analysis, we focus on the binary groups male and
female within these datasets.

4.4.1 Training analysis

First, we compute the Yfair vector using the COBYLA solver im-
plementation of the SciPy package [30]. We generate Yfair for our
training subsets, i.e., 3

4
of both datasets, for the binary groups.

Second, for validation, we train a three-layer classifier on the
records (X ,S,Yfair) for 10 values of λ, and compare their predic-
tive capabilities and fairness metrics (EOD and SPD) with a base-
line classifier trained on the original data. Figure 4 depicts the ob-
tained results. It shows greater fairness improvement using Yfair on
the Adult dataset compared to Compas. Indeed, our method mainly
removes the disparate treatment (direct discrimination), but does not
act on the disparate impact (indirect correlation) contained in the
dataset. The predominant source of unfairness in the Adult dataset
is disparate treatment, whereas in Compas, the primary origin of un-
fairness is disparate impact6.

Finally, we train larger FairCognizer classifiers (from
2500 to nearly 3800 trainable parameters) on data-records
(X ,S, (Ybin,Yfair)). We measure their predictive performances
and fairness with respect to the initial labels, the fair ones, and the
dual-label. Table 1 presents the obtained results on both outputs of
the FairCognizer classifier. We note from Table 1 that FairCognizer
achieves optimal accuracy for the default class label. This means
it prioritizes fairness for the second prediction, ŷfair , without
compromising accuracy on the original prediction.

4.4.2 Classification interpretation

The four possible predictions made by the dual-label classifier on
test data are examined, especially data-records for which the clas-
sifier’s prediction is (1, 0) or (0, 1) (ŷbin ̸= ŷfair). We measure the
prediction inconsistency rate (PIR). That is, we compute the proba-
bility: P (⌈h(x)⌋ ̸= ⌈h(xS)⌋), where h is a classifier trained on the

6 For reference, the BER in Adult for gender as the sensitive attribute S is
0.183, compared to 0.087 in Compas.
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Figure 4: Accuracy and fairness measures of classifiers trained on
(X ,S) → Yfair, with Yfair generated using different values of λ.
Dashed lines represent the baseline measures (color-wise) of a clas-
sifier trained on the original dataset.

Table 1: Dual-output model predictive performances with respect to
Ybin, Yfair and the dual label (Ybin,Yfair), and fairness. Yfair is ob-
tained with λ = 250. Dual-label metrics are average-weighted by
the number of true instances in each class.

Measures Label
Ybin Yfair (Ybin,Yfair)

A
d
u
lt

Acc 0.8543 0.8258 0.9100
Precision 0.7308 0.7660 0.8211

Recall 0.6790 0.6331 0.8182
f1-score 0.7039 0.6932 0.8196

SPD 0.1624 0.1146 –
EOD 0.0599 0.0230 –

C
o
m
p
a
s Acc 0.6898 0.6749 0.8388

Precision 0.6768 0.6823 0.6795
Recall 0.6098 0.5896 0.6723

f1-score 0.6415 0.6326 0.6758
SPD 0.1830 0.1150 –
EOD 0.1510 0.0879 –

samples (X ,S → Ybin) and xS is the sample x where the binary
value of S is flipped. We observe that for the subset of data-records
with dual predictions ŷbin ̸= ŷfair, the prediction inconsistency rate is
significantly higher compared to data-records for which ŷbin = ŷfair.

Table 2 shows that the dual-label model can identify unfair pre-
dictions, even if they are accurate. These predictions occur for data
points similar to the ones from the opposite sensitive group (S), but
with different labels. By similar, we refer to close data-records with
respect to non-sensitive attributes X . Indeed, flipping the sensitive



Table 2: Prediction inconsistency rates across 1000 sampled data-
records for which the fair prediction equals the accurate one, and
on records for which the fair prediction is different from the accurate
one.

(ŷbin ̸= ŷfair) (ŷbin = ŷfair)
Adult PIR 58.3% 4.1%

Compas PIR 64.7% 19.0%

attribute value for such a point is likely to flip the model prediction
(as indicated by the high PIR values on these points). We conclude
that there is a subset of data-records with significantly higher vulner-
ability to classification unfairness.

5 Identifying vulnerable data-records to unfair
classifiers

In this section, we introduce a method to define a subset of data-
records as highly vulnerable to group-unfair classifiers identified
with the label (Yv). Here, our learning objective is the mapping:
X ,S → (Ybin,Yv). So, we specify a classifier to both deliver an
optimally accurate prediction and to recognize if the data-record is
within its vulnerability region.

Definition 5.1 (Classifier-centric unfairness vulnerability) A
data-record x is said to be vulnerable to group-unfairness of
classifier h, and for binary sensitive attribute S when:

⌈h(x)⌋ ̸= ⌈h(xS)⌋ (2)

Definition 5.2 (Data-record vulnerability) The measure of the vul-
nerability of a data-record x to group-unfairness with respect to a
binary sensitive attribute S relatively to a dataset D is:

VD(x) = P (⌈h(x)⌋ ≠ ⌈h(xS)⌋) (3)

where the probability is taken over the set of classifiers h trained on
D without fairness considerations w.r.t. the sensitive attribute S.

Intuitively, the vulnerable data points are those where the sensitive
attribute strongly influences the classification. Indeed, these points
would likely be classified differently if their sensitive attribute value
S (i.e., prediction on xS ) belonged to the other group. This unfair-
ness risk measure considers their statistical environment. That is, the
overall group unfairness (disparate impact and treatment) within the
collection of data-records. This measure allows to define a subset of
data-records within a dataset D, for which the value of the sensitive
attribute is very likely to determine their classification by a large pro-
portion of classifiers trained on D without fairness considerations,
therefore capturing all existing biases.

To take into consideration the diversity of the learning process and
its stochastic nature, we introduce as a parameter, the proportion of
classifiers trained on D for which the samples are vulnerable, which
provides a sample-level unfairness risk relative to dataset D. How-
ever, the training process is usually numerically stable 7. That is, con-
verging classifiers result in very closely behaving classifiers in terms
of predictions. Therefore, the value VD(x) lies either in a small in-
terval near 1 or in a small interval near 0. Therefore, VD(x) can be
considered as a binary value (vulnerable or not vulnerable).

7 Using regularization methods (for inputs and parameters), choosing a nu-
merically stable loss function, learning-rate scheduling, and other methods
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Figure 5: Identification and labeling of data-records in D as vulnera-
ble or non-vulnerable to group-unfairness with respect to S.

5.1 Vulnerability Labeling

In order to identify the subset of highly vulnerable data-records
within D, we train k "discriminator" classifiers {D1, . . . , Dk}
with diverse architectures, suitable for the learning task, and data
type, on the prediction task X ,S → Y . The purpose of these
classifiers is to form subsets of data-records VDi = {x ∈
D such that Di(x) ̸= Di(x

S)} associated to discriminator Di. Af-
terwards, VD =

⋂
i∈[k] VDi is identified as the set of highly vulner-

able data-records.

5.2 Experiments

5.2.1 Vulnerability identification

To identify the subset of vulnerable data-records for sensitive at-
tribute S = {Male,Female} in both datasets, we follow the process
depicted in figure 5 by training 10 classifiers with diverse architec-
tures: 4 neural networks, with 3, 4, and 5, layers, 3 decision trees
with different depths, and 3 SVMs. The first batch of experiments
involves the observation, and analysis of the distribution of the vul-
nerable subsets in both datasets. Subsets of 2351 and 670 samples
were identified in Adult and Compas datasets (7% and 9% of the
dataset respectively).

5.2.2 Vulnerable subset analysis

The first analysis of the extracted vulnerable subsets in both Adult,
and Compas datasets involved the training of a neural network clas-
sifier on these datasets, and the evaluation of its predictive perfor-
mances and fairness on a baseline test subset from D, on the vulner-
able subset VD , and on uniformly sampled non-vulnerable records.
Table 3 depicts the obtained results. We observe as well, the classi-
fier’s behaviour on these categories of samples through the distribu-
tion of the prediction unconfidence |h(x)− ⌈h(x)⌋|. Furthermore, a
substantial increase in the impact of S on the prediction is observed
for samples from VD compared to samples from D\VD measured
through Shapley values.

A significant degradation of the classifier’s performance, and fair-
ness is observed on the data-records belonging to the vulnerable sub-
set as shown in table 3. Indeed, FND and FPD are significantly higher
for samples in VD , while in D\VD , both the predictive performance
and the fairness show a notable improvement. This suggests that a
large proportion of unfair behaviour with respect to attribute S takes
place in VD . In addition, the classifier exhibits increased uncertainty
in predicting outcomes for vulnerable data records, compared to uni-
formly sampled records, as shown in Figure 6.



Table 3: Performance, fairness (FPD/FND), and Shapley values mea-
sures on the vulnerable subset VD compared to a baseline test set
from D, and the dataset without the vulnerable subset D\VD .

Measures Data
D VD D\VD

A
d
u
lt

Acc 0.8574 0.6293 0.8818
Precision 0.7528 0.6213 0.8370

Recall 0.6567 0.6110 0.6616
FPD 0.1009 0.2771 0.060s1
FND 0.1860 0.3325 0.0903

Shapley(S) 0.0233 0.0449 0.0113

C
o
m
p
a
s Acc 0.6875 0.5582 0.7006

Precision 0.6760 0.5521 0.7020
Recall 0.6016 0.8171 0.5770
FPD 0.2259 0.3512 0.1311
FND 0.2277 0.3352 0.1459

Shapley(S) 0.0591 0.0981 0.0345

(a) Adult

(b) Compas

Figure 6: Prediction unconfidence density on vulnerable, and uni-
formly sampled records

Intuition behind the distribution of vulnerable data-records.
From a geometric perspective, a classifier that delivers binary predic-
tions, can be seen as a decision boundary in the data space. Equiv-
alently, an n − 1 dimensional subspace (hyper-plane) that partitions
the n-dimensional space 8 (the data space). Data records significantly
close, from both sides to the decision boundary are the most vulner-
able to group unfairness. In the Adultdataset containing discrimi-
nation toward female individuals, a female with an excellent record
(e.g. very high education level and capital gain) is very unlikely to
be discriminated negatively by an unfair classifier (h(x) = h(xS)).
Conversely, a male with a poor record is also very unlikely to be
positively discriminated. Most of the discriminating behaviour of a
classifier occurs near the decision boundary. Hence, every classifier
defines a vulnerability region. Classifiers trained with fairness con-
siderations are associated with smaller vulnerability regions com-
pared to those trained without any fairness consideration. The distri-
bution of vulnerable data-records can therefore be seen as the subset
of strongly average records with respect to important attributes (ed-
ucation level in Adult, number of priors in Compas). The closeness

8 Conceptually, this vision corresponds to Support Vector Machines (SVMs),
but the geometric perspective applies to other model architectures.

to the average that defines the vulnerability region might represent a
group fairness metric of the associated classifier.

5.2.3 Learning the vulnerability

The subset VD is a "blind spot" in terms of fairness for classifiers
trained on D without fairness consideration. Indeed, as shown in pre-
vious experiments, a large proportion of the unfair behaviour of a
classifier (FPD/FND) mainly affects records from this subset. How-
ever, since records in VD exhibit statistical patterns that make them
highly distinguishable from other samples, it becomes possible to
train a classifier that accurately recognizes data-records as vulnera-
ble or not to his own potential unfairness with respect to attribute S.
Hence, we follows the same methodology as in 4, and train a dual-
label classifier on the mapping X ,S → (Ybin,Yv). Table 4 depicts
the obtained predictive performances.

Table 4: Dual-label models predictive performances with respect
to Ybin, Yv . and the dual label (Ybin,Yv). Dual-label metrics are
average-weighted by number of true instances in each class.

Measures Label
Ybin Yv (Yfair,Yv)

A
d
u
lt

Acc 0.8643 0.9714 0.8796
Precision 0.7308 0.8855 0.8187

Recall 0.6828 0.8000 0.8393
f1-score 0.7059 0.8406 0.8289

C
o
m
p
a
s Acc 0.6898 0.9781 0.6727

Precision 0.6768 0.9751 0.7600
Recall 0.6098 0.8949 0.7727

f1-score 0.6415 0.9333 0.7663

Table 4 shows a highly accurate prediction of vulnerability in
both datasets, emphasizing the high statistical distinguishability of
these data-records from their closeness to the decision boundary. It
also shows that predictive performances on the original tasks remain
largely intact in dual-label learning, with an accuracy loss of less than
1% compared to optimal levels. Positive second predictions (vulner-
ability) made by this classifier contain the valuable information that
the input data-record is within the fairness-blind-spot of this classi-
fier, and therefore, the provided prediction should be carefully scru-
tinized from a fairness viewpoint.

6 Conclusion
In this work, we explore a novel paradigm of fairness-aware learn-
ing that can be succinctly described as follows: If a classifier can-
not simultaneously achieve optimal accuracy and group fairness, it
can still provide valuable per-prediction insights about fairness risks.
We provide two different hybrid pre-processing and in-processing
approaches to implement this paradigm. Our study introduces a nu-
anced analysis of unfairness that encompasses both the classifier and
the individual data records. Specifically, individuals exhibit varying
degrees of vulnerability to the group-unfairness of a classifier. This
nuanced perspective enables a targeted approach for enhancing fair-
ness by directing efforts towards the most susceptible subset of data
records affected by classifier unfairness. Our main research perspec-
tives consist of investigating potential privacy risks of FairCognizer,
since improving fairness must not harm other aspects of trustwor-
thy machine learning. Indeed, learning extra features from a collec-
tion of data-records might result in further leakage, either from the
FairCognizer internal weights (white-box leakage), or its dual pre-
dictions (black-box leakage).
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