Mono and biallelic variants in HCN2 cause severe neurodevelopmental disorders - Archive ouverte HAL
Article Dans Une Revue medRxiv : the preprint server for health sciences Année : 2024

Mono and biallelic variants in HCN2 cause severe neurodevelopmental disorders

Clara Houdayer
  • Fonction : Auteur
a Marie Phillips
Reza Maroofian
Henry Houlden
Kay Richards
Nebal Waill Saadi
Eliška Dad’ová
  • Fonction : Auteur
Boris Keren
Perrine Charles
Thomas Smol
Anne O’donnell-Luria
Allan Bayat
Kern Olofsson
  • Fonction : Auteur
Rami Abou Jamra
Steffen Syrbe
Majed Dasouki
Laurie Seaver
Jennifer Sullivan
Vandana Shashi
Fowzan Alkuraya
Alexis Poss
J Edward Spence
  • Fonction : Auteur
Rhonda Schnur
Ian Forster
Chaseley Mckenzie
Cas Simons
Min Wang
  • Fonction : Auteur
Penny Snell
Kavitha Kothur
Michael Buckley
  • Fonction : Auteur
Tony Roscioli
  • Fonction : Auteur
Noha Elserafy
Benjamin Dauriat
  • Fonction : Auteur
Vincent Procaccio
  • Fonction : Auteur
Daniel Henrion
Estelle Colin
Nienke Verbeek
  • Fonction : Auteur
Koen van Gassen
  • Fonction : Auteur
Claire Legendre
Dominique Bonneau
  • Fonction : Auteur
Christopher Reid
Katherine Howell
  • Fonction : Auteur
Alban Ziegler
  • Fonction : Auteur
Christian Legros

Résumé

Abstract Hyperpolarization activated Cyclic Nucleotide (HCN) gated channels are crucial for various neurophysiological functions, including learning and sensory functions, and their dysfunction are responsible for brain disorders, such as epilepsy. To date, HCN2 variants have only been associated with mild epilepsy and recently, one monoallelic missense variant has been linked to developmental and epileptic encephalopathy. Here, we expand the phenotypic spectrum of HCN2- related disorders by describing twenty-one additional individuals from fifteen unrelated families carrying HCN2 variants. Seventeen individuals had developmental delay/intellectual disability (DD/ID), two had borderline DD/ID, and one had borderline DD. Ten individuals had epilepsy with DD/ID, with median age of onset of 10 months, and one had epilepsy with normal development. Molecular diagnosis identified thirteen different pathogenic HCN2 variants, including eleven missense variants affecting highly conserved amino acids, one frameshift variant, and one in-frame deletion. Seven variants were monoallelic of which five occurred de novo, one was not maternally inherited, one was inherited from a father with mild learning disabilities, and one was of unknown inheritance. The remaining six variants were biallelic, with four homozygous and two compound heterozygous variants. Functional studies using two-electrode voltage-clamp recordings in Xenopus laevis oocytes were performed on three monoallelic variants, p.(Arg324His), p.(Ala363Val), and p.(Met374Leu), and three biallelic variants, p.(Leu377His), p.(Pro493Leu) and p.(Gly587Asp). The p.(Arg324His) variant induced a strong increase of HCN2 conductance, while p.(Ala363Val) and p.(Met374Leu) displayed dominant negative effects, leading to a partial loss of HCN2 channel function. By confocal imaging, we found that the p.(Leu377His), p.(Pro493Leu) and p.(Gly587Asp) pathogenic variants impaired membrane trafficking, resulting in a complete loss of HCN2 elicited currents in Xenopus oocytes. Structural 3D-analysis in depolarized and hyperpolarized states of HCN2 channels, revealed that the pathogenic variants p.(His205Gln), p.(Ser409Leu), p.(Arg324Cys), p.(Asn369Ser) and p.(Gly460Asp) modify molecular interactions altering HCN2 function. Taken together, our data broadens the clinical spectrum associated with HCN2 variants, and disclose that HCN2 is involved in developmental encephalopathy with or without epilepsy.

Dates et versions

hal-04745254 , version 1 (20-10-2024)

Identifiants

Citer

Clara Houdayer, a Marie Phillips, Marie Chabbert, Jennifer Bourreau, Reza Maroofian, et al.. Mono and biallelic variants in HCN2 cause severe neurodevelopmental disorders. medRxiv : the preprint server for health sciences, 2024, ⟨10.1101/2024.03.19.24303984⟩. ⟨hal-04745254⟩
37 Consultations
0 Téléchargements

Altmetric

Partager

More