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Adjacency Labeling Schemes for Small Classes

Édouard Bonnet∗ Julien Duron† John Sylvester‡ Viktor Zamaraev§

Abstract

A graph class admits an implicit representation1 if, for every positive integer n, its n-vertex
graphs have a b(n)-bit (adjacency) labeling scheme with b(n) = O(log n), i.e., their vertices
can be labeled by binary strings of length b(n) such that the presence of an edge between any
pair of vertices u, v can be deduced solely from the labels of u and v. The famous Implicit
Graph Conjecture posited that every hereditary (i.e., closed under taking induced subgraphs)
factorial (i.e., containing 2O(n logn) n-vertex graphs) class admits an implicit representation.
The conjecture was finally refuted [Hatami and Hatami, FOCS ’22], and does not even hold
among monotone (i.e., closed under taking subgraphs) factorial classes [Bonnet et al., ICALP
’24]. However, monotone small (i.e., containing at most n!cn many n-vertex graphs for some
constant c) classes do admit implicit representations.

This motivates the Small Implicit Graph Conjecture: Every hereditary small class admits
an O(log n)-bit labeling scheme. We provide evidence supporting the Small Implicit Graph
Conjecture. First, we show that every small weakly sparse (i.e., excluding some fixed bipartite
complete graph as a subgraph) class has an implicit representation. This is a consequence
of the following fact of independent interest proven in the paper: Every weakly sparse small
class has bounded expansion (hence, in particular, bounded degeneracy). The latter generalizes
and strengthens the previous results that every monotone small class has bounded degeneracy
[Bonnet et al., ICALP ’24], and that every weakly sparse class of bounded twin-width has
bounded expansion [Bonnet et al., Combinatorial Theory ’22]. Second, we show that every
hereditary small class admits an O(log3 n)-bit labeling scheme, which provides a substantial
improvement over the best-known polynomial upper bound of n1−ε on the size of adjacency
labeling schemes for such classes. To do so, we establish that every small class has neighborhood

complexity O(n log n), also of independent interest. We then apply a classic result, due to Welzl
[SoCG ’88], on efficiently ordering the universe of a set system of low Vapnik-Chervonenkis
dimension such that every set can be described as the union of a limited number of intervals
along this order.
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§Department of Computer Science, University of Liverpool, UK, viktor.zamaraev@liverpool.ac.uk
1To simplify and lighten the abstract, we give the definition of implicit representations for factorial classes. The

reader will find the general definition in the introduction.
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1 Introduction

A class of graphs is a set of graphs which is closed under isomorphism. For a class of graphs X we
denote by Xn the set of graphs in X with vertex set [n]. Let X be a class of graphs and b : N → N

be a function. A b(n)-bit adjacency labeling scheme (or simply b(n)-bit labeling scheme) for X is
a pair (encoder, decoder) of algorithms where for any n-vertex graph G ∈ Xn the encoder assigns
binary strings, called labels, of length b(n) to the vertices of G such that the adjacency between any
pair of vertices can be inferred by the decoder only from their labels. We note that the decoder
depends on the class X , but not on the graph G. The function b(·) is the size of the labeling scheme.
Adjacency labeling schemes were introduced by Kannan, Naor, and Rudich [KNR88, KNR92], and
independently by Muller [Mul88] in the late 1980s and have been actively studied since then.

The binary word, obtained by concatenating labels of the vertices of a graph G ∈ Xn assigned
by an adjacency labeling scheme, uniquely determines graph G. Thus, a b(n)-bit labeling scheme
cannot represent more than 2nb(n) graphs on n vertices, and therefore, if X admits a b(n)-bit labeling
scheme, then |Xn| 6 2nb(n). This implies a lower bound of log |Xn|

n on the size b(n) of any adjacency
labeling scheme for X . We say that a graph class X admits an implicit representation, if it admits
an information-theoretic order optimal adjacency labeling scheme, i.e., if X has a b(n)-bit labeling
scheme, where b(n) = O(log |Xn|/n). A natural and important question is: which classes admit an
adjacency labeling scheme of a size that matches this information-theoretic lower bound?

Of particular interest is the case of adjacency labeling schemes of size O(log n). This is because,
under the natural assumption that vertices get assigned pairwise distinct labels, ⌈log n⌉ is a lower
bound on the size of any labeling scheme. Thus, understanding the expressive power of the labeling
schemes of size of order log n is a natural question.

By the above discussion adjacency labeling schemes of size O(log n) can only exist for (at most)
factorial graph classes, i.e., classes X in which the number |Xn| of n-vertex graphs grows not faster
than 2Θ(n logn). It is known that the latter condition alone is not enough to guarantee adjacency
labels of size O(log n) [Mul88]. Kannan, Naor, and Rudich [KNR88] asked if the extra restriction on
X of being hereditary, i.e., closed under taking induced subgraphs, would be enough for the existence
of O(log n)-bit adjacency labeling scheme. This question was later stated by Spinrad [Spi03] in the
form of a conjecture, reiterated by Scheinerman [GHL16, Chapter 6], that became known as the
Implicit Graph Conjecture.

(IGC ): Any hereditary factorial graph class admits an O(log n)-bit labeling scheme.

The conjecture remained open for three decades until it was recently refuted in a strong form by
Hatami and Hatami, who showed that for any δ there exists a hereditary factorial class that does
not admit an (n1/2−δ)-bit labeling scheme [HH22]. This refutation leaves wide open the question of
characterizing hereditary graph classes that admit O(log n)-bit labeling schemes and no plausible
conjectural dichotomy is currently available.

It was recently shown that IGC does not hold even in the family of monotone graph classes, the
hereditary classes which are closed under taking (not necessarily induced) subgraphs [BDS+24b].
On the positive side, it was shown in the same work that IGC holds for every monotone small class,
i.e., a monotone class X with |Xn| 6 n! · cn for some constant c > 0.

The hereditary small classes form a subfamily of hereditary factorial classes that contains many
classes of practical or theoretical importance. For instance, forests [Ott48], planar graphs [Tut62],
classes of bounded treewidth [BP69], proper minor-closes classes [NSTW06], unit interval graphs
[Han82], classes of bounded clique-width [ALR09], and more generally, classes of bounded twin-width
[BGK+22] are all small. All of these classes are known to admit order-optimal, and, sometimes, even
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asymptotically optimal adjacency labeling schemes. For example, forests admit a (log n+O(1))-bit
labeling scheme [ADK17], planar graphs admit a (1 + o(1)) log n-bit labeling scheme [DEG+21],
classes of bounded treewidth admit a (1 + o(1)) log n-bit labeling scheme [GL07], proper minor-
closed classes admit a (2 + o(1)) log n-bit labeling scheme [GL07], graphs of clique-width at most
k admit a O(k log k · log n)-bit labeling scheme [Spi03, Ban22], and graphs of twin-width at most
k admit a 22

O(k) · log n-bit labeling scheme [BGK+22]. It is known that not every hereditary (and
even monotone) small class admits an asymptotically optimal labeling scheme of size (1+o(1)) log n
[BDS+24a]. However, this does not rule out the existence of order optimal labeling schemes of size
O(log n) for all hereditary small classes. Alon [Alo23] recently showed that every hereditary class X
with |Xn| = 2o(n

2) (which include all hereditary small classes) admits an adjacency labeling scheme
of size n1−ε for some ε > 0 depending on the class. To our knowledge, no better upper bound was
established for hereditary small classes.

The importance of hereditary small classes and the existence of O(log n)-bit labeling schemes
for all monotone small classes motivated the formulation of the Small Implicit Graph Conjecture.

(Small IGC ) [BDS+24b]: Any hereditary small graph class admits an O(log n)-bit labeling scheme.

1.1 Our contribution

In this paper we provide evidence toward the Small Implicit Graph Conjecture in two independent
directions. First, we show that the Small IGC holds in the important special case of weakly sparse
graph classes. Secondly, we obtain an adjacency labeling scheme of polylogarithmic size for any
hereditary small class substantially improving upon the best-known polynomial-size upper bound
on adjacency labeling schemes for such classes.

Our first result is a consequence of a structural property of small classes of graphs. To state
this property, we need to introduce some terms. A hereditary class X is said to be weakly sparse if
there exists an integer t such that the complete bipartite graph Kt,t is not a subgraph of any graph
of X . The degeneracy of a graph G is the minimum number k such that every induced subgraph
of G contains a vertex of degree at most k. We defer a formal definition of bounded expansion until
Section 2 as it is somewhat technical. Instead, we note that bounded expansion generalizes bounded
degeneracy, thus Theorem 1.1 a fortiori holds when the former is replaced by the latter.

Theorem 1.1. Every weakly sparse small class has bounded expansion.

This structural insight into small graph classes is of independent interest due to the significance
of weakly sparse graph classes. The notion of weakly sparseness is the broadest form of sparsity. It
generalizes the properties of bounded degree, bounded degeneracy, and nowhere denseness [NO12].
By the celebrated Kővári–Sós–Turán theorem [KST54], among hereditary classes, weakly sparse
classes are precisely the classes of graphs with a truly subquadratic number of edges. It is often
observed that the extra restriction of being weakly sparse significantly simplifies the structure of
graphs possessing a particular property. For example, weakly sparse graph classes of bounded clique-
width have bounded treewidth [GW00]; weakly sparse graph classes of bounded twin-width have
bounded expansion, and thus bounded degeneracy [BGK+22] (a fact that Theorem 1.1 generalizes,
as it was proven in the same paper that every class of bounded twin-width is small); weakly sparse
string graphs have bounded degeneracy [FP14], and even polynomial expansion [DN16]; weakly
sparse graph classes that are well-quasi-ordered by the induced-subgraph relation have bounded
pathwidth [ALR19], etc.

A conjecture from 2016 [War16], driving an ongoing program in algorithmic graph theory, sug-
gests that, under some widely-believed complexity-theoretic assumption, a hereditary graph class
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admits a fixed-parameter tractable (FPT) first-order (FO) model-checking algorithm if and only if it
is monadically dependent.2 It was recently proven that every hereditary small class is monadically
dependent [DMT24] (and, in the same paper, the only if part of the conjecture was established).
Thus, if the conjecture holds, it should in particular be true that every hereditary small class ad-
mits an FPT FO model-checking algorithm. Theorem 1.1 confirms that this is indeed the case
within weakly sparse classes, as such an algorithm is known to exist for classes of bounded expan-
sion [DKT13].

Dvořák and Norine proved that if the expansion of a class is upper bounded by a sufficiently
slowly-growing subexponential function, then the class is small [DN10]. From the definition of
expansion given in the next section, it should be clear that the converse cannot hold since the
small classes consisting of all complete graphs or of all bipartite complete graphs have unbounded
expansion. A minimum requirement to establish a partial converse is thus that the class is weakly
sparse. Theorem 1.1 confirms that under this condition the expansion of any small class is indeed
bounded (albeit not necessarily by a subexponential nor a single-exponential function).

We apply Theorem 1.1 to obtain our first main result that the Small IGC holds for weakly
sparse graph classes. This follows from a classical labeling scheme for classes of bounded degeneracy
[KNR88] (see also [BDS+24b, Lemma 3.5]).

Theorem 1.2. Every weakly sparse small class admits an O(log n)-bit adjacency labeling scheme.

Our second main result holds more generally for any hereditary small class and goes some way
toward the full strength of the Small IGC.

Theorem 1.3. Every hereditary small class admits an O(log3 n)-bit adjacency labeling scheme.

This result is based on our second structural result of independent interest that hereditary small
graph classes have low neighborhood complexity.

Theorem 1.4. The neighborhood complexity of any hereditary small graph class is O(n log n).

The neighborhood complexity is a measure of structural complexity of graphs. Informally (a for-
mal definition is given in Section 2), it reflects the diversity of the set system of the vertex neigh-
borhoods in the graph. Low neighborhood complexity of graph classes implies nice structural and
algorithmic properties. For example, in the universe of monotone graph classes, linear neighborhood
complexity characterizes classes of bounded expansion [RVS19], and almost linear neighborhood
complexity characterizes nowhere dense classes [EGK+17]. Low neighborhood complexity is also
used to obtain FPT algorithms for various graph problems (see for instance [EGK+17, BKR+22]),
and was recently used as a central ingredient of an FPT algorithm for the FO model-checking
problem on monadically stable graph classes [DEM+23]. It is known that every hereditary graph
class of bounded twin-width has linear neighborhood complexity [BKR+22] (see also [BFLP24] for
improved bounds). We omit formal definitions and result statements, and refer the reader to the
respective work.

We obtain our Theorem 1.3 by combining Theorem 1.4 with some known result from the theory
of sets systems about paths with low crossing number. In a standard form the latter result is not
suitable for our need, and therefore we reformulate it and provide a self-contained proof. We believe
that the result stated in this form can be of use for other needs.

2As with the other side remarks, we do not define the technical terms in this sentence since they will not reappear.
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1.2 Organization

The paper is organized as follows. In Section 3, we prove that weakly sparse small classes have
bounded expansion (and thus bounded degeneracy); from this, we derive an O(log n)-bit adjacency
labeling scheme for such classes. In Section 4.1, we show that every hereditary small class has
neighborhood complexity O(n log n). In Section 4.2, we use this result together with a classical
result from the theory of set systems stated in a suitable form, to obtain O(log3 n)-bit labeling
schemes for all hereditary small classes. In Appendix A, we provide a self-contained proof of the
required form of the result from the theory of set systems. In the next section, we introduced
necessary notation and state auxiliary facts.

2 Preliminaries

Graphs. We denote by V (G) and E(G) the vertex set and edge set of a graph G, respectively.
When we refer to an n-vertex graph G as labeled, we mean that the vertex set of G is [n], and
we distinguish two different labeled graphs even if they are isomorphic. For a set of graphs X,
we denote by Lab(X) the set of all labeled graphs isomorphic to a graph in X. A graph H is an
induced subgraph of G (resp. subgraph of G), if it can be obtained by removing vertices of G (resp. by
removing vertices and edges of G). A subgraph H of G is spanning if V (H) = V (G). We denote
by G[S] the subgraph of G induced by S, i.e., obtained by removing every vertex of V (G) \ S.

The degree of a vertex v in G, denoted by deg(v), is the number of vertices in G adjacent
to v. The minimum (respectively, maximum) degree of G is the minimum (respectively, maximum)
degree of a vertex in G. The average degree of G is the ratio

∑

v∈V (G) deg(v)/|V (G)|. Recall that
the degeneracy of G is the minimum number k such that every induced subgraph of G contains
a vertex of degree at most k. The following are immediate consequences of these definitions: (1) if
the minimum degree of G is at least d, then the average degree of G and the degeneracy of G is at
least d; (2) if the degeneracy of G is at least d, then G contains an induced subgraph of minimum
degree at least d. One more relation between these three parameters is the following folklore result,
which is not hard to derive by iteratively removing vertices of degree less than d/2.

Observation 2.1. If the average degree of a graph G is at least d, then G contains an induced
subgraph of minimum degree, and thus average degree, at least ⌈d/2⌉.

We use G− S as a shorthand for G[V (G) \ S], and G− v, for G− {v}. We denote by Aut(G)
the automorphism group of a graph G, and we set aut(G) := |Aut(G)|. If X is a set of pairwise
non-isomorphic n-vertex graphs, then the number of labeled graphs isomorphic to a graph in X is
exactly

|Lab(X)| =
∑

G∈X

n!

aut(G)
. (1)

For any non-negative integer r, the r-subdivision of a graph G, denoted by r- subd(G), is the graph
obtained from G by adding one path Puv on r vertices for each edge uv ∈ E(G), and by replacing
each edge uv ∈ E(G) by a (r + 1)-edge path uPuvv. In the special case were r = 0, r- subd(G) is
the graph G. We will refer to a vertex from one of the paths Puv as a subdivision vertex and to
other vertices as branching vertices.

For completeness, we include a definition3 of classes of bounded expansion. A class C has bounded
expansion if there is a function f : N → R such that for every integer r > 0, no r-subdivision of
a graph of average degree larger than f(r) is a subgraph of a graph in C. We will only apply existing

3Actually, we rather give an established characterization [Dvo07] as it is more compact.

5



results on classes of bounded expansion, and we will do so in a black-box fashion. Thus the reader
should only observe that these classes are weakly sparse and of bounded average degree (by virtue
of satisfying the given property for r = 0).

Graph Classes. A class of graphs is hereditary if it is closed under taking induced subgraphs,
and it is monotone if it closed under taking subgraphs. A hereditary graph class is small if there
exists a constant c such that the number of n-vertex labeled graphs in the class is at most n! · cn for
every n ∈ N.

Graph contiguity. The contiguity of a graph G, denoted ctg(G), is the minimum integer k such
that there exists a linear order of its vertices in which the neighborhood of each vertex of G can
be partitioned into at most k disjoint intervals. For a function k : N → N and a class of graphs C,
we say that C has contiguity at most k, if for every n-vertex graph G ∈ C the contiguity of G is at
most k(n).

The idea of contiguity was introduced in the context of range searching under the name of
crossing number of spanning paths [Wel88] (see also Appendix A). Independently, it was introduced
in the context of DNA reconstruction under the name of k-consecutive ones property [GGKS95],
which generalizes the notion of consecutive ones property for matrices [BL76, FG65]. More recently,
the concept was utilized as part of an FPT algorithm for the FO model-checking problem on
monadically stable graph classes [DEM+23], and has appeared in the context of implicit graph
representations [Alo23, AAA+23, BDSZ24]. In particular, Alon used it to show that every hereditary
graph class X with |Xn| = 2o(n

2) admits a n1−ε-bit labeling scheme for some ε = ε(X ) > 0
[Alo23]. This was done via the following simple connection between contiguity and adjacency
labeling schemes.

Proposition 2.2. Let k : N → N be a function, and C be a class of graphs of contiguity at most k.
Then C admits an adjacency labeling scheme of size at most (2k(n) + 1) log n.

Proof. Let G be a n-vertex graph in C. To construct adjacency labels for G of the target size, we fix
a linear ordering σ of the vertices of G witnessing contiguity at most k(n). The label of a vertex v
of G then consists of its position in σ, followed by the positions of the endpoints of the at most k(n)
intervals describing the neighborhood of v. The decoder infers adjacency between two vertices u
and v by testing if the position of u in σ belongs to one of the intervals describing the neighborhood
of v.

Set systems, shatter functions, and neighborhood complexity. A pair (X,S), where X is
a finite set and S is a family of subsets of X is called a set system. The incidence matrix M of the
set system (X,S) is the matrix with |X| columns and |S| rows indexed by the elements of X and S,
respectively, where Mij is 1 if the i-th set of S contains the j-th element of X, and 0 otherwise.

The primal shatter function of a set system (X,S) is the function πS given by

πS(m) = max
A⊆X, |A|=m

|{Y ∩A : Y ∈ S}|.

The set system (X∗,S∗), where X∗ = S, S∗ = {Sx : x ∈ X}, and Sx = {S ∈ S : x ∈ X},
is called the dual set system of (X,S). The shatter function of (X∗,S∗) is called the dual shatter
function of (X,S). Note that if M is the incidence matrix of (X,S), then the transpose of M is
the incidence matrix of (X∗,S∗). A subset A ⊆ X is shattered by S if every subset B of A can
be obtained as the intersection B = A ∩ Y for some Y ∈ S, i.e., {Y ∩ A | Y ∈ S} = 2A. The
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Vapnik–Chervonenkis dimension (or VC dimension for short) of S is the maximum of the sizes of
all shattered subsets of X.

Given a vertex v of a graph G, we use standard notation NG(v) to denote the set {u : vu ∈ E(G)}
of neighbors of v in G. The neighborhood set system of G is the set system (V (G),NG) where

NG = {NG(v) : v ∈ V (G)}.

Observe that the adjacency matrix of G is the incidence matrix of (V (G),NG). Thus, since the
adjacency matrix of an undirected graph is symmetric, the primal and the dual shatter functions of
a neighborhood set system coincide.

Observation 2.3. For neighborhood set systems, the primal and dual shatter functions coincide.
That is, for any n-vertex graph G,

πNG
(m) = π∗

NG
(m) for all m ∈ [n].

We define the neighborhood complexity of a graph G, denoted by νG, as the primal (equivalently,
dual) shatter function of its neighborhood set system, i.e., νG(m) = πNG

(m) = π∗
NG

(m) for all
m ∈ [|V (G)|].

Given a graph class C, the neighborhood complexity of C is the function νC : N → N defined by

νC(n) := sup
G∈C, A⊆V (G), |A|=n

|{N(v) ∩A : v ∈ V (G)}| = sup
G∈C

πN (G)(n) = sup
G∈C

νG(n).

3 Implicit representation for weakly sparse small classes

In this section we prove Theorem 1.1, which states that any weakly sparse small class has bounded
expansion, and hence, in particular, bounded degeneracy. Together with the known labeling scheme
for bounded degeneracy graphs (see e.g. [BDS+24b, Lemma 3.5]), this immediately implies that
any weakly sparse small class admits an O(log n)-bit adjacency labeling scheme (Theorem 1.2).

The proof of Theorem 1.1 relies on the fact (Corollary 3.3) that for any weakly sparse class X of
unbounded expansion there exists an integer r > 1 such that X contains r-subdivisions of graphs of
arbitrarily large average degree. This is a consequence of the forward direction of a characterization
of classes of (un)bounded expansion by Dvořák [Dvo18] and a classical result due to Kühn and
Osthus [KO04], both stated below.

Theorem 3.1 ([Dvo18, Theorem 5, (a) ⇔ (c)]). A hereditary graph class X has unbounded expan-
sion if and only if there is an integer r > 0 such that for any integer d, X contains the r-subdivision
of a graph of average degree at least d.

Theorem 3.2 ([KO04, Theorem 2]). For all d, t ∈ N, there exists an integer D := D(d, t) such that
every Kt,t-free graph G of average degree at least D contains 1- subd(F ) as an induced subgraph for
some graph F of average degree at least d.

We now extract the announced fact, of which we will only need the only if direction.

Corollary 3.3. A weakly sparse graph class X is of unbounded expansion if and only if there is an
integer r > 1 such that for any integer d, X contains the r-subdivision of a graph of average degree
at least d.
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Proof. The if part follows directly from Theorem 3.1. For the only if part, we first apply the
corresponding implication in Theorem 3.1. If r > 1, we are done. If instead r = 0, then X
contains graphs of arbitrarily large average degree. Therefore, Theorem 3.2 implies that X contains
1-subdivisions of graphs of arbitrarily large average degree, i.e., the sought statement holds for
r = 1.

Equipped with this tool, the proof of Theorem 1.1 shows the contrapositive as follows. Assuming
a weakly sparse class X has unbounded expansion, we fix a positive integer r such that X contains
r-subdivisions of graphs of arbitrarily large average degree, which exists by Corollary 3.3. Let F be
a graph with large average degree such that the r-subdivision of F is in X . First, we extract from
F a subgraph H with large minimum degree that contains a bounded-degree spanning tree. This is
possible due to Observation 2.1 and the following lemma.

Lemma 3.4 ([BDS+24b, Lemma 3.3]). Let F be a graph of minimum degree d. Then F has an
induced subgraph H of minimum degree at least d with a spanning tree of maximum degree at most d.

Next, we use the properties of H to show that it contains many (not necessarily induced) subgraphs
each with a small number of automorphisms, which are translated to many induced subgraphs
with a small number of automorphisms in the r-subdivision of H and thus in the r-subdivision of
the original graph F . This allows us to lower bound the number of labeled graphs on the same
number of vertices in X by counting subgraphs of H, and finally conclude that X is not small. The
quantitative connection is made possible by the following observations.

Observation 3.5. For any integer r > 0, two graphs G and H are isomorphic if and only if
r- subd(G) and r- subd(H) are isomorphic.

Observation 3.6. Let F be a graph. For any integer r > 0, for every subgraph H of F , the graph
r- subd(H) is isomorphic to an induced subgraph of r- subd(F ).

Observation 3.7. Let G be a connected graph containing a vertex of degree at least 3, then

aut(r- subd(G)) = aut(G).

Proof. We start by showing that any automorphism ϕ of r- subd(G) maps branching vertices to
branching vertices and subdivision vertices to subdivision vertices. First, note that as G has a vertex
of degree at least 3, the graph r- subd(G) also has a vertex of degree at least 3 (hence a branching
vertex) say u, which must be mapped by ϕ to a vertex of degree at least 3 (hence, to a branching
vertex), say v. Now, since G is connected, the branching vertices are exactly the ones that are at
distances 0 (mod r+1) from u, and they are mapped to vertices that are at distances 0 (mod r+1)
from v, and thus, to branching vertices. Hence, the restriction ϕ̃ of ϕ to the branching vertices of
r- subd(G) is a permutation of the vertices of G. We claim that ϕ̃ is an automorphism of G. Indeed,
two vertices a and b are adjacent in G if and only if a and b are at distance r+1 in r- subd(G) if and
only if ϕ(a) and ϕ(b) are at distance r+1 in r- subd(G) if and only if ϕ̃(a) = ϕ(a) and ϕ̃(b) = ϕ(b)
are adjacent in G.

From this, we deduce that ϕ 7→ ϕ̃ is a bijection between the automorphisms of r- subd(G) and the
automorphisms of G: it is injective since an automorphism of r- subd(G) is uniquely determined by
the images of the branching vertices, and surjective since there are at least as many automorphisms
of r- subd(G) as there are of G. Hence, aut(r- subd(G)) = aut(G).

Before proceeding to our main result, we provide some basic facts about automorphisms, which
we will rely on. Given two graphs F and G, we denote by #Sub(F → G) the number of subgraphs
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of G isomorphic to F , and by #Emb(F → G) the number of embeddings of F into G, i.e., the
number of injective homomorphisms from F to G. Thus

#Emb(F → G) = #Sub(F → G) · aut(F ).

For instance, if G is the cycle on an even number n of vertices, and F is the disjoint union of n/2
edges, then #Sub(F → G) = 2 and aut(F ) = (n/2)! · 2n

2 , so #Emb(F → G) = (n/2)! · 2n

2
+1.

We will use the following two well known facts (see [KLT02]).

Lemma 3.8. Let F be a spanning subgraph of a graph G. Then

aut(G) 6 #Emb(F → G) = #Sub(F → G) · aut(F ).

Lemma 3.9. Let G be a connected graph of maximum degree ∆. Then

aut(G) 6 n ·∆! · (∆− 1)n−∆−1 6 n∆n.

We apply the above two facts to upper bound the number of automorphisms of a graph containing
a bounded-degree spanning tree in terms its average degree.

Lemma 3.10. Let d > 1 and G be a connected n-vertex graph with at most dn edges, which has
a spanning tree T of maximum degree τ . Then aut(G) 6 (6τd)n.

Proof. By Lemma 3.9, aut(T ) 6 nτn 6 (2τ)n. Moreover, #Sub(T → G) is at most the number of
ways of choosing n− 1 edges among E(G). Hence

#Sub(T → G) 6

(

dn

n− 1

)

6

(

edn

n− 1

)n−1

=

(

1 +
1

n− 1

)n−1

· (ed)n−1 6 e(ed)n−1 6 (ed)n,

where in the penultimate inequality we used the fact that 1 + x 6 ex for any real x. Hence, by
Lemma 3.8, we have aut(G) 6 #Sub(T → G) · aut(T ) 6 (ed)n · (2τ)n 6 (6τd)n.

We are now ready to prove the main result of this section.

Theorem 1.1. Every weakly sparse small class has bounded expansion.

Proof. For the sake of contradiction, suppose that a weakly sparse graph class X has unbounded
expansion, but there exists a constant c such that for every n ∈ N the number of labeled n-vertex
graphs in X is at most n! · cn. Let r > 1 be an integer such that X contains r-subdivisions of graphs
of arbitrary large average degree, which exists by Corollary 3.3.

Let δ := 24, d := ⌈max(δ2, δc2r)⌉. Let F be a graph of average degree at least 4d, such that
r- subd(F ) is in X , and let F ′ be a subgraph of F of minimum degree at least 2d, which exists by
Observation 2.1. By Lemma 3.4, F ′ contains a subgraph H ′ of minimum degree at least 2d with
a spanning tree T of maximum degree 2d. If H ′ has more than d|V (H ′)| edges, we remove all but
d|V (H ′)| − (|V (H ′)| − 1) of them from the set E(H ′) \ E(T ) to obtain a spanning subgraph with
exactly d|V (H ′)| edges that still contains T as a spanning tree. We denote this subgraph by H and
let k := |V (H)|, and thus |E(H)| = dk.

Let H be the set of spanning subgraphs of H that contain T as a subgraph and have exactly δk
edges. Then, since δ 6 d, we have

|H| =
(

dk − (k − 1)

δk − (k − 1)

)

>

(

dk − k

δk − k

)

>

(

d− 1

δ − 1

)(δ−1)k

>

(

d

δ

)(δ−1)k

.
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Since every graph in H has δk 6 dk edges and contains a spanning tree of maximum degree 2d,
from Lemma 3.10,

max
A∈H

aut(A) 6 (6 · 2d · d)k 6 (4d)2k . (2)

Thus, denoting by U the set of pairwise non-isomorphic graphs in H, we obtain

|U| > |H|
max
A∈H

aut(A)
>

(

d

δ

)(δ−1)k

· 1

(4d)2k
=

(

d

δ

)(δ+1)k

· δ2k

42k · d4k =

(

d

δ

)(δ+1)k

· 6
2k

d4k
(3)

Let r- subd(U) be the set of r-subdivisions of graphs in U , and observe that every graph in
r- subd(U) has exactly N := (rδ + 1)k vertices. Since every graph in U is a subgraph of F , and
r- subd(F ) is in X , Observation 3.6 implies that every graph in r- subd(U) is in X . Thus, to
contradict the assumption that, for every n ∈ N, class X has at most n! · cn labeled n-vertex graphs,
it is enough to show that |Lab(r- subd(U))| > cN ·N !. This is what we do in the remainder of the
proof.

It follows from Observation 3.5 that r- subd(U) is a set of pairwise non-isomorphic graphs and
|r- subd(U)| = |U|. Furthermore, since every graph A in H is connected and has k vertices and δk >

k+1 edges, it contains a vertex of degree at least 3 and thus, by Observation 3.7, aut(r- subd(A)) =
aut(A). Therefore, from (1), we have

|Lab(r- subd(U))| > |r- subd(U)| · N !

max
A∈H

aut(r- subd(A))
= |U| · N !

max
A∈H

aut(A)
,

and thus, from (2) and (3), and the fact that N/r = (δ + 1/r)k 6 (δ + 1)k, we obtain

|Lab(r- subd(U))| >
(

d

δ

)N/r

· 6
2k

d4k
· N !

(4d)2k
>

(

d

δ

)N/r

· N !

d6k
,

Finally, since N
4r = (rδ+1)k

4r > δk
4 = 6k, and d satisfies both

√
d > δ and (d/δ)1/r > c2, we have

|Lab(r- subd(U))| >
(

d

δ

)
N

2r

·
(

d

δ

)
N

2r

· N !

d6k
>

(

d

δ

)
N

2r

· dN

4r · N !

d6k
>

(

(

d

δ

)1/r
)

N

2

·N ! > cN ·N !,

which completes the proof.

4 Short adjacency labels for small classes

In this section we prove:

Theorem 1.3. Every hereditary small class admits an O(log3 n)-bit adjacency labeling scheme.

To do so, we first show a result of independent interest (in Section 4.1), that the neighborhood
complexity of any small class is at most O(n log n). Then, we prove in Section 4.2 that such neigh-
borhood complexity implies O(log2 n) contiguity. The latter together with Proposition 2.2 implies
Theorem 1.3. The core part of this proof strategy is to show how the bound on the neighborhood
complexity can be translated to the bound on contiguity. This is done via a classical result from
the theory of set systems of bounded Vapnik-Chervonenkis dimension on so-called paths with low
crossing number (Theorem 4.1) applied to neighborhood set systems. While the result about paths
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with low crossing number is a known fact, we need it in somewhat unusual form that we could not
find elsewhere in the literature. Therefore, in Appendix A we present a self-contained proof of this
result in a suitable form.

4.1 Neighborhood complexity of small classes

In this section we show that small classes have low neighborhood complexity.

Theorem 1.4. The neighborhood complexity of any hereditary small graph class is O(n log n).

Proof. Let C be a hereditary small class of graphs and c > 1 be a constant such that |Cn| 6 n! · cn
holds for every n ∈ N. To prove the claim, we will show that for every graph H in C it holds that

νH(m) < 9c2m log(m+ 1) for all m ∈ [|V (H)|].

Suppose this is not the case. Then, by definition, there exists a graph H ∈ C and an n-element
set A ⊆ V (H) such that |{NH(v) ∩ A : v ∈ V (H)}| > 9c2n log(n + 1). Note that the latter
inequality implies n > 4. Let B′ ⊆ V (H) be any maximum-size set of vertices whose neighborhoods
have pairwise distinct intersections with A in the graph H, and let B := B′ \ A. Denote by G the
subgraph of H induced by A ∪B. By the assumption, we have

1. |A| = n,

2. |B| > |B′| − |A| > 9c2n log(n+ 1)− n > 8c2n log n,

3. A ∩B = ∅, and

4. all vertices in B have pairwise distinct neighborhoods in A in graph G.

Let n1 := n⌊log n⌋ and N := n1+n. We will show that the hereditary closure of G contains more
than N !cN labeled graphs on N vertices, i.e., that |Lab(IndSubN (G))| > N !cN , where IndSubN (G)
is the set of N -vertex induced subgraphs of G. This would contradict our assumption on the number
of graphs in C. To do this, let us first fix a labeling of A using the integers from 1 to n. We claim that
any two distinct labeled subsets X1,X2 ⊆ B of size n1, labeled with the integers from n+ 1 to N ,
induce two distinct labeled graphs G1 = G[A ∪X1] and G2 = G[A ∪X2] contained in C. Indeed,
since all vertices in B have pairwise distinct neighborhoods in A, G1 and G2 contain a vertex with
the same label in [n + 1, N ] but different neighborhoods in A (i.e. different neighborhoods among
vertices with labels from [n]).

Hence, the number of N -vertex labeled graphs in C that are induced subgraphs of G is lower
bounded by the number of ways to choose a labeled subset of size n1 from B, which is

n1! ·
(|B|
n1

)

> n1! ·
( |B|

n1

)n1

> n1! · (8c2)n1 . (4)

We want to show that this is more than the total number of N -vertex labeled graphs in C, which,
by assumption, does not exceed

N ! · cN = (n1 + n)! · cn1+n 6 n1! · (n1 + n)n · c2n1 . (5)

From (4) and (5), we should then show that

n1! · (8c2)n1 > n1! · (n1 + n)n · c2n1 ,
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which is equivalent to establishing that

8n1 = 23n1 > (n1 + n)n = 2n log(n1+n).

The latter indeed holds since

n log(n1 + n) 6 n log(2n⌊log n⌋)
6 n log 2 + n log n+ n log⌊log n⌋
6 n(1 + log 2) + n⌊log n⌋+ n log⌊log n⌋
6 n⌊log n⌋+ n⌊log n⌋+ n log⌊log n⌋
6 n1 + n1 + n1 = 3n1,

where the penultimate inequality holds because n > 4.

4.2 From neighborhood complexity to contiguity

In this section, we first show how to translate a bound on neighborhood complexity to a bound on
contiguity (Theorem 4.3), and then apply it to obtain bounds on contiguity for hereditary small
classes (Theorem 4.4). A crucial technical tool that we use to establish this translation is a suitable
form of a known result about paths with low crossing number (Theorem 4.1). To state this result
we must first introduce the required notions.

Let (X,S) be a set system. A set S ∈ S crosses a 2-element set {x, y} ⊂ X if exactly one of
x and y belongs to S. Let F be a multiset of 2-element subsets in X. The crossing number of F
with respect to a set S ∈ S is the number of elements in F that are crossed by S. The crossing
number of F with respect to S is the maximum crossing number of F with respect to a set S ∈ S.
If (X,F), considered as a graph, is a path spanning all elements of X, then we say that (X,F) is
a path on X. In this case, the crossing number of F is referred to as the crossing number of the
corresponding path. We are now ready to state the main technical tool whose self-contained proof
can be found in Appendix A.

Theorem 4.1. Let X be an n-element set, f : R>0 → R>0 be a strictly increasing function, and d
be a natural number. Let (X,S) be a set system of VC dimension d that satisfies π∗

S(m) 6 f(m) for
all m ∈ [n]. Then there exists a path on X with crossing number at most

2 log |S|+ 10d ·
n
∑

j=1

1

f−1(j/2)
.

We will apply Theorem 4.1 to neighborhood set systems. Its importance in our context is due
to (a) the fact that the dual shatter function of the neighborhood set system of a graph coincides
with its primal dual function (Observation 2.3), i.e., the neighborhood complexity of the graph; and
(b) the following observation about close relationship between the crossing number of a path for the
neighborhood set system and the contiguity of the graph.

Observation 4.2. Let G be an n-vertex graph. If there exists a path on V (G) that has crossing
number with respect to NG at most k, then the contiguity of G is at most k/2 + 1.

Proof. Let {{v1, v2}, {v2, v3}, . . . , {vn−1, vn}} be a path on V (G) with crossing number with respect
to NG at most k. We claim that the linear ordering σ = v1, v2, . . . , vn of V (G) witnesses the target
bound on the contiguity of G.
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Let v be an arbitrary vertex in G and let N be its neighborhood. For convenience, mark a vertex
of G by 1 if it belongs to N and 0 otherwise. This marking together with the ordering σ correspond
to the binary word w = w1w2 . . . wn, where wi is the mark of vi for every i ∈ [n]. A relation between
pairs crossed and neighborhoods partitioned now follows from two observations:

1. in the word w, the maximal intervals of consecutive 1s correspond to intervals of consecutive
vertices in σ that partition the neighborhood N of v;

2. each pair of consecutive letters wiwi+1 in w with wi 6= wi+1 corresponds to a crossing of
{vi, vi+1} by N .

To conclude, each interval in the partition of N corresponds to two crossings apart from the at most
two intervals at each end of the ordering which each corresponds to one crossing. Thus the number
of intervals is at most 2 + ⌊k−2

2 ⌋ 6 k/2 + 1, as claimed.

The next theorem translates a bound on neighborhood complexity to a bound on contiguity. It
follows directly from Theorem 4.1, Observation 4.2, Observation 2.3, and the definition of neigh-
borhood complexity.

Theorem 4.3. Let G be an n-vertex graph, f : R>0 → R>0 be a strictly increasing function, and d
be a natural number. If (V,NG) has VC dimension d and νG(m) 6 f(m) for all m ∈ [n], then

ctg(G) 6 1 + log n+ 5d ·
n
∑

j=1

1

f−1(j/2)
.

We now apply Theorem 4.3 to hereditary small classes, which have O(n log n) neighborhood
complexity by Theorem 1.4, to obtain a bound on their contiguity in closed form.

Theorem 4.4. Let X be a hereditary small class, then the contiguity of X is O(log2 n).

Proof. Since X is a small class, by Theorem 1.4 there exists some constant C such that νX 6 f(n)
where f(n) := Cn log n. Consequently, for every n ∈ N and every n-vertex graph G ∈ X , we have
πNG

(m) 6 f(m) for all m ∈ [n]. Thus, by definition, the VC dimension d of (V (G),NG) satisfies
2d 6 Cd log d, which implies

d 6 logC + log d+ log log d 6 logC + 4d/5,

and therefore d 6 4 logC.
Now, by Theorem 4.3, we have

ctg(G) 6 1 + log n+ 20 · logC ·
n
∑

j=1

1

f−1(j)
. (6)

Since f is increasing on [1,∞) with image [0,∞), its inverse f−1 exists on [0,∞), and is also
increasing. The exact inverse f−1 is somewhat complicated, in particular f−1(1) = eW (ln(2)/C),
where W (·) is the Lambert function. We consider f−1(1) > 0 just as a constant depending on C,
and show that

f−1(x) >
x

C log x
for all x > 2. (7)

To show (7), since log x > 1 for all x > 2 and we can assume C > 1, we have

f

(

x

C log x

)

= C · x

C log x
· log

(

x

C log x

)

6 x. (8)
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Thus, applying f−1 to both sides of (8) gives f−1(x) > x
C log x , establishing (7).

Then, by (6),

ctg(G) 6 1 + log n+ 20 · logC ·
n
∑

j=1

1

f−1(j)

6 1 + log n+ 20 · logC · e−W (ln(2)/C) + 20 · logC ·
n
∑

j=2

C log j

j

= Θ(log2 n),

as claimed.

The main Theorem 1.3 of this section is a consequence of Theorems 1.4 and 4.4 and Proposi-
tion 2.2.

5 Conclusion

In this paper we obtained strong evidence in support of the Small Implicit Graph Conjecture that
posits that every hereditary small class admits an O(log n)-bit adjacency labeling scheme. Specifi-
cally, we showed that (1) every weakly sparse small class admits such a labeling scheme; (2) every
hereditary small class admits an O(log3 n)-bit adjacency labeling scheme. To obtain these results
we established two structural properties of hereditary small classes that are of independent inter-
est. The first property is that every weakly sparse small class has bounded degeneracy, and even,
bounded expansion. The second property is that every hereditary small class has neighborhood
complexity O(n log n).

The latter property leaves a tantalizing open question of whether the bound on the neighborhood
complexity can be further improved. All hereditary small classes known to us have linear neigh-
borhood complexity (e.g., classes of bounded twin-width [BKR+22, BFLP24]), which motivates the
following:

Conjecture 5.1. Every hereditary small class of graphs has neighborhood complexity O(n).

If this conjecture is true, our approach would imply O(log2 n)-bit labeling schemes for all hereditary
small classes.
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A Paths with low crossing number

The main goal of this section is to provide a self-contained proof of Theorem 4.1. To state the
theorem, we recall definitions of some crucial notions. Given a set system (X,S), we say that a set
S ∈ S crosses a 2-element set {x, y} ⊂ X if exactly one of x and y belongs to S. Let F be a multiset
of 2-element subsets in X. The crossing number of F with respect to a set S ∈ S is the number of
elements in F that are crossed by S. The crossing number of F with respect to S is the maximum
crossing number of F with respect to a set S ∈ S. If (X,F), considered as a graph, is a tree or
a path spanning all elements of X, then we say that (X,F) is a tree or a path on X, respectively.
In this case, the crossing number of F is referred to as the crossing number of the corresponding
tree or path, respectively.

Theorem 4.1. Let X be an n-element set, f : R>0 → R>0 be a strictly increasing function, and d
be a natural number. Let (X,S) be a set system of VC dimension d that satisfies π∗

S(m) 6 f(m) for
all m ∈ [n]. Then there exists a path on X with crossing number at most

2 log |S|+ 10d ·
n
∑

j=1

1

f−1(j/2)
.

This theorem is a known result stated in an unusual form, but one that is useful for us. The main
feature of the above formulation is that the bound on the dual shatter function is given in a general
form (expressed as a function f) rather than polynomial; in turn, the bound on the crossing number
is expressed via the inverse of f . More specifically, the above formulation has two main differences
compared to the standard one (for instance [Mat10, Wel88]). First, in a standard formulation, the
bound on the dual shatter function is π∗

S(m) 6 mr for some constant r > 1. Second, the resulting
bound on the crossing number of a path on X is in the form of O(n1−1/r). Note that if we take
f(m) to be mr in Theorem 4.1, then f−1(m) = m1/r and

2 log |S|+ 10d ·
n
∑

j=1

1

(j/2)1/r

can be upper bounded by O(n1−1/r), which recovers the result in a standard form.
The benefit of the present formulation is that one can apply Theorem 4.1 when a preferable upper

bound on π∗
S(m) is non-polynomial. For example, if f(m) = m · g(m) for some non-decreasing

function g(m), then Theorem 4.1 gives a bound of O(g(n) · log n) on the crossing number. In
particular, this becomes useful when g(m) = mo(1); e.g., if g(m) = log(m), the bound on the
crossing number becomes O(log2 n).

To provide a self-contained proof of Theorem 4.1, we need to state a number of auxiliary known
results in a suitable (non-standard) form and repeat their proofs with some adjustments. Before
each statement we explain how its formulation and proof differs from standard ones. We hope this
exposition might be of use in some other work.

Packing lemma. We begin with Haussler’s Packing Lemma [Hau95] (Lemma A.1), which is an
improvement over a quantitatively weaker Packing Lemma obtained by Dudley [Dud78] and re-
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discovered by Welzl [Wel88]. The proof below is a simplification by Chazelle of Haussler’s proof
[Hau95], which is taken from Matoušek’s book [Mat10].

A set system (X,S) is δ-separated if for any two distinct sets S1, S2 ∈ S their symmetric
difference contains at least δ elements, i.e., |(S1 \S2)∪ (S2 \S1)| > δ. In a standard formulation, the
lemma assumes that the shatter function πS(m) is bounded by O(mr) for some r, and the bound on
the cardinality of a δ-separated set P is O((n/δ)r). For our purposes, in Lemma A.1, we state the
bound on |P| directly in terms of the shatter function. Note that the standard form of the lemma
follows from ours if one uses the bound πS(m) = O(mr). The difference of the proof below from
the one in [Mat10] is that in (13) we bound t in terms of the shatter function directly, rather than
in terms of the bound on the shatter function.

Lemma A.1 (Packing Lemma, see [Mat10, Lemma 5.14]). Let (X,S) be a set system on an
n-element set of VC dimension d. Let δ ∈ [n] be an integer, and let P ⊆ S be δ-separated. Then,

|P| 6 2 · πS
(⌈

4dn

δ

⌉)

.

Before we prove this lemma we must introduce an auxiliary graph construction. For a set system
(X,S), we define the unit distance graph UD(S) to be the graph with

V (UD(S)) = S and E(UD(S)) = {{S, S′} : |S∆S′| = 1}.

We will also need the following bound on the number of its edges.

Lemma A.2 ([Mat10, Lemma 5.15]). If (X,S) is a set system of VC dimension d on a finite set X
then the unit distance graph UD(S) has at most d|S| edges.

With this, we are now ready to prove the Packing Lemma.

Proof of Lemma A.1. Choose a random s-element subset A ⊆ X, where s is given by

s :=

⌈

4dn

δ

⌉

. (9)

Set Q := {S ∩ A : S ∈ P}, and for each set Q ∈ Q define its weight w(Q) as the number of sets
S ∈ P with S ∩A = Q. Note that

∑

Q∈Q

w(Q) = |P|.

Let E := E(UD(Q)) be the edge set of the unit distance graph UD(Q), and define an edge
weighting of UD(Q) by giving each edge e = {Q,Q′} ∈ E weight w(e) := min(w(Q), w(Q′)). Let

W =
∑

e∈E

w(e),

where we note that this random variable depends on the random choice of A. The desired bound
on |P| in the Packing Lemma is obtained by estimating the expectation of W in two different ways.

First, we claim that for any set A ⊆ X, we have the following (deterministic) bound on W

W 6 2d ·
∑

Q∈Q

w(Q) = 2d · |P|. (10)
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To see this, note first that the VC dimension of P is at most d, and thus, by Lemma A.2, the unit
distance graph UD(Q) has some vertex Q0 of degree at most 2d. By removing Q0, the total edge
weight drops by at most 2d · w(Q0), and we are left with a unit distance graph on (X,Q′), where
Q′ = Q\Q0 and Q′ has VC dimension at most d. We can thus repeat this process until no vertices
are left, and we see that the sum of edge weights removed is at most 2d times the sum of vertex
weights, as claimed.

Next, we bound the expectation E [W ] from below by considering the following random experi-
ment. First, we choose a random (s− 1)-element set A ⊆ X, and then we choose a random element
a ∈ X \ A′. The set A = A′ ∪ {a} is a uniform random s-element subset of X, we consider UD(Q)
with the same edge weighting as above. Each edge of UD(Q) is a pair of sets of Q differing in
exactly one element of A. We let E1 ⊆ E be the edges for which the difference element is a, and
let W1 be the sum of their weights. By symmetry, we have

E [W ] = s · E [W1 ] . (11)

We are going to bound E [W1 ] from below. Let A′ ⊂ X be an arbitrary but fixed (s−1)-element
set. We estimate the conditional expectation E [W1 | A′ ]; that is, the expected value of W1 when
conditioned on a fixed set A′, and a ∈ X \ A′ is selected uniformly at random. Divide the sets
of P into equivalence classes P1,P2, . . . ,Pt according to their intersection with the set A′. By the
definition of πS(x) and since it is non-decreasing, we have

t 6 πS(s− 1) 6 πS(s). (12)

Let Pi be one of the equivalence classes, and b := |Pi|. Suppose that an element a ∈ X \A′ has
been chosen. If b1 sets of Pi contain a and b2 = b− b1 sets do not contain a, then the class Pi gives
rise to an edge of E1 of weight min(b1, b2). Note that b1 and b2 depend on the choice of a while b
does not.

For any non-negative real numbers b1, b2 with b1 + b2 = b, we have min(b1, b2) > b1b2/b. The
value b1b2 is the number of ordered pairs of sets (S1, S2) with S1, S2 being two sets from the class
Pi where one contains a and the other one does not. Now, since P is δ-separated by hypothesis, if
S1, S2 ∈ Pi are two distinct sets, then they differ in at least δ elements. Therefore, the probability
that S1 and S2 differ in a random element a ∈ X \A′ is at least δ

n−s+1 > δ/n. Hence the expected
contribution of each pair (S1, S2) of distinct sets of Pi to the quantity b1b2 is at least δ/n, thus

E
[

b1b2 | A′
]

> b(b− 1) · δ
n
.

Consequently, the expected contribution E [min(b1, b2) | A′ ] of the equivalence class Pi to the sum
of edge weights W1 is at least E [ b1b2/b | A′ ] > (b−1)δ/n. Summing up over all equivalence classes,
and using the bound on t from (12),

E [W1 ] > E
[

W1 | A′
]

>
δ

n

t
∑

i=1

(|Pi| − 1) >
δ

n
(|P| − t) >

δ

n
(|P| − πS(s)) . (13)

Combining this with the estimate (10), the equality (11), and the definition (9) of s, leads to

2d · |P| > s · δ
n
· (|P| − πS(s)) > 4d · (|P| − πS(s)) .

Rearranging gives |P| 6 2 · πS(s), so the statement follows from (9).
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Short Edge Lemma. A standard form of the Short Edge Lemma assumes a polynomial bound
on the dual shatter function, i.e., π∗

S(m) = O(mr) for some constant r > 1, and the resulting bound
is expressed via the bound O(m1/r) on the inverse of π∗

S(m). In our presentation of the Short Edge
Lemma (Lemma A.3) below we use a bound on the dual shatter function in a general from expressed
as a function f , and the resulting bound is stated in terms of f−1, the inverse of f . As before, by
plugging in the bound π∗

S(m) = O(mr) in Lemma A.3 one would recover the standard form of the
lemma. The proof is taken from [Mat10] with suitable adjustments.

Lemma A.3 (Short Edge Lemma, see [Mat10, Lemma 5.18]). Let X be an n-element set, f :
R>0 → R>0 be a strictly increasing function, and d be a natural number. Let (X,S) be a set system
of VC dimension d with π∗

S(m) 6 f(m) for all m ∈ [n]. Then, for any multiset Q with elements
from S, there exist elements x, y ∈ X such that the edge {x, y} is crossed by at most

5d · |Q|
f−1(n/2)

sets of Q.

Proof. We form a set system D which is dual to Q. That is, we consider the multiset Q as the ground
set (if some set appears in Q several times, then it is considered with the appropriate multiplicity).
For each x ∈ X, we let Dx be the set of all sets of Q containing x, and we set

D = {Dx : x ∈ X}.

The symmetric difference Dx∆Dy of two sets from D consists of the sets in Q crossing the pair
{x, y}. We thus want to show that Dx∆Dy is small for some x 6= y. We may assume Dx 6= Dy for
x 6= y, as otherwise we are done, and hence |D| = |X| = n.

The primal shatter function πD is certainly no larger than the dual shatter function π∗
S , and

hence πD(m) 6 f(m) by the assumption on π∗
S . Suppose that any two sets Dx,Dy ∈ D have

symmetric difference at least δ, then the packing lemma (Lemma A.1) implies

n = |D| 6 2 · π∗
S

(⌈

4d|Q|
δ

⌉)

6 2f

(⌈

4d|Q|
δ

⌉)

.

Since f is strictly increasing, f−1 is also strictly increasing. Therefore, we have

f−1(n/2) 6

⌈

4d|Q|
δ

⌉

6
5d|Q|
δ

,

and therefore

δ 6 5d · |Q|
f−1(n/2)

,

as claimed.

Trees with low crossing number. As with the Short Edge Lemma, the following result (Theo-
rem A.4) is stated with a general bound f on the dual shatter function and the resulting bound on
the crossing number of a tree is expressed in terms of f−1, the inverse of f . The proof is taken from
[Mat10], which is very similar to Welzl’s original proof [Wel88]. The statement in [Mat10] is for
crossing number of matchings, and therefore it is slightly modified to work for trees as in [Wel88].
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Theorem A.4 (see [Mat10, Lemma 5.17]). Let X be an n-element set, f : R>0 → R>0 be a strictly
increasing function, and d be a natural number. Let (X,S) be a set system of VC dimension d with
π∗
S(m) 6 f(m) for all m ∈ [n]. Then there exists a tree T on X with crossing number at most

log |S|+ 5d ·
n
∑

j=1

1

f−1(j/2)
.

Proof. We build T by selecting edges one by one according to the following strategy.

1. Suppose {u1, v1}, . . . , {ui, vi} have already been selected.

2. Define the weight wi(S) of a set S ∈ S as 2ki(S), where ki(S) is the number of edges among
{u1, v1}, . . . , {ui, vi} crossed by S. In particular, w0(S) = 1 for all S ∈ S.

3. We select the next edge {ui+1, vi+1} from Xi = X \ {u1, u2, . . . , ui} as a pair of points with
the total weight of sets crossing {ui+1, vi+1} being the smallest possible.

4. We continue in this manner until n− 1 edges have been selected.

Let E := {{u1, v1}, {u2, v2} . . . , {un−1, vn−1}}. Then T = (X,E) is a tree. Next, we will bound
the crossing number k of the resulting tree T . To this end, we estimate the final total weight of all
sets of S, i.e.,

wn−1(S) =
∑

S∈S

wn−1(S).

By definition of wn−1 we have k 6 logwn−1(S).
Let us investigate how wi+1(S) increases compared to wi(S). Let Si+1 denote the collection of

the sets of S crossing {ui+1, vi+1}. For each set in Si+1 the weight increases by a multiplicative
factor of two, and for the other sets it remains unchanged. From this we get

wi+1(S) = wi(S)− wi(Si+1) + 2wi(Si+1) = wi(S)
[

1 +
wi(Si+1)

wi(S)

]

.

We now estimate wi(Si+1)
wi(S)

using the Short Edge Lemma (Lemma A.3). To begin we define
a multiset Qi of sets by adding S ∩Xi to Qi with multiplicity wi(S) for every S ∈ S. Thus

|Qi| =
∑

S∈S

wi(S) = wi(S).

Note that, by the construction of Qi, the number of sets in Qi that cross {ui+1, vi+1} is wi(Si+1).
Furthermore, by our choice of edge in (2) and (3), the edge {ui+1, vi+1} is crossed by the minimum
number of sets in Qi. Thus, by applying the Short Edge Lemma on the set system (Xi, {S∩Xi : S ∈
S}) to the multiset Qi, and defining ni := |Xi| = n− i, we obtain:

wi(Si+1) 6 5d · wi(S)
f−1(ni/2)

.

Hence, we have

wi+1(S) 6 wi(S)
[

1 +
5d

f−1((n− i)/2)

]

.
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Therefore

wn−1 6 w0(S) ·
n−1
∏

i=0

[

1 +
5d

f−1((n− i)/2)

]

= |S| ·
n
∏

j=1

[

1 +
5d

f−1(j/2)

]

.

Taking logarithms of both sides and using the inequality ln(1 + x) 6 x we obtain

k 6 logwn−1(S) 6 log |S|+ 5d ·
n
∑

j=1

1

f−1(j/2)
,

as claimed.

From a tree to a path. Finally, Theorem 4.1 is obtained from Theorem A.4 by using the following
Lemma A.5 to “convert” a tree with crossing number k to a path with crossing number at most 2k.
The argument is taken from [Wel88] and we provided it here for completeness.

Lemma A.5 ([Wel88, Lemma 3.3]). Let (X,S) be a set system, and T be a tree on X with crossing
number at most k with respect to S. Then, there exists a path on X with crossing number at most
2k with respect to S.

Proof. We begin with the following claim.

Claim A.6. Given any family F of two element sets on X, replacing any pair {x, y}, {y, z} ∈ F by
the set {x, z} will not increase the crossing number with respect to S.

Proof of Claim. If any S ∈ S crosses {x, z}, then exactly one of x or y is not contained in S. Thus,
S must cross one of {x, y} or {y, z}. ♦

Let D = {{u1, u2}, {u2, u3}, . . . , {uℓ−1, uℓ}} be a multiset consisting of edges from T in the
order they are traversed in a depth-first search (DFS) tour4 of T starting from an arbitrary vertex.
Additionally, let x1, . . . , xn be a labeling of X in the order they are discovered by the DFS tour D.

Note that each edge of T appears exactly twice in D, thus the crossing number of D is at most
2k. We can now apply Claim A.6 iteratively to reduce D to {{x1, x2}, {x2, x3}, . . . , {xn−1, xn}}
without increasing the crossing number with respect to S.

4A DFS tour visits all vertices of the tree starting from a given vertex and going as far as possible down a given
branch, then backtracking until it finds an unexplored path.
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