WIETR

Automated Deployment of Radio
Astronomy Pipeline on CPU-GPU
Processing Systems: DiFX as a Case Study

E. Michel?, O. Renaud?, K. Desnos?, A. Deller?, C. Phillips3, J.-F. Nezan!

1Univ Rennes, INSA Rennes, CNRS, IETR - surname.name

3CSIRO, Space and Astronomy, PO Box 76, Epping, NSV

This work was supported by DARK-ERA (ANR-20-CE46-0001-0
program under the Marie Sktodowska-Curie grant agreement NG

- di.

The Square Kilometre Array (SKA)
exascale radio telescope

Visibilities

8.9Tb/s

e [he Science Data Processor (SDP) will process data at
terabyte rates with a 1 MW, 250 Pflops budget and use

modern HPC system.
e Resource allocation for complex algorithms and systems is

NP-complete problems.

DiFX correlator dataflow model

Voltage to Data
binary file Acquisition

Floating point Fringe

S
conversion Rotation FET X

——# Accumulation — Visibility

e Six Steps of the DiFX Correlator:

. Data Acquisition: Extracts sampled/quantized voltage from input (antenna data).

. Floating Point Conversion: Converts integers to complex numbers (sample + phase shift).
. Fringe Rotation: Corrects Doppler shifts caused by Earth's rotation.

. FFT (Fast Fourier Transform): Separates signal frequencies (noise vs. useful data).

. Cross-correlation (X): Multiplies frequency data from each telescope pair.

. Accumulation: Connects samples to form final visibility products.

e Dataflow Model:
G=(A, F)

where A is the set of actors (computations) and F is the set of FIFO buffers.

e Offers a structured approach to manage parallelism and
hardware deployment.

i

Result

GPU - Manual gcorr
B GPU - Dataflow

B CPU - Manual fxcorr
B CPU - Manual C
B CPU - Dataflow

SrDAG Allocation

STD(1c)/M(lc,1g) 93.67 58088

STD(8¢)/M(lc,1g) 93.67 230509
SCAPE(Ic)/M(lc,1g) 2.55 13.83
SCAPE(8c) /M(lc,1g) 5.64 38.00

Implementation

Average reduction factor: the existing methods
(STD) over the proposed method (M).
lc: 1 core, 1g: 1
The larger, the better.

100 200 300 400
Execution Time (ms)

O~

GPU.

Execution time by DIFX
The lower, the better.

v Significant reduction by
clustering, reflected in the
acceleration of the resource
allocation process.

Speedup resource allocation
by a factor of 13 compared
to the standard methods.

v Optimized dataflow
Implementations compete
with manual ones.

NN
BUR

9.2 B N g R Y AT TR
) = 2 B o 07 A& 7St o
¢ R . £ §\ .r%'
"1 1 ! 5 %
e BRER 2 3
¥ 2 . g = o
8 4 < F
j < > 2, &
ADASS TR Q 6
B Bk))
R i 8l p B W sy swos'S *

XXXV

SWINBURNE
UNIVERSITY OF
TECHNOLOGY

10/11/2024

implementation.

Insa-rennes.fr
2CAS, Swinburne Unpversity of Technology, Hawthorn, Australia -

swin.edu.au
Australia - Chris.Phillips@csiro.au

4
ed funding from the European Union’s Horizon 2020 research and innovation

st #

System-Llevel architecture modeling for
CPU-GPU architecture

e GPU-oriented System-Level Architecture Model (GSLA):
A= (P,C,L,CA)

where P is the set of Processing Elements (PEs), C is the set of Communication
Nodes (CNs), L is a set of undirected links connecting PEs and CNs, C is a
property function associating a cost to different elements in the model, and A is a
Lagrangian coefficient setting the cost of a single communication quantum
relative to the cost of a single processing quantum.

e Allow system level and internal parallelism description

Dataflow resource allocation for
CPU-GPU systems

Clustering el
— Scheduling —

— SCAPE

Extraction — Mapping Timing —— Translation —

= flattening =—— SrDAG —>

x 1 x 1
A —-—QBC

......

generation

e GPU-friendly computation extraction based on pattern matching
e Mapping considering offloading gains:

CPU., if Timepy(sub) > Timgpu(sub)
map = + DreF .y Mnepy * S1ZE(T) + By
GPU. otherwise

e Code translation based on target (CPU—C, NVIDIA GPU— CUDA)

Summary conclusion
e Achievement:

v Automated dataflow resource allocation method and
code generation for heterogeneous CPU-GPU systems.

v Fast mapping based on computation behavior.
v Implemented into PREESM /|\. and available on Github.

e [uture work:
> Scale it up on multi-node modern HPC systems.

> Reorganize scheduling based on component cache (CPU-GPU)
integrating polyhedral optimization.

T . "y 7
- 4 o ‘ L[ElgsﬁggbgﬁggéowAL I“ Na!’]tes o =\/= Unlve rSI'l'e
9 INSA= \J Universite >/||\<

CentraleSupélec

de Rennes

mailto:adeller@swin.edu.au

