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The Square Kilometre Array (SKA)
exascale radio telescope

Visibilities

8.9Tb/s

e [he Science Data Processor (SDP) will process data at
terabyte rates with a 1 MW, 250 Pflops budget and use

modern HPC system.
e Resource allocation for complex algorithms and systems is

NP-complete problems.

DiFX correlator dataflow model
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e Six Steps of the DiFX Correlator:

. Data Acquisition: Extracts sampled/quantized voltage from input (antenna data).

. Floating Point Conversion: Converts integers to complex numbers (sample + phase shift).
. Fringe Rotation: Corrects Doppler shifts caused by Earth's rotation.

. FFT (Fast Fourier Transform): Separates signal frequencies (noise vs. useful data).

. Cross-correlation (X): Multiplies frequency data from each telescope pair.

. Accumulation: Connects samples to form final visibility products.

e Dataflow Model:
G=(A, F)

where A is the set of actors (computations) and F is the set of FIFO buffers.

e Offers a structured approach to manage parallelism and
hardware deployment.
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SrDAG  Allocation

STD(1c)/M(lc,1g)  93.67 58088

STD(8¢)/M(lc,1g)  93.67 230509
SCAPE(Ic)/M(lc,1g)  2.55 13.83
SCAPE(8c) /M(lc,1g)  5.64 38.00

Implementation

Average reduction factor: the existing methods
(STD) over the proposed method (M).
lc: 1 core, 1g: 1
The larger, the better.
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GPU.

Execution time by DIFX
The lower, the better.

v Significant reduction by
clustering, reflected in the
acceleration of the resource
allocation process.

Speedup resource allocation
by a factor of 13 compared
to the standard methods.

v Optimized dataflow
Implementations compete
with manual ones.
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System-Llevel architecture modeling for
CPU-GPU architecture

e GPU-oriented System-Level Architecture Model (GSLA):
A= (P,C,L,CA)

where P is the set of Processing Elements (PEs), C is the set of Communication
Nodes (CNs), L is a set of undirected links connecting PEs and CNs, C is a
property function associating a cost to different elements in the model, and A is a
Lagrangian coefficient setting the cost of a single communication quantum
relative to the cost of a single processing quantum.

e Allow system level and internal parallelism description

Dataflow resource allocation for
CPU-GPU systems
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e GPU-friendly computation extraction based on pattern matching
e Mapping considering offloading gains:

CPU., if Timepy(sub) > Timgpu(sub)
map = + DreF .y Mnepy * S1ZE(T) + By
GPU. otherwise

e Code translation based on target (CPU—C, NVIDIA GPU— CUDA)

Summary conclusion
e Achievement:

v Automated dataflow resource allocation method and
code generation for heterogeneous CPU-GPU systems.

v Fast mapping based on computation behavior.
v Implemented into PREESM /|\. and available on Github.

e [uture work:
> Scale it up on multi-node modern HPC systems.

> Reorganize scheduling based on component cache (CPU-GPU)
integrating polyhedral optimization.
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