N

N

Automated Deployment of Radio Astronomy Pipeline on
CPU-GPU Processing Systems: DiFX as a Case Study
Ewen Michel, Ophélie Renaud, Karol Desnos, Adam T. Deller, Chris Phillips,

Jean-Francgois Nezan

» To cite this version:

Ewen Michel, Ophélie Renaud, Karol Desnos, Adam T. Deller, Chris Phillips, et al.. Automated
Deployment of Radio Astronomy Pipeline on CPU-GPU Processing Systems: DiFX as a Case Study.
Astronomical Data Analysis Software & Systems (ADASS) XXXIV, Nov 2024, La Valetta, Malta.
hal-04744986

HAL Id: hal-04744986
https://hal.science/hal-04744986v1

Submitted on 6 Nov 2024

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-04744986v1
https://hal.archives-ouvertes.fr

Automated Deployment of Radio Astronomy Pipeline on CPU-GPU
Processing Systems: DiFX as a Case Study *

Ewen Michel,! Ophélie Renaud,! Karol Desnos,! Adam Deller,?
Chris Phillips,® and Jean-Frangois Nezan'
YWniv Rennes, INSA Rennes, CNRS, IETR - UMR 6164, Rennes, France

2CAS, Swinburne University of Technology, Hawthorn, Australia
3CSIRO, Space and Astronomy, PO Box 76, Epping, NSW 1710, Australia

Abstract. The next generation of radio telescopes, such as the [Square Kilometre]

Array (SKA)] will require peta-FLOPS processing power to handle the massive amount

of data acquired. A new generation of computing pipelines are required to address
the [SKA] challenges leading to the integration of the pipelines on a dedicated hetero-
geneous [High-Performance Computing (HPC)| system. The tight real-time and energy
constraints are driving the community to study the use of hardware accelerators like
GPUs in the computing system. Allocating resources, such as processor times, memory,
or communication bandwidth, to support complex algorithms in such systems is known
as an NP-complete problem. Existing tools such as Dask and[Data Activated Jit Graph|
Engine (DALiuGE)|rely on dataflow [Model of Computation (MoC)|and have proven to
be an efficient solution to specify parallel algorithms and automate their deployment.
These models are efficient programming paradigms for expressing the parallelism of an
application. However, state-of-the-art dataflow resource allocation only targets CPUs
and usually relies on complex graph transformations resulting in a time-consuming pro-
cess. This paper introduces an automated dataflow resource allocation method and code
generation for heterogeneous CPU-GPU systems. Our method efficiently and quickly
manages pre-scheduling graph complexity, and optimizes the dataflow model to the
target architecture. Experimental results show that the proposed method improves re-
source allocation and speeds up the process by a factor of 13 compared to the best
existing method on a basic architecture. Moreover, the execution times of the obtained
implementations are comparable to those of manual implementations.

1. Introduction

Integrating CPU-GPU architectures enhances image processing by leveraging the strengths
of both components. CPUs provide flexibility and sequential processing, while GPUs
excel in massive parallel computing. Tools such as CUDA for NVIDIA GPUs and
OpenCL for multiple platforms have facilitated the adoption of accelerators for years.
Despite the advantages of CUDA, its effective deployment still requires developer ex-

“This work was supported by DARK-ERA (ANR-20-CE46-0001-01) and has received funding from the
European Union’s Horizon 2020 research and innovation program under the Marie Skiodowska-Curie
grant agreement No 873120.

2 E. Michel, et al.

pertise. The dataflow programming paradigm, represented by [Dataflow Process Net|

offers a structured approach to manage parallelism and hardware de-
ployment. [DPN] represent computations as nodes and communication as directed arcs.

Methods like A'gorlthm—ArChltecture Adequation (AAA) model algorithms and archi-
tectures as graphs, automating the [Design Space Exploration (DSE)| process |Grand-

pierre et al.| (1999). While these methods facilitate hardware-software matching, the
allocation of resources remains complex. Existing solutions, like dataflow actor clus-
tering |Pino et al.| (1995)), primarily target CPU architectures, and automating the entire
process for heterogeneous systems is still a challenge. The proposed method provides
automatic resource allocation and code generation for dataflow applications, employs
a single application description for any architecture, and optimizes resource allocation
and code for CPU-GPU systems.

2. Dataflow resource allocation for CPU-GPU systems

The standard dataflow resource allocation process involves a dataflow graph transfor-
mation, called [Single rate Directed Acyclic Graphs (SrDAG)| transformation, to reveal
parallelism and communication, followed by mapping, scheduling, and code transla-
tion. The proposed method is based on a clustering method, called
[Clusters of Actors on Processing Element (SCAPE)||Renaud et al.| (2024), and hap-
pens upstream of the standard resource allocation process. One particularity is that the
proposed method takes as input[Model of Architecture (MoA)|a|GPU-oriented System-|
Level Architecture Model (GSLA)| graph [Payvar et al.| (2021)) allowing internal paral-
lelism description of [Processing Element (PE), which is suitable for describing GPUs.
The main steps of the method are the following:

1. Extraction:

GPU-friendly pattern identification: This involves identifying data parallel
pattern matching of dataflow actors, one is called|Unique Repetition Count (URC)|
pattern which consists of at least two sequential actors sharing the same [Repe-|
tition Vector (RV)| coeflicient. The other data-parallel pattern is called [Single
Repetition Vector (SRV)|which consists of one isolate actor with a[RV]coeflicient
greater than 1.

Subgraph generation: The identified actors are then isolated into a subgraph
sub so that all the data parallelism is contained in the subgraph on which the
rates are adjusted to match the parallelism of the architecture.

2. Scheduling: For any chosen target the chosen scheduling strategy for the cluster
is the|Pairwise Grouping of Adjacent Nodes for Acyclic graph (APGAN) method
Bhattacharyya et al.| (1997).

3. Timing: This estimates the execution time of the subgraph, the cluster of actors,
running on a GPU. Considering the memory transfer between GPUs during the
execution of a cluster, its execution time Timgpy(sub) is expressed as follow:

TimGpu(sub) = Soen,, |54

+ ZT'EF;M Angpy * SiZe(T) + BHGPU

ey

4. Mapping: This estimates the parallelism gain and the transfer loss based on
architecture properties. If GPU offloading is estimated beneficial, the process

Optimizing Dataflow Resource Allocation in CPU-GPU Systems: A DiFX Case Study

proceeds with the following steps; otherwise the original generates a
cluster of actors mapped on CPUs.

CPU, if Timcpy(sub) > Timgpy(sub)

map = + 2reF Uncpy * S1ZE(T) + Bucpy @)
GPU, otherwise

5. Translation: The subgraph is translated into a CUDA file. First, internal buffers
are allocated on the GPU using cudaMalloc. The data are then transferred from
the CPU to the GPU memory with cudaMemcpy to initiate the offload process.
Next, actors are successively called according to the schedule. Each actor cor-
responds to a CUDA kernel launched with «<. . .»> parameterized with the size
of a thread block and the size of the grid based on the data size. The kernels
are synchronized with cudaDeviceSynchronize for coherence. Finally, processed
data are transferred back to CPU memory via cudaMemcpy. The simplified and
optimized graph is then sent to the standard resource allocation process.

3. [DiFX] correlator dataflow model

The data processing of radio interferometers such as the SKA can be broadly sepa-
rated into two main components: the CSP pipeline transforms the ensemble of electric
field representations obtained at each antenna into a visibility dataset containing coher-
ence measurements between pairs of antennas, while the subsequent SDP pipeline cali-
brates the visibility dataset and recovers a sky brightness image from it Thompson et al.
(1991). An example of a general-purpose|Central Signal Processor (CSP)|pipeline is the
[Distributed FX (DiFX)| software correlator Deller et al.| (2007), and as such this is suit-
able tested for considering dataflow resource allocation. The correlator is composed of
six main steps that transform sky signals into visibility: The Data Acquisition involves
extracting data from an input file that contains a sampled, quantized representation of
the voltage, which corresponds to the measured electric field from the antennas. The
Floating Point Conversion converts the input integers into a complex consisting of the
sample value and the delay representing the phase shift between two telescopes. The
Fringe Rotation applies the differential Doppler shift correction to compensate for the
rotation of the earth that affects the signal. The |Fast Fourier Transform (FFT) con-
verts the input signal from the time domain to its individual frequency components.
This step facilitates subsequent signal compensation in a frequency-dependent man-
ner and helps prevent bandwidth smearing artefacts during image reconstruction. The
[Cross-correlation (X)| consists of, for every telescope pair, the Fourier transform output
frequency data are multiplied to form correlation products. The Accumulation consists
of connecting each sample to the previous one, creating the final visibility products.

4. Experiments

The proposed method is applied on the correlator dataflow model available in
Github|l To conduct these experiments, the proposed method was implemented within

“https://github.com/preesm/preesm-apps

https://github.com/preesm/preesm-apps

4 E. Michel, et al.

the [Parallel and Real-time Embedded Executives Scheduling Method (PREESM)| Pel-
cat et al.| (2014) rapid prototyping framework, which is part of open-source projects.
The experiments were conducted using two computing platforms: a desktop computer
equipped with an 8-core Intel i5-1335U processor, 16 GB of RAM, and a single Nvidia
GeForce RTX 2050 GPU with 4 GB of VRAM. Figure[I|presents the average reduction
factor between the method and different resource allocation strategies deploying sev-
eral configuration complexities of the dataflow model. The elements compared
are the number of actors on the resulting and the resource allocation time. The
result shows a significant reduction by clustering, reflected in the acceleration of the
resource allocation process. Figure[2]compares the execution time between manual and
optimized dataflow implementation of the [DiFX|correlator deployed on CPU and GPU
architecture. The figure shows that optimized dataflow implementations compete with
manual ones.

Emm CPU - Manual fxcorr s GPU - Manual gcorr
mmm CPU - Manual C Emm GPU - Dataflow
mmm CPU - Dataflow

SrDAG Allocation s
STD(1c) / M(1c,1g) 93.67 58088 §
STD(8c) / M(1c,1g) 93.67 230509 =
SCAPE(lc)/M(lc,1g) 2.55 13.83 S
SCAPE(8c) / M(lc,1g) 5.64 38.00 Execution Time (ms)
Figure 1. Average reduction factor: Figure 2. Execution
the existing methods over the proposed time by implemen-
method (M), lc: 1 core, 1g: 1 GPU tation

5. Conclusion

This paper introduces a new automated method for deploying dataflow applications on
heterogeneous CPU-GPU systems. The method streamlines the dataflow graph by clus-
tering actors reproducing particular patterns and optimizes the mapping across CPU
and GPU. Experimental results demonstrate that the proposed method enhances re-
source allocation, and accelerates the process by a factor of 13 compared to the best
existing method studied on the simplest architecture. Additionally, the produced imple-
mentation achieves execution time comparable to manual implementations. Potential
directions for future work include improving memory management and data transfer
between GPU and CPU.

References

Bhattacharyya, S., et al. 1997, Design Automation for Embedded Systems, 2

Deller, A. T., et al. 2007, Publications of the Astronomical Society of the Pacific, 119, 318

Grandpierre, T., et al. 1999, in 7th International Workshop on Hardware/Software Codesign, 74

Payvar, S., et al. 2021, Design Automation for Embedded Systems, 25, 43

Pelcat, M., et al. 2014, in 6th european Embedded Design in Education and Research Confer-
ence, 36

Pino, J., et al. 1995 (University of California at Berkeley)

Renaud, O., et al. 2024, in Journal of Systems Architecture (Elsevier), vol. 154, 103217

Thompson, A., et al. 1991, Interferometry and Synthesis in Radio Astronomy, vol. -1

