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LOCAL DISPERSIVE AND STRICHARTZ ESTIMATES FOR THE
SCHRÖDINGER OPERATOR ON THE HEISENBERG GROUP

HAJER BAHOURI AND ISABELLE GALLAGHER

Abstract. It was proved by H. Bahouri, P. Gérard and C.-J. Xu in [9] that the
Schrödinger equation on the Heisenberg group Hd, involving the sublaplacian, is an
example of a totally non-dispersive evolution equation: for this reason global dispersive
estimates cannot hold. This paper aims at establishing local dispersive estimates on Hd
for the linear Schrödinger equation, by a refined study of the Schrödinger kernel St
on Hd. The sharpness of these estimates is discussed through several examples. Our
approach, based on the explicit formula of the heat kernel on Hd derived by B. Gaveau
in [20], is achieved by combining complex analysis and Fourier-Heisenberg tools. As
a by-product of our results, we establish local Strichartz estimates and prove that the
kernel St concentrates on quantized horizontal hyperplanes of Hd.
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1. Introduction

1.1. Setting of the problem. It is well-known that the solution to the free Schrödinger
equation on Rn

(S)
{
i∂tu−∆u = 0
u|t=0 = u0

can be explicitly written with a convolution kernel for t 6= 0

(1.1) u(t, ·) = u0 ?
e−i

|·|2
4t

(−4πit)
n
2
·

The proof of this explicit representation stems by a combination of Fourier and complex
analysis arguments, from the expression of the heat kernel on Rn. More precisely, taking
the partial Fourier transform of (S) with respect to the variable x and integrating in time
the resulting ODE, we get

û(t, ξ) = eit|ξ|2 û0(ξ) ,
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2 H. BAHOURI AND I. GALLAGHER

where for any function g ∈ L1(Rn) we have defined

ĝ(ξ) def= F(g)(ξ) def=
∫
Rn

e−i〈x,ξ〉g(x) dx .

The heart of the matter to prove (1.1) then consists in computing in the sense of distri-
butions the inverse Fourier transform of the complex Gaussian

(1.2) (F−1eit|·|2)(x) = e−i
|x|2
4t

(−4πit)
n
2
·

The proof of Formula (1.2) is based on two observations: first, that for any x in Rn, the
two maps

z ∈ C 7−→ H1(z) def= 1
(2π)n

∫
Rn

ei〈x,ξ〉e−z|ξ|2 dξ and z ∈ C 7−→ H2(z) def= 1(
4πz

)n
2

e−
|x|2
4z

are holomorphic on the domain D of complex numbers with positive real part. Accordingly
with the expression of the heat kernel, these two functions coincide on the intersection of
the real line with D, and thus they coincide on the whole domain D. Second, if (zp)p∈N de-
notes a sequence of elements of D which converges to −it for t 6= 0, the use of the Lebesgue
dominated convergence theorem ensures that H1(zp) and H2(zp) converge in S ′(Rn), as p
tends to infinity, which achieves the proof of (1.2).

Formula (1.1) implies by Young’s inequality the following dispersive estimate:

(1.3) ∀t 6= 0 , ‖u(t, ·)‖L∞(Rn) ≤
1

(4π|t|)
n
2
‖u0‖L1(Rn) ·

Such estimate plays a key role in the study of semilinear and quasilinear equations which
appear in numerous physical applications. Combined with an abstract functional analysis
argument known as the TT ∗-argument, it yields a range of inequalities involving space-
time Lebesgue norms, known as Strichartz estimates1. When u0 is for instance in L2(Rn),
the above dispersive estimate (1.3) gives rise to the following Strichartz estimate for the
solution to the free Schrödinger equation
(1.4) ‖u‖Lq(R;Lp(Rn)) ≤ C(p, q)‖u0‖L2(Rn) ,

where (p, q) satisfies the scaling admissibility condition

(1.5) 2
q

+ n

p
= n

2 with q ≥ 2 and (n, q, p) 6= (2, 2,∞) .

The interest for this issue has soared in the last decades. We refer for instance to the
monographs [3, 31] and the references therein for an overview on this topic in the euclidean
framework.

In the present work, we aim at investigating this phenomenon for the Schrödinger
equation on the Heisenberg group Hd involving the sublaplacian. Recall that in [9], the
first author along with P. Gérard and C.-J. Xu proved that no dispersion occurs for
this equation, and in particular exhibited an example for which the Schrödinger operator
on Hd behaves as a transport equation with respect to one direction, known as the vertical
direction. More precisely they established the following result which shows that a global
dispersive estimate of the type (1.3) cannot be expected on Hd. We refer to the coming
paragraph for the notation.

Proposition 1.1 ([9]). There exists a function u0 in the Schwartz class S(Hd) such that
the solution to the free Schrödinger equation on Hd satisfies
(1.6) ∀t ∈ R , ∀(Y, s) ∈ Hd , u(t, Y, s) = u0(Y, s+ 4td) .

1For further details, one can consult the papers of Ginibre-Velo [23], Keel-Tao [25] and Strichartz [30].



LOCAL DISPERSIVE AND STRICHARTZ ESTIMATES FOR THE SCHRÖDINGER OPERATOR 3

This result rules out an estimate of the type (1.3) in the setting of the Heisenberg group
but does not exclude a degraded estimate: for instance in the case when u0 is compactly
supported, then the solution remains compactly supported, in a set transported along the
vertical line, so a local L∞ norm decays to zero with time. Inspired by the euclidean
strategy displayed above, we shall indeed be able to establish local decay in the spirit
of (1.3). The precise result is stated in the next paragraph. As in the euclidean case, such
a local dispersive estimate stems from the explicit expression of the Schrödinger kernel St
on Hd, which turns out to be of type (1.2) in a horizontal strip of Hd (see Theorem 2).

Note also that a lack of dispersion was highlighted for the Schrödinger propagator (as-
sociated with the sublaplacian) in the framework of H-type groups ([12]) or more generally
in the case of 2-step stratified Lie groups ([8]). More precisely, if p denotes the dimension
of the center of the H-type group, M. Del Hierro proved in [12] sharp dispersive inequalities
for the Schrödinger equation solution (with a |t|−(p−1)/2 decay). Concerning the more gen-
eral case of 2-step stratified Lie groups, the authors along with C. Fermanian-Kammerer [8]
emphasized the key role played by the canonical skew-symmetric form in determining the
rate of decay of the solutions of the Schrödinger equation: they established that if p de-
notes the dimension of the center of a 2-step stratified Lie group G and k the dimension
of the radical of its canonical skew-symmetric form, then the solutions of the Schrödinger
equation on G satisfy dispersive estimates with a rate of decay at most of order |t|−

k+p−1
2 .

1.2. Basic facts about the Heisenberg group. Recall that the d-dimensional Heisen-
berg group Hd can be defined as T ?Rd ×R where T ?Rd is the cotangent bundle, endowed
with the noncommutative product law2

(1.7) (Y, s) · (Y ′, s′) def=
(
Y + Y ′, s+ s′ + 2〈η, y′〉 − 2〈η′, y〉

)
,

where w = (Y, s) = (y, η, s) and w′ = (Y ′, s′) = (y′, η′, s′) are elements of Hd. The
variable Y is called the horizontal variable, while the variable s is known as the vertical
variable.

The space Hd is provided with a smooth left invariant measure, the Haar measure,
which in the coordinate system (Y, s) is simply the Lebesgue measure. In particular, one
can define the following (noncommutative) convolution product for any two integrable
functions f and g:

(1.8) f ? g(w) def=
∫
Hd
f(w · v−1)g(v) dv =

∫
Hd
f(v)g(v−1 · w) dv ,

and the usual Young inequalities are valid:

(1.9) ‖f ? g‖Lr(Hd) ≤ ‖f‖Lp(Hd)‖g‖Lq(Hd), whenever 1 ≤ p, q, r ≤ ∞ and 1
r

= 1
p

+ 1
q
− 1 .

The dilation on Hd is defined for all a > 0 by

(1.10) δa(Y, s)
def= (aY, a2s) .

Since, for all a > 0 and any f ∈ L1(Hd),∫
Hd
f
(
δa(w)

)
dw = a−(2d+2)

∫
Hd
f(w)dw ,

the homogeneous dimension of Hd is Q def= 2d+ 2.
The natural distance on Hd compatible with the product law (1.7) is called the Korányi

distance and is defined by

(1.11) dH(w,w′) def= ρH(w−1 · w′) ,
2We refer to the monographs [7, 18, 19, 29, 32, 33] and the references therein for further details.
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for all w, w′ in Hd, where ρH stands for the distance to the origin

(1.12) ρH(w) = ρH(Y, s) def=
(
|Y |4 + s2) 1

4 .

In the following BH(w0, R) denotes the Heisenberg ball centered at w0 and of radius R for
the distance dH defined by (1.11), namely

BH(w0, R) def=
{
w ∈ Hd / dH(w,w0) < R

}
.

Observing that the distance dH is invariant by left translation, that is to say

∀(w,w′, w0) ∈ (Hd)3, dH
(
τw0(w), τw0(w′)

)
= dH(w,w′)

where τw0 denotes the left translation defined by

(1.13) τw0(w) def= w0 · w ,

one can readily check that τw0

(
BH(0, R)

)
= BH(w0, R).

Most classical analysis tools of Rn can be adapted to Hd, resorting to the following left
invariant vector fields

Xj
def= ∂yj + 2ηj∂s and Ξj

def= ∂ηj − 2yj∂s with j ∈ {1, . . . , d} ,

known as the horizontal left invariant vector fields. In particular, the sublaplacian is given
by

∆H
def=

d∑
j=1

(X 2
j + Ξ2

j ) .

For instance the Schwartz space S(Hd), which is nothing else than S(R2d+1), can be
characterized by means of ∆H and ρH.

1.3. Main results. The main goal of this article is to establish local dispersive estimates
for the free linear Schrödinger equation on Hd associated with the sublaplacian

(SH)
{
i∂tu−∆Hu = 0
u|t=0 = u0 .

As in the euclidean case, one can readily establish that the Cauchy problem (SH) admits a
unique, global in time solution if u0 ∈ L2(Hd), by resorting to Fourier-Heisenberg analysis
tools or to functional calculus of the self-adjoint operator −∆H (see Section 4 for further
details). Denoting by (U(t))t∈R the solution operator, namely U(t)u0 is the solution of (SH)
at time t associated with the data u0, then similarly to the euclidean case (U(t))t∈R is a
one-parameter group of unitary operators on L2(Hd).

The first result we establish states as follows.

Theorem 1. Given w0 ∈ Hd, let u0 be a function in D(BH(w0, R0)). Then the solution
to the Cauchy problem (SH) associated to u0 disperses locally for large |t|, in the sense
that, for any positive constant κ <

√
4d, the following estimate holds for all 2 ≤ p ≤ ∞:

(1.14) ‖u(t, ·)‖
Lp(BH(w0,κ|t|

1
2 ))
≤
(
Mκ

|t|
Q
2

)1− 2
p

‖u0‖Lp′ (Hd)
,

for all |t| ≥ Tκ,R0 , where

(1.15) Tκ,R0
def=
( R0√

4d− κ

)2
and Mκ

def= 1
(4π)

Q
2

∫
R

( 2τ
sinh 2τ

)d
exp

(κ2τ

2
)
dτ ,

and p′ is the conjugate exponent to p.
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Remark 1.2. The counterexample (1.6) due to Bahouri, Gérard and Xu in [9] is given by

(1.16) u(t, Y, s) =
∫
R

ei(s+4dt)λe−λ|Y |2g(λ)λddλ

with g in D(]0,∞[). Although u0 does not belong to D(Hd), one can easily check that for
any δ > 0, as soon as |s+ 4dt| > δ|t| then for any integer N there is a positive constant C
depending on N and u0 such that

(1.17) |u(t, w)| ≤ C

|s+ 4dt|N ≤
C

(δ|t|)N ·

On the other hand Estimate (1.17) fails, for any integer N ≥ 1, in the case when s = −4td.
This shows the sharpness of the bound on the constant κ appearing in Theorem 1. More
generally it was established in [6] that for any integer `, denoting by L(d−1)

` the Laguerre
polynomial of order ` and type d− 1 (see for instance [13, 24, 28]), then

u(`)(t, Y, s) =
∫
R

ei(s+4t(2`+d))λe−|λ||Y |2L(d−1)
` (2|λ||Y |2)g(λ)λddλ

is a solution to (SH), and this solution satisfies (1.17) when |s+ 4(2`+ d)t| > δ|t|, and |t|
is large enough.

As in the euclidean case outlined above, the (local) dispersive estimate (1.14) stems
from Young inequalities (1.9) using an explicit formula of the type (1.1) for the Schrödinger
kernel on Hd. However, the study of the kernel St of the Schrödinger operator on Hd is
more involved than in the euclidean case, because on the one hand the Fourier transform
on Hd is an intricate tool and on the other hand St does not enjoy a formulation of
type (1.2) globally on Hd. In fact, as will be seen in Section 4 (see Proposition 4.1), one
can compute St in the sense of distributions, using the Fourier-Heisenberg analysis tools
developed in [5], and also it turns out (see Theorem 4) that St concentrates on quantized
horizontal hyperplanes of Hd. It follows that the explicit formula of the type (1.1) that
we obtain here is only local. More precisely, our result states as follows. Its sharpness is
discussed in Paragraph 1.4.

Theorem 2. The kernel associated with the free Schrödinger equation (SH) reads for
all t 6= 0

(1.18) St(Y, s) = 1
(−4iπt)

Q
2

∫
R

( 2τ
sinh 2τ

)d
exp

(
−τs2t − i

|Y |2τ
2t tanh 2τ

)
dτ ,

provided that |s| < 4d|t|.

Remark 1.3. Theorem 2 highlights the separate roles of the horizontal and vertical vari-
ables of Hd. Note that in [27], D. Müller already emphasized the distinguished role of the
horizontal variable in the study of the Fourier restriction theorem on Hd.

Even though the dispersive estimate (1.14) we establish for the Schrödinger operator
on Hd is only local, we are able to prove that the solutions of the Schrödinger equa-
tion (SH) enjoy locally Strichartz estimates in the spirit of (1.4). More precisely, we have
the following result.

Theorem 3. Under the notations of Theorem 1, given κ <
√

4d and (p, q) belonging to
the admissible set

(1.19) A def=
{

(p, q) / 2
q

+ Q

p
= Q

2 with 2 ≤ p ≤ ∞
}
,

there exists a positive constant C(q, κ) such that, for all u0 ∈ L2(Hd) supported in the
ball BH(w0, R0), for some w0 ∈ Hd, the solution to the Cauchy problem (SH) satisfies the
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following local Strichartz estimate

(1.20) ‖u‖
Lq(]−∞,−CκR2

0]∪[CκR2
0,+∞[;Lp(BH(0,κ

√
|t|))) ≤ C(q, κ)‖u0‖L2(BH(w0,R0)) ,

where Cκ = (
√

4d− κ)−2.

Note that the Strichartz estimate (1.20) is invariant by scaling (through the scal-
ing u(t, w) 7→ u(λ2t, δλw)). Let us underline that there is a duality between the size
of the support of u0 and the time for which the Strichartz estimates holds. Indeed, let-
ting R0 go to zero, we find that for an initial data concentrated around some w0 ∈ Hd, the
Strichartz estimate is almost global in time. Conversely, letting R0 go to infinity, the time
from which (1.20) occurs is close to infinity. Let us also emphasize that the counterex-
amples introduced in Remark 1.2 show somehow the optimality of our result, since for
these counterexamples a global integrability both with respect to t and s independently
is excluded.

1.4. Refined study of the Schrödinger kernel on Hd. Theorem 2 asserts that St,
for t 6= 0, is a decaying smooth function on the strip |s| < 4d|t| (with a decay rate of
order |t|−Q/2). One may wonder if St (t 6= 0) which, according to Proposition 4.1, belongs
to S ′(Hd) can be identified with a function on the horizontal hyperplanes s = ±4d|t|. The
answer to this question is negative as asserted by the following result.

Theorem 4. With the previous notations, for all ±w`
def= (0,±4(2` + d)|t|), where t 6= 0

and ` ∈ N, there exists an initial data u±,`0 ∈ S(Hd) such that u±,`(t, ·) def= U(t)u±,`0 satisfies

(1.21) u±,`(t,±w`) = u±,`0 (0) = 〈δ0, u
±,`
0 〉S′(Hd)×S(Hd) .

Remark 1.4. Actually, the above theorem can be easily generalized to any element of
the horizontal hyperplanes s = ±4(2`+ d)|t|, t 6= 0 and ` ∈ N, namely (Y0,±4(2`+ d)|t|),
where Y0 is some fixed element of T ?Rd. The Cauchy data generating a solution which
concentrates on hyperplanes s = ±4(2`+d)|t| are linked to the counterexamples introduced
in Remark 1.2.

The above result shows the optimality of the bound 4d|t| in Theorem 2. However, we
are able to improve this bound when we restrict (SH) to some subspaces of Cauchy data
as in the next statement.

Theorem 5. There exists an orthogonal decomposition of L2(Hd)

(1.22) L2(Hd) = ⊕m∈NdL
2
m(Hd)

such that the restriction S(`)
t of St to the subspace V`(Hd) def= ⊕|m|≥`L2

m(Hd) is well defined
as soon as |s| < 4(2`+ d)|t|, and satisfies for any positive constant κ <

√
4(d+ 2`),

sup
|s|≤κ2|t|

sup
Y ∈T ∗Rd

1
|t|

Q
2
|S(`)
t (Y, s)| ≤ C(`, κ) .

Remark 1.5. Decomposition (1.22) is strongly tied to the spectral representation of the
sublaplacian −∆H. In order to give a flavor of the above result, let us point out that,
as we shall see in Section 2, the Fourier-Heisenberg transform exchanges −∆H with the
harmonic oscillator. Then in some sense, (1.22) consists in a decomposition of L2(Hd)
along Hermite-type functions, via the Fourier-Heisenberg transform.
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1.5. Main steps of the proof of the main results and layout of the paper. Since
the Schrödinger equation on Hd is invariant under left translations, one can assume without
loss of generality in the proof of Theorem 1 that w0 = 0. By Young inequalities (1.9),
Theorem 1 readily follows from Theorem 2 (reducing the assumption |s| < 4d|t| to the
fact that ρH(w) <

√
4d|t|). To prove Theorem 1, we are thus reduced to establishing

Theorem 2. Roughly speaking the proof of Theorem 2 is achieved in three steps. In
the first step, using the Fourier-Heisenberg analysis on tempered distributions developed
in [5] (see also Section 2.2 in this paper), we establish that the kernel St of the Schrödinger
operator on Hd belongs to S ′(Hd) (Proposition 4.1). It is well-known since the paper of B.
Gaveau [20], that the solution to the heat equation on Hd associated with the sublaplacian
writes for all t > 0

u(t, ·) = 1
t
Q
2
u0 ? (h ◦ δ√t) ,

where δ√t is the dilation operator defined in (1.10) and h is the function in the Schwartz
class S(Hd) given by

(1.23) h(Y, s) def= 1
(4π)

Q
2

∫
R

( 2τ
sinh 2τ

)d
exp

(
i
τs

2 −
|Y |2τ

2 tanh 2τ

)
dτ .

Then the second step is devoted to the proof of the fact that the fundamental solution of
the heat equation on Hd coming from Fourier analysis on Hd coincides with the explicit
formula (1.23) established by B. Gaveau [20] (see Proposition 3.1). This step uses Melher’s
formula, along with the Fourier approach developed in [4, 5]. The last step concludes the
proof following the general method of the euclidean case via complex analysis, described
above (see Section 4.2). It is in this final step that the restriction |s| < 4d|t| appears.

As usual, the proof of the local Strichartz estimates stated in Theorem 3 is straight-
forward from the local dispersive estimate (1.14) thanks to standard functional analysis
arguments.

Finally, the refined study of the Schrödinger kernel on Hd (through Theorems 4 and 5)
is derived by a combination of Fourier-Heisenberg tools and the spectral analysis of the
harmonic oscillator.

Let us describe the organization of the paper. Section 2 is dedicated to a brief description
of the Fourier transform FH on Hd and the space of frequencies Ĥd, as well as the extension
of FH to tempered distributions – which is at the heart of the matter in this paper. In
Section 3, we recover the explicit formula of the heat kernel on Hd established by B.
Gaveau in [20], using Fourier analysis on Hd. In Section 4, we investigate the kernel of the
Schrödinger operator on Hd and prove Theorem 2, while Section 5 is devoted to the proof
of Theorem 1 thanks to Theorem 2. Then, we establish the local Strichartz estimates
(Theorem 3). In Section 6, we undertake a refined study of St and establish Theorems 4
and 5 making use of the Fourier-Heisenberg approach developed in [4, 5].

To avoid heaviness, all along this article C will denote a positive constant which may
vary from line to line. We also use A . B to denote an estimate of the form A ≤ CB.

Acknowledgements. The authors thank Nicolas Lerner and Jacques Faraut very
warmly for their help and input concerning the proof of Theorem 5.

2. Fourier analysis on Hd

2.1. The Fourier transform on Hd. The Fourier transform on Hd is defined using
irreducible unitary representations of Hd. It is thus not a complex-valued function on some
“frequency space” as in the euclidean case, but a family of bounded operators on L2(Rd)
(see for instance [2, 11, 14, 16, 29, 32, 33] for further details). Recently, in [4] and [5] the
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authors introduced an equivalent, intrinsic definition of the Fourier transform on Hd in
terms of functions acting on a frequency set denoted H̃d def= N2d×R \ {0}. More precisely,
denoting the elements of this set by ŵ def= (n,m, λ), the Fourier transform of an integrable
function on Hd is defined in the following way:

(2.1) ∀ŵ ∈ H̃d
, FHf(ŵ) def=

∫
Hd

eisλW(ŵ, Y ) f(Y, s) dY ds ,

with W the Wigner transform of the (renormalized) Hermite functions

(2.2) W(ŵ, Y ) def=
∫
Rd

e2iλ〈η,z〉Hn,λ(y+z)Hm,λ(−y+z) dz , Hm,λ(x) def= |λ|
d
4Hm(|λ|

1
2x) ,

with (Hm)m∈Nd the Hermite orthonormal basis of L2(Rd) given by the eigenfunctions of
the harmonic oscillator:

−(∆− |x|2)Hm = (2|m|+ d)Hm .

We recall that

(2.3) Hm(x) def=
( 1

2|m|m!

) 1
2

d∏
j=1

(
− ∂jH0(x) + xjH0(x)

)mj ,
with H0(x) def= π−

d
4 e−

|x|2
2 , m! def= m1! · · ·md! and |m| def= m1 + · · ·+md.

In [4], the authors show that the completion of the set H̃d for the distance

d̂(ŵ, ŵ′) def=
∣∣λ(n+m)− λ′(n′ +m′)

∣∣
`1(Nd) +

∣∣(n−m)− (n′ −m′)|`1(Nd) + d|λ− λ′|

is the set

Ĥd def= H̃d ∪ Ĥd

0 with Ĥd

0
def= Rd∓ × Zd and Rd∓

def= (R−)d ∪ (R+)d .
In this setting, the classical statements of Fourier analysis hold in a similar way to the
euclidean case. In particular, the inversion and Fourier-Plancherel formulae read:

(2.4) f(w) = 2d−1

πd+1

∫
H̃
d eisλW(ŵ, Y )FHf(ŵ) dŵ

and

(2.5) (FHf |FHg)
L2(H̃

d
)

= πd+1

2d−1 (f |g)L2(Hd) ,

where the measure dŵ is defined in the following way3: for any function θ on H̃d,∫
H̃
d θ(ŵ) dŵ def=

∫
R

∑
(n,m)∈N2d

θ(n,m, λ)|λ|d dλ .

Straightforward computations give
(2.6) FH(−∆Hf)(ŵ) = 4|λ|(2|m|+ d)FH(f)(ŵ) .
According to (2.4)-(2.5), one can easily check that

(2.7) L2(Hd) = ⊕m∈NdL
2
m(Hd) ,

in the following way: any function f ∈ L2(Hd) can be split as

(2.8) f =
∑
m∈Nd

fm with fm(Y, s) = 2d−1

πd+1

∑
n∈Nd

∫
R

eisλW((n,m, λ), Y )FHf(n,m, λ)|λ|d dλ,

3As shown in [5], the measure dŵ can be extended by 0 on Ĥ
d

0.



LOCAL DISPERSIVE AND STRICHARTZ ESTIMATES FOR THE SCHRÖDINGER OPERATOR 9

and
‖f‖2

L2(Hd) =
∑
m∈Nd

‖fm‖2L2(Hd) .

Let us also note that if f and g are two functions of L1(Hd) then for any ŵ = (n,m, λ)
in H̃d

, there holds

(2.9) FH(f ? g)(ŵ) = (FHf · FHg)(ŵ) def=
∑
p∈Nd

FHf(n, p, λ)FHg(p,m, λ) .

As we shall see, the heat and Schrödinger kernels on Hd are radial, in the sense that
they are invariant under the action of the unitary group of T ?Rd. In addition, being
functions of −∆H they are even. In fact, the Fourier transform of radial functions turns
out to be simpler than in the general case: if f is a radial function in L1(Hd), then for
any (n,m, λ) ∈ H̃d,

(2.10) FH(f)(n,m, λ) = FH(f)(n,m, λ)δn,m = FH(f)(|n|, |n|, λ)δn,m ,

with, for all ` ∈ N,

(2.11) FH(f)(`, `, λ) =
(
`+ d− 1

`

)−1 ∫
Hd

e−isλe−|λ||Y |2L(d−1)
` (2|λ||Y |2)f(Y, s) dY ds ,

where L(d−1)
` stands for the Laguerre polynomial4 of order ` and type d− 1.

Obviously the inversion formula writes in that case

(2.12) f(w) = 2d−1

πd+1

∑
`∈N

∫
R

eisλW̃(`, λ, Y )FH(f)(`, `, λ) |λ|d dλ ,

where

(2.13) W̃(`, λ, Y ) def=
∑
n∈Nd
|n|=`

W(n, n, λ, Y ) = e−|λ||Y |2L(d−1)
` (2|λ||Y |2) .

2.2. The Fourier transform on S ′(Hd). The new approach of the Fourier-Heisenberg
transform developed in [4] enabled the authors in [5] to extend FH to S ′(Hd), the set of
tempered distributions: note that since the Schwartz class S(Hd) coincides with S(R2d+1)
then similarly S ′(Hd) is nothing else than S ′(R2d+1). Roughly speaking, the first step to
achieve this extension consists in characterizing S(Ĥd), the range of S(Hd), by FH. It will
be useful to recall in the following that according to [5], the space S(Ĥd) can be equipped
with semi-norms ‖ · ‖

N,S(Ĥ
d
)

and that in particular, for all θ ∈ S(Ĥd) and N ∈ N, there

exists CN such that for all ŵ = (n,m, λ) ∈ H̃d

(2.14) |θ(ŵ)| ≤ CN (1 + 4|λ|(2|m|+ d))−N‖θ‖
N,S(Ĥ

d
)
.

We refer to [5] for the definition of S(Ĥd) and further details. Then the result follows by
duality, as in the euclidean case, once shown that the Fourier transform FH is a bicontin-
uous isomorphism between the spaces S(Hd) and S(Ĥd)5.

4The interested reader can consult for instance [1, 10, 13] and the references therein.
5Note that a first attempt in the description of the range of S(Hd) by the Fourier-Heisenberg transform

goes back to the pioneering works by D. Geller in [21, 22], where asymptotic series are used. One can also
consult the paper of F. Astengo, B. Di Blasio and F. Ricci [2].
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The map FH can thus be continuously extended from S ′(Hd) into S ′(Ĥd) in the following
way:

(2.15) FH :

 S ′(H
d) −→ S ′(Ĥd)

T 7−→
[
θ 7→ 〈FHT, θ〉S′(Hd)×S(Hd) = 〈T, tFHθ〉S′(Hd)×S(Hd)

]
,

where, according to (2.4),

(2.16) tFHθ(y, η, s)
def= πd+1

2d−1 (F−1
H θ)(y,−η,−s) .

In particular one can compute the Fourier transform of the Dirac mass:
FH(δ0) = 1{(n,m,λ) / n=m} ,

that is to say, for any θ in S(Ĥd)

(2.17) 〈FH(δ0), θ〉
S′(Ĥ

d
)×S(Ĥ

d
)

=
∑
n∈Nd

∫
R
θ(n, n, λ)|λ|ddλ .

It will be useful later on to notice that S ′(Ĥd) contains (after suitable identification)
all functions with moderate growth, that are defined as the locally integrable functions θ
on Ĥd such that for some large enough integer N, the map

(2.18) (n,m, λ) 7−→
(
1 + |λ|(n+m|+ d) + |n−m|

)−N
θ(n,m, λ)

belongs to L∞(H̃d). It is proved in [5] that any such function can be identified with a
tempered distribution on Ĥd

.

Let us end this introduction on Fourier analysis on the Heisenberg group by recalling
that if T is a tempered distribution on Hd, then for all f in S(Hd) and all w in Hd,

(T ? f)(w) = 〈T, f̌ ◦ τw−1〉S′(Hd)×S(Hd) ,

and
(2.19) (f ? T )(w) = 〈T, f̌ ◦ τ r

w〉S′(Hd)×S(Hd) ,

where

(2.20) f̌(w) def= f(w−1) ,
and τw denotes the left translation operator by w defined in (1.13) while τ r

w is the right
translation operator by w defined by

(2.21) τ r
w(w′) def= w′ · w .

3. On the kernel of the heat operator on Hd

A striking consequence of Fourier analysis on Hd developed in [5] is that it provides
another proof of the fact that the fundamental solution of the heat equation on Hd coin-
cides with the explicit formula established by B. Gaveau in [20]. First note the following
representation coming from Fourier-Heisenberg analysis.

Proposition 3.1. If u denotes the solution to the free heat equation on Hd

(HH)
{
∂tu−∆Hu = 0

u|t=0 = u0 ,

where u0 is a given integrable function on Hd, then for all t > 0 there holds
u(t, ·) = u0 ? ht ,
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where ht is defined by

ht(Y, s)
def= 2d−1

πd+1

∑
n∈Nd

∫
R

eisλW
(
(n, n, λ), Y

)
e−4t|λ|(2|n|+d)|λ|ddλ .

Proof. Applying FH to the heat equation and taking advantage of (2.6), we get for
all (n,m, λ) in H̃d

,
d ûH
dt

(t, n,m, λ) = −4|λ|(2|m|+ d)ûH(t, n,m, λ)
ûH|t=0 = FHu0 .

By time integration, this implies that for all (n,m, λ) in H̃d
,

(3.1) ûH(t, n,m, λ) = e−4t|λ|(2|m|+d)FHu0(n,m, λ) .

According to (2.9), we deduce that

ûH(t, n,m, λ) = (FHu0 · θt)(n,m, λ) with θt(n,m, λ) def= e−4t|λ|(2|n|+d)δn,m ,

where δn,m denotes the Kronecker symbol, which implies that

u(t, ·) = u0 ? ht with (FHht)(n,m, λ) def= e−4t|λ|(2|n|+d)δn,m .

This concludes the proof of the proposition thanks to the inversion formula (2.4). �

Remark 3.2. Performing the change of variable tλ 7→ λ in the heat kernel given by
Proposition 3.1 readily implies that for all t > 0

ht(Y, s) = 1
t
Q
2
h

(
Y√
t
,
s

t

)
,

with

(3.2) h(Y, s) def= 2d−1

πd+1

∑
m∈Nd

∫
R

eisλW
(
(n, n, λ), Y

)
e−4|λ|(2|m|+d)δn,m|λ|ddλ .

The following remarkable result due to B. Gaveau ([20]) asserts that the heat operator
on Hd has a convolution kernel in S(Hd).

Theorem 6 ([20]). There exists a function h in S(Hd) such that for any u0 ∈ L1(Hd),
the solution to (HH) writes for all t > 0

u(t, ·) = u0 ? ht ,

where ht is defined by

(3.3) ht(Y, s) = 1
t
Q
2
h

(
Y√
t
,
s

t

)
and the function h is given by the formula

(3.4) h(Y, s) def= 1
(4π)

Q
2

∫
R

( 2τ
sinh 2τ

)d
exp

(
i
τs

2 −
|Y |2τ

2 tanh 2τ

)
dτ .

Proof. Our purpose here is to establish that the formula coming from Fourier analysis
given by (3.2), namely

h(y, η, s) = 2d−1

πd+1

∑
m∈Nd

∫
R×Rd

eisλ+2iλ〈η,z〉e−4|λ|(2|m|+d)Hm,λ(y + z)Hm,λ(−y + z) dz|λ|ddλ
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coincides with the explicit expression of the heat kernel (3.4) given by Theorem 6. The
proof relies on Melher’s formula (see [17])

(3.5)
∑
m∈N

Pm(x)Pm(x̃) rm = 1√
1− r2

exp
(2xx̃r − (x2 + x̃2)r2

1− r2

)
,

that holds true for all x, x̃ in R and r in ]−1, 1[, where Pm denotes the Hermite polynomial
of order m defined by

Pm(x) def= π
1
4Hm(x)e

|x|2
2 ,

with Hm the Hermite function introduced in (2.3).

To this end, we shall use the following lemma.

Lemma 3.3. Under the above notations, there holds for all (y, z) ∈ R2 and all positive
real numbers λ and t,∑
m∈N

e−2mtλHm,λ(z− y)Hm,λ(z+ y) = 1
π

1
2

( λ

1− e−4tλ

) 1
2 exp

(
−λz2 tanh(tλ)− λy2

tanh(tλ)
)
.

Proof. Applying the Mehler formula (3.5) to the rescaled Hermite functions (2.3) yields∑
m∈N

e−2tmλHm,λ(z − y)Hm,λ(z + y) = 1
π

1
2

e−λ(z2+y2)
( λ

1− e−4tλ

) 1
2

× exp
( 1

1− e−4tλ

(
2λ(z2 − y2)e−2tλ − 2λ(z2 + y2)e−4tλ

))
.

The result follows from the following identities:

−λ(z2 + y2) + 1
1− e−4tλ

(
2λ(z2 − y2)e−2tλ − 2λ(z2 + y2)e−4tλ

)
= − λ

1− e−4tλ
(
z2(1− e−2tλ)2 + y2(1 + e−2tλ)2) ,

(1− e−2tλ)2

1− e−4tλ = (etλ − e−tλ)2

e2tλ − e−2tλ = etλ − e−tλ

etλ + e−tλ = tanh(tλ) ,

and
(1 + e−2tλ)2

1− e−4tλ = (etλ + e−tλ)2

e2tλ − e−2tλ = etλ + e−tλ

etλ − e−tλ = 1
tanh(tλ) ·

The lemma is proved. �

Let us return to the proof of Theorem 6. In order to establish that the two formulae (3.2)
and (3.4) coincide, it suffices to consider the case when d = 1: (3.2) becomes

(3.6) h(y, η, s) = 1
π2

∑
m∈N

∫
R2

eisλ+2iληze−4|λ|(2m+1)Hm,λ(y + z)Hm,λ(−y + z) dz|λ|dλ .

Then applying Lemma 3.3 with t = 4|λ|, we find that

h(y, η, s) = 1
π

5
2

∫
R2

eisλ+2iληz−4|λ|
( |λ|

1− e−16|λ|

) 1
2

× exp
(
−|λ|z2 tanh(4|λ|)− |λ|y2

tanh(4|λ|)

)
|λ|dλdz .

Performing the change of variables |λ|
1
2 z 7→ z, this gives rise to

h(y, η, s) = 1
π

5
2

∫
R

eisλ−4|λ|− |λ|y2
tanh(4|λ|)F

(
e− tanh(4|λ|) |·|2)(2|λ| 12 η) ( |λ|

1− e−16|λ|

) 1
2 |λ|

1
2dλ .
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Since
F
(
e− tanh(4|λ|) |·|2)(2|λ| 12 η) =

√
π

tanh(4|λ|) e−
|λ|η2

tanh(4|λ|) ,

we discover that

h(y, η, s) = 1
π2

∫
R

eisλ−4|λ|− |λ|(y
2+η2)

tanh(4|λ|)
(

tanh(4|λ|)(1− e−16|λ|)
)− 1

2 |λ| dλ .

But
tanh(4|λ|)(1− e−16|λ|) = 4 e−8|λ| sinh2(4|λ|) ,

which ends the proof of Theorem 6. �

4. On the kernel of the Schrödinger operator on Hd

4.1. Representation of the free Schrödinger equation. Contrary to the heat equa-
tion (and as in the euclidean case recalled in the introduction), the kernel of the Schrödinger
operator does not belong to the Schwartz class S(Hd). Nevertheless, one can solve explic-
itly the Schrödinger equation (SH) by means of the Fourier-Heisenberg transform intro-
duced in Section 2, in the following way.

Proposition 4.1. The solution to the free Schrödinger equation

(SH)
{
i∂tu−∆Hu = 0
u|t=0 = u0 ,

reads for all t 6= 0 and all u0 ∈ S(Hd)
(4.1) u(t, ·) = u0 ? St ,

where St denotes the tempered distribution on Hd defined for all ϕ in S(Hd) by

〈St, ϕ〉S′(Hd)×S(Hd) = 〈e4it|λ|(2|n|+d)δn,m, θ〉S′(Ĥd)×S(Ĥ
d
)
,

with ϕ = tFHθ, according to Notation (2.16).

Proof. Arguing as for the proof of Proposition 3.1, we start by applying FH to (SH), which
thanks to (2.6) implies that i

d ûH
dt

(t, n,m, λ) = −4|λ|(2|m|+ d)ûH(t, n,m, λ)
ûH|t=0 = FHu0 ,

and leads by integration to
(4.2) ûH(t, n,m, λ) = e4it|λ|(2|m|+d)FHu0(n,m, λ) ,

for all (n,m, λ) in H̃d. Then taking advantage of (2.9), we find that

ûH(t, n,m, λ) = (FHu0 ·Θt)(n,m, λ) with Θt(n,m, λ) def= e4it|λ|(2|n|+d)δn,m .

One can easily check that Θt is a function with moderate growth in the sense of (2.18),
and thus as it was proved in [5], it is a tempered distribution on Ĥd. This ensures that
the Schrödinger kernel St belongs to S ′(Hd).

Finally combining (2.16) together with (2.19), we readily gather that for all u0 in S(Hd)
and all w in Hd,

(4.3)
(u0 ? St)(w) = 〈St, ǔ0 ◦ τ r

w〉S′(Hd)×S(Hd) = 〈e4it|λ|(2|n|+d)δn,m, θ〉S′(Ĥd)×S(Ĥ
d
)

=
∑
n∈Nd

∫
R

e4it|λ|(2|n|+d)θ(n, n, λ)|λ|ddλ ,

where ǔ0 ◦ τ r
w = tFHθ, which completes the proof of the proposition. �
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4.2. Computation of the Schrödinger kernel on Heisenberg strips. Our goal now
is to establish Theorem 2. As already mentioned, the proof of Formula (1.18) goes along
the same lines as the euclidean proof, though more involved. Thanks to Theorem 6, the
solution to the heat equation (HH) writes

f(t, ·) = f0 ? ht ,

where ht is given for all t > 0 by

ht(Y, s) = 1
(4πt)

Q
2

∫
R

( 2τ
sinh 2τ

)d
exp

(
i
τs

2t −
|Y |2τ

2t tanh 2τ

)
dτ

= 2d−1

πd+1

∑
m∈Nd

∫
R

eisλe−4t|λ|(2|m|+d)W
(
(m,m, λ), Y

)
|λ|ddλ .

To achieve our goal, the first step consists in observing that the maps
z 7−→ H1

z (Y, s) and z 7−→ H2
z (Y, s)

with

(4.4) H1
z (Y, s) def= 2d−1

πd+1

∑
m∈Nd

∫
R

eisλe−4z|λ|(2|m|+d)W
(
(m,m, λ), Y

)
|λ|ddλ

and

(4.5) H2
z (Y, s) def= 1

(4πz)
Q
2

∫
R

( 2τ
sinh 2τ

)d
exp

(
i
τs

2z −
|Y |2τ

2z tanh 2τ

)
dτ

are, for all (Y, s) in Hd, holomorphic on a suitable domain of C.

Actually on the one hand, performing the change of variables β = λ(2|m| + d) in each
integral of the right-hand side of (4.4), we get

H1
z (Y, s) = 2d−1

πd+1

∑
m∈Nd

1
(2|m|+ d)d+1

∫
R

eis
β

2|m|+d e−4z|β|W
((
m,m,

β

2|m|+ d

)
, Y
)
|β|ddβ ,

where obviously in each term of the above identity the integrated function is holomorphic
on C. Moreover, using the fact that the modulus of the Wigner transform of the Hermite
functions is bounded by 1, we obtain for all z in C satisfying Re(z) ≥ a > 0∫

R

∣∣∣eis β
2|m|+d e−4z|β|W

((
m,m,

β

2|m|+ d

)
, Y
)∣∣∣ |β|ddβ ≤ ∫

R
e−4a|β||β|ddβ <∞ and∫

R

∣∣∣∂z(eis
β

2|m|+d e−4z|β|W
((
m,m,

β

2|m|+ d

)
, Y
))∣∣∣ |β|ddβ ≤ 4

∫
R

e−4a|β||β|d+1dβ <∞ ,

which by Lebesgue’s derivation theorem ensures that the map z 7−→ H1
z is holomorphic

on the domain D
def=
{
z ∈ C,Re(z) > 0

}
.

On the other hand, we have by definition for all z in C∗

H2
z (Y, s) = 1

(4πz)
Q
2

∫
R

( 2τ
sinh 2τ

)d
exp

(
i
τs

2z −
|Y |2τ

2z tanh 2τ

)
dτ ,

where of course the integrated function is holomorphic on C∗. Now our aim is to apply
Lebesgue’s derivation theorem to establish that H2

z (Y, s) is holomorphic on some domain
of C.

Writing
|Y |2τ

2z tanh 2τ = |Y |2τ
2|z|2 tanh 2τ z
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and setting z = |z|eiarg(z), we readily gather that

(4.6)
∣∣∣∣exp

(
− |Y |2τ

2z tanh 2τ

)∣∣∣∣ = exp
( −|Y |2τ

2|z| tanh 2τ cos(arg(z))
)

and

(4.7)
∣∣∣∣∂z exp

(
− |Y |2|τ |

2z tanh 2τ

)∣∣∣∣ = |Y |2τ
2|z|2 tanh 2τ exp

( −|Y |2τ
2|z| tanh 2τ cos(arg(z))

)
·

Along the same lines, one can easily check that∣∣∣∣exp
(
iτs

2z

)∣∣∣∣ = exp
(
τs

2|z| sin(arg(z))
)

,

and ∣∣∣∣∂z exp
(
iτs

2z

)∣∣∣∣ = |τ ||s|2|z|2 exp
(
τs

2|z| sin(arg(z))
)
·

We infer that for all τ ∈ R, w = (Y, s) ∈ Hd and all z in C satisfying Re(z) ≥ a > 0,

(4.8)
∣∣∣∣exp

(
i
τs

2z −
|Y |2τ

2z tanh 2τ

)∣∣∣∣ ≤ exp
( |τ ||s|

2|z|

)
and

(4.9)
∣∣∣∣∂z(exp

(
i
τs

2z −
|Y |2τ

2z tanh 2τ

))∣∣∣∣ ≤ exp
( |τ ||s|

2|z|

)(1
a

+ |τ ||s|2|z|2
)
.

Fix 0 < C < 4d, then combining Formula (4.5) together with the Lebesgue derivation
theorem, we deduce that the map z 7−→ H2

z is holomorphic on

(4.10) D̃|s|
def=
{
z ∈ D, |z| > |s|

C

}
·

Since by B. Gaveau’s result (see Section 3), the maps H1
z and H2

z coincide on the
intersection of the real line with D̃|s|, we conclude that they also coincide on the whole
domain D̃|s|.

Consider now (zp)p∈N a sequence of elements of D̃|s| which converges to −it, with t ∈ R∗,
and let us investigate lim

p→∞
〈H1

zp ,ϕ〉S′(Hd)×S(Hd) and lim
p→∞
〈H2

zp ,ϕ〉S′(Hd)×S(Hd), for ϕ in S(Hd).

Let us start with lim
p→∞
〈H1

zp ,ϕ〉S′(Hd)×S(Hd). By (2.15), there holds

(4.11) 〈H1
zp ,ϕ〉S′(Hd)×S(Hd) = 〈FHH

1
zp ,θ〉S′(Ĥd)×S(Ĥ

d
)
,

with ϕ(y, η, s) = cd(F−1
H θ)(y,−η,−s), for some constant cd.

But according to (4.4),

〈FHH
1
zp , θ〉S′(Ĥd)×S(Ĥ

d
)

=
∫
H̃
d e−4zp|λ|(2|m|+d)δn,mθ(ŵ)dŵ

=
∑
m∈Nd

∫
R

e−4zp|λ|(2|m|+d)θ(m,m, λ)|λ|ddλ .

Besides since θ belongs to S(Ĥd), it stems from (2.14) that for any integer N there ex-
ists CN such that for all ŵ = (m,m, λ) ∈ H̃d

|θ(ŵ)| ≤ CN (1 + 4|λ|(2|m|+ d))−N‖θ‖
N,S(Ĥ

d
)
.
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Then performing the change of variables β = λ(2|m|+d) in each integral of the right-hand
side of the above identity and choosing N ≥ d+ 2, we get∑

m∈Nd

∫
R

∣∣e−4zp|λ|(2|m|+d) θ(m,m, λ)
∣∣ |λ|ddλ

≤ CN‖θ‖
N,S(Ĥ

d
)

∑
m∈Nd

1
(2|m|+ d)d+1

∫
R

(1 + 4|β|)−N |β|ddβ <∞ .

Applying Lebesgue’s dominated convergence theorem, we infer that6

(4.12) lim
p→∞
〈H1

zp ,ϕ〉S′(Hd)×S(Hd) = 〈H1
−it,ϕ〉S′(Hd)×S(Hd) = 〈St,ϕ〉S′(Hd)×S(Hd) .

In order to deal with H2
zp , recall that by definition

H2
zp(Y, s) = 1

(4πzp)
Q
2

∫
R

( 2τ
sinh 2τ

)d
exp

(
i
τs

2zp
− |Y |2τ

2zp tanh 2τ

)
dτ .

By hypothesis, (zp)p∈N is a sequence of D satisfying |zp| >
|s|
C

, with 0 < C < 4d, and this
implies that∫

R

∣∣∣( 2τ
sinh 2τ

)d
exp

(
i
τs

2zp
− |Y |2τ

2zp tanh 2τ
)∣∣∣dτ ≤ ∫

R

( 2τ
sinh 2τ

)d
exp

(C|τ |
2
)
dτ <∞ .

We deduce that for all w = (Y, s) satisfying |s| < 4d|t|, there holds

lim
p→∞

H2
zp(Y, s) = H2

−it(Y, s) = 1
(−4iπt)

Q
2

∫
R

( 2τ
sinh 2τ

)d
exp

(
− τs

2t − i
|Y |2τ

2t tanh 2τ
)
dτ ,

which of course ensures that, for all ϕ in S(Hd), we have
lim
p→∞
〈H2

zp ,ϕ〉S′(Hd)×S(Hd) = 〈H2
−it,ϕ〉S′(Hd)×S(Hd) .

This ends the proof of Theorem 2. �

5. Proof of the local dispersive and Strichartz estimates

5.1. Proof of Theorem 1. Since the linear Schrödinger equation on Hd is invariant by left
translation, it suffices to prove the result for w0 = 0. Let u0 be a function in D(BH(0, R0)).
Then invoking Theorem 2, we infer that the solution to the Cauchy problem (SH) assumes
the form
(5.1) u(t, ·) = u0 ? St ,

where

(5.2) St(Y, s) = 1
(−4iπt)

Q
2

∫
R

( 2τ
sinh 2τ

)d
exp

(
−τs2t − i

|Y |2τ
2t tanh 2τ

)
dτ

on any Heisenberg ball BH(0, κ
√
|t|), with κ <

√
4d, since

ρH(w) ≤ κ
√
|t| =⇒ |s| ≤ κ2|t| < 4d|t| .

Note that

(5.3) ‖St‖L∞(BH(0,κ
√
|t|)) ≤

1
(4π|t|)

Q
2

∫
R

( 2τ
sinh 2τ

)d
exp

(κ2|τ |
2
)
dτ

def= Mκ

|t|
Q
2
·

But by definition of the convolution product on Hd, we have
6Let us underline that Formula (4.11) holds true for any sequence (zp)p∈N of D which converges to −it,

with t ∈ R∗.
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(5.4) (u0 ? St)(w) =
∫
Hd
u0(v)St(v−1 · w) dv .

Thanks to the triangle inequality, we have for any w in BH(0, κ
√
|t|) and any v in BH(0, R0)

ρ(v−1 · w) = dH(w, v) ≤ ρ(w) + ρ(v) ≤ κ
√
|t|+R0 <

√
4d|t| ,

provided that
|t| > Tκ,R0 =

( R0√
4d− κ

)2,

which by Young’s inequality completes the proof of Estimate (1.14) in the case p =∞.
Furthermore by the conservation of the mass there holds

‖u(t, ·)‖
L2(BH(0,κ

√
|t|)) ≤ ‖u(t, ·)‖L2(Hd) = ‖u0‖L2(Hd).

So resorting to a real interpolation argument, we get for all 2 ≤ p ≤ ∞ and any |t| ≥ TR0,κ

‖u(t, ·)‖
Lp(BH(0,κ

√
|t|)) ≤

(
Mκ

|t|
Q
2

)1− 2
p

‖u0‖Lp′ (Hd) ,

where p′ denotes the conjugate exponent of p. This ends the proof of the result. �

5.2. Proof of Theorem 3. As already mentioned, the Strichartz estimates are straight-
forward from the dispersive estimates. Actually, Theorem 3 readily follows from the mass
conservation and the following proposition, which can be seen as a corollary of Theorem 1.

Proposition 5.1. Under the assumptions of Theorem 1, the solution to the Cauchy
problem (SH) associated to u0 satisfies, for all 2 ≤ p ≤ ∞ and all q such that 1

q
+ Q

p
<
Q

2
,

‖u‖
Lq(]−∞,−CκR2

0]∪[CκR2
0,∞[;Lp(BH(w0,κ

√
|t|))) ≤ C(q, κ)R

−Q( 1
2−

1
p

)+ 2
q

0 ‖u0‖L2(Hd) .

Proof. Since u0 is in supported in BH(w0, R0), combining the Hölder inequality with (1.14),
we infer that, for all 2 ≤ p ≤ ∞,

(5.5) ‖u(t, ·)‖
Lp(BH(w0,κ

√
|t|)) ≤ C(κ)R

Q( 1
2−

1
p

)
0

|t|
Q
2 −

Q
p

‖u0‖L2(Hd) ,

for all |t| ≥ Tκ,R0 . The proposition follows after time integration, and Theorem 3 is a
direct consequence. �

6. Concentration properties of the Schrödinger kernel on Hd

6.1. Proof of Theorem 4. The proof relies on Fourier-Heisenberg analysis recalled in
Section 2.1.

Denote wt = (0,−4dt). Then, making use of Formula (4.3) and recalling that St is even,
we get, for any u0 ∈ S(Hd),

(6.1) (u0 ? St)(wt) = 〈St, u0 ◦ τw−1
t
〉S′(Hd)×S(Hd) =

∑
n∈Nd

∫
R

e4it|λ|(2|n|+d)θt(n, n, λ)|λ|ddλ ,

where τw−1
t

is the left translation operator by w−1
t defined by (1.13) and

(6.2) tFHθt(y, η, s) = πd+1

2d−1 (F−1
H θt)(y,−η,−s) = u0 ◦ τw−1

t
.

Notice that, for all f ∈ L1(Hd) and all g0 = (0, s0), we have
FH(f ◦ τg−1

0
)(n,m, λ) = e−is0λ(FHf)(n,m, λ) .
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It then follows that

FH(u0 ◦ τw−1
t

)(n,m, λ) = e4idtλFH(u0)(n,m, λ) .

Combining (2.1)-(2.2) together with (6.2), we deduce that

θt(n,m, λ) = 2d−1

πd+1 e−4idtλFH(u0)(m,n,−λ) .

Consequently, we have

(u0 ? St)(wt) = 2d−1

πd+1

∑
n∈Nd

∫
R

e4idtλe4it|λ|(2|n|+d)FH(u0)(n, n, λ)|λ|ddλ .

In particular, if we consider u0 so that

FH(u0)(n, n, λ) = FH(u0)(n, n, λ)δn,01λ<0 ,

we obtain, thanks to (2.17),

(u0 ? St)(wt) = 〈δ0, u0〉S′(Hd)×S(Hd) .

Theorem 4 follows. �

6.2. Proof of Theorem 5. Let ` ≥ 1 be a fixed integer. We revisit the proof of Theo-
rem 2: recall that the restriction over s comes from the fact that the function H2

z (Y, s)
given by (4.5) is holomorphic only on the set |z| > |s|/(4d). Now let us define

V`(Hd) def= ⊕|m|≥`L2
m(Hd)

where L2
m is defined in (2.7)-(2.8). In the case when the Cauchy data u0 belongs to the

set S(Hd) ∩ V`(Hd), our goal is to write

u(t) = u0 ? S
(`)
t

where S(`)
t is a tempered distribution obtained, for |s| < 4(2`+d)|t|, by the same complex

analysis argument as in the proof of Theorem 2, where the function to be analyzed, arising
from the heat equation, is now

h
(`)
t (Y, s) def= 2d−1

πd+1

∑
|m|≥`

∫
R×Rd

eisλ+2iλ〈η,z〉e−4|λ|(2|m|+d)tHm,λ(y+ z)Hm,λ(−y+ z) dz|λ|ddλ .

According to Gaveau’s resulted recalled in Theorem 6, the function h
(`)
t also reads

h
(`)
t (Y, s) = 1

(4πt)
Q
2

∫
R

( 2τ
sinh 2τ

)d
ei
τs
2t−

|Y |2τ
2t tanh 2τ dτ

− 2d−1

πd+1

∑
|m|≤`−1

∫
R×Rd

eisλ+2iλ〈η,z〉e−4|λ|(2|m|+d)tHm,λ(y + z)Hm,λ(−y + z) dz|λ|ddλ .

But in view of (2.13), we have, for any integer k,

2d−1

πd+1

∑
|m|=k

∫
R×Rd

eisλ+2iλ〈η,z〉e−4|λ|(2|m|+d)tHm,λ(y + z)Hm,λ(−y + z) dz|λ|ddλ

= 2d−1

πd+1

∫
R

eisλe−4|λ|(2k+d)te−|λ||Y |2L(d−1)
k (2|λ||Y |2)|λ|ddλ ,
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where L(d−1)
k denotes the Laguerre polynomial of order k and type d−1. Then, performing

the change of variables λ = τ

2t
, we readily gather that

h
(`)
t (Y, s) = 1

(4πt)
Q
2

∫
R

( 2τ
sinh 2τ

)d
ei
τs
2t−

|Y |2τ
2t tanh 2τ dτ

− 1
(4πt)

Q
2

∑
k≤`−1

∫
R

(
4|τ |

)de−2|τ |(2k+d)L
(d−1)
k

( |Y |2|τ |
t

)
ei
τs
2t−

|Y |2|τ |
2t dτ .

Returning again to the strategy of the proof of Theorem 2, our first aim is therefore to
prove that the maps

z 7−→ H(`),1
z (Y, s) and z 7−→ H(`),2

z (Y, s)
with

H(`),1
z (Y, s) def= 2d−1

πd+1

∑
|m|≥`

∫
R

eisλe−4z|λ|(2|m|+d)W
(
(m,m, λ), Y

)
|λ|ddλ

and

(6.3)

H(`),2
z (Y, s) def= 1

(4πz)
Q
2

∫
R

(2|τ |)dei
τs
2z

( 1
(sinh 2|τ |)d e−

|Y |2τ
2z tanh 2τ

−
∑

k≤`−1
2de−2|τ |(2k+d)L

(d−1)
k

( |Y |2|τ |
z

)
e−
|Y |2|τ |

2z

)
dτ

are, for all (Y, s) in Hd, holomorphic on a suitable domain of C∗. The same reasoning as
in the proof of Theorem 2 enables to check that the function H(`),1

z is holomorphic on the
domain D =

{
z ∈ C,Re(z) > 0

}
so now we concentrate on H

(`),2
z .

We shall prove that the function H
(`),2
z is holomorphic on the domain

(6.4) D̃`
|s|

def=
{
z ∈ D, |z| > |s|

4(2`+ d)
}
·

Let us start by re-writing (6.3) in the following form:

(6.5)

H(`),2
z (Y, s) = 1

(4πz)
Q
2

∫
R

(4|τ |)dei
τs
2z−2|τ |d Φ`

( |Y |2|τ |
z

, e−4|τ |
)
dτ , with

Φ`(x, r)
def= e−

x
2
( e−

rx
1−r

(1− r)d −
∑

k≤`−1
rkL

(d−1)
k (x)

)
.

From now on we set7

(6.6) x
def= |Y |2|τ |

z
, r

def= e−4|τ | .

Recalling that the generating function for the Laguerre polynomials is given by (see for
instance [1, 13, 14, 24, 26, 28])

(6.7)
∑
k≥0

rkL
(d−1)
k (x) = e−

rx
1−r

(1− r)d
, |r| < 1 ,

we notice that the e
x
2 Φ`(x, r) is nothing else than the remainder of the Taylor expansion

of the function f(x, r) def= e−
rx

1−r

(1− r)d at order ` − 1, near r = 0. We shall therefore argue

7It will be useful to point out that |x| = |Y |
2|τ |
|z| and Re(x) = |Y |

2|τ |
|z| cos(arg(z)).
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differently depending on whether r is close to 1 or not. So let us fix τ0 > 0, and start
by analyzing the case when |τ | ≥ τ0, since this implies that r ≤ r0

def= e−4τ0 < 1. The
case |τ | ≤ τ0 will be dealt with further down. Considering

(6.8) H(`),2
z,τ0 (Y, s) def= 1

(4πz)
Q
2

∫
|τ |≥τ0

(4|τ |)dei
τs
2z−2|τ |d Φ`

( |Y |2|τ |
z

, e−4|τ |
)
dτ ,

we are thus reduced to investigating, for |τ | ≥ τ0, the function

(6.9)
(
4|τ |

)de−2|τ |dei
τs
2z Φ`

( |Y |2|τ |
z

, e−4|τ |
)

and its derivative with respect to z. We shall actually restrict z to the domain

D`
|s|,a,A

def=
{
z ∈ C , |z| > |s|

κ(2`+ d)
}
∩ Ωa,A , with

Ωa,A
def=
{
z ∈ C,Re(z) > a , |z| ≤ A

}
,

where 0 < κ < 4 and a,A > 0 are arbitrary fixed constants.

Recalling f(x, r) def= e−
rx

1−r

(1− r)d and applying Taylor’s formula, it readily follows from (6.7)
that

Φ`(x, r) = e−
x
2

r`

(`− 1)!

∫ 1

0
(1− s)`−1(∂`rf)(x, rs) ds .

After some computations we infer that there is a positive constant C(`, τ0) such that, for
all r ≤ r0 = e−4τ0 , we have

(6.10)
∣∣Φ`(x, r)

∣∣ ≤ C(`, τ0) r` e−
Re(x)

2 (1 + |x|)` and∣∣∂xΦ`(x, r)
∣∣ ≤ C(`, τ0) r` e−

Re(x)
2 (1 + |x|)` .

Observing that

(6.11)
∣∣e− |Y |2|τ |2z

∣∣ = e−
|Y |2|τ |

2|z| cos(arg(z))
,

with inf
z∈Ωa,A

cos(arg(z)) ≥ α(a,A) > 0, we deduce that there is a positive constant C(`, τ0, a, A)

such that, for all (Y, s) in Hd, z ∈ D`
|s|,a,A and |τ | ≥ τ0, there holds∣∣∣(4|τ |)dei τs2z−2|τ |dΦ`

( |Y |2|τ |
z

, e−4|τ |
)∣∣∣ ≤ C(`, τ0, a, A)|τ |d e

−(4−κ)(2`+d)|τ |
2

and similarly∣∣∣∂z(4|τ |)dei
τs
2z−2|τ |dΦ`

( |Y |2|τ |
z

, e−4|τ |
)∣∣∣ ≤ C(`, τ0, a, A)|τ |d e

−(4−κ)(2`+d)|τ |
2 .

This readily ensures that the function H
(`),2
z,τ0 is holomorphic on the domain D̃`

|s| defined
in (6.4).

To deal with H
(`),2
z −H(`),2

z,τ0 , let us first observe that according to (6.3), we have

H(`),2
z,τ0 (Y, s) = 1

(4πz)
Q
2

∫
|τ |≤τ0

(2|τ |)dei
τs
2z

( 1
(sinh 2|τ |)d e−

|Y |2τ
2z tanh 2τ

−
∑

k≤`−1
2de−2|τ |(2k+d)L

(d−1)
k

( |Y |2|τ |
z

)
e−
|Y |2|τ |

2z

)
dτ ·
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Then invoking (6.11), we infer that for any integer ` and all positive real numbers a and A,
there exists a positive constant C(`, a,A) such that

sup
z∈Ωa,A
k≤`−1

∣∣∣L(d−1)
k

( |Y |2|τ |
z

)
e−
|Y |2|τ |

2z

∣∣∣ ≤ C(`, a,A) and

sup
z∈Ωa,A
k≤`−1

∣∣∣ d
dz

(
L

(d−1)
k

( |Y |2|τ |
z

)
e−
|Y |2|τ |

2z
)∣∣∣ ≤ C(`, a,A) .

We deduce that for all (Y, s) in Hd, z ∈ D`
|s|,a,A and |τ | ≤ τ0, there holds

(6.12)
∣∣∣∣ ∑
k≤`−1

(
4|τ |

)de−2|τ |(2k+d)L
(d−1)
k

( |Y |2|τ |
z

)
ei
τs
2z−

|Y |2|τ |
2z

∣∣∣∣ ≤ C(`, a,A) τd0 e
τ0κ(2`+d)

2

and

(6.13)

∣∣∣∣∂z( ∑
k≤`−1

(
4|τ |

)de−2|τ |(2k+d)L
(d−1)
k

( |Y |2|τ |
z

)
ei
τs
2z−

|Y |2|τ |
2z

)∣∣∣∣
≤ C(`, a,A)e

τ0κ(2`+d)
2

(
1 + τ0κ(2`+ d)

2
)
·

This obviously implies that the function
1

(4πz)
Q
2

∑
k≤`−1

∫
|τ |≤τ0

(4|τ |)dei
τs
2z e−2|τ |(2k+d)L

(d−1)
k

( |Y |2|τ |
z

)
e−
|Y |2|τ |

2z dτ

is holomorphic on the domain D`
|s|,a,A. The part

1
(4πz)

Q
2

∫
|τ |≤τ0

( 2τ
sinh 2τ

)d
ei
τs
2z e−

|Y |2τ
2z tanh 2τ

can be easily dealt, which achieves the proof of the fact that the function H
(`),2
z is holo-

morphic on D̃`
|s|.

Finally, let (zp)p∈N be a sequence in D̃`
|s| which converges to −it, with t ∈ R∗. Then

arguing as in the proof of Theorem 2, one can readily gather that for any function ϕ
in S(Hd) ∩ V`(Hd), we have

lim
p→∞
〈H(`),1

zp ,ϕ〉S′(Hd)×S(Hd) = 〈H(`),1
−it ,ϕ〉S′(Hd)×S(Hd)

= 〈S(`)
t ,ϕ〉S′(Hd)×S(Hd) = 〈St,ϕ〉S′(Hd)×S(Hd) .

To show that
lim
p→∞
〈H(`),2

zp ,ϕ〉S′(Hd)×S(Hd) = 〈H(`),2
−it ,ϕ〉S′(Hd)×S(Hd) ,

we shall as above investigate separately H
(`),2
z,τ0 and H

(`),2
z − H

(`),2
z,τ0 . Let (zp)p∈N be a

sequence in D̃`
|s| which converges to −it, with t ∈ R∗, and let us start by studying the part

corresponding to H(`),2
z,τ0 . One can assume without loss of generality that |s|

|zp|
≤ κ(2`+ d),

with 0 < κ < 4, and also that (1− δ)|t| ≤ |zp| ≤ (1 + δ)|t| for some small δ. Then taking
advantage of Estimate (6.10), we readily gather that∣∣ϕ(Y, s)

∣∣∣∣∣(4|τ |)de−2|τ |dei
τs

2zp Φ`

( |Y |2|τ |
zp

, e−4|τ |
)∣∣∣

≤ C(`, δ, τ0)
∣∣ϕ(Y, s)

∣∣(1 + |Y |2

(1− δ)|t|
)`
|τ |d+`e

(κ−4)(2`+d)|τ |
2 ,
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which implies that

lim
p→∞
〈H(`),2

zp,τ0 ,ϕ〉S′(Hd)×S(Hd) = 〈H(`),2
−it,τ0

,ϕ〉S′(Hd)×S(Hd) .

Now to study the part corresponding to H(`),2
z −H(`),2

z,τ0 , let us first observe that it stems
from (6.11) that | exp(− |Y |

2|τ |
2zp | ≤ 1. Consequently, there exists a positive constant C(`, δ, τ0)

such that, for all (Y, s) in Hd and |τ | ≤ τ0, there holds∣∣∣ϕ(Y, s)
∣∣∣∣∣∣ ∑
k≤`−1

(
4|τ |

)de−2|τ |(2k+d)L
(d−1)
k

( |Y |2|τ |
zp

)
ei

τs
2zp
− |Y |

2|τ |
2zp

∣∣∣
≤ C(`, δ, τ0)

∣∣ϕ(Y, s)
∣∣(1 + |Y |2|τ0|

(1− δ)|t|
)`

e
κ(2`+d)τ0

2 ·

Since the first part can be easily dealt, we readily gather that

lim
p→∞
〈H(`),2

zp −H(`),2
zp,τ0 ,ϕ〉S′(Hd)×S(Hd) = 〈H(`),2

−it −H
(`),2
−it,τ0

,ϕ〉S′(Hd)×S(Hd) .

This ends the proof of Theorem 5. �
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le groupe de Heisenberg, Journal d’Analyse Mathématique, 82, pages 93-118, 2000.
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