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Abstract

We study two continuous and isotropic analogues of the model of greedy lattice animals introduced
by Cox, Gandolfi, Griffin and Kesten [2, 3] in 1993-94. In our framework, animals collect masses
scattered on a Poisson point process on Rd, and are allowed to have vertices outside the process or
not, depending on the model. The author proved in [8] a more general setting that for all u in the
Euclidean open unit ball, the mass of animals with length ℓ, containing 0 and ℓu satisfies a law of large
numbers. We prove some additional properties in the Poissonian case, including an extension of the
functional law of large numbers to the closed unit ball, and study strict monotonicity of the limiting
function along a radius. Moreover, we prove that a third, penalized model is a suitable interpolation
between the former two.

1 Introduction
1.1 Context
In 1993-94, Cox, Gandolfi, Griffin and Kesten [2, 3] introduced the models of greedy lattice animals
and greedy lattice paths as such: given an integer d ≥ 2 and a family of masses indexed by the vertices
of the standard lattice Zd, the mass of a lattice animal (i.e. a finite connected subset of Zd) or path
is defined as the sum of the masses of its vertices. They proved that under a moment condition, the
maximal mass of lattice animals (resp. paths) containing (resp. starting from) the origin with cardinal
n satisfies a law of large numbers. This moment condition was improved in 2002 by Martin [7].

The notion of greedy continuous paths has been introduced in 2008 by Gouéré and Marchand [4] as
a tool for the study of a continuous first-passage percolation model. Masses are scattered on a Poisson
point process on Rd instead of Zd, and the lattice paths are replaced by polygonal lines. They proved
that the maximal mass of paths with fixed length ℓ grows at most linearly in ℓ. Gouéré and Théret [5]
also used this result, for a further study of the same model.

The author extended in [8] the results of Cox, Gandolfi, Griffin, Kesten and Martin in two ways:
1. The family of masses may be any ergodic marked point process on Rd × ]0 , ∞[, provided integra-

bility. Marked Poisson point processes belong to this setting.
2. The author proved a law of large numbers for the maximal mass of animals (resp. paths) of length

n, containing (resp. with endpoints) 0 and nu, with u ∈ B(0, 1), uniformly with respect to u on
a compact subset of B(0, 1).

Three extensions of greedy lattice animals are proposed in this context. The first one defines continous
animals as finite graphs with vertices in Rd, the second one is a restriction to animals whose vertices
are atoms of the point process, and the third one is an interpolation of the preceding two, where an
animal may have vertices outside the point process, but each of them brings a penalization −q in the
definition of the mass. Section 1.2 gives the formal definitions. Theorems 1.3 and 1.4 summarize the
results proven in [8] in the case of Poisson processes.

This article aims to establish extra properties in the Poissonian case, namely:
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1. The limit functions have continuous extensionz to the closed ball unit ball, and vanish at the
boundary. Moreover, they are strictly decreasing along a radius, on an explicit interval (see
Theorem 1.5).

2. The functional law of large numbers given in [8] may be extended to the closed unit ball (see
Theorem 1.6).

3. The penalized model actually converges to the restricted one when the penalization parameter q
tends to ∞ (see Theorem 1.7).

1.2 Framework
Let d ≥ 2 be a integer and ∥·∥ be the Euclidean norm on Rd. For all x ∈ Rd and r > 0, let B(x, r)
and B(x, r) respectively denote the Euclidean open and closed balls of center x and radius r. For all
subsets A, B ⊆ Rd, we define

d(A, B) := inf{∥x − y∥ | x ∈ A, y ∈ B}. (1.1)

Let Leb denote the Lebesgue measure on Rd.

Point processes. Let N
(
Rd × ]0 , ∞[

)
denote the space of measures on Rd × ]0 , ∞[ which take

integer values on compact subsets, endowed with the σ-algebra generated by the maps η 7→ η(A), for
all Borel subsets A ⊆ Rd × ]0 , ∞[. We call marked point process (on Rd × ]0 , ∞[) a random variable
N with values in N

(
Rd × ]0 , ∞[

)
.

Let ν be a nontrivial locally finite measure on ]0 , ∞[ that satisfies∫ ∞

0
ν([t , ∞[)1/ddt < ∞ (1.2)

and N be a Poisson point process Rd × ]0 , ∞[ with intensity Leb ⊗ν, i.e. a point process on Rd × ]0 , ∞[
such that

(i) For all disjoint Borel subsets A1, . . . , Ak ⊆ Rd × ]0 , ∞[, N (Ai), for 1 ≤ i ≤ k are independent.
(ii) For all Borel subsets A ⊆ Rd × ]0 , ∞[, N (A) follows a Poisson distribution with parameter

Leb ⊗ν(A).
Such a process always exists (see e.g Proposition 2.2.4 in [1]), and its distribution is determined by ν.
Moreover, it is simple (see e.g. Proposition 2.1.9 in [1]) and (see e.g. Lemma 1.6.8 in [1]) it may almost
surely be written as the sum

N =
∞∑

n=1
δ(zn,m(zn)), (1.3)

where the zn and the m(zn) for n ≥ 1 are random variables with values in Rd and ]0 , ∞[ respectively.

Definition 1.1. For every subset A ⊆ Rd, the mass of A is defined as

m(A) :=
∫

A×]0 ,∞[
tN (dx, dt) =

N∑
n=1

m(zn)1zn∈A, (1.4)

with the notations of (1.3).

Continuous paths and animals.
Definition 1.2. Following Gouéré and Marchand (2008) [4], we call (continuous) path a finite sequence
of points of Rd. We define the length of a path γ = (x0, . . . , xr) as

∥γ∥ :=
r−1∑
i=0

∥xi − xi+1∥. (1.5)
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A (continuous) animal is a finite connected graph ξ = (V, E), whose vertex set V is included in Rd.
We define its length as

∥ξ∥ :=
∑

{x,y}∈E

∥x − y∥. (1.6)

When there is no ambiguity, we will identify a path or an animal with its vertex set, e.g. for
any animal ξ = (V, E), m(ξ) = m(V ) and for any path γ = (x0, . . . , xr), m(γ) = m({x0, . . . , xr}).
Similarly, d(0, ξ) denotes the distance between 0 and the vertex set of ξ. We are interested in the
following families of animals and paths. For all x, y ∈ Rd and ℓ ≥ 0, we define:

• P(ℓ) as the set of paths of length at most ℓ, starting at 0.
• P(x ↔ y, ℓ) as the set of paths of length at most ℓ, starting at x and ending at y.

Likewise, we define:
• A(ℓ) as the set of animals of length at most ℓ, containing 0.
• A(x ↔ y, ℓ) as the set of animals of length at most ℓ, containing x and y.

The processes. For any set of paths or animals denoted by a calligraphic font letter, we use the
same letter in roman typestyle to denote the supremum of the mass of animals or paths in this set.
For example, for all ℓ ≥ 0,

P(ℓ) := sup
γ∈P(ℓ)

m(γ). (1.7)

We also use this convention for a generic G ∈ {P, A}: for all x, y ∈ Rd and ℓ ≥ 0,

G(ℓ) := sup
γ∈G(ℓ)

m(γ) and G(x ↔ y, ℓ) := sup
γ∈G(x↔y,ℓ)

m(γ). (1.8)

Another natural definition of the continous animals model consists in restricting the supremum to
animals which vertex sets are included in the set

N ∗ :=
{

x ∈ Rd
∣∣ m(x) > 0

}
. (1.9)

More precisely, for all x, y ∈ Rd and ℓ ≥ 0, we define:
• A∗(ℓ) as the set of animals ξ such that ∥ξ∥ + d(0, ξ) ≤ ℓ, or ξ is empty,
• A∗(x ↔ y, ℓ) as the set of animals ξ such that ∥ξ∥ + d(x, ξ) + d(y, ξ) ≤ ℓ, or ξ is empty,

and the corresponding variables

A(∞)(ℓ) := sup
ξ∈A∗(ℓ)
ξ⊆N ∗

m(ξ) and A(∞)(x ↔ y, ℓ) := sup
ξ∈A∗(x↔y,ℓ)

ξ⊆N ∗

m(ξ). (1.10)

It is pointless to introduce similar processes for paths, since by triangle inequality, skipping vertices
outside N ∗ along a path produces a path with the same mass and smaller length. We also introduce a
third model which is an interpolation of the preceding two. For all q ∈ [0 , ∞], x, y ∈ Rd and ℓ ≥ 0, we
define

A(q)(ℓ) := sup
ξ∈A∗(ℓ)

[m(ξ) − q#(ξ ∩ N ∗c)] (1.11)

and A(q)(x ↔ y, ℓ) := sup
ξ∈A∗(x↔y,ℓ)

[m(ξ) − q#(ξ ∩ N ∗c)], (1.12)

where #A denotes the cardinal of a set A and ξ is identified to its vertex set in the expression ξ ∩ N ∗c.
In other words A(q)(ℓ) and A(q)(x ↔ y, ℓ) are analogues of A(ℓ) and A(x ↔ y, ℓ), with a penalization
−q for every vertex of ξ not belonging to the point process. By adding the vertex 0 and one edge, one
shows that any animal in A∗(ℓ) is included in an animal in A(ℓ), thus A(0)(ℓ) ≤ A(ℓ). The inclusion
A(ℓ) ⊆ A∗(ℓ) gives the converse inequality, hence

A(0)(ℓ) = A(ℓ).
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Likewise,

A(0)(x ↔ y, ℓ) = A(x ↔ y, ℓ).

Besides, (1.10) is compatible with (1.11) and (1.12).
Note that for all ℓ > 0 and q ∈ [0 , ∞],

P(ℓ) ≤ A(q)(ℓ) ≤ A(ℓ) ≤ P(2ℓ), (1.13)

where we have used in the last inequality the fact that any animal may be covered by the path obtained
by a depth-first search.

Law of large numbers. Let X denote the subset of B(0, 1)2 × ]0 , 1] consisting of triplets (x, y, ℓ)
such that ∥x − y∥ < ℓ, and x and y are colinear. Corollary 1.8 in [8] and the invariance of the model
by rotations imply Theorems 1.3 and 1.4.

Theorem 1.3. Assume that ν satisfies (1.2). Let G ∈ {P, A}. Then there exists a deterministic,
nonincreasing, concave function G : [0 , 1[ → [0 , ∞[, such that for all compact subsets K ⊆ X ,

sup
{∣∣∣∣G(Lx ↔ Ly, Lℓ)

L
− ℓG

(
∥x − y∥

ℓ

)∣∣∣∣ ∣∣∣∣ (x, y, ℓ) ∈ K

}
a.s. and L1

−−−−−−−→
L→∞

0. (1.14)

Moreover,
G(L)

L

a.s. and L1

−−−−−−−→
L→∞

G(0), (1.15)

and
M := sup

ℓ>0

E[A(ℓ)]
ℓ

≤ C1

∫ ∞

0
ν([t , ∞[)1/ddt, (1.16)

where C1 > 0 is a constant that only depends on d.

Theorem 1.4. Assume that ν satisfies (1.2). Fix q ∈ [0 , ∞]. Then there exists a deterministic,
nonincreasing, concave function A(q) : [0 , 1[ → [0 , ∞[, such that for all compact subsets K ⊆ X ,

sup
{∣∣∣∣A(q)(Lx ↔ Ly, Lℓ)

L
− ℓA(q)

(
∥x − y∥

ℓ

)∣∣∣∣ ∣∣∣∣ (x, y, ℓ) ∈ K

}
a.s. and L1

−−−−−−−→
L→∞

0. (1.17)

Moreover,
A(q)(L)

L

a.s. and L1

−−−−−−−→
L→∞

A(q)(0). (1.18)

1.3 Main results
Our first result, Theorem 1.5, yields extra information on the limit functions P and A(q).

Theorem 1.5. Assume that ν satisfies (1.2). Then
(i) Setting P(1) = 0 and A(q)(1) = 0, for q ∈ [0 , ∞], gives a continuous extension of these functions

on [0 , 1].

(ii) The functions P and A(q), for q ∈ [0 , ∞] are strictly decreasing on
[

1√
d

, 1
]
.

We believe that P and A(q) are actually strictly decreasing on [0 , 1], since smaller values of β
essentially means lesser constraints on the candidate animals or paths. Our proof, however, fails on[
0 , 1√

d

]
because it is based on a deterministic constraint on paths in P(0 ↔ ℓβe1, ℓ) that only holds

for β ≥ 1√
d

(see Lemma 2.3 and Remark 2.4).
Theorem 1.6 improves Theorems 1.3 and 1.4 by extending the set of admissible triplets (x, y, ℓ) in

order to include the boundary cases where ℓ = ∥x − y∥.

Theorem 1.6. Assume that ν satisfies (1.2). Then
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(i)

sup
{∣∣∣∣G(Lx ↔ Ly, Lℓ)

L
− ℓG

(
∥x − y∥

ℓ

)∣∣∣∣ ∣∣∣∣ x, y ∈ B(0, 1) colinear
∥x − y∥ ≤ ℓ ≤ 1

}
a.s. and L1

−−−−−−−→
L→∞

0. (1.19)

(ii) For all q ∈ [0 , ∞],

sup
{∣∣∣∣A(q)(Lx ↔ Ly, Lℓ)

L
− ℓA(q)

(
∥x − y∥

ℓ

)∣∣∣∣ ∣∣∣∣ x, y ∈ B(0, 1) colinear
∥x − y∥ ≤ ℓ ≤ 1

}
a.s. and L1

−−−−−−−→
L→∞

0. (1.20)

Finally, Theorem 1.7 states that the penalized model constitutes a good interpolation between the
two natural models of continuous greedy animals (namely with or without authorizing animals to have
vertices outside the point process), in the sense that making the penalization parameter q vary from 0
to ∞ continously transforms the former into the latter.

Theorem 1.7. Assume that ν satisfies (1.2). Then under the topology of the uniform convergence on
[0 , 1], q 7→ A(q) is continuous on [0 , ∞].

1.4 Outline of the paper
In Section 2.1 we prove Lemmas 2.2 and 2.3, which respectively state that:

1. In distribution, applying an homothety to N or multiplying ν by a well-chosen constant is equiv-
alent.

2. For all β ∈
[

1√
d

, 1
[
, P(β) is upper bounded by a quantity which is strictly lesser than P(0) and

vanishes as β → 1.
Our arguments are based on the so-called mapping theorem (see e.g. Theorem 5.1 in [6]), which states
that the image of a Poisson process by any measurable map is a Poisson process. These lemmas do not
transpose well the case of general point processes.

Section 2.2 is devoted to the proof of Theorem 1.5. We use the already known concavity and
monotonicity of the limit functions, together with Lemma 2.3.

Section 2.3 contains the proof of Theorem 1.6. Given Theorems 1.4 and 1.5, it is sufficient to upper
bound the mass of an animal or path in G(Lx ↔ Ly, Lℓ), when ∥x−y∥

ℓ ≃ 1.
In Section 2.4 we prove Theorem 1.7. For the continuity at q = ∞, we use a sprinkling argument:

given a animal ξ(ℓ) which realizes the maximum in the definition of A(q)(0 ↔ ℓβe1, ℓ), we replace each
vertex of ξ(ℓ)∩(N ∗)c by an atom of a new Poisson point process, independent of the first one and having
low intensity. Another Poisson-specific result called the superposition principle (see e.g. Theorem 3.3
in [6]) and Lemma 2.2 provides a link between the limit functions in the original environment and in
the enriched one. For the continuity on [0 , ∞[, we show that except in the straightforward case where
ν(]0 , ∞[) = ∞, the number of points of N ∗ belonging to an animal grows sublinearly with respect to
its length, thus giving Lipschitz continuity of the limit function with respect to q.

1.5 Notations
In contexts where more than one point process is considered, we will indicate the dependence on the
point process by square brackets, e.g. for any point process N ′ on Rd × [0 , ∞[ and any subset A ⊆ Rd,

m(A)[N ′] :=
∫

A×[0 ,∞[
tN ′(dx, dt). (1.21)

For objects that only depend on the distribution ν, we will indicate this dependence by [ν]. We denote
by Pν the distribution of N .

We denote by (ei)1≤i≤d the canonical basis of Rd.
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2 Proof of the results
We fix a measure ν on ]0 , ∞[ such that the moment assumption (1.2) is satisfied and a Poisson point
process N on Rd × ]0 , ∞[ with intensity Leb ⊗ν.

2.1 Two preliminary lemmas
We recall the so-called mapping theorem (see e.g. Theorem 5.1 in [6]).

Theorem 2.1. Let X and Y be measurable spaces, f : X → Y a measurable function and η a Poisson
point process on X with intensity µ. Then the image η ◦ f−1 of η by f is a Poisson point process on Y,
with intensity µ ◦ f−1.

It is the crucial argument in the proofs of Lemmas 2.2 and 2.3.

Lemma 2.2 (The scaling lemma). Let λ > 0 and q ∈ [0 , ∞]. The distribution of
(
A(q)(λx ↔ λy, λℓ)

)
x,y∈Rd

ℓ>0
under Pν is equal to the distribution of

(
A(q)(x ↔ y, ℓ)

)
x,y∈Rd

ℓ>0
under Pλdν .

Proof. Recall the decompostion (1.3) of N . By Theorem 2.1, the point process

N ′ :=
∞∑

n=1
δ(λ−1zn,m(zn)) (2.1)

is a Poisson point process with intensity Leb ⊗λdν. Let x, y ∈ Rd and ℓ > 0. For all animals ξ,

ξ ∈ A∗(λx ↔ λy, λℓ) ⇐⇒ λ−1ξ ∈ A∗(x ↔ y, ℓ)
and m(ξ)[N ] − q#(ξ ∩ N ∗c) = m

(
λ−1ξ

)
[N ′] − q#

(
(λ−1ξ) ∩ N ′∗c)

,

thus

A(q)(λx ↔ λy, λℓ)[N ] = A(q)(x ↔ y, ℓ)[N ′].

Lemma 2.3 (The stretching lemma). Let 1√
d

≤ β < 1 and

g(β) :=
√

dβ1/d

(
1 − β2

d − 1

) d−1
2d

. (2.2)

Then

P(β) ≤ g(β)P(0) (2.3)

and for all q ∈ [0 , ∞],

A(q)(β) ≤ g(β)A(q)(0). (2.4)

Remark 2.4. Our main argument is essentially that for all β > 1√
d

and γ ∈ P(0 ↔ ℓβe1, ℓ), the
contribution of the first coordinate in ∥γ∥, called ℓ2

1 in the proof (see (2.8)) must be greater than ℓ
d .

Consequently, applying a linear transformation of Rd with determinant 1 which is a contraction in the
direction e1 and dilation in the other directions, decreases the length of such a path while conserving
the density of the point process. This provides a stochastic domination between P(0 ↔ ℓβe1, ℓ) and
P(ℓg(β)).
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Proof. We only prove (2.3), as (2.4) is similar. Let 1√
d

≤ β < 1 and λ :=
(

(d−1)β2

1−β2

) 1
2d ≥ 1. Consider

the linear map

f : Rd −→ Rd

(x1, . . . , xd) 7−→
(

λ−(d−1)x1, λx2, . . . , λxd
)

. (2.5)

By Theorem 2.1, the process

N ′ :=
∞∑

n=1
δ(f(zn),m(zn)), (2.6)

with (zn) defined by (1.3), is a Poisson point process with intensity Leb ⊗
(

|det f |−1
ν
)

. Since f has
determinant 1, N ′ has the same distribution as N .

Let ℓ > 0 and γ = (x0, . . . , xr) ∈ P(0 ↔ ℓβe1, ℓ) and define, for all i ∈ J1 , dK,

ℓ2
i :=

r−1∑
j=0

∣∣xi
j − xi

j+1
∣∣2, (2.7)

with the notation xj = (x1
j , . . . , xd

j ). Note that

d∑
i=1

ℓ2
i = ∥γ∥2 ≤ ℓ2, (2.8)

therefore

∥f(γ)∥2 = λ−2(d−1)ℓ2
1 +

d∑
i=2

λ2ℓ2
i

≤ λ−2(d−1)ℓ2
1 + λ2(ℓ2 − ℓ2

1
)

=
(

λ−2(d−1) − λ2
)

ℓ2
1 + λ2ℓ2.

Since λ ≥ 1 and ℓ2
1 ≥ β2ℓ2,

∥f(γ)∥2 ≤ ℓ2
[(

λ−2(d−1) − λ2
)

β2 + λ2
]

= ℓ2
[
λ−2(d−1)β2 + λ2(1 − β2)

]
.

Applying the definition of λ yields

∥f(γ)∥2 ≤ ℓ2

[(
1 − β2

(d − 1)β2

) d−1
d

β2 +
(

1 − β2

(d − 1)β2

)−1/d

(1 − β2)
]

= ℓ2
(

1 − β2

d − 1

) d−1
d

·
[
β2/d + (d − 1)β2/d(1 − β2)

1 − β2

]

= ℓ2dβ2/d

(
1 − β2

d − 1

) d−1
d

= (g(β)ℓ)2
.

Consequently,

∥f(γ)∥ ≤ ℓg(β). (2.9)

In particular,

m(f(γ))[N ′] ≤ P(ℓg(β))[N ′].
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Besides, since m(f(γ))[N ′] = m(γ)[N ],

m(γ)[N ] ≤ P(ℓg(β))[N ′].

Taking the supremum in γ, we obtain

P(0 ↔ ℓβe1, ℓ)[N ] ≤ P(ℓg(β))[N ′].

Since N and N ′ have the same distribution, dividing by ℓ and letting ℓ → ∞ gives

P(β) ≤ g(β)P(0). (2.10)

2.2 Proof of Theorem 1.5
We now prove Theorem 1.5, using Theorems 1.3, 1.4 and Lemma 2.3.

Proof of (i). Continuity on [0 , 1[ is a consequence of Theorems 1.3 and 1.4. Since for all β ∈ [0 , 1] and
q ∈ [0 , ∞],

P(β) ≤ A(q)(β) ≤ A(β),
it is sufficient to show that

lim
β→1

A(β) = 0, (2.11)

which is a direct consequence of Lemma 2.3.

Proof of (ii). We only prove the result for P, the other case being analogous. Since β 7→ P(β) is
concave and nonincreasing on [0 , 1], it is sufficient to prove that for all 1√

d
< β ≤ 1,

P(β) < P(0). (2.12)

Note that the function g defined by (2.2) is strictly decreasing on
[

1√
d

, 1
]
, and g

(
1√
d

)
= 1, thus

Lemma 2.3 concludes.

2.3 Proof of Theorem 1.6
We only prove the result for P, the other cases being analogous. Let 0 < δ ≤ 1 and

Kδ :=
{

(x, y, ℓ) ∈ B(0, 2)2 × ]0 , 2]
∣∣∣ (x, y) are colinear and ∥x − y∥ + δ ≤ ℓ ≤ 2

}
⊆ 2X . (2.13)

A straightforward adaptation of Theorem 1.3, with X replaced by 2X , yields

X(L) := sup
{∣∣∣∣P(Lx ↔ Ly, Lℓ)

L
− ℓP

(
∥x − y∥

ℓ

)∣∣∣∣ ∣∣∣∣ (x, y, ℓ) ∈ Kδ

}
a.s. and L1

−−−−−−−→
L→∞

0. (2.14)

Let L > 0. Consider two colinear points x, y ∈ B(0, 1) and ℓ > 0. Assume that ∥x − y∥ ≤ ℓ ≤ 1. We
claim that ∣∣∣∣P(Lx ↔ Ly, Lℓ)

L
− ℓP

(
∥x − y∥

ℓ

)∣∣∣∣ ≤ 2
[(√

δP(0)
)

∨ P
(

1
1 +

√
δ

)]
+ X(L). (2.15)

Case 1: Assume that (x, y, ℓ) ∈ Kδ. Then (2.15) follows from the definition of X(L).
Case 2: Assume that (x, y, ℓ) /∈ Kδ. Then by definition of X(L),

P(Lx ↔ Ly, Lℓ)
L

≤
P(Lx ↔ Ly, L(∥x − y∥ + δ))

L

≤ (∥x − y∥ + δ)P
(

∥x − y∥
∥x − y∥ + δ

)
+ X(L).
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Besides, since β 7→ P(β) is nonincreasing on [0 , 1],

ℓP
(

∥x − y∥
ℓ

)
≤ (∥x − y∥ + δ)P

(
∥x − y∥

∥x − y∥ + δ

)
,

thus ∣∣∣∣P(Lx ↔ Ly, Lℓ)
L

− ℓP
(

∥x − y∥
ℓ

)∣∣∣∣ ≤ (∥x − y∥ + δ)P
(

∥x − y∥
∥x − y∥ + δ

)
+ X(L). (2.16)

To bound the right-hand side of (2.16), we further discriminate two subcases, according to the value
of ∥x − y∥. If∥x − y∥ <

√
δ, then (2.16) gives∣∣∣∣P(Lx ↔ Ly, Lℓ)

L
− ℓP

(
∥x − y∥

ℓ

)∣∣∣∣ ≤ 2
√

δP(0) + X(L). (2.17)

Otherwise, (2.16) and another use of the monotonicity of P give∣∣∣∣P(Lx ↔ Ly, Lℓ)
L

− ℓP
(

∥x − y∥
ℓ

)∣∣∣∣ ≤ 2P
(

1
1 +

√
δ

)
+ X(L). (2.18)

Consequently, (2.15) holds.
Letting L → ∞ in (2.15) and applying (2.14) yields

lim
L→∞

sup
{∣∣∣∣G(Lx ↔ Ly, Lℓ)

L
− ℓG

(
∥x − y∥

ℓ

)∣∣∣∣ ∣∣∣∣ x, y ∈ B(0, 1) colinear
∥x − y∥ ≤ ℓ ≤ 1

}
≤ 2
(√

δP(0)
)

∨P
(

1
1 +

√
δ

)
,

(2.19)
almost surely. Letting δ → 0 and using the continuity of P gives the desired almost sure convergence.
Moreover the domination (2.15) gives the convergence in L1.

2.4 Proof of Theorem 1.7
We claim that if ν is infinite, then q 7→ A(q)(·) is constant. Indeed in this case N ∗ is almost surely a
dense subset of Rd. Let ε, ℓ > 0 and 0 ≤ β ≤ 1. Almost surely, for all animals ξ ∈ A∗(0 ↔ ℓβe1, ℓ),
there exists an animal ξ′ ∈ A∗(0 ↔ ℓβe1, ℓ(1 + ε)) such that m(ξ′) = m(ξ), and ξ′ ⊆ N ∗. In particular,

A(0)(0 ↔ ℓβe1, ℓ) ≤ A(∞)(0 ↔ ℓβe1, ℓ(1 + ε)) ≤ A(0)(0 ↔ ℓβe1, ℓ(1 + ε))

Dividing by ℓ and letting ℓ → ∞ gives, by Theorem 1.4,

A(0)(β) ≤ (1 + ε)A(∞)
(

β

1 + ε

)
≤ (1 + ε)A(0)

(
β

1 + ε

)
.

Since A(0) and A(∞) are continuous on [0 , 1], letting ε → 0 gives A(0)(β) = A(∞)(β), thus the claim.
From now on we assume that ν is finite. In particular N ∗ is a.s. a locally finite subset of Rd.

2.4.1 Proof of Theorem 1.7, part 1: Continuity at q = ∞
Let q ∈ ]0 , ∞[, ℓ > 0, β ∈ [0 , 1], ε > 0. The map

A∗(0 ↔ ℓβe1, ℓ) −→ R
ξ 7−→ m(ξ) − q#(ξ ∩ (N ∗)c)

only takes values of the form
∑n

i=1 m(xi) − qk, where x1, . . . , xn are distinct elements of N ∗ ∩ B(0, ℓ)
and k ∈ N. Consequently, it only takes a finite number of positive values, thus it admits a maximum.
Choose in a measurable way an animal ξ(ℓ) ∈ A∗(0 ↔ ℓβe1, ℓ) realizing this maximum. Thanks to
Lemma 2.5, proven in Section 2.5, we may assume that ξ(ℓ) has bounded degree.
Lemma 2.5. There exists an integer C2 > 0, depending only on the dimension, such that for all finite
subsets A ⊆ Rd, there exists an animal with vertex set A, minimal length and degree at most C2.
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We denote by x1, . . . , xn the elements of ξ ∩ (N ∗)c. Since m(ξ) ≤ A(ℓ),

n ≤ A(ℓ)
q

. (2.20)

Consider a Poisson process Nε with intensity ε Leb ⊗ν, independent from N . By the superposition
principle (see e.g. Theorem 3.3 in [6]), N +Nε is a Poisson process with intensity Leb ⊗(1+ε)ν. Define

∀i ∈ J1 , nK, Ri := min
y∈N ∗

ε

∥xi − y∥, and R :=
n∑

i=1
Ri. (2.21)

For all i ∈ J1 , nK,

E[Ri] =
∫ ∞

0
P(Ri > s)ds =

∫ ∞

0
exp
(
−εν(]0 , ∞[) Leb

(
B(0, 1)

)
sd
)
ds =: I(ε) < ∞,

thus
E[R|N ] = nI(ε) ≤ A(ℓ)I(ε)

q
.

In particular, by (1.16),

E[R] ≤ MℓI(ε)
q

.

Markov’s inequality yields
P
(

R ≤ 2MℓI(ε)
q

)
≥ 1

2 . (2.22)

Consider the animal ξ′(ℓ) built from ξ(ℓ) by replacing each xi by a point yi ∈ N ∗
ε such that

∥xi − yi∥ = Ri. By the triangle inequality and the bound on the degree of ξ(ℓ), we have
∥ξ′(ℓ)∥ ≤ ∥ξ(ℓ)∥ + C2R.

In particular, on the event
{

R ≤ 2MℓI(ε)
q

}
,

∥ξ′(ℓ)∥ ≤ ℓ

(
1 + 2C2MI(ε)

q

)
. (2.23)

Inequalities (2.22) and (2.23) imply

P
(

A(q)(0 ↔ ℓβe1, ℓ)[N ] ≤ A(∞)
(

0 ↔ ℓβe1,

(
1 + 2C2MI(ε)

q

)
ℓ

)
[N + Nε]

)
≥ 1

2 .

Applying (1.14), we obtain

A(q)(β)[ν] ≤
(

1 + 2C2MI(ε)
q

)
A(∞)

(
β

1 + 2C2MI(ε)
q

)
[(1 + ε)ν].

By Lemma 2.2,

A(q)(β)[ν] ≤ (1 + ε)1/d

(
1 + 2C2MI(ε)

q

)
A(∞)

(
β

1 + 2C2MI(ε)
q

)
[ν]. (2.24)

From now on we drop the notation [ν]. Since A(∞) is continuous, letting q → ∞ then ε → 0 gives
lim

q→∞
↓A(q)(β) ≤ A(∞)(β),

thus
lim

q→∞
↓A(q)(β) = A(∞)(β). (2.25)

The functions A(q) and A(∞) are continuous on the compact set [0 , 1] and the convergence is monotone,
therefore by Dini’s theorem,

lim
q→∞

A(q) = A(∞) (2.26)

for the uniform convergence on [0 , 1].
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2.4.2 Proof of Theorem 1.7, part 2: Continuity on [0 , ∞[
With the notations of (1.3), consider the process

N̂ :=
∞∑

n=1
δ(zn,1). (2.27)

Then by Theorem 2.1, N̂ is a Poisson point process on Rd × [0 , ∞[ with intensity Leb ⊗(ν(]0 , ∞[)δ1).
In particular, by (1.16),

A(0)[ν(]0 , ∞[)δ1] ≤ C1ν(]0 , ∞[)1/d
< ∞. (2.28)

To prove that q 7→ A(q) is continuous on [0 , ∞[, we will show that it is A(0)[ν(]0 , ∞[)δ1]-Lipschitz.
Lemma 2.6, proven in Section 2.5, gives an upper bound for the number of useful vertices of an animal
outside N ∗.
Lemma 2.6. Almost surely, for all u ∈ B(0, 1), ℓ > 0 and q ∈ [0 , ∞[, there exists an animal ξ ∈
A∗(0 ↔ ℓu, ℓ) that maximizes m(ξ) − q#(ξ ∩ (N ∗)c) and satisfies

#(ξ ∩ (N ∗)c) ≤ A(ℓ)
[
N̂
]
. (2.29)

Let 0 ≤ q1 ≤ q2 < ∞. The inequality

A(q1) ≥ A(q2) (2.30)

is straightforward. Let β ∈ [0 , 1] and ℓ > 0. Consider an animal ξ as in Lemma 2.6, with q = q1. Then

m(ξ) − q2#(ξ ∩ (N ∗)c) = A(q1)(0 ↔ ℓβe1, ℓ) − (q2 − q1)#(ξ ∩ (N ∗)c)

≥ A(q1)(0 ↔ ℓβe1, ℓ) − (q2 − q1)A(ℓ)
[
N̂
]
.

In particular,

A(q2)(0 ↔ ℓβe1, ℓ) ≥ A(q1)(0 ↔ ℓβe1, ℓ) − (q2 − q1)A(ℓ)
[
N̂
]
. (2.31)

By (1.14), dividing by ℓ and letting ℓ → ∞ gives

A(q2)(βe1) ≥ A(q1)(βe1) − (q2 − q1)A(0)[ν(]0 , ∞[)δ1]. (2.32)

Consequently, q 7→ A(q) is A(0)[ν(]0 , ∞[)δ1]-Lipschitz thus continuous on [0 , ∞[.

2.5 Proof of the technical lemmas
Proof of Lemma 2.5. Since the unit sphere S of Rd is compact, it may be covered by a finite number
C2 of open balls with radius 1

2 . By pigeonhole principle, for all y1, . . . , yC2+1 ∈ S, there exists distinct
i, j ∈ J1 , C2 + 1K such that

∥yi − yj∥ < 1. (2.33)
Let A be a finite subset of Rd and ξ an animal with vertex set A. It is sufficient to show that if ξ has
a vertex with degree at least C2 + 1, then there exists another animal ξ′ with vertex set A and smaller
length. Assume that such a vertex x exists. By (2.33) there exist distinct neighbours x1, x2 of x in ξ,
such that ∥∥∥∥ x1 − x

∥x1 − x∥
− x2 − x

∥x2 − x∥

∥∥∥∥ < 1. (2.34)

Up to exchanging x1 and x2, we may assume ∥x1 − x∥ ≤ ∥x2 − x∥. We have by triangle inequality

∥x1 − x2∥ ≤
∥∥∥∥x1 −

(
x + ∥x1 − x∥(x2 − x)

∥x2 − x∥

)∥∥∥∥ +
∥∥∥∥(x + ∥x1 − x∥(x2 − x)

∥x2 − x∥

)
− x2

∥∥∥∥
≤ ∥x1 − x∥ ·

∥∥∥∥ x1 − x

∥x1 − x∥
− x2 − x

∥x2 − x∥

∥∥∥∥ + ∥x2 − x∥ ·
∣∣∣∣1 −

∥x1 − x∥
∥x2 − x∥

∣∣∣∣.
11



Applying (2.34) and ∥x1 − x∥ ≤ ∥x2 − x∥ yields

∥x1 − x2∥ < ∥x1 − x∥ + ∥x2 − x∥
(

1 −
∥x1 − x∥
∥x2 − x∥

)
= ∥x2 − x∥.

In particular, removing the edge {x, x2} and adding the edge {x1, x2} in ξ strictly decreases the length
while preserving connectedness and vertex set. This concludes the proof.

Proof of Lemma 2.6. Let u ∈ B(0, 1), ℓ > 0 and q ∈ [0 , ∞[. Consider an animal ξ = (V, E) ∈
A∗(0 ↔ ℓu, ℓ) that maximizes m(ξ) − q#(ξ ∩ (N ∗)c), the existence of which has been shown at the
beginning of Section 2.4.1. Up to modifying the edge set E, we can assume that ξ is a tree and V has
minimal cardinal. It suffices to show that ξ satisfies (2.29). Consider

x ∈ arg min
z∈V

∥z∥ and y ∈ arg min
z∈V

∥ℓu − z∥.

We say that a vertex z ∈ V is good if z ∈ {x, y} ∪ N ∗, and bad otherwise. Let G and B denote the
set of good vertices and bad vertices respectively. Note that removing any bad vertex with degree 1
creates an animal ξ′ ∈ A∗(0 ↔ ℓu, ℓ) with greater penalized mass. So does removing any bad vertex
with degree 2 and connecting its two neighbours together. Consequently, by definition of ξ, all bad
vertices have degree at least 3, thus∑

z∈V

degξ(z) =
∑
z∈G

degξ(z) +
∑
z∈B

degξ(z)

≥ #G + 3#B. (2.35)

Besides, since ξ is a tree,∑
z∈V

degξ(z) = 2#E = 2(#V − 1) = 2(#G + #B − 1). (2.36)

Combining (2.35) and (2.36), we get
#B ≤ #G − 2.

Furthermore, #G ≤ 2 + m(ξ)[N̂ ], thus (2.29).
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