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Abstract

This paper proposes a new way of modelling imperfect maintenance in degradation

models, by assuming that maintenance a�ects only a part of the degradation process.

More precisely, the global degradation process is the sum of two dependent Wiener

processes with drift. Maintenance has an e�ect of the ARD1-type on only one of these

processes: it reduces the degradation level of a quantity which is proportional to the

amount of degradation of this process accumulated since previous maintenance. Two

particular cases of the model are considered: perturbed ARD1 and partial replace-

ment models. The usual ARD1 model is also a speci�c case of this new model. The

system is regularly inspected in order to measure the global degradation level. Two

observation schemes are considered. In the complete scheme, the degradation levels are

measured both between maintenance actions and at maintenance times (just before and

just after). In the general scheme, the degradation levels are measured only between

maintenance actions. The maximum likelihood estimation of the model parameters is

studied for both observation schemes in both particular models. The quality of the

estimators is assessed through a simulation study.

Keywords: Degradation modelling, Imperfect maintenance, Observation schemes, Sta-

tistical inference, Wiener process, ARD1 model.

1 Introduction

Industrial or technological devices can be subject to degradation during their lifetime be-

cause of the intrinsic wear, environmental factors or operating conditions. To reduce degra-

dation and extend their lifetime, maintenance actions are regularly performed. Since main-

tenances generally do not renew the system, they are said to be imperfect. The devices
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reliability depends heavily on the kinetics of the degradation process and the e�ects of main-

tenance actions. Therefore, to assess reliability and make e�cient maintenance decisions,

it is necessary to have accurate models of the degradation and maintenance processes.

There is a huge literature on degradation modelling. Review papers have been proposed

by Ye and Xie [31], Shahraki et al [24] and Kang et al [9]. The evolution of the degradation

level over time is often modeled by stochastic processes such as Gamma processes [1, 12, 26],

Wiener processes [3, 29, 32, 34], inverse Gaussian processes [30] or variants such as Gamma-

Wiener [15], trend-Gamma [28], variance-Gamma [22] or transformed Gamma processes [4].

When the degrading systems are subjected to maintenance actions, the basic assumptions

are that maintenance has no e�ect on the degradation level (minimal maintenance, or As-

Bad-As-Old situation) or that maintenance renews the system (perfect maintenance, or

As-Good-As-New situation).

Recently, the inclusion of imperfect maintenance e�ects in degradation models has at-

tracted a lot of attention. In Zhang et al [33], Zhao et al [36] and Ma et al [17], the impact of

maintenance is expressed by a random improvement factor a�ecting the trend of the degra-

dation process. Most of imperfect maintenance models assume that maintenance e�ect is

a reduction of the degradation level. This kind of model has been studied by Mercier and

Castro [19], Huynh and Grall [6], Kamrafar et al [8], Corset et al [2] when the underlying

degradation process is a Gamma process, while Li et al [14] and Leroy et al [13] considered

an underlying Wiener process. Other features in these models such as multivariate degra-

dation (Wang et al [27]), multi-phase maintenance activities (Ma et al [17]) or maintenance

optimization (Omshi and Grall [21]) have been studied. Finally, Mercier and Castro [19]

and Wang et al [27] also considered the possibility that maintenance e�ect is a reduction of

the system age. An important point is that, in all these studies, maintenance e�ect is on

the whole degradation process.

However, in practice, maintenance actions are often performed only on a part of the

system, and therefore, they have an e�ect only on a part of the degradation process. For

instance, within the framework of railway infrastructure management and track geometry

maintenance, longitudinal leveling by tamping (ie compacting the ballast to correct the

track geometry) can be considered as a partial repair : they indeed restore in part the track

geometry, but since the ballast itself is not replaced and rail fastenings are not tightened,

this operation does not results in a as-good-as new state for the track level [18]. Another

example is a vehicle's braking system, where maintenance actions are generally performed

only on the break pads and not on the whole disc. More generally, when a system is
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made of several components, maintenance often consists in replacing only a smaller group

of components [25, 11]. This is called partial replacement. Maintenance is perfect for

the replaced components, but is imperfect for the whole system. This situation has often

been evoked to justify the interest of imperfect maintenance models, but these models are

generally not built using directly the partial replacement assumption. An exception is the

partial repair model based on superimposed renewal processes proposed in [16]. Therefore,

to model degradation, it seems relevant to consider that maintenance can a�ect only a part

of the degradation process. In this paper a degradation model with imperfect maintenance

of that kind is proposed.

The model assumes that the degradation process has two parts XU and XM , which

are dependent Wiener processes with drift. Between two successive maintenance actions,

the degradation process is the sum of XU and XM . Only XM is a�ected by maintenance

actions and maintenance e�ect is of the ARD1-type (Arithmetic Reduction of Degradation),

introduced by Mercier and Castro [19]. It means that maintenance reduces the degradation

level by a quantity which is proportional to the amount of degradation of XM accumulated

since the previous maintenance action. Two particular cases of the model are considered:

the perturbed ARD1 and partial replacement models.

The principle of building a degradation process from underlying degradation processes

has also been used in a few other papers, but with a di�erent point of view than ours.

In Mercier et al [20], the trivariate reduction method is used to build a bivariate gamma

process in order to provide a model for the deterioration of railway tracks. In Salem et al

[22], a variance gamma process is used to provide a model for the leakage rate of centrifugal

pump. This process can be seen as the di�erence of two gamma processes.

The model parameters have to be estimated from �eld data. For this purpose, the sys-

tem is regularly inspected in order to measure the global degradation level. The estimation

depends on the way data are collected, i.e. on the observation scheme. Several observa-

tion schemes have been considered in the papers on degradation modelling with imperfect

maintenance. In Zhao et al [35], degradation levels are measured just before and just after

every maintenance action. In Zhang et al [33] and Giorgio and Pulcini [5] degradation

levels are only observed between maintenance actions. In Salles et al [23] and Corset et

al [2], degradation levels are only observed just before the maintenance actions. In Salem

et al [22], degradation levels are regularly measured between and just before maintenance

actions. In Leroy et al [13], four observation schemes are considered, including all the cases

presented in previous papers.
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In the present paper, two observation schemes are considered. In the so-called complete

scheme, the degradation levels are measured both between maintenance actions and at

maintenance times (just before and just after). In the so-called general scheme, the degra-

dation levels are measured only between maintenance actions. At �rst sight, the complete

observation scheme seems the most natural and reasonable. However, it may not be pos-

sible to implement this ideal scheme in practice, for various technological and engineering

reasons. This is for example the case if the measurement devices and technical crew for

inspection are not the same as the technical devices and crew for maintenance, such as

for railway assets monitoring and maintenance, where inspections and maintenance actions

cannot be performed at the same time because of an incompressible maintenance interven-

tion delay [18]. In such cases, it is necessary to model the observation procedures in a more

realistic way (accounting for delays between the inspections and the maintenance actions, or

non-periodic inspections). This can be done in the general observation scheme. Besides, a

measurement at a maintenance time is a limit case of a measurement between maintenance

times, when the measurement (inspection) time tends to the maintenance time. Therefore,

all the possible observations schemes (as the 4 schemes considered in [13]) are limit cases of

the general scheme. That is why it is called general. For both schemes, the parameters are

estimated by the maximum likelihood method. In the full model, an identi�ability problem

appears, so the estimation is made only for the perturbed ARD1 and partial replacement

models.

Finally, a simulation study is carried out in order to assess the quality of the estimators.

The impact of di�erent features of the model and data (values of the parameters, number

of observations, number of maintenances) is analyzed. Through a study of the impact on

observation locations, it is also possible to compare the complete and general observation

schemes.

The paper is organized as follows. The notations used throughout the paper are given in

Section 2. The new degradation model is presented in Section 3. The statistical inference

is studied in Section 4 for the perturbed ARD1 and partial replacement models, under

both observation schemes. The results of the simulation study are presented in Section 5.

Finally, concluding comments are given and some prospects are raised in Section 6.

2 Notations

� τ : end of observation time.
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� k : number of maintenance actions.

� τj : j
th maintenance time. τ0 = 0, τk+1 = τ .

� nj : number of observations of degradation levels on (τj−1, τj).

� n : total number of observations on [0, τ ].

� tj,i : time of the ith observation of the degradation level in [τj−1, τj ]. tj,nj+1 = tj+1,0 =

τj .

� ∆tj,i = tj,i− tj,i−1: time interval between the i−1th and ith observations in [τj−1, τj ].

� XU = {XU (t)}t≥0 : part of the underlying degradation process not a�ected by main-

tenance actions (U stands for Unmaintained).

� XM = {XM (t)}t≥0 : part of the underlying degradation process a�ected by mainte-

nance actions (M stands for Maintained).

� XS = {XS(t)}t≥0 : global underlying degradation process of the unmaintained sys-

tem, XS = XU +XM .

� ∆Xℓ
j = Xℓ(τj) − Xℓ(τj−1) : increment of the degradation process ℓ (ℓ ∈ {S,M})

between the j − 1th and the jth maintenance action.

� Y = {Y (t)}t≥0 : global degradation process of the maintained system.

� Y (τ−j ) = Y (tj,nj+1) : degradation level just before the jth maintenance action.

� Y (τ+j ) = Y (tj+1,0) : degradation level just after the jth maintenance action.

� ∆Y c
j,i = Y (tj,i)− Y (tj,i−1) : i

th degradation increment in [τj−1, τj ].

� ∆Y c
j = Y (τ−j )−Y (τ+j−1) = ∆XS

j : observed degradation increment on [τj−1, τj ] under

the complete observation scheme.

� ∆Y g
j = Y (tj,nj ) − Y (tj,1j>1) : observed degradation increment on (τj−1, τj) under

the general observation scheme. As the �rst degradation increment ∆yc1,1 is always

observed, ∆Y g
1 = Y (t1,n1) and ∀ j ∈ {2, ..., k + 1}, ∆Y g

j = Y (tj,nj )− Y (tj,1).

� ∆τj = τj − τj−1 : elapsed time between the j − 1th and the jth maintenance action.
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� ∆tgj : elapsed time between the �rst and last observation on (τj−1, τj) under the

general observation scheme. For j ≥ 2, ∆tgj = tj,nj − tj,1. For j = 1, ∆tg1 = t1,n1 .

� Zc
j = Y (τ+j ) − Y (τ−j ) : observed degradation jump at the jth maintenance time for

the complete observation scheme.

� Zg
j = ∆Y c

j+1,1 + Zc
j +∆Y c

j,nj+1 : observed degradation jump around the jth mainte-

nance time for the general observation scheme.

� µU , µM , µS : drift parameters of the underlying degradation processes.

� σ2
U , σ

2
M , σ2

S : variance parameters of the underlying degradation processes.

� cUM , cSM : covariance parameters of the underlying degradation processes.

� rUM , rSM : coe�cient of correlation parameters of the underlying degradation pro-

cesses.

� ρ : maintenance e�ciency parameter.

� Θ : set of all parameters in the second parametrization, Θ = (µS , µM , σ2
S , σ

2
M , ρ, rSM )

� Θ1 = (µ, σ2
S , σ

2
M , ρ, rSM ) : set of parameters for the perturbed ARD1 model.

� Θ2 = (µS , µM , σ2
S , σ

2
M , rSM ) : set of parameters for the partial replacement

model.

� fX : density of X.

� fX|Y : conditional density of X given Y .

� Oh
t : set of observed data before time t for scheme h. h ∈ {c, g} where c stands for

�complete� and g stands for �general�.

� The random quantities are denoted by uppercase letters and their realizations by

lowercase letters. For instance, ∆ycj,i is the observed value of ∆Y c
j,i.

A part of the notations presented in this section is illustrated in Figure 1. In this �gure,

a trajectory of the degradation process Y is presented according to the two observation

schemes used in this paper, which will be described in Section 4. The black dots depict

the observed degradation levels. The left �gure represents the complete observation scheme
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where degradation levels are observed just before and just after every maintenance action.

The general scheme is represented in the right �gure, where degradation levels are only

observed between maintenance actions. This observation scheme is called general because

the complete scheme is a limit case of this scheme, obtained when tj,nj and tj+1,1 get closer

to τj .

0

20

40

60

80

0 3 6 9 12
Time

D
e
g
ra
d
a
ti
o
n

0

20

40

60

80

0 3 6 9 12
Time

D
e
g
ra
d
a
ti
o
n

Figure 1: Detailed notations for respectively the complete (left) and general (right) obser-
vation schemes

3 A degradation model with partial maintenance e�ects

This section presents the proposed degradation model, for which maintenance a�ects only

a part of the degradation process. The model is described in Section 3.1. An alternative

parameterization is proposed in Section 3.2. Some particular cases are listed in Section 3.3

and an identi�ability issue is raised in Section 3.4.

3.1 Model description

The assumptions of the proposed model are given below.

� The degradation process is made of two partsXU = {XU (t)}t≥0 andXM = {XM (t)}t≥0.
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� Between two maintenances, the degradation process evolves as the sum of the under-

lying degradation processes XU and XM .

� Maintenance only a�ects XM .

� Maintenance e�ect is of the ARD1-type [19]: at maintenance times, the degradation

level is reduced of a quantity which is proportional to the amount of degradation of

XM accumulated since the last maintenance action.

� XU and XM are dependent Wiener processes with drift, or (XU , XM )T is a bi-

variate Wiener process with drift. Therefore, their increments are independent and

(XU (t), XM (t))T is a Gaussian vector:(
XU (t)

XM (t)

)
∼ N

((
µU

µM

)
t, ΣUM t

)
(1)

where ΣUM =

(
σ2
U cUM

cUM σ2
M

)
.

µU , µM are the drift parameters, σ2
U , σ

2
M are the variance parameters, and cUM is

a covariance parameter. Note that the coe�cient of correlation between XU (t) and

XM (t) is

Corr(XU (t), XM (t)) =
cUM t√
σ2
U t σ

2
M t

=
cUM

σUσM
= rUM ∈ [−1, 1].

Therefore, the coe�cient of correlation does not depend on time.

The system is maintained at times (τ1, τ2, ...). Let Y (t) be the degradation level at time

t of a maintained system, with Y (0) = 0. Let Y (τ−j ) be the degradation level just before

the jth maintenance at time τj and Y (τ+j ) be the degradation level just after τj .

Before the �rst maintenance action, the degradation level Y of the system evolves as

the sum of XU and XM .

∀ t ∈ [0, τ1), Y (t) = XU (t) +XM (t).

Just before the �rst maintenance, Y (τ−1 ) = XU (τ1) +XM (τ1).
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At time τ1, an ARD1-type maintenance is performed that only a�ects XM . The main-

tenance e�ect is to reduce the degradation level of a quantity proportional to the amount of

degradation of XM accumulated since the origin. Let ρ be the coe�cient of proportionality,

which expresses the e�ciency of maintenance.

Y (τ+1 ) = Y (τ−1 )− ρ
[
XM (τ1)−XM (0)

]
= XU (τ1) + (1− ρ)XM (τ1)

Between τ1 and τ2, the system is degrading as a non-maintained system.

∀ t ∈ [τ1, τ2), Y (t) = Y (τ+1 ) +XU (t) +XM (t)−XU (τ1)−XM (τ1)

= XU (t) +XM (t)− ρXM (τ1)

At τ2, an ARD1-type maintenance is performed.

Y (τ+2 ) = Y (τ−2 )− ρ
[
XM (τ2)−XM (τ1)

]
= XU (τ2) + (1− ρ)XM (τ2)

By recurrence, it is easy to show that the degradation process of the maintained system

is de�ned as follows.

∀j ≥ 1, Y (τ−j ) = XU (τj) +XM (τj)− ρXM (τj−1) (2)

Y (τ+j ) = XU (τj) + (1− ρ)XM (τj) (3)

∀ t ∈ [τj−1, τj), Y (t) = XU (t) +XM (t)− ρXM (τj−1) (4)

The e�ect of a maintenance action is represented by a jump of the degradation level.

Let Zc
j be the observed jump at the jth maintenance time.

Zc
j = Y (τ+j )− Y (τ−j ) = −ρ

[
XM (τj)−XM (τj−1)

]
(5)

From the properties of the Wiener processXM , the Zc
j are independent random variables

and their respective distributions are, ∀j ≥ 1:

Zc
j ∼ N

(
−ρµM∆τj , ρ2σ2

M∆τj
)
. (6)

where∆τj = τj−τj−1. Note that the jumps are not independent of the previous degradation

increments.

The distribution of the degradation increments inside each inter-maintenance interval
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can also be easily derived from (4):

∀ j ≥ 1, ∀ τj−1 < s < t < τj , Y (t)− Y (s) = XU (t)−XU (s) +XM (t)−XM (s).

Therefore, the distribution of the increments is given by, ∀ j ≥ 1, ∀ τj−1 < s < t < τj :

Y (t)− Y (s) ∼ N
(
(µU + µM )(t− s), (σ2

U + σ2
M + 2cUM )(t− s)

)
. (7)

The independence of increments of the bivariate process (XU , XM ) implies the inde-

pendence of increments of Y .

3.2 An alternative parameterization

From a statistical perspective, the model parameters will have to be estimated from �eld

data. The observed data are degradation increments and degradation jumps, whose distri-

butions are given by (6) and (7). Therefore, in order to simplify the writings in statistical

inference, it appears relevant to introduce an alternative parameterization of the model.

Let

XS(t) = XU (t) +XM (t) (8)

XS is the global underlying degradation process of the unmaintained system and XM

is the part of this process which is a�ected by maintenance actions. (XS(t), XM (t))T is a

linear transform of the Gaussian vector (XU (t), XM (t))T :(
XS(t)

XM (t)

)
= A

(
XU (t)

XM (t)

)
, where A =

(
1 1

0 1

)
.

So (XS(t), XM (t))T is still a Gaussian vector. From usual results on random vectors,

its mean is

AE

(
XU (t)

XM (t)

)
=

(
µU + µM

µM

)
t
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and its covariance matrix is

AΣUM tAT =

(
σ2
U + σ2

M + 2cUM cUM + σ2
M

cUM + σ2
M σ2

M

)
t.

Therefore, let us introduce new parameters µS , µM , σ2
S , σ

2
M , cSM , rSM , such that (XS(t),

XM (t))T is a Gaussian vector with mean (µS , µM )T t and covariance matrix ΣSM t, where

ΣSM =

(
σ2
S cSM

cSM σ2
M

)
and rSM = cSM/(σSσM ). The links between the �rst parameteriza-

tion (U,M) and the second parameterization (S,M) are given in Table 1.

Table 1: Links between the two model parameterizations

(XU , XM ) (XS , XM )

Drift µU = µS − µM µS = µU + µM

Variance σ2
U = σ2

S + σ2
M − 2cSM σ2

S = σ2
U + σ2

M + 2 cUM

Covariance cUM = cSM − σ2
M cSM = cUM + σ2

M

Correlation rUM =
rSMσS − σM√

σ2
S + σ2

M − 2 rSMσSσM

rSM =
rUMσU + σM√

σ2
U + σ2

M + 2 rUMσUσM

To simplify writings, let ∀ ℓ ∈ {S,M}, ∆Xℓ
j = Xℓ(τj)−Xℓ(τj−1) be the increment of

the degradation process ℓ (ℓ ∈ {S,M}) between the j−1th and the jth maintenance action.

In the new parameterization, the degradation level and jumps are de�ned as follows.

∀ j ≥ 1, ∀ t ∈ [τj−1, τj), Y (t) = XS(t)− ρ XM (τj−1). (9)

∀j ≥ 1, Zc
j = −ρ

[
XM (τj)−XM (τj−1)

]
= −ρ ∆XM

j . (10)

The distributions of the degradation increments and jumps are:

∀ j ≥ 1, ∀ τj−1 ≤ s < t ≤ τj , Y (t)− Y (s) ∼ N
(
µS(t− s), σ2

S(t− s)
)
. (11)

∀ j ≥ 1, Zc
j ∼ N

(
−ρµM∆τj , ρ2σ2

M∆τj
)
. (12)

From (11) an (12), it can be seen that parameters (µS , σ
2
S) are closely linked to degra-

dation increments between maintenance actions while parameters (µM , σ2
M , ρ) are closely

linked to degradation jumps, so to maintenance e�ciency. This remark will be useful in
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Section 4 for the estimation of these parameters.

Finally, the distribution of the degradation level at time t can be easily computed from

(9):

Y (t) ∼ N
(
µSt− ρµMτj−1 , σ2

St+ ρ2σ2
Mτj−1 − 2ρrSMσSσMτj−1

)
The same degradation trajectory under both parameterizations is presented in Figure 2.

The observed degradation process Y is represented with the underlying processes XU and

XM on the left �gure and with XS and XM on the right �gure. This trajectory has been

simulated using the following parameters : µU = 4, µM = 2, σ2
U = 10, σ2

M = 7, rUM = 0.8,

ρ = 0.7, which is equivalent to µS = 6, µM = 2, σ2
S = 30.39, σ2

M = 7, rSM = 0.94, ρ = 0.7.

In this example, four maintenance actions are periodically performed at times {3, 6, 9, 12}.
The underlying processes are simulated using consecutive degradation increments on a time

increment equals to 0.001. In the �rst parameterization, between maintenance actions, the

degradation process Y (in black) evolves as the sum of XU (in green) and XM (in blue).

In the second parameterization, Y evolves as XS (in red) between maintenances. The cor-

relation between the underlying degradation processes clearly appears in this �gure. The

maintenance e�ect is also clearly visible for the �rst three maintenances. For the fourth

one at τ4 = 12, the maintenance e�ect is not visible because the amount of degradation

accumulated for process XM between τ3 = 9 and τ4 = 12 is very small.

Figure 2: Degradation trajectories of Y (in black) with (XU , XM ) (in green and blue) in
the left �gure and (XS , XM ) (in red and blue) in the right �gure.

12



3.3 Speci�c cases

The model de�ned by equation (9) to (12) will be called hereafter the full model. Some

interesting speci�c cases of this full model can be considered.

� ABAO. When ρ = 0, Y (t) = XS(t) = XU (t) + XM (t). Maintenance has no e�ect

on the system, the system after maintenance is As Bad As Old (ABAO).

� Usual ARD1 model. The new model is equivalent to the usual Wiener-based ARD1

model [19, 13] when the whole degradation process is a�ected by maintenance actions.

This is the case for XU (t) = 0,∀ t ≥ 0, i.e. µU = σ2
U = cUM = 0. In this case,

XS = XM so µS = µM , σ2
S = σ2

M = cSM and rSM = 1. In this situation, ρ = 1

entails a perfect maintenance action.

� Perturbed ARD1 model. When µS = µM or µU = 0, XU , which can depend on the

degradation process, is a white noise. So the degradation process Y can be considered

as a usual Wiener-based ARD1 model perturbed by this white noise.

� Partial replacement. In the usual ARD1 model, ρ = 1 means that the system is

renewed, or As Good As New (AGAN), after each maintenance. Here, ρ = 1 means

that maintenance deletes all the amount of degradation of XM accumulated since the

last maintenance. Globally, maintenance is not perfect (Y (τ+j ) = XU (τj) ̸= 0) but

can be considered as optimal. This corresponds to the situation where maintenance

consists in replacing a part of the system components, but not the whole system. This

situation is particularly interesting in practice and will be studied in Section 4.

� When XU and XM are independent, rUM = 0 so rSM = σM√
σ2
U+σ2

M

. Therefore XS

and XM are dependent and positively correlated.

� When XS and XM are independent, rSM = 0 so rUM = − σM√
σ2
S+σ2

M

. Therefore XU

and XM are dependent and negatively correlated.

� rUM = 1 ⇒ rSM = 1. A perfect positive correlation under the (U,M) parameteriza-

tion entails a perfect positive correlation under the (S,M) parameterization.

� rSM = 1 ⇒ rUM = σS−σM√
(σS−σM )2

⇒ rUM = {−1, 1}. A perfect positive correlation

under the (S,M) parameterization entails a perfect correlation under the (U,M)

parameterization, which can be either positive or negative.
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3.4 Identi�ability

The de�nition of the full model in (9) to (12) shows that two di�erent sets of parameters

(µM , σ2
M , ρ) and (µ̃M , σ̃2

M , ρ̃) such that ρµM = ρ̃µ̃M and ρσM = ρ̃σ̃2 de�ne the same model.

More precisely, XS(t) and XM (t) can be written XS(t) = µSt+σSB
S(t) and XM (t) =

µM t + σMBM (t), where BS and BM are dependent standard Brownian motions. Let

X̃M (t) = µ̃M t + σ̃2B
M (t), where µ̃M = ρµM/ρ̃ and σ̃2 = ρσM/ρ̃. We have X̃M (t) =

ρXM (t)/ρ̃ and ρ̃X̃M (t) = ρXM (t). Therefore, the degradation process Ỹ (t) = XS(t) −
ρ̃X̃M (t) is exactly the same as Y (t) = XS(t)− ρXM (t). Moreover, it is easy to show that

Cov(XS(t), X̃M (t)) = ρcSM t/ρ̃ = c̃SM t and r̃SM = c̃SM/σS σ̃M = rSM .

So �nally, ∀ρ̃ ∈ (0, 1] the sets of parameters (µS , µM , σ2
S , σ

2
M , rSM , ρ) and (µS , ρµM/ρ̃,

σ2
S , ρ

2σ2
M/ρ̃2, rSM , ρ̃) de�ne the same model. Although it is less visible, the same problem

also appears using the (U,M) parameterization.

Hence, the full model is not identi�able. Therefore, in Section 4, constraints will be

imposed in order to estimate the parameters of identi�able models: the perturbed ARD1

and partial replacement models.

In order to study statistical inference in the following section, the model's likelihood is

�rst derived for the full model.

4 Statistical Inference

Let Θ = (µS , µM , σ2
S , σ

2
M , rSM , ρ) be the set of model parameters under the second pa-

rameterization. This section studies the statistical estimation of these parameters from

�eld data. The system is assumed to be regularly inspected and degradation levels Yj,i

are measured. Two observation schemes (i.e. two ways of collecting data) are considered,

the complete scheme and the general scheme. For both schemes, the parameters are esti-

mated by the maximum likelihood method. Each scheme leads to a di�erent writing of the

likelihood and then to di�erent estimations of the parameters. The observation schemes

are described in Section 4.1. The general expressions of the likelihoods are determined in

Section 4.2. Due to the identi�ability issue raised in Section 3.4, the estimation is made

in Section 4.3 only for the perturbed ARD1 and partial replacement models under both

observation schemes.
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4.1 Observation schemes

The considered system is observed in a time interval [0, τ ]. In this interval, k maintenances

are performed at times τ1, . . . , τk. Let us denote τ0 = 0 and τk+1 = τ .

∀ j ∈ {1, ..., k + 1}, let nj be the number of observations of the degradation level in

(τj−1, τj). The degradation levels are observed at times tj,i, where tj,i is the time of the

ith observation in (τj−1, τj) ∀ i ∈ {1, ..., nj}. If observations are made at the maintenance

times (just before and/or just after), the corresponding observation times are denoted

tj,nj+1 = τj = tj+1,0. Let ∆tj,i = tj,i − tj,i−1 be the time elapsed between two successive

observations.

4.1.1 Complete observation scheme

In the complete scheme, the degradation levels are measured both between maintenance

actions and at maintenance times (just before and just after). In Figure 3, a degradation

trajectory is simulated for µS = 10, µM = 5, σ2
S = 30, σ2

M = 20, rSM = 0.7, ρ = 0.8. In

this example, degradation levels are periodically observed and represented by black dots.

Maintenance actions are periodically performed at times {3, 6, 9, 12}. The two underlying

processes XS and XM are respectively depicted by the red and blue lines. The observed

degradation increments of the system are represented by the black line.
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Figure 3: Observations of the degradation levels of the maintained system (in black) under
the complete observation scheme

Due to the properties of the Wiener process, it is more convenient to consider that

the degradation increments (instead of degradation levels) are observed. Therefore, in the

complete scheme, the observations are made of:
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� The degradation increments ∆Y c
j,i = Y (tj,i) − Y (tj,i−1) = XS(tj,i) − XS(tj,i−1), for

1 ≤ j ≤ k + 1 and 1 ≤ i ≤ nj + 1. They are independent and their respective

distributions are ∆Y c
j,i ∼ N

(
µS∆tj,i, σ2

S∆tj,i
)
.

� The degradation jumps Zc
j = Y (τ+j )−Y (τ−j ) = −ρ

[
XM (τj)−XM (τj−1)

]
= −ρ∆XM

j ,

for 1 ≤ j ≤ k. They are not independent of the observations prior to τj . The set of

all these observations is denoted:

Oc
τ−j

= {∆yc1,1, ...,∆yc1,n1+1, z
c
1,∆yc2,1, ...,∆ycj−1,nj−1+1, z

c
j−1,∆ycj,1, ...,∆ycj,nj+1}

The likelihood function is the joint density of all observations. Therefore, the likelihood

function in the complete scheme, denoted Lc(Θ), is given by

Lc(Θ) =
k+1∏
j=1

nj+1∏
i=1

f∆Y c
j,i

(∆ycj,i)
k∏

j=1

fZc
j |Oc

τ−
j

(zcj) (13)

where fZc
j |Oc

τ−
j

is the conditional density of the jth jump given all the observations before

τj .

The expression of this likelihood is developed in Section 4.2.1.

In Leroy et al [13], this observation scheme has been considered for a usual ARD1

Wiener-based degradation model (�rst observation scheme in [13]). In this model, the

value of a jump is proportional to the amount of degradation accumulated since the last

maintenance action. Thus, under the complete observation scheme, the sizes of the jumps

are deterministic given the previous observations. This is very unlikely in practice. Here,

Zc
j = −ρ ∆XM

j and the ∆XM
j are not observed, so the problem of the ARD1 model does

not occur. Therefore, the proposed model is more realistic than the ARD1 model for the

complete observation scheme.

4.1.2 General observation scheme

In the general scheme, the degradation levels are measured only between maintenance

actions. In Figure 4, a degradation trajectory is simulated for the same parameters as in

Figure 3. In this example, contrary to Figure 3, the observations are not periodic and

the numbers of observations between two successive maintenances are not constant. As in

Figure 3, each black dot represents an observed degradation level. Dotted lines correspond
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to the unobserved degradation increments around maintenance times. The two underlying

processes XS and XM are respectively depicted by the red and blue lines. The observed

degradation increments of the system are represented by the black line.
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Figure 4: Observations of the degradation levels of the maintained system (in black) under
the general observation scheme

In this case, neither Y (τ−j ) nor Y (τ+j ) are observed. Therefore, the true degradation

jumps Zc
j are also not observed. The observation around the jth maintenance time τj is

the di�erence between the �rst observed degradation level after τj and the last observed

degradation level before τj :

∀j ≥ 1, Zg
j = Y (tj+1,1)− Y (tj,nj ) (14)

Therefore, in the general scheme, the observations are made of:

� The degradation increments ∆Y c
j,i, for 2 ≤ j ≤ k and 2 ≤ i ≤ nj , and 1 ≤ i ≤ n1

for j = 1. Indeed, with respect to the complete scheme, the �rst and last degra-

dation increments of each interval are no longer observed, except the very �rst one

∆Y c
1,1. As before, they are independent and their respective distributions are ∆Y c

j,i ∼
N
(
µS∆tj,i, σ2

S∆tj,i
)
.

� The new jumps Zg
j = Y (tj+1,1)− Y (tj,nj ), for 1 ≤ j ≤ k. They are not independent

of the observations prior to tj,nj . The set of all these observations is denoted:

Og
tj,nj

= {∆yc1,1, ...,∆yc1,n1
, Zg

1 ,∆yc2,2, ...,∆ycj−1,nj−1
, Zg

j−1,∆ycj,2, ...,∆ycj,nj
}
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Therefore, the likelihood function in the general scheme, denoted Lg(Θ), is given by

Lg(Θ) =
k+1∏
j=1

nj∏
i=1+1j>1

f∆Y c
j,i

(∆ycj,i)
k∏

j=1

fZg
j |O

g
tj,nj

(zgj ) (15)

The expression of this likelihood is developed in Section 4.2.2.

4.2 Derivation of the likelihood

4.2.1 Complete observation scheme

In order to write the likelihood (13), the only di�culty is to derive the conditional distri-

butions of the jumps Zc
j = −ρ ∆XM

j given Oc
τ−j
.

We have∆XM
j = XM (τj)−XM (τj−1) =

nj+1∑
i=1

∆XM
j,i and ∆XS

j = XS(τj)−XS(τj−1) =

nj+1∑
i=1

∆XS
j,i. ∆XM

j,i is independent of all observed degradation increments before τj , except

∆XS
j,i = ∆Y c

j,i. So �nally, the conditional distribution of Zj given Oc
τ−j

is simply the

conditional distribution of −ρ ∆XM
j given ∆XS

j = ∆ycj .

(∆XM
j ,∆XS

j )
T is a Gaussian vector:(

∆XM
j

∆XS
j

)
∼ N

((
µM

µS

)
∆τj ,

(
σ2
M cSM

cSM σ2
S

)
∆τj

)
(16)

So the distribution of ∆XM
j given ∆XS

j can be derived thanks to the lemma given in

Appendix A, with A = ∆XM
j , B = ∆XS

j , µA = µM∆τj , µB = µS∆τj , ΣA = σ2
M∆τj ,

ΣB = σ2
S∆τj , and ΣAB = cSM∆τj .

Straightforward computations lead to the desired conditional distribution:

Zc
j | Oc

τ−j
∼ N

(
−ρ
(
µM∆τj + rSM

σM
σS

(∆ycj − µS∆τj)
)
, ρ2∆τj σ2

M

(
1− r2SM

))
(17)

18



Hence, the log-likelihood for the complete observation scheme is:

lnLc(Θ) =− 1

2

(
k+1∑
j=1

nj+1∑
i=1

ln(2πσ2
S∆tj,i) +

(
∆ycj,i − µS∆tj,i

)2
σ2
S∆tj,i

+

k∑
j=1

ln(2πρ2∆τjσ
2
M (1− r2SM )) +

(
zcj + ρµM∆τj + ρrSM

σM
σS

(∆ycj − µS∆τj)
)2

ρ2∆τjσ2
M (1− r2SM )

)
(18)

4.2.2 General observation scheme

In order to write the likelihood (15), the only di�culty is to derive the conditional distri-

bution of the observed jump around the jth maintenance Zg
j given Og

tj,nj
. ∀ j ∈ {1, ..., k},

we have:

Zg
j = Y (tj+1,1)− Y (tj,nj )

= Y (tj+1,1)− Y (τ+j ) + Y (τ+j )− Y (τ−j ) + Y (τ−j )− Y (tj,nj )

= ∆Y c
j+1,1 + Zc

j +∆Y c
j,nj+1 (19)

= ∆XS
j+1,1 − ρ ∆XM

j +∆XS
j,nj+1

= ∆XS
j+1,1 − ρ ∆XM

j,11j>1 − ρ

nj∑
i=1+1j>1

∆XM
j,i − ρ ∆XM

j,nj+1 +∆XS
j,nj+1

In this sum:

� ∆XS
j+1,1 is not observed and is independent of Og

tj,nj
.

� ∆XM
j,11j>1 is not observed. It depends on ∆XS

j,11j>1, which is also not observed, but

involved in Zg
j .

�

nj∑
i=1+1j>1

∆XM
j,i is not observed but depends on

nj∑
i=1+1j>1

∆XS
j,i, which is observed.

� ∆XM
j,nj+1 and∆XS

j,nj+1 are not observed, are independent ofO
g
tj,nj

, but are dependent

one from each other.

Finally, the conditional distribution of Zg
j given Og

tj,nj
is the conditional distribution of
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Zg
j given

 nj∑
i=1+1j>1

∆XS
j,i, Zg

j−1

. This distribution will be obtained by using again the

lemma of Appendix A, starting from the Gaussian vector

Zg
j ,

nj∑
i=1+1j>1

∆XS
j,i, Zg

j−1

.
To simplify writings, let us denote:

� ∆tgj =
nj∑

i=1+1j>1

∆tj,i the elapsed time between the �rst and last observation on the

jth inter-maintenance interval. For j ≥ 2, ∆tgj = tj,nj − tj,1. For j = 1, ∆tg1 = t1,n1 .

� ∆Y g
j =

nj∑
i=1+1j>1

∆XS
j,i the total increment of degradation observed on the jth inter-

maintenance interval. The Gaussian vector of interest can now be written
(
Zg
j , ∆Y g

j , Zg
j−1

)
.

The expectation of the Gaussian vector is given by:

µZg
j
= E[Zg

j ] = E[∆Y c
j+1,1] + E[Zc

j ] + E[∆Y c
j,nj+1]

= µS(∆tj+1,1 +∆tj,nj+1)− ρµM∆τj . (20)

E[∆Y g
j ] = µS∆tgj . (21)

For the covariance matrix, one has to compute:

σ2
Zg
j
= Var[Zg

j ]

= Var[∆XS
j+1,1 − ρ ∆XM

j,11j>1 − ρ

nj∑
i=1+1j>1

∆XM
j,i − ρ ∆XM

j,nj+1 +∆XS
j,nj+1]

= Var[∆XS
j+1,1] + ρ2 Var[∆XM

j,11j>1] + ρ2 Var[
nj∑

i=1+1j>1

∆XM
j,i ]

+ ρ2 Var[∆XM
j,nj+1] + Var[∆XS

j,nj+1]− 2ρ Cov(∆XS
j,nj+1,∆XM

j,nj+1)

= σ2
S∆tj+1,1 + ρ2σ2

M∆tj,11j>1 + ρ2σ2
M

nj∑
i=1+1j>1

∆tj,i

+ρ2σ2
M∆tj,nj+1 + σ2

S∆tj,nj+1 − 2ρ cSM∆tj,nj+1

= σ2
S(∆tj,nj+1 +∆tj+1,1) + ρ2σ2

M∆τj − 2ρ rSMσSσM ∆tj,nj+1. (22)
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Var[∆Y g
j ] = σ2

S∆tgj . (23)

Cov(Zg
j , Z

g
j−1) = Cov(−ρ∆XM

j,1,∆XS
j,1) = −ρcSM∆tj,1. (24)

Cov(Zg
j ,∆Y g

j ) = Cov(−ρ

nj∑
i=1

∆XM
j,i ,

nj∑
i=1+1j>1

∆XS
j,i) = −ρcSM∆tgj . (25)

Cov(∆Y g
j , Z

g
j−1) = Cov(

nj∑
i=1+1j>1

∆XS
j,i,∆XS

j,1) = 0. (26)

Finally, ∀j ∈ {2, ..., k}, the distribution of the Gaussian vector
(
Zg
j , ∆Y g

j , Zg
j−1

)
is

given by:

 Zg
j

∆Y g
j

Zg
j−1

 ∼ N

(
µZg

j

µS∆tgj
µZg

j−1

 ,


σ2
Zg
j

−ρrSMσSσM∆tgj −ρrSMσSσM∆tj,1

−ρrSMσSσM∆tgj σ2
S∆tgj 0

−ρrSMσSσM∆tj,1 0 σ2
Zg
j−1


)

(27)

The distribution of Zg
j given (∆Y g

j , Z
g
j−1) can be derived thanks to the lemma given

in Appendix A, with A = Zg
j , B =

(
∆Y g

j

Zg
j−1

)
, µA = µZg

j
, µB =

(
µS∆tgj
µZg

j−1

)
, ΣA = σ2

Zg
j
,

ΣAB = (−ρrSMσSσM∆tgj ,−ρrSMσSσM∆tj,1), ΣBA = ΣT
AB and ΣB =

(
σ2
S∆tgj 0

0 σ2
Zg
j−1

)
.

After computations, the desired conditional distribution is obtained:

Zg
j | Og

tj,nj
∼ N

(
µZg

j
− ρ rSMσM

σS

(
∆ygj − µS∆tgj

)
− ρ rSMσSσM∆tj,11j>1

σ2
Zg
j−1

(
zgj−1 − µZg

j−1

)
,

σ2
Zg
j
− ρ2r2SMσ2

Sσ
2
M

(
∆tgj
σ2
S

+
∆t2j,11j>1

σ2
Zg
j−1

))
(28)

21



Finally, the log-likelihood for the general observation scheme is:

lnLg(Θ) = −1

2

(
k+1∑
j=1

nj∑
i=1+1j>0

ln(2πσ2
S∆tj,i) +

(∆ycj,i − µS∆tj,i)
2

σ2
S∆tj,i

+
k∑

j=1

ln

(
2π

(
σ2
Zg
j
− ρ2r2SMσ2

Sσ
2
M

(∆tgj
σ2
S

+
∆t2j,11j>1

σ2
Zg
j−1

)))

+

(
zgj − µZg

j
+ ρ rSMσM

σS

(
∆ygj − µS∆tgj

)
+

ρ rSMσSσM∆tj,11j>1

σ2
Z
g
j−1

(
zgj−1 − µ

z
(2)
j−1

))2

σ2
Zg
j
− ρ2r2SMσ2

Sσ
2
M

(∆tgj
σ2
S

+
∆t2j,11j>1

σ2
Z
g
j−1

)
)

(29)

Let us recall that this second observation scheme has been called general because the

complete scheme is a limit case of this scheme when tj,nj and tj+1,1 tend to τj . In this

case, ∆tj+1,1 and ∆tj,nj+1 tend to 0, ∆tgj tends to ∆τj and ∆ygj tends to ∆ycj . Under these

assumptions, it is easy to check that the conditional distribution in the general case (28)

converges to the conditional distribution in the complete case (17).

4.3 Estimation for the perturbed ARD1 and partial replacement models

The identi�ability issue raised in Section 3.4 leads that the parametersΘ = (µS , µM , σ2
S , σ

2
M ,

ρ, rSM ) of the full model cannot be estimated. But if some constraints are imposed, the

model may become identi�able. Therefore, we will consider in the following the parameter

estimation for two speci�c models introduced in Section 3.3, the perturbed ARD1 and

partial replacement models.

� Perturbed ARD1. The degradation process is an ARD1 model perturbed by a white

noise. This corresponds to the case µS = µM = µ. Therefore, the model parameters

in this case are Θ1 = (µ, σ2
S , σ

2
M , ρ, rSM ). The log-likelihoods in the complete and

general observation schemes are respectively lnLPA
c (Θ1) = lnLc(µ, µ, σ

2
S , σ

2
M , ρ, rSM )

and lnLPA
g (Θ1) = lnLg(µ, µ, σ

2
S , σ

2
M , ρ, rSM ), which can be computed using (18) and

(29).

� Partial replacement. The maintenance is optimal since it deletes all the amount of

removable degradation accumulated since the last maintenance. This corresponds to
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the case ρ = 1. Therefore, the model parameters in this case areΘ2 = (µS , µM , σ2
S , σ

2
M ,

rSM ). The log-likelihoods in the complete and general observation schemes are respec-

tively lnLPR
c (Θ2) = lnLc(µS , µM , σ2

S , σ
2
M , 1, rSM ) and lnLPR

g (Θ2) = lnLg(µS , µM , σ2
S ,

σ2
M , 1, rSM ), which can be computed using (18) and (29).

5 Simulation study

Deriving the theoretical properties of the estimators would require sophisticated mathe-

matical derivations, which are out of the scope of this paper. Therefore, the quality of the

estimators is assessed through a simulation study. In order to analyze the impact on the

estimation quality of the parameters values, the number of maintenance actions and the

number of observations, several situations are considered and compared to each other. Each

situation corresponds to di�erent levels of information and available data, so as to provide

a set of convincing elements giving a good insight into the behavior and performance of the

proposed estimation method in di�erent situations representative of the reality. Through

a study of the impact on observation locations, it is also possible to compare the complete

and general observation schemes.

Only the Perturbed ARD1 and Partial replacement model are considered. Mainte-

nance actions and degradation measurements are supposed to be periodically performed.

A situation is de�ned by the values of the model parameters, the number of observations

between maintenance actions (nj), the number of maintenance actions (k), the total num-

ber of observations (n), and the maintenance period. For each situation, 5000 degradation

trajectories are simulated. The �ve model's parameters are estimated by maximizing the

log-likelihoods (18) and (29) with the Nelder-Mead method. To obtain good estimation

results, the initial parameter values of this algorithm have to be carefully chosen. The em-

ployed technique is described in Appendix B. The results are presented through box-plots

of the empirical distribution of each estimator.

5.1 Quality of parameter estimation for the complete observation scheme

5.1.1 Perturbed ARD1 model

For the Perturbed ARD1 model, 8 situations are considered, described in Table 2. For each

situation, 5000 degradation trajectories are simulated. For each trajectory, maintenances

are performed every 3 time units. The boxplots of the estimators are presented in Figure
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5.

Table 2: Simulation situations for the Perturbed ARD1 model

Situation µ σ2
S σ2

M ρ rSM nj k n

1 5 10 7 0.5 0.7 2 4 20
2 5 10 7 0.5 0.7 0 9 20
3 5 10 7 0.5 0.7 5 2 21
4 5 10 7 0.5 0.7 2 49 200
5 5 10 7 0.5 0.1 2 4 20
6 5 10 20 0.5 0.7 2 4 20
7 5 10 7 0.2 0.7 2 4 20
8 5 10 7 0.8 0.7 2 4 20

� Situation 1 is the reference situation, with an average maintenance e�ciency (ρ = 0.5),

a quite high correlation between the underlying degradation processes (rSM = 0.7),

k = 4 maintenance actions and nj = 2 observations of the degradation level between

each maintenance.

� Situation 2 has the same parameters and the same amount of data, but with more

maintenances and no observations between maintenances. Since we have more infor-

mation on the jumps and less information between maintenance, σ2
M and ρ are better

estimated and σ2
S is less well estimated. µ and rSM are also better estimated.

� Situation 3 is the dual of the previous one, with less maintenances and more observa-

tions between maintenances. Logically, all the estimations are degraded, except that

of σ2
S .

� Situation 4 is similar to situation 1, with much more data. As expected, the estimation

quality of all estimators increases with the number of data.

� Situation 5 is similar to situation 1, except that the coe�cient of correlation is much

smaller (rSM = 0.1). The box-plot shows that it is di�cult to estimate a so small

coe�cient of correlation. The estimations of other parameters are not a�ected except

ρ, which is slightly less well estimated as in Situation 1.

� Situation 6 is similar to situation 1, except that the second variance is much larger

(σ2
M = 20). Unsurprisingly, only the estimation of σ2

M is a�ected.
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Figure 5: Estimations of the parameters of the Perturbed ARD1 model for the complete
observation scheme
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� Situation 7 is similar to situation 1, except that the maintenance e�ciency is much

smaller (ρ = 0.2). It appears that the estimation of ρ is improved and the estimations

of other parameters are not a�ected.

� Situation 8 is similar to situation 1, except that the maintenance e�ciency is much

larger (ρ = 0.8). Only the estimation of ρ is slightly degraded.

These results and other simulations not reported here lead us to draw the following

conclusions. The parameters are generally well estimated, even for a rather small amount

of data. σ2
S and σ2

M are slightly underestimated and rSM is overestimated. A higher number

of maintenances improves the estimation of the parameters linked to the jumps σ2
M , ρ and

rSM . A higher number of observed degradation levels between maintenances improves the

estimation of σ2
S . It is di�cult to estimate rSM when its value is close to 0 or 1. The

variances of the estimators of σ2
M and ρ increase when the true parameter values increase.

5.1.2 Partial replacement model

For the Partial replacement model, 6 situations are considered, described in Table 3. The

boxplots of the estimators are presented in Figure 6. The results are completely similar to

those of the Perturbed ARD1 model. Whereas the true values of the drift parameters are

di�erent, the estimations quality of µS and µM remains comparable.

Table 3: Simulation situations for the Partial replacement model

Situation µS µM σ2
S σ2

M rSM nj k n

1 10 5 10 7 0.7 2 4 20
2 10 5 10 7 0.7 0 9 20
3 10 5 10 7 0.7 5 2 21
4 10 5 10 7 0.7 2 49 200
5 10 5 10 7 0.1 2 4 20
6 10 5 10 20 0.7 2 4 20

5.2 Impact of the observations locations and the observation schemes

The aim of this section is to look if the observations locations between two successive

maintenance actions can have an impact on the estimation quality. To that aim, degradation

levels are not necessarily periodically observed. Five situations are considered, described
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Figure 6: Estimations of the parameters of the Partial replacement model for the complete
observation scheme
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in Table 4 and illustrated in Figure 7. The total numbers of data are equivalent in all

situations. The considered model is the Perturbed ARD1 model.

Table 4: Simulation situations for assessing the impact of observations locations

Observation scheme Situation µ σ2
S σ2

M ρ rSM nj k n

c 1 5 10 7 0.5 0.7 0 9 20
g 2 5 10 7 0.5 0.7 2 9 21
g 3 5 10 7 0.5 0.7 2 9 21
g 4 5 10 7 0.5 0.7 2 9 21
g 5 5 10 7 0.5 0.7 2 9 21

1
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5

0 τ1 τ2 τ3

Time

S
itu

at
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ns

Figure 7: Observations location for the �ve considered situations and the �rst three main-
tenance times.

� In situation 1, the data are collected under the complete observation scheme, with no

observed degradation levels between maintenances.

� In situation 2, the data are collected under the general observation scheme. Two

degradation levels are measured in each interval, and the measurement times are

close to the maintenance times. Here, the degradation measurements are not periodic:

∀ j ∈ {1, ..., 9}, tj,nj = τj − 1
5 and tj+1,1 = τj +

1
5 .

� In situation 3, the data are collected under the general observation scheme. Two

degradation levels are measured in each interval, and the measurement times are

periodically spaced in the intervals between maintenances.
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� In situation 4, the data are collected under the general observation scheme. Two

degradation levels are measured in each interval, and the measurement times are just

before the maintenance times. Here, the degradation measurements are not periodic:

∀ j ∈ {1, ..., 9}, tj,nj = τj − 1
5 and tj+1,1 = τj +

1
2 .

� In situation 5, the data are collected under the general observation scheme. Two

degradation levels are measured in each interval, and the measurement times are just

after the maintenance times. Here, the degradation measurements are not periodic:

∀ j ∈ {1, ..., 9}, tj,nj = τj − 1
2 and tj+1,1 = τj +

1
5 .
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Figure 8: Estimations of the parameters of the Perturbed ARD1 model for the situations
of Table 4

The boxplots of the estimators are presented in Figure 8. This �gure shows that the best

estimations are obtained for situation 1, except for σ2
S . It means that in order to estimate

the parameters mainly linked to the maintenance e�ect, it is better to observe degradation
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levels at maintenance times. Conversely, for parameter σ2
S mainly linked to the intrinsic

degradation, it is recommended to observe degradation levels between maintenances.

The results for situation 2 are closer to the results of situation 1 than those of situation

3. This illustrates the fact that Situation 1 is a limit case of situation 2, or that the

complete observation scheme is a limit case of the general observation scheme. In this case,

the observed jumps in the general scheme Zg
j are close to the real jumps Zc

j .

The estimations in situation 4 and 5 are comparable except for the correlation coe�cient

rSM , which is better estimated when degradation levels are observed just after maintenance

actions.

The estimation quality is slightly better in situation 5 compared to situation 4. Measur-

ing degradation levels just after maintenance actions improves the estimations quality. In

the usual ARD1 model, the best estimations are not obtained for the complete observation

scheme [13]. On the contrary, for the proposed model, the complete observation scheme

provides the best estimation.

6 Conclusion and perspectives

This article has introduced a new degradation model with imperfect maintenance, which

assumes that maintenance e�ect only a�ects a part of the degradation process. Two partic-

ular models of interest have been studied, the Perturbed ARD1 and the Partial replacement

models. The parameters of these models have been estimated under two di�erent observa-

tion schemes. The quality of estimation has been assessed through a simulation study and

the impact of di�erent features of the model and data has been analyzed. A �rst prospect

of this study is to derive the theoretical properties of the estimators.

In the future, decision making techniques could be carried out in order to establish

optimal maintenance policies. Generally, it is assumed that a failure occurs when the

degradation process hits for the �rst time a given degradation threshold. For usual Wiener

processes, it is well known that the �rst hitting time is inverse Gaussian distributed [7]. For

the new degradation model presented in this article, the �rst hitting time's distribution is

not inverse Gaussian anymore but appears to be more complex as the degradation trajectory

is discontinuous at maintenance times. So an interesting prospect of this work is the

determination of this distribution.

In Appendix C, a preliminary step is given, through an empirical estimate of this dis-

tribution's density. Maintenance e�ects seem to cause the multimodal shape of the distri-
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bution. Due to the maintenance e�ect, the risk of failure is higher before a maintenance

than after. Further studies could be carried out in the future in order to determine the

theoretical distribution of the �rst hitting time for this degradation model.
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Appendices

A Conditional distributions in Gaussian vectors

The following lemma gives the conditional distributions of the components of a Gaussian

vector. It can be found for instance in Kotz et al [10].

Let

(
A

B

)
be a Gaussian vector such that

(
A

B

)
∼ N (µ,Σ), where µ =

(
µA

µB

)
and

Σ =

(
ΣA ΣAB

ΣBA ΣB

)
. Then, the conditional distribution of A given [B = b] is multivariate

normal N (µ̃, Σ̃) where µ̃ = µA +ΣABΣ
−1
B (b− µB) and Σ̃ = ΣA − ΣABΣ

−1
B ΣBA.

B Parameters initialization for the maximum likelihood esti-

mation algorithm

Model's parameters are estimated by maximizing the log-likelihood with the Nelder-Mead

algorithm. In most situations, this method is not really sensitive to its initialization. How-

ever, a good initialization provides a more e�cient algorithm and avoids potential local

minima. In order to provide an e�cient initialization, we will use the remark made in Sec-

tion 3.2 saying that (µS , σ
2
S) are closely linked to degradation increments while parameters

(µM , σ2
M , ρ) are closely linked to degradation jumps, so to maintenance e�ciency. For the

complete observation scheme with periodic maintenances of periodicity ∆τ , the initializa-

tion of the parameters is made as follows. The initial values of (µS , σ
2
S , µM , σ2

M , rSM , ρ)

will be denoted (µ
(0)
S , σ2

S
(0)

, µ
(0)
M , σ2

M
(0)

, r
(0)
SM , ρ(0)).

� Initialization of µS and σ2
S . A preliminary estimation of µS and σ2

S can be done

by considering that only the degradation increments ∆Y c
j,i are observed. These

random variables are independent and have respectively the N
(
µS∆tj,i, σ2

S∆tj,i
)

distributions. So µ
(0)
S and σ2

S
(0)

will be the values of µS and σ2
S which maximize

L(µS , σ
2
S) =

∏
j

∏
i
f∆Y c

j,i
(∆ycj,i). It is easy to show that:

µ
(0)
S =

k+1∑
j=1

nj+1∑
i=1

∆ycj,i

k+1∑
j=1

nj+1∑
i=1

∆tj,i

=
y(τ)

τ
and σ2

S
(0)

=
1

N + k + 1

k+1∑
j=1

nj+1∑
i=1

(∆ycj,i − µ
(0)
S ∆tj,i)

2

∆tj,i
,
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where N =
k+1∑
j=1

nj .

Note that for the perturbed ARD1 model (µS = µM = µ), µ
(0)
S is an estimator of µ.

� Initialization of ρ and µM . The jumps Zc
j are independent and their respective

distributions are N
(
−ρµM∆τ , ρ2σ2

M∆τ
)
. So ∀ j ∈ {1, ..., k}, E

[
Zc
j

µM∆τ

]
= −ρ.

Therefore, for the Perturbed ARD1 model, one can choose µ
(0)
M = µ

(0)
S and ρ(0) =

− 1

kµ
(0)
M ∆τ

k∑
j=1

zcj . For the Partial replacement model, ρ = 1 so µ
(0)
M = − 1

k∆τ

k∑
j=1

zcj .

� Initialization of σ2
M . If only the jumps Zc

j are observed, the likelihood is L(µM , σ2
M , ρ) =

k∏
j=1

fZc
j
(zcj). It is easy to show that the parameter values which maximize this func-

tion are such that σ2
M = 1

kρ2∆τ

k∑
j=1

(zcj+ρµM∆τ)2. Therefore, for the Perturbed ARD1

model, σ2
M

(0)
= 1

kρ(0)
2
∆τ

k∑
j=1

(zcj+ρ(0)µ
(0)
M ∆τ)2. And for the Partial replacement model,

σ2
M

(0)
= 1

k∆τ

k∑
j=1

(zcj + µ
(0)
M ∆τ)2.

� Initialization of rSM . Since Zc
j = −ρ∆XM

j and ∆Yj = ∆XS
j , Cov

(
Zc
j

−ρ ,∆Yj

)
=

Cov(∆XM
j ,∆XS

j ) = cSM∆τ . Therefore, cSM can be estimated by the empirical

covariance between the Zc
j/(−ρ) and the ∆Y c

j /∆τ :

c
(0)
SM = − 1

∆τρ(0)

[
1
k

k∑
j=1

Zc
j∆Yj − 1

k2

k∑
j=1

Zc
j

k∑
i=1

∆Yi

]
, and r

(0)
SM =

c
(0)
SM

σ
(0)
S σ

(0)
M

.

If the estimation of rSM is greater than 1, then r
(0)
SM is set close to 1 (at 0.9). If the

estimation of rSM is lower than −1, then r
(0)
SM is set close to −1 (at −0.9).

C First hitting time empirical distribution

Degradation trajectories are simulated for the proposed model and �rst hitting times are

collected. An example of a simulated trajectory and observed hitting time is given in

Figure 9. An histogram of the obtained values is plotted in Figure 10.

It appears that the �rst hitting time is multimodal distributed. In Figure 10, the modes

of the empirical density are clearly close to the maintenance times. In fact, the multimodal
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Figure 9: An example of a simulated degra-
dation trajectory
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Figure 10: Empirical distribution of the �rst
passage time

shape of the distribution is a consequence of the maintenance e�ect on the degradation.
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