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The buoyancy-driven motion of a deformable bubble rising near a vertical hydrophilic
wall is studied numerically. We focus on moderately inertial regimes in which the bubble
undergoes low-to-moderate deformations and would rise in a straight line in the absence
of the wall. Three different types of near-wall motion are observed, depending on the
buoyancy-to-viscous and buoyancy-to-capillary force ratios defining the Galilei (Ga) and
Bond (Bo) numbers of the system, respectively. For low enough Ga or large enough Bo,
bubbles consistently migrate away from the wall. Conversely, for large enough Ga and low
enough Bo, they perform periodic near-wall bounces. At intermediate Ga and Bo, they are
first attracted to the wall down to a certain critical distance, and then perform bounces with
a decreasing amplitude before stabilising at this critical separation. Periodic bounces are
accompanied by the shedding of a pair of streamwise vortices in the wake, the formation
of which is governed by the near-wall shear resulting from the no-slip condition. These
vortices provide a repulsive force that overcomes the viscous resistance of the fluid to the
departing motion, making the bubble capable of returning to the region where it is attracted
again to the wall. Although periodic, the shedding/regeneration cycle of these vortices is
highly asymmetric with respect to the lateral bubble displacements, vortices being shed
when the gap left between the bubble and the wall reaches its maximum, and reborn only
when this gap comes back to its minimum.
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1. Introduction

Wall-bounded bubbly flows are widespread in engineering processes. In nuclear reactors,
boiling water creates bubbles on heated surfaces, which affects the reactor efficiency
and poses safety challenges. In hydrogen production through water electrolysis, bubbles
emerge in the electrolyte due to the formation of hydrogen at the cathode and oxygen
at the anode. Efficient removal of these bubbles from the electrodes surface is vital for
the performance of the system. In froth flotation processes, particularly in reflux flotation
cells, an inclined channel section is deliberately introduced to enhance the separation of
bubbles from the slurry, thus mitigating the loss of attached hydrophobic particles. In these
processes and in many others, accurately predicting the distribution of bubbles near walls
is essential. However, the complexity of the bubble–wall interaction processes challenges
this prediction (Yin & Koch 2008; Takagi & Matsumoto 2011; Lu & Tryggvason 2013).

At the local scale, the primary step in the understanding of these interactions consists
in considering the rise of an isolated bubble in a quiescent fluid partially bounded by a
flat wall. However, the orientation of this wall dictates to a large extent the main physical
ingredients governing the interaction sequence, and therefore, the fate of the bubble. In the
presence of a horizontal wall, the problem exhibits an axial symmetry, provided that the
bubble is small enough to rise in a straight line. Interactions usually manifest themselves in
a series of damped near-wall bounces. This bouncing sequence is mostly governed by the
time-dependent variations of the bubble shape with the distance to the wall, which yield
variations in both the bubble surface energy and the kinetic energy of the surrounding
fluid, and by lubrication effects in the gap (Tsao & Koch 1997; Zenit & Legendre 2009;
Zawala & Dabros 2013; Klaseboer et al. 2014; Kosior, Zawala & Malysa 2014). In contrast,
the configuration where the bubble rises close to a vertical wall is intrinsically three
dimensional. Bubble–wall interactions are then driven by non-axisymmetric effects, be
they inertial or viscous in nature. Moreover, the presence of a wake behind the bubble
plays a key role in the interaction process whatever the hydrodynamic regime, leading
to different styles of path according to the relative magnitude of inertial, viscous and
capillary effects (de Vries, Biesheuvel & van Wijngaarden 2002; Takemura & Magnaudet
2003; Zaruba et al. 2007; Lee & Park 2017; Zhang et al. 2020; Yan et al. 2022; Cai
et al. 2023; Cai, Sun & Chen 2024; Estepa-Cantero, Martínez-Bazán & Bolaños-Jiménez
2024). Intermediate wall inclinations have also been considered, especially with the aim
of determining the critical angle beyond which the response of the system transitions from
a regime of repeated bounces to another regime in which the bubble slides steadily some
distance below the wall (Tsao & Koch 1997; Barbosa, Legendre & Zenit 2016; Heydari
et al. 2022; Khodadadi et al. 2022). Additional complexity arises in the presence of
surfactants (Ahmed et al. 2020; Ju et al. 2022), owing to the Marangoni effect resulting
from the localised contamination of the bubble surface. The possible partial wettability of
the wall also alters the interaction process (Jeong & Park 2015; Khodadadi et al. 2022), as
it promotes the formation of a moving three-phase contact line, making the bubble more
prone to slide along the wall without detaching from it.

In what follows, we concentrate on the configuration where a clean bubble (thus, with
uniform surface tension) rises close to a vertical, hydrophilic wall. Moreover, we mostly
restrict ourselves to moderately inertial regimes in the presence of significant surface
tension effects, so that the bubble experiences moderate deformations and would follow a
straight vertical path if it were to rise in an unbounded fluid at rest. Highly inertial regimes
in which isolated bubbles follow a non-straight path will be examined in a companion
paper.
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Interaction of a rising bubble with a vertical wall

To set the scene in more detail, it is useful to come back to the observations and
discussion reported by Takemura & Magnaudet (2003) (hereinafter abbreviated to as TM).
In their experiments, performed in several silicone oils with nearly spherical bubbles,
these authors identified three distinct interaction regimes, depending on the rise Reynolds
number of the bubble, Re. For Re � 35, with Re based on the bubble equivalent diameter
and actual rise speed in the presence of the wall, bubbles were consistently found to
migrate away from the wall. The mechanism involved lies in the interaction of the wake
with the wall, as was first identified for a rigid sphere sedimenting at finite Re close
to a vertical wall by Vasseur & Cox (1977). More specifically, as the sphere translates,
a certain amount of fluid is displaced laterally in the wake. At some point, a fraction
of this fluid encounters the wall and the latter reacts by generating a small lateral
flow directed away from it. Thus, the associated pressure gradient is towards the wall,
which, in the presence of finite inertial effects, i.e. at finite Re, results in a lateral force
directed away from the wall. At low-but-finite Reynolds number, this force decreases as
the inverse square of the distance separating the sphere from the wall. Takemura et al.
(2002) extended the prediction of Vasseur & Cox (1977) to spherical bubbles (and drops),
showing that the lateral force is proportional to the square of the maximum vorticity at
the particle surface. This vortical mechanism is still active at moderate Reynolds number,
say Re = O(10 − 100), although the lateral force decays more rapidly with the separation
distance than predicted in the low-but-finite Re limit.

Beyond Re ≈ 35 and below a second critical Reynolds number close to 65,
uncontaminated nearly spherical bubbles exhibit a dramatically different near-wall
behaviour. Released some distance apart from the wall, they promptly migrate towards it
and eventually stabilise a very short distance to it, possibly with some damped oscillations,
leaving only a thin interstitial liquid film in the gap. The migration towards the wall merely
results from the Bernoulli mechanism that can be inferred from potential flow theory.
Indeed, in the inviscid limit, mass conservation implies that, in the bubble’s reference
frame, the fluid moves faster in the gap than on the opposite side of the bubble. This
implies the existence of a pressure minimum in the gap, which results in the migration of
the bubble towards the wall. The corresponding lateral force decreases as the fourth power
of the inverse of the separation when the latter is of the order of the bubble size or larger
(van Wijngaarden 1976; Miloh 1977). This attractive transverse force is at the origin of the
coalescence of weakly deformed bubbles rising side by side (Duineveld 1998; Sanada et al.
2009; Kusuno & Sanada 2021). Although the potential flow model provides only a crude
approximation of the actual flow past the bubble when the rise Reynolds number is only a
few tens, the measurements of TM indicate that it realistically predicts the transverse force
acting on nearly spherical bubbles rising near a vertical wall as long as the separation is
larger than the bubble diameter. For smaller gaps, the above two mechanisms combine in a
complex and still unclear manner, resulting in the existence of a wall-normal position very
close to the wall at which the total transverse force vanishes. This is the position at which
bubbles eventually stabilise.

Increasing the Reynolds number beyond approximately 65 while remaining in the range
where bubbles only exhibit small deformations (say, up to Re ≈ 350 in water) reveals a
third, well-distinct interaction scenario (de Vries et al. 2002; TM). In that range, bubbles
perform regular bounces very close to the wall while rising, the amplitude of the lateral
oscillations being a significant fraction of the bubble size. This oscillatory behaviour may
be qualitatively understood by considering that, close to the equilibrium position at which
the total transverse force vanishes, this force varies linearly with the wall-normal position.
Within this approximation, the transverse force plays a role similar to that produced
by a spring, the extremity of which is slightly displaced from its equilibrium position.
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If damping effects are small, the reaction of the bubble to this force arises primarily
through the inertia of the surrounding liquid, in the form of a virtual mass force,
proportional to the amount of liquid displaced by the bubble in the course of its
lateral motion. Under such conditions, the bubble–fluid entity behaves essentially as a
mass-spring system. Hence, bubbles perform transverse oscillations, the natural frequency
of which may be determined once the near-wall variations of the overall transverse force
and the virtual mass of the bubble (which depends on its shape and position with respect
to the wall) are known. Of course, viscous effects make the fluid resist the lateral bubble
displacements, and these effects are responsible for the damping or even the absence
of the transverse oscillations when the Reynolds number lies in the intermediate range
35 � Re � 65. The reasons why no visible damping subsists when Re � 65 in spite of the
still existing viscous resistance, is a largely open question, although there is little doubt that
the answer lies in the wake dynamics. This dynamics has been explored experimentally
with the help of various optical techniques (de Vries et al. 2002; Lee & Park 2017; Cai et al.
2023, 2024) and through simulations (Zhang et al. 2020; Yan et al. 2022). Nevertheless,
its connection with the shape, rise speed, wall-normal position and transverse velocity of
the bubble is still unclear.

Building on the above knowledge and open issues, the present investigation aims at
providing new insights into the mechanisms governing the various interaction scenarios
observed in experiments. More precisely, we aim at making progress on three main
questions: How does bubble deformation affect the succession of these scenarios? Which
role does the wake dynamics play in the regimes taking place when fluid inertia dominates,
especially in the bouncing regime observed for Re � 65 with nearly spherical bubbles?
How do these oscillations of the bubble path affect in turn the behaviour of the wake?

The findings analysed in this paper were obtained through a series of high-resolution
simulations covering a significant range of hydrodynamic conditions. Computations
were carried out with the open-source code Basilisk (Popinet 2015) based on the
volume-of-fluid (VOF) approach. The adaptive mesh refinement (AMR) technique
implemented in this code made it possible to properly capture the flow in between the
bubble and the wall, down to very small gaps. The paper is organised as follows. In
§ 2 we formulate the problem, specify the range of parameters considered, and outline
the numerical approach. Section 3 discusses in detail the characteristics of the path and
wake observed in the simulations, which imply the three different hydrodynamic regimes
reviewed above. A further analysis of the mechanisms governing the periodic bouncing
regime is carried out in § 4. The findings obtained in the course of the investigation
are summarised in § 5. The paper is supplemented by a series of appendices. Of special
significance are Appendices A and B that establish the accuracy of present numerical
predictions.

2. Statement of the problem and outline of the numerical approach

2.1. Problem definition
We consider the buoyancy-driven motion of a single gas bubble rising in a stagnant
liquid in the presence of a nearby vertical wall. The notations to be used throughout
the paper are specified in figure 1(a). In particular, ex and ey are the unit vectors in the
wall-normal direction (pointing into the liquid), and along the direction of buoyancy,
respectively. Hence, the gravitational acceleration is g = −gey. The wall is located
at x = 0 and the initial distance from the bubble centre to the wall is x0, such that
in Cartesian coordinates x = (x, y, z), the bubble is released at the position (x0, 0, 0).
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Interaction of a rising bubble with a vertical wall

No-slip wall: x = 0 Bubble trajectory
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Figure 1. Sketch of the problem and definition of basic quantities.

The instantaneous gap between the wall and the point of the bubble surface closest to
it is δ(t). During the rise, the position of the geometrical bubble centroid (curved line in
figure 1a) is xb(t) = (xb(t), yb(t), zb(t)), while the bubble velocity, which is tangent to the
path is v(t).

We restrict attention to moderately inertial regimes in the presence of significant
surface tension effects, in which the shape of a freely deformable bubble is close to an
oblate spheroid. The bubble volume is V = 4

3πR3, with R denoting the equivalent radius.
Defining b and a as the lengths of the major and minor bubble axes (which are such
that ab2 = (2R)3 in the case of a perfect spheroid), the bubble geometrical aspect ratio is
χ = b/a (figure 1b). Given that the bubble motion predominantly occurs within the (x, y)
plane, the bubble orientation is characterised by two angles: the inclination α, which is the
angle from the vertical direction ey to the minor axis, and the drift β, which is the angle
from the minor axis to the bubble velocity v, as illustrated in figure 1(b). In what follows,
the fluid velocity and pressure fields in the presence of the bubble are u and p, respectively,
and ω = ∇ × u denotes the vorticity.

The fluid and bubble motions are governed by the incompressible Navier–Stokes
equations, together with the no-slip boundary condition at the wall, u(0, y, z) = 0. The
problem is a priori characterised by five independent dimensionless parameters, namely
the Galilei number Ga, the Bond number Bo, the initial separation distance X0 = x0/R,
the density ratio ρg/ρl and the viscosity ratio μg/μl, where subscripts g and l refer to the
gas and the liquid, respectively. We set the density and viscosity ratios to 10−3 and 10−2,
respectively, to mimic the situation of a gas bubble rising in a low-viscosity liquid. These
two ratios are not expected to have any significant influence on the flow dynamics as long
as they remain very small. The Galilei and Bond numbers are respectively defined as

Ga = ρlg1/2R3/2

μl
, Bo = ρlgR2

γ
, (2.1a,b)

with γ denoting the surface tension. The instantaneous bubble Reynolds number depends
on Ga, Bo and X0 and is defined as

Re = 2ρl‖v‖R
μl

, (2.2)
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Liquid ρl (kg m−3) μl (mPa s) γ (mN m−1) Mo = gμ4
l /ρlγ

3 Bo (R in mm)

Ga = 10 Ga = 30

Iron at 1550 ◦C 7010 6.30 1200 1.27 × 10−12 0.002 (0.20) 0.010 (0.42)
Water 1000 1.00 72.8 2.54 × 10−11 0.006 (0.22) 0.027 (0.45)
DMS-T00 761 0.49 15.9 1.8 × 10−10 0.012 (0.16) 0.053 (0.33)
DMS-T01 818 0.88 16.9 1.5 × 10−9 0.025 (0.23) 0.107 (0.48)
DMS-T02 873 1.75 18.7 1.6 × 10−8 0.054 (0.35) 0.235 (0.72)
DMS-T05 918 4.59 19.7 6.2 × 10−7 0.184 (0.64) 0.795 (1.32)
DMS-T11 935 9.35 20.1 9.9 × 10−6 0.463 (1.01) 2.002 (2.10)

Table 1. Physical properties of some fluids with Mo ranging from ≈ 1 × 10−12 to ≈ 1 × 10−5. Except for iron,
all fluid properties are taken at a temperature of 20 ◦C. The last four columns on the right show, for Ga = 10
and 30, the corresponding Bond number and, in parentheses, the equivalent bubble radius, R, in millimetres.

with ‖v‖ the norm of the instantaneous velocity of the bubble centroid. In what follows,
we consider the parameter range 10 ≤ Ga ≤ 30 and 0.01 ≤ Bo ≤ 1 in which, with just
one exception, an isolated bubble rising in an unbounded flow domain follows a vertical
path. Note that, as far as we are aware, the only two previous numerical investigations of
the same problem involving deformable bubbles focused on a single value of the Bond
number, namely Bo = 4 (Zhang et al. 2020) or Bo = 0.5 (Yan et al. 2022). Hence, we
believe that results of fully resolved simulations exploring the fate of nearly spherical
bubbles have not been reported so far.

In experimental investigations under a given gravitational environment, the selected
gas–liquid system may be characterised through the Morton number Mo = gμ4

l /(ρlγ
3) =

Bo3/Ga4. The ranges of Bo and Ga considered in this work correspond to Morton numbers
ranging from 1.2 × 10−12 to 1.0 × 10−4. To connect the (Bo, Ga) sets discussed later with
actual gas–liquid systems, table 1 summarises the physical properties of seven fluids with
Mo ranging from approximately 1 × 10−12 to 1 × 10−5, along with the corresponding
Bond number and bubble size at the two extremities of the considered range of Galilei
number, Ga = 10 and Ga = 30.

2.2. Numerical framework and computational aspects
The three-dimensional flow field is solved numerically using the open-source flow solver
Basilisk developed by Popinet (Popinet 2009, 2015). This solver employs the one-fluid
approach together with the geometric VOF method to track the bubble interface. The
volume function C(x, t), with C = 1 within the bubble and C = 0 in the liquid, determines
whether gas or liquid is present at time t at a given point x of the domain. The local density
and viscosity of the fluid medium are approximated using the averaging rules

ρ(x, t) = C(x, t)ρg + (1 − C(x, t))ρl, (2.3a)

μ(x, t) = μgμl

C(x, t)μl + (1 − C(x, t))μg
. (2.3b)

A harmonic averaging rather than the more popular arithmetic averaging is used for the
viscosity, as the latter is expected to somewhat overestimate viscous effects. A comparison
of results obtained with the two averaging rules is provided in Appendix A. Differences
are found to be marginal (see figure 23).
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Interaction of a rising bubble with a vertical wall

The computational domain is a cubic box with an edge length L = 240R. A no-slip
and no-penetration condition is applied at the left wall (x = 0) and at the top (y = ymax)
and bottom (y = ymin) surfaces, while a free-slip condition is applied on the remaining
boundaries. To mimic a hydrophilic condition at the wall, we also impose C = 0 at x = 0,
thus enforcing the presence of a thin liquid film of thickness Δf , with 0 < Δf ≤ Δmin
(Δmin denoting the minimum grid size), which cannot be entirely drained during a possible
bubble–wall collision. Bubbles are initially spherical and are released with zero velocity
at a vertical position located 15R above the bottom wall to minimise confinement effects
possibly induced by this wall.

Numerical aspects of the interfacial flow solver incorporated in Basilisk, particularly
details on the VOF technique and the computation of surface tension, have been
documented in many previous works (see, e.g. Popinet 2009 and Zhang, Ni & Magnaudet
2021). Here, we only detail the spatial discretisation used in this work, since this aspect is
crucial for fully resolving the flow within the boundary layers that develop at the bubble
surface and at the wall. We use the AMR technique to locally refine the grid close to the
interface and in regions of high velocity gradients, based on a wavelet decomposition of C
and u, respectively (van Hooft et al. 2018). The thresholds on the estimated relative error
for C and u are 10−3 and 10−2, respectively (van Hooft et al. 2018), while the minimum
and maximum grid sizes are Δmin = L/214 ≈ R/68 and Δmax = L/26 ≈ 4R, respectively.
These settings ensure that (i) the boundary layer around the bubble surface is resolved
using approximately six grid points, even at the highest Reynolds number reached in the
considered parameter space; and (ii) the far wake (starting approximately 10R downstream
of the bubble) is also adequately resolved, since the corresponding cells have a size close
to R/17. To properly resolve the flow in the bubble–wall gap when the bubble is close to the
wall, Δ̄min ≡ Δmin/R is decreased to ≈1/136 when δ̄ ≡ δ/R ≤ 0.15. The adequacy of the
grid resolution is confirmed through a grid-independence study detailed in Appendix A,
in which Δ̄min is refined down to 1/272 irrespective of δ̄. Other tests with bubbles rising
below a horizontal or inclined wall are presented in Appendix B.

A preliminary series of computations in the range 10 ≤ Ga ≤ 30, 0.02 ≤ Bo ≤ 1 was
carried out using a coarser grid with Δ̄min = (L/R)/213 ≈ 1/34, to gain some insight into
the organisation of the flow field. These simulations revealed that the flow remains always
symmetric with respect to the vertical mid-plane z = 0. This allowed us to consider only
half of the computational domain in the rest of the computations, by imposing a symmetry
condition on that plane. The computations whose results are discussed below were
performed on the HPC cluster Hemera at the Helmholtz-Zentrum Dresden Rossendorf.
Most runs were executed on nodes equipped with two Intel® Xeon® Gold 6148 CPUs
processors, each comprising 20 cores and running at 2.40 GHz. A typical run, covering
a physical time tfin = 80(R/g)1/2, took approximately 50 days (e.g. the case Ga = 30,
Bo = 0.25). Computations became more time consuming in low-Bo cases, owing to the
time step constraint in the explicit scheme involved in the computation of the capillary
force (Popinet 2009). For this reason, computations with Bo < 0.2 were performed on
nodes equipped with two AMD 16-Core Epyc 7302 CPUs processors, running at a
higher clock speed of 3.0 GHz. Despite these improved performances, obtaining results
covering a sufficiently long period of time usually required around 90 days (e.g. the
case Ga = 25, Bo = 0.05). The most challenging case was the grid convergence study
at Ga = 21.9 and Bo = 0.073 reported in Appendix A, where the grid was refined down
to Δ̄min = 1/272. This refinement caused the typical number of grid cells in the second
half of the run to increase from 2.8 million (when Δ̄min = 1/136) to about 8.1 million
(when Δ̄min = 1/272), even though only half of the computational domain was considered.
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Length Velocity Time Vorticity

Dimensional variable xb yb zb vx vy vz t ωx ωy ωz
Dimensionless variable Xb Yb Zb Vx Vy Vz T ω̄x ω̄y ω̄z
Characteristic scale R

√
gR

√
R/g

√
g/R

Table 2. Correspondence between the dimensional and non-dimensional variables characterising the bubble
motion. Specifically, vi = v · ei and ωi = ω · ei represent the ith component of velocity and vorticity,
respectively.

Moreover, the time step was reduced from 6.8 × 10−5(R/g)1/2 to 2.4 × 10−5(R/g)1/2,
owing to the constraint arising from capillary effects. To tackle the memory issue inherent
to this case, the run was executed on two AMD 64-Core Epyc 7713 CPUs processors
running at 2.0 GHz. It took approximately half a year to obtain the evolution of the flow
up to a physical time tfin = 30(R/g)1/2, corresponding to approximately 1.25 × 106 time
steps.

In the following sections we make extensive use of dimensionless flow parameters
to describe the bubble motion. Table 2 summarises the main dimensionless variables,
alongside with their dimensional counterparts and the characteristic scales used for
normalisation. In particular, bubble positions, velocities and times will systematically
be normalised by R, (gR)1/2 and (R/g)1/2, respectively. Unless stated otherwise, the
dimensionless initial distance from the bubble to the wall is set to X0 = 2, corresponding
to an initial gap δ̄|t=0 = 1. Effects of X0 on the subsequent trajectory of the bubble are
examined in Appendix C.

3. Path, wake and bubble dynamics

3.1. Overview of the results
Three distinct types of near-wall bubble motions were observed in the series of
computations we carried out.

(i) Migration away from the wall: in this scenario the bubble continuously migrates
away from the wall as soon as its wake is fully developed. This migration may or
may not be accompanied by the development of path instability in the wall-normal
plane.

(ii) Periodic near-wall bouncing: in such cases the bubble bounces repeatedly, with
a fixed amplitude and frequency, with or without ‘direct collisions’ on the wall
according to the definition detailed below.

(iii) Damped near-wall bouncing: in this scenario the bubble first bounces several times
very close to the wall, but the amplitude of the bounces decreases over time, and
the bubble eventually stabilises at a certain distance from the wall.

Figure 2 displays the phase diagram and typical trajectories associated with these three
families of motions. The two trajectories in the left panel of figure 2(b) correspond to the
periodic near-wall bouncing regime. The path denoted with a solid red line is observed
with a nearly spherical bubble (χ ≈ 1.05; see figure 8b-i,ii below) that repeatedly collides
with the wall (collisions arise at positions where Xb < 1). The second path (dashed red
line) corresponds to a moderately deformed bubble (χ ≈ 1.5; see figure 9(b) below) that
does not collide with the wall throughout its ascent but bounces periodically close to it.
Note that the amplitude of the lateral motion is significantly larger in this second case. The
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Figure 2. Different types of bubble paths observed in the simulations. (a) Phase diagram in the (Bo, Ga)
plane. (b) Typical trajectories illustrating the three distinct families of motion. Red � and red � in (a),
red —— and red - - - - in (b) periodic bouncing cases with and without ‘direct’ bubble–wall collisions,
respectively; blue � and blue � in (a), blue —— and blue - - - - in (b) migration away from the wall with
and without the development of a path instability, respectively; green � in (a), green —— and green - - - -
in (b) damped bouncing cases. In (a) open red stars and circles refer to the experimentally observed periodic
bouncing configurations of de Vries et al. (2002) and TM, respectively; ——, - - - -: iso-Reynolds number lines
corresponding to the critical values Re1 = 35 and Re2 = 65, respectively; thin dashed lines are the iso-Mo
lines corresponding to different liquids, with iron and water at the very left, then silicone oils T0–T11 of
increasing viscosity from left to right (see table 1 for the corresponding physical properties). In (b), lines
red ——, red - - - -, green ——, green - - - -, blue —— and blue - - - - correspond to parameter combinations
(Bo, Ga) = (0.05, 25), (0.25, 30), (0.05, 15), (0.25, 20), (1, 30) and (0.5, 15), respectively.

middle panel in figure 2(b) displays the trajectories of two bubbles exhibiting a damped
near-wall bouncing dynamics. The bubble that follows the path denoted with a green solid
line is nearly spherical (χ ≈ 1.05), while the one that rises along the green dashed path
is moderately deformed (χ ≈ 1.3); see figure 11(b). Finally, the third panel in figure 2(b)
illustrates the trajectories of two bubbles that migrate away from the wall during their
ascent. The path denoted with a solid blue line is that of a bubble with (Bo, Ga) = (1, 30)

experiencing path instability; this bubble would stay in the zigzagging regime if rising in
an unbounded domain (Cano-Lozano et al. 2016).

In the moderate-Reynolds-number regime the transverse force acting on a spherical
bubble rising some distance from a vertical wall reverses from repulsive to attractive
beyond a critical Reynolds number Re1 ≈ 35 (TM; Sugioka & Tsukada 2015; Shi et al.
2020; Shi 2024). The iso-Reynolds number line Re = 35 drawn in figure 2(a) confirms
that, regardless of their Bond number, bubbles with Re � 35 migrate away from the
wall (the case (Bo, Ga) = (0.01, 10) in which the bubble is found to experience damped
bounces is marginal, since the corresponding Reynolds number is Re = 34.5, very
close to Re1). Conversely, the transverse motion of bubbles with Re > 35 depends on
their oblateness. Specifically, nearly spherical bubbles with Bond numbers in the range
0 < Bo < 0.25 are attracted to the wall, as expected. Their path may exhibit regular or
damped bounces, depending on a second critical Reynolds number to be discussed below.
Bubbles with Bo > 0.25 exhibit a significant oblateness and tend to depart from the wall,
even for Re > 35. Since the repulsive mechanism results from the interaction of the bubble
wake with the wall, the stronger the wake (hence, the vorticity at the bubble surface), the
larger the repulsive force. More specifically, physical arguments developed by Takemura
et al. (2002) and TM indicate that this force varies approximately as the square of the
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maximum vorticity at the bubble surface. This vorticity being directly proportional to
the curvature of the gas–liquid interface (Batchelor 1967), distorted deformed bubbles
are expected to keep on being repelled from the wall at a higher Reynolds number than
nearly spherical bubbles. At a fixed Ga such that Re(Ga) � 35, this influence of the bubble
oblateness results in a change of sign of the transverse force flipping from attractive to
repulsive beyond a certain critical Bond number. According to figure 2(a), this critical Bo
is close to 0.35 when Ga � 18.

Periodic near-wall bouncing motion was observed experimentally at moderate-to-high
Reynolds number by de Vries et al. (2002) and TM. The corresponding data are shown
in figure 2(a) (open stars and circles). They lie well within the region where the same
type of behaviour is detected in the present work. With nearly spherical bubbles, TM
noticed that a repeatable near-wall bouncing motion takes place beyond a second critical
Reynolds number Re2 ≈ 65 (dashed line in figure 2a). Present results agree well with this
criterion, since all cases in which the bubble is observed to bounce repeatedly lie above
this dashed line as long as Bo ≤ 0.1. For larger Bond numbers, present results indicate that
Re2 increases with increasing Bo, owing to the increased amount of vorticity generated at
the bubble surface for the reason mentioned above.

In the intermediate range Re1 < Re < Re2, bubbles with low-to-moderate deformation,
say those with Bo ≤ 0.25, are seen to perform a damped bouncing motion; two examples
are shown in figure 2(b). For instance, a bubble with Bo = 0.01, Ga = 15 (not shown in
figure 2b) finally stabilises at a wall-normal position Xb = 1.24, and rises with a final
Reynolds number Re ≈ 57.6. These findings are in good agreement with the predictions
of simulations performed with a fixed spherical bubble (Shi 2024), in which the transverse
dimensionless position at which the overall lateral force vanishes was found to be close to
1.25 for Re = 55. Figure 3 is the equivalent of figure 2(a) in the (Re, χ) plane. Values of
the terminal Reynolds number and aspect ratio for a given (Ga, Bo) set in an unbounded
domain (open circles) are given as reference, to better appreciate the influence of the wall.
Note that in the case of bubbles migrating away from the wall (blue symbols), there
is no distinction between the resulting (Re, χ ) with or without the wall, since in that
regime bubbles no longer experience any wall effect in the final stage of their motion.
In wall-bounded configurations the figure allows us to determine directly the influence
of the Reynolds number and bubble aspect ratio on the transition between the different
regimes. It is worth noting that, for a given Ga, the observed type of path does not change
with the aspect ratio up to χ ≈ 1.2, underlining that Ga (or Re) is the only significant
control parameter of the system for nearly spherical bubbles. Figure 3 also emphasises the
limited range of aspect ratios in which the periodic bouncing regime exists, from χ � 1.16
for Ga = 18 (Re ≈ 70) to χ � 1.5 for Ga = 30 (Re ≈ 125). The marked increase in the
critical Reynolds number Re2 with the bubble deformation is also noticeable, the damped
bouncing regime being observed up to Re ≈ 100 with a bubble having χ = 1.48 for
Ga = 25. Figure 4 depicts the variations of the wall-normal velocity Vx(T) (normalised
by the terminal rise speed, Vf ) with the lateral position Xb(T) in the various scenarios
at a fixed Reynolds number or a fixed aspect ratio. Setting Re ≈ 67 (figure 4a), regular
bounces are prominent up to χ ≈ 1.15. The damped bouncing regime emerges for larger
oblatenesses. Bounces are underdamped up to χ ≈ 1.25 and become overdamped with
more oblate bubbles, the bubble then reaching its final equilibrium position without
any overshoot. For χ � 1.36, the bouncing motion ceases, and bubbles are consistently
repelled from the wall. Setting χ ≈ 1.2 (figure 4b), a similar transition takes place with
decreasing Re. Here, regular bouncing is observed at Re = 79. As Re decreases, the motion
transitions to underdamping at Re = 68, then to overdamping at Re = 53, and the uniform
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Figure 3. The three regimes of bubble–wall interaction in the (Re, χ) plane. Solid symbols and open circles
denote values of (Re, χ ) obtained under wall-bounded and unbounded conditions, respectively. The colour and
shape codes of the solid symbols are identical to those of figure 2. Values of Re and χ in the presence of the
wall are based on averages taken over a single period of bounce in the periodic bouncing regime, and on final
values in the other two regimes. Solid and dashed lines denote iso-Ga lines in the wall-bounded and unbounded
configurations, respectively, with Ga increasing from 10 to 30 from bottom to top, and Bo increasing from 0.01
to 1 from left to right.

migration away from the wall is eventually observed at Re = 30. The qualitatively similar
evolutions observed in figure 4 by increasing χ at a given Re or decreasing Re at a given
χ may be interpreted through the prism of the relative magnitudes of the irrotational
and vortical interaction mechanisms. Clearly, the irrotational component weakens as Re
decreases, due to the increasing magnitude of viscous effects. Similarly, increasing χ at a
given Re increases the amount of vorticity produced at the bubble surface (Magnaudet &
Mougin 2007), thus strengthening vortical effects.

3.2. Migration away from the wall
In this section and those that follow, we examine in more detail the results obtained in each
of the three regimes identified above.

Figure 5 depicts the evolution of various characteristics of the bubble motion for the
two sets of parameters (Bo, Ga) = (1, 30) (solid lines) and (0.5, 15) (dashed lines). In
both cases, the bubble migrates away from the wall, as the evolution of the horizontal
position of its centroid in figure 5(a) confirms. With (Bo, Ga) = (0.5, 15), figure 5(b,c)
indicates that, beyond T ≈ 100, the bubble achieves an equilibrium aspect ratio χ = 1.4
and a rise Reynolds number Re = 2Ga Vy ≈ 50, since the terminal rise speed is close
to 1.65. In contrast, path instability takes place in the case (Bo, Ga) = (1, 30), leading
to the emergence of a planar zigzagging path. This is not unlikely, since in an unbounded
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Figure 4. Variations of the bubble wall-normal velocity, Vx, normalised by the terminal velocity, Vf , as a
function of the wall distance, Xb (in the regular bouncing configurations, Vf is taken to be the mean rise
speed, Vm). Results are shown for (a) Re ≈ 67, with χ = 1.15 (red - - - -), 1.2 (green ◦), 1.29 (magenta ◦), 1.36
(purple ◦), 1.4 (blue ——); (b) χ ≈ 1.2, with Re = 79 (red - - - -), 68 (green ◦), 53 (magenta ◦) and 30 (blue
——). Data in (a) correspond to cases with fixed Ga = 18 and Bo = 0.15, 0.2, 0.3, 0.35 and 0.4, respectively,
while those in (b) correspond to (Bo, Ga) = (0.2, 20), (0.2, 18), (0.25, 15) and (0.3, 10), respectively. In each
series, the initial position is (Xb, Vx) = (2, 0).

fluid path instability for a bubble with Bo = 1 sets in at Ga ≈ 29.65 (Bonnefis et al. 2024).
According to panels (d) and ( f ), the wall-normal bubble velocity and the inclination angle
increase until T ≈ 180, suggesting that path instability has virtually saturated at the end of
the run. In this late stage the bubble aspect ratio and average Reynolds number are χ ≈ 2.1,
Re ≈ 96.7 (figure 5b,d). Panels (e–f ) show that in both cases the drift angle β remains
small throughout the bubble ascent, ensuring that the path and the minor axis of the bubble
remain almost aligned throughout the ascent, i.e. the bubble moves essentially broadside
on. For (Bo, Ga) = (1, 30), β oscillates around zero with a maximum of approximately
2◦, in quantitative agreement with the value determined in an unbounded fluid (Ellingsen
& Risso 2001; Mougin & Magnaudet 2006). Since the bubble rise speed reaches its
maximum twice during a period of the zigzag, the oscillation frequency of Xb, Vx, α and
β is half that of Vy.

Figures 6 and 7 reveal the vortical structure of the flow past the bubble in the above
two cases at several instants of their rise, specified in figure 5(a). Panels (g-i–i-i) in
figure 6 suggest that the near wake of a bubble with (Bo, Ga) = (0.5, 15) is almost
axisymmetric, even when the gap is of the order of the bubble size. Nevertheless, owing
to the interaction of the wake with the wall, a weak streamwise component exists in
the vorticity field, both at the wall and at the back of the bubble. As panels (g-ii–i-ii)
highlight, this component decays rapidly as the separation increases. The situation is
dramatically different for the bubble with (Bo, Ga) = (1, 30). Here, the ω̄z distribution
exhibits a marked asymmetry at all times and so do the streamlines, especially just at
the back of the bubble (figure 7a-i–f -i). As soon as the lateral path oscillations have
reached a significant amplitude, the two counter-rotating streamwise vortices characteristic
of zigzagging bubbles become visible in the wake (figure 7c-ii–f -ii), with their orientation
alternating every half-period of the zigzag. Note that no significant streamwise vorticity is
present at the wall in these stages, suggesting that the wall plays only a marginal role in the
bubble dynamics. Nevertheless, in the early stages the wall dictates the orientation of the
plane in which the bubble oscillates, making path instability arise through an imperfect
bifurcation.
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Figure 5. Evolution of various non-dimensional characteristics during the lateral migration of a bubble
with (Bo, Ga) = (1, 30) (solid lines) and (0.5, 15) (dashed lines). (a) Wall-normal position of the centroid;
(b) aspect ratio; (c,d) components of the velocity of the bubble centroid; (e, f ) inclination and drift angles.
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respectively.
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Figure 6. Evolution of the vortical structure past a bubble with (Bo, Ga) = (0.5, 15) migrating away from the
wall. Instants corresponding to panels (g–i) are indicated by circles in figure 5(a). (g-i–i-i) Isocontours of the
normalised spanwise vorticity ω̄z in the symmetry plane z = 0 (red and blue colours correspond to positive
and negative ω̄z, respectively); (g-ii–i-ii) isosurfaces of the normalised streamwise vorticity ω̄y = ±0.02 in the
half-space z < 0 (grey and black threads correspond to positive and negative ω̄y, respectively). In each panel,
the wall lies on the left, represented by a vertical line.

0 A1-13



P. Shi, J. Zhang and J. Magnaudet

(e) ( f )(b)(a) (d )(c)

(i)

(ii)

(i)

(ii)

(i)

(ii)

(i)

(ii)

(i)

(ii)

(i)

(ii)

Figure 7. Same as figure 6 for a bubble with (Bo, Ga) = (1, 30). In panels (a-i–f -i), the maximum of |ω̄z|
is 2.0; some streamlines computed in the bubble reference frame are displayed in the form of white lines; in
panels (a-ii–f -ii) the two isosurfaces correspond to ω̄y = ±0.2.

3.3. Periodic near-wall bouncing
Figures 8 and 9 illustrate the evolution of various characteristics of the bubble and its path
in the case of bubbles with (Bo, Ga) = (0.05, 25) and (0.25, 30), both of which experience
a periodic series of bounces. The key difference between these two configurations is the
occurrence of direct bubble–wall collisions in the former case. Collision events can be
identified from the temporal evolution of the dimensionless gap, δ̄(T). As figure 8(a-ii)
shows, δ̄(T) decreases to about half the minimum grid size at regular time intervals,
first at T ≈ 7. We define this configuration, as well as all those in which the minimum
of δ̄ is smaller than or equal to Δ̄min, as a ‘direct collision’ between the bubble and
wall in the sense of the macroscopic description allowed by the simulations. In such
cases, the flow within the very thin liquid film remaining along the wall is of course
not properly resolved. It is important to identify the phenomena that are not captured by
the imposed resolution and how much they affect the corresponding predictions. In the
approaching stage, the liquid film is squeezed by the displacement of the bubble surface,
similar to what happens when a rigid particle approaches a wall at right angles (Zenit &
Hunt 1999). This results in an outward semi-Poiseuille flow in the gap, given the no-slip
condition at the wall and the shear-free condition at the gas–liquid interface. If the bubble
remained perfectly spherical (Bo = 0), the overpressure in the thinnest part of the gap
would result in a repulsive viscous force proportional to Vx and inversely proportional
to δ̄ (Michelin et al. 2019). This force diverges as δ̄ → 0 and, therefore, reaches very
large values when the gap becomes of the order of the critical distance (≈ 10 nm) at
which non-hydrodynamic effects become dominant. However, finite-deformation effects
prevent this extreme situation from occurring: as figure 18(c) shows for a configuration
close to the present one (Bo = 0.073, Ga = 21.9), the part of the bubble surface facing
the wall flattens as the gap reduces, increasing dramatically the area over which the
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overpressure applies. For Bond numbers in the range [0.01, 0.1], this makes the global
lubrication force acting on the bubble reach large values for minimum gaps much thicker
than the above critical distance, stopping the motion of such bubbles towards the wall
when the minimum film thickness is in the micrometre range. The grid convergence study
presented in Appendix A helps quantify the influence of under-resolution in situations of
‘direct collision.’ The evolutions of Xb(T) and δ̄(T) in figure 8(a-i,ii) are similar to those
obtained in this test case with Δ̄min = 1/68 (red lines in figure 19d,e). Convergence is
achieved in the test case by refining the grid down to Δ̄min = 1/272 (blue line). The main
macroscopic difference between the results provided by the two resolutions is that the
maximum separation reached by the bubble, hence, the amplitude of the oscillations, is
increased by a few percent with the finest grid. This is no surprise, since the better capture
of lubrication effects in the gap results in an increase in the repulsive force acting on
the bubble. In contrast, no sizeable change is noticed in the frequency of the oscillations.
Based on this test case, results obtained in ‘direct collision’ configurations appear to be
reliable, although they certainly somewhat underestimate the amplitude of the oscillations.
In the present case, there is little doubt that ‘direct collision’ would be avoided if the grid
in the gap were refined by a factor of four, down to Δ̄min = 1/544.

Figure 8(a-ii), covering the time window T ∈ [24, 31], allows a more detailed
appreciation of the succession of events occurring during a bounce. As T increases from
27.1 to 27.8, the bubble is seen to slide along the wall, with the gap remaining such
that δ̄ ≤ Δ̄min. Immediately after the collision, the bubble undergoes significant shape
oscillations. Specifically, the aspect ratio, which is close to 1.1 before the collision, drops
rapidly to unity at T ≈ 27.3. Then it rises to 1.07 when the gap starts to re-increase
(T ≈ 27.8). Subsequently, the bubble departs from the wall and a series of oscillations
with a dimensionless radian frequency close to 4π ≈ 12.57 takes place. This frequency is
comparable with that associated with the ‘mode 2’ shape oscillations of a nearly spherical
bubble, namely f2 = √

12Bo−1/2 ≈ 15.49 (Lamb 1932). These findings are in line with
the experimental observations reported by de Vries et al. (2002) (see figure 5 therein) in a
much more inertial regime (Bo = 0.1, Ga = 76.2).

The above shape oscillations are intimately connected with the evolution of the
bubble velocity. As depicted in figure 8(c-ii), starting from T ≈ 27.0, the (still negative)
wall-normal velocity experiences a rapid increase, changing sign at T = 27.3 and
achieving a local peak at T ≈ 27.6, just before χ reaches a local maximum. This is
followed by a short but sharp decrease, then by a secondary increase, with Vx reaching
its next peak at T ≈ 29.5. This is the time by which shape oscillations almost vanish.
During the sliding stage where Vx reverses, the vertical velocity Vy decreases continuously,
reaching its minimum at T = 27.8. The decrease (respectively increase) of the aspect
ratio as the bubble gets very close to (respectively departs from) the wall plays a role
in the bouncing dynamics. Indeed, decreasing χ increases the frontal area involved in the
transverse motion (this area goes like χ−1/3). This acts to increase the drag associated
with the transverse motion, as well as the amount of liquid displaced by the bubble in
that motion, i.e. its transverse virtual mass. Both aspects cooperate to slow down the
transverse motion towards the wall. The arguments reverse after the bounce, indicating
that the flattening of the bubble associated with the subsequent increase of χ somewhat
helps the bubble depart from the wall. Variations of the instantaneous rise speed follow
directly those of the lateral bubble position. This is a direct consequence of the no-slip
condition that forces Vy(T) to decrease when the bubble gets very close to the wall,
and to re-increase when it moves away from it. These variations have in turn a direct
influence on the bubble shape. Indeed, when the Reynolds number is large, the oblateness
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Figure 8. Evolution of various characteristics of the bubble and path during a periodic series of bounces for
(Bo, Ga) = (0.05, 25). Plots in the right column provide details of the evolution shown in the left column over
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of slightly non-spherical bubbles is known to be linearly proportional to the Weber number,
We = Bo(V2

x + V2
y ) (Moore 1965). Based on figure 8(c-i), the Weber number is found to

vary by more than 40 % during a period of bounce, reducing from 0.37 to 0.21 as the
bubble approaches the wall, which directly translates into significant variations of χ in
between the two extreme bubble positions. In summary, it appears that time variations
of the bubble shape result partly from variations of the rise speed imposed by the
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Figure 9. Same as figure 8 for (Bo, Ga) = (0.25, 30).

no-slip condition, and partly from the alternating transverse motion inherent to the bounce
dynamics.

The evolution of the bubble and path characteristics in the case (Bo, Ga) = (0.25, 30)

are displayed in figure 9. Marked differences with the previous observations may be
noticed. The most obvious of them is that the minimum gap thickness is now close to
0.12, indicating that the wall remains covered by a liquid film with a significant thickness
all along the sequence of bounces. The aspect ratio, wall-normal velocity and inclination
angles are seen to experience much more regular variations than in the previous case. In
particular, the aspect ratio is found to oscillate smoothly from a minimum value χ ≈ 1.32
reached slightly after the wall-normal velocity returns to positive, to a maximum value
χ ≈ 1.49 when the bubble is ‘far’ from the wall. These oscillations are far from sinusoidal,
χ keeping values close to its maximum for a long time and experiencing sharp variations
only during short periods of time. Since the two cases essentially differ by the value of
the Bond number (the two Ga are close), the above differences underline the decisive
influence of bubble deformability on the bounce dynamics. Nevertheless, despite these
differences, the evolutions of the flow parameters in the two cases also share a number
of generic features. First, the rise speed Vy and the transverse velocity Vx oscillate with
the same dominant frequency. This stems from the retarding effect imposed by the wall
on the rise speed (Takemura et al. 2002; Sugioka & Tsukada 2015; Shi et al. 2020).
As mentioned above, this effect makes Vy follow the variations of Xb − 1, which in
turn largely enslaves the evolution of the aspect ratio to that of Vy (figures 8b-i,c-i and
9b,c). Second, figures 8(c-i,d-i) and 9(c,d) show that the inclination angle α and the
wall-normal velocity follow closely similar evolutions. In particular, both quantities reach
their extrema simultaneously: the bubble axis bends toward the wall when Vx < 0 (this
is the configuration observed over 65 % to 75 % of the period between two bounces), and
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towards the fluid interior when Vx > 0. Additionally, the drift angle β remains consistently
positive throughout the bubble ascent, irrespective of the sign of the wall-normal velocity.

Figure 10 displays the evolution of the spatial distribution of the spanwise vorticity ω̄z
in the symmetry plane z = 0 (first row) and of the streamwise vorticity ω̄y (second row)
over a single period of bounce for (Bo, Ga) = (0.05, 25). The corresponding evolutions
for the case (0.25, 30) (not shown) display similar features. During the bounce, vorticity
is generated at the surface of the bubble and at the wall. In what follows, we refer to
these two distinct contributions as surface and wall vorticity, respectively. Throughout the
motion, the spanwise surface vorticity maintains the same sign from the front to the back
of the bubble, indicating that no flow separation occurs at the bubble surface at such Bond
numbers, even when the bubble gets very close to the wall. However, comparing panels
(b-i) and (d-i) suggests that the surface vorticity is almost suppressed on the wall-facing
side of the bubble when the gap becomes very thin, owing to the presence of a ‘tongue’ of
negative wall vorticity that almost cancels the positive surface vorticity. This tongue results
from the structure of the flow present in the gap, in which the Bernoulli effect makes
the vertical negative velocities (in the bubble’s reference frame) larger near the bubble
surface than near the wall, resulting in a negative velocity gradient, ∂xuy < 0, hence, in a
negative ω̄z. Upstream and downstream of the bubble, the wall vorticity is positive, since
the nearby fluid is entrained upwards (with respect to the wall). The comparison of panels
(c-i) and (g-i), both of which correspond to the same gap thickness (Xb ≈ 1.25), is of
interest. The tongue of negative wall vorticity is much reduced in the latter, showing that,
during the stage when the bubble is receding from the wall, the downward flow in the
gap is inhibited by the vigorous upward entrainment of the near-wall fluid. Clearly, the
significant positive wall-normal bubble velocity is capable of sucking up the near-wall
fluid located downstream, enabling it to catch up with the bubble.

Owing to the wall-induced asymmetry of the flow field, the bubble shape may exhibit a
certain level of left–right asymmetry, particularly when it gets very close to the wall. When
the minimum gap is very small (δ̄ = O(0.01)), such as in figures 8 and 19, the overpressure
resulting from lubrication effects flattens the part of the bubble surface located closest to
the wall, as illustrated in figure 18(c). Conversely, when the minimum gap is one order
of magnitude larger and the Bond number is ‘not too small’, typically Bo � 0.2, the
asymmetry changes sign. Specifically, at the smallest separation (δ̄ ≈ 0.125) reached by
the bubble with (Bo, Ga) = (0.25, 30) (figure 9), the maximum curvature of the interface
in the gap is 18 % larger than that on the fluid-facing side, indicating that the bubble is now
more pointed on the wall-facing side. Since the flow in the gap is still dominated by inertial
effects given the larger δ̄, the observed asymmetry may be ascribed to the Bernoulli effect,
which decreases the pressure in the gap and thereby increases the curvature of the interface
on the wall-facing side.

The second row in figure 10 reveals the spatial distribution of the streamwise vorticity
component in the half-space z < 0. This component, which is antisymmetric with
respect to the plane z = 0, is concentrated within an elongated thread (hence, a second
identical thread with opposite sign is present in the half-plane z > 0). Pairs of elongated
counter-rotating streamwise vortices are typical of the wake of axisymmetric bodies
immersed in a shear flow, and were already observed in simulations in which a spherical
bubble was steadily translating parallel to a nearby wall (Shi et al. 2020; Shi 2024).
Here, the near-wall fluid is entrained upwards by the rising bubble, providing the
ambient shear ∂xuy /= 0 required for the pair of streamwise vortices to be generated.
Throughout the bubble ascent, ω̄y retains a constant sign in each half-plane, resulting
in an entrainment of the fluid present in between the two threads towards the wall.
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Figure 10. Evolution of the vortical structure past a bubble with (Bo, Ga) = (0.05, 25) over one period of
bouncing. From left to right in each row, the snapshots correspond to the successive bubble positions marked
with circles in figure 8(a-i). (a-i–h-i) Isocontours of the normalised spanwise vorticity ω̄z in the symmetry
plane z = 0 (red and blue contours indicate positive and negative ω̄z, respectively, with a maximum magnitude
of 2.0); (a-ii–h-ii) isosurfaces ω̄y = −0.5 (black) and +0.5 (grey) of the streamwise vorticity in the half-space
z < 0. In each panel the wall lies on the left and is represented by a vertical line.

Following the classical shear-induced lift generation mechanism (Lighthill 1956), this
entraiment yields a transverse force directed away from the wall. According to the
succession of snapshots in figure 10, streamwise vorticity starts to appear at the rear of
the bubble when the gap is close to its minimum (panel d-ii). Then, the two threads grow
continuously as the bubble departs from the wall (panels d-ii–h-ii), until the gap reaches its
maximum
(panel a-ii). As soon as the bubble starts to return towards the wall, the two threads are
shed downstream with their tail bending towards the wall (panel b-ii), leaving the bubble
wake free of streamwise vorticity (panel c-ii).

The structure of the vorticity field revealed by figure 10 is strongly time dependent.
However, since the gap varies from one panel to the other, one can wonder whether the
observed variations are essentially enslaved to those of δ̄(T), or if they are rather governed
by the intrinsic unsteadiness inherent to the bounce dynamics. This question is examined in
Appendix D, using separate computations carried out with a spherical bubble translating
steadily at a given distance from the wall. Comparing the two sets of results establishes
that the sequence described in figure 10 has little to do with a quasi-steady evolution
taking place at successive bubble–wall separations. This conclusion underlines the need to
account for unsteady vortical effects in any model aimed at reproducing the main features
of the bounce dynamics revealed by figure 8. In particular, the instantaneous force balance
on the bubble must account for the existence of an inertial force involving the bubble
acceleration, whose origin stands in the above time-dependent wake dynamics. We shall
come back to this crucial point in § 4.
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Figure 11. Evolution of various characteristics of the bubble and path during a damped bouncing
sequence. Solid and dashed lines correspond to conditions (Bo, Ga) = (0.25, 20) and (0.05, 15), respectively.
(a) Wall-normal position (both bubbles are released from X0 = 2, but the early evolution is not shown);
(b) aspect ratio; (c) velocity of the bubble centroid, the left and right axes referring to Vx and Vy, respectively;
(d) inclination and drift angles.

3.4. Damped near-wall bouncing
Figure 11 displays the evolution of the bubble and path characteristics during the damped
bouncing sequences observed for (Bo, Ga) = (0.25, 20) (solid line) and (0.05, 15)

(dashed line). The gradual attenuation of the lateral path oscillations is evident in
figure 11(a), as well as in figure 11(c) that shows in particular the rapid damping of
the wall-normal velocity. The decrease of Vx is especially quick for the nearly spherical
bubble. Indeed, after a single quasi-period of bounce, the extreme values of Vx are
reduced by approximately 50 % in the case (Bo, Ga) = (0.05, 15) and by 30 % for
(Bo, Ga) = (0.25, 20). Beyond this stage, the aspect ratio (panel b) and inclination (panel
d) of the bubble quickly reach nearly constant values. In particular, the bubble is found to
slightly incline towards the wall at an angle of approximately 5◦ in both cases.

The final wall-normal position, say Xc, at which the bubble stabilises is governed by the
relative magnitude of the attractive inviscid Bernoulli effect and the repulsive wake–wall
interaction mechanism. Using the dimensionless terminal rise speed, Vf , the terminal
Reynolds number may be expressed as Re = 2GaVf . In the low-Bo case (Bo = 0.05),
figure 11(c) yields Re = 57. At the same Re, the fixed-bubble simulations of Shi (2024)
predict Xc = 1.25 for a spherical bubble, in good agreement with the final position
Xc ≈ 1.27 displayed in figure 11(a). In the second case (Bo = 0.25), the equilibrium aspect
ratio of the bubble is 1.275 (figure 11b) and its final Reynolds number is 77. Owing to this
significant deformation, the surface vorticity is larger than it would be at the same Re if the
bubble were spherical (Magnaudet & Mougin 2007). Therefore, the repulsive component
of the transverse force acting on the bubble is increased, yielding a larger equilibrium
separation distance Xc ≈ 1.4. Interestingly, the fixed-bubble simulation predicts Xc = 1.17
with a spherical bubble at the same Reynolds number. Therefore, it may be concluded that
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Figure 12. Same as figure 10 for a bubble with (Bo, Ga) = (0.25, 20). The respective instants of time are
indicated by circles in figure 11(a). In the second row, the two isovalues correspond to ω̄y = ±0.05.

even a moderate deformation has a large effect on the transverse position at which the
bubble stabilises.

Figure 12 illustrates the structure of the spanwise (first row) and streamwise (second
row) component of the vorticity field past the bubble with (Bo, Ga) = (0.25, 20) at the
various instants of time specified in figure 11(a) (results for the case (Bo, Ga) = (0.05, 15)

display similar features). Throughout a single quasi-period of bouncing, the spanwise
vorticity field (figure 12a-i–f -i) remains largely unchanged. Most notably, the region
where the wall vorticity is positive appears to follow closely the evolution of the bubble
position, rather than lagging significantly behind it as observed in figure 10 during a
periodic sequence of bounces. This difference stems from the contrasting evolutions of
the rise speed in the two regimes: while Vy(T) experiences little variations after the
initial transient in the case of damped bounces (figure 11c), it varies periodically by 15
to 30 % in the periodic bouncing regime (figures 8c-i and 9c), which in turn results in
significant ‘memory’ effects on ω̄z(T) in this regime. In contrast to these modest changes,
the streamwise vorticity field undergoes noticeable variations during a quasi-period
of bouncing, as illustrated in the second row of figure 12. Its evolution shares some
similarities with that observed in the periodic bouncing regime. In particular, at points
b and d that are close to the equilibrium transverse position (almost reached at point g),
|ω̄y| is weaker (respectively stronger) than in the equilibrium configuration when the
bubble approaches (respectively departs from) the wall, as may be deduced by comparing
figures 12(b-ii) (respectively 12d-ii) and 12(g-ii). However, the intensity of ω̄y is typically
one order of magnitude weaker that in the periodic bouncing regime (compare the level
of the isovalues in the bottom row of figures 10 and 12). Furthermore, no evidence of a
shedding process may be detected in the present case.
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Figure 13. Variation of the bubble wall-normal velocity, Vx, normalised by the mean rise speed, Vm, as a
function of the wall distance, Xb. In each series, the time interval between two adjacent points is 0.5. Results
are shown for (a) χ ≈ 1.03 with Re = 73 (red ◦), 118 (green ◦), 194 (blue ◦); (b) χ ≈ 1.4 with Re = 100
(red ◦), 123 (green ◦), 147 (blue ◦); (c) Re ≈ 80 with χ = 1.02 (red ◦), 1.12 (green ◦), 1.18 (blue ◦),
1.22 (magenta ◦); (d) Re ≈ 120 with χ = 1.08 (red ◦), 1.16 (green ◦), 1.42 (blue ◦), 1.49 (magenta ◦).
Corresponding values of Ga and Bo are given in table 3.

4. Additional insights into the bouncing regime

4.1. Amplitude and frequency of the transverse oscillations
Figure 13 shows the evolution of the normalised wall-normal bubble velocity against the
transverse position of the bubble centroid over a single bouncing period. With nearly
spherical or moderately deformed bubbles (panels a,b), the magnitude of the lateral
oscillations increases continuously with the Reynolds number. For instance, with χ ≈ 1.03
(panel a), their amplitude goes from ≈0.11 at Re = 73 to 0.66, i.e. six times more, at
Re = 194. These features remain qualitatively unchanged for χ ≈ 1.4 (panel b), except
that the equilibrium position is significantly further away from the wall. This avoids direct
bubble–wall collisions, in contrast to what happens with χ ≈ 1.03 at the highest two
Re, for which min(Xb) < 1 according to panel (a). That the equilibrium position shifts
gradually towards the fluid interior as the bubble becomes more oblate is confirmed
in panels (c,d). This trend is consistent with the strengthening of vortical effects as
χ increases, and establishes the increase of the equilibrium separation as one of the
primary consequences of increasing bubble deformation. An exception to this rule is
the case χ = 1.49 in panel (d): as figure 3 indicates, this configuration is very close
to the border with the non-oscillating regime in which the bubble migrates away from
the wall.Variations of the amplitude of the oscillations with χ are more complex. For
instance, in panel (d) (Re ≈ 120), this amplitude is seen to increase with the aspect ratio
up to χ = 1.16, whereas it decreases with χ when the bubble is more oblate. According to
figure 26, the initial transverse position at which the bubble is released does not influence
significantly this amplitude. Therefore, one has to conclude that it is controlled by the
nonlinearities of the local near-wall mechanisms that drive the bouncing motion.

Figure 14 shows how the reduced bouncing frequency, St = 2fR/Vm, varies with the
control parameters. Values of St for cases examined in figure 13 are given in table 3.
In the lowest two series of figure 14 (Ga = 18 and 20 or, equivalently, Re ≈ 70 and
80), oscillations only occur with slightly deformed bubbles (χ � 1.2 or Bo � 0.15).
Under such conditions, the reduced frequency does not vary much with the bubble
oblateness (St ≈ 0.115 ± 0.01). A different behaviour is observed for the upper three
series, in which all configurations correspond to Re > 100. Here, starting from a
nearly spherical shape and increasing the Bond number in a given series up to Bo ≈
0.10–0.15, the reduced frequency is found to decrease sharply, reaching values as low as
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Figure 14. Reduced frequency St of the oscillations throughout the periodic bouncing regime. The colour
map helps appreciate the variations of St with Re and χ .

χ ≈ 1.04 χ ≈ 1.40 Re ≈ 80 Re ≈ 120

Re 73 118 194 100 123 147 83 84 82 79 121 120 127
χ 1.02 1.03 1.04 1.40 1.42 1.42 1.02 1.12 1.18 1.22 1.08 1.16 1.49
Ga 18 25 30 25 28 30 20 20 20 20 25 25 30
Bo 0.02 0.02 0.015 0.3 0.25 0.2 0.02 0.1 0.15 0.2 0.05 0.1 0.3
St 0.127 0.116 0.066 0.105 0.062 0.025 0.122 0.114 0.106 0.112 0.124 0.081 0.085
Ā 0.22 0.40 1.36 0.14 0.73 1.58 0.26 0.48 0.45 0.27 0.64 0.94 0.29
Xc 1.17 1.17 1.60 1.43 1.60 1.91 1.15 1.31 1.38 1.38 1.29 1.47 1.49

Table 3. Characteristics of the selected periodic bouncing configurations shown in figure 13. The crest-to-crest
oscillation amplitude, A, and bouncing frequency, f , are normalised in the form Ā = A/R and St = 2fR/Vm,
respectively.

St ≈ 0.015 for (Bo, Ga) = (0.1, 30), i.e. (χ, Re) ≈ (1.25, 170). Then, further increasing
Bo, St re-increases, recovering values of O(0.1) for Bo = 0.3, i.e. 1.4 � χ � 1.5, the
maximum oblateness beyond which the periodic bouncing regime ceases. Influence of
the Reynolds number on the oscillation frequency of nearly spherical bubbles (χ =
1.03 ± 0.01) may also be appreciated by considering the left block of values in table 3.
A continuous decrease of St with Re is noticed, from St = 0.126 at Re = 73 (Ga = 18) to
St = 0.066 at Re = 194 (Ga = 30).

The above trend may be rationalised by returning to the mass-spring idealisation of
the system. In this framework, the net transverse force is considered to vary linearly with
the transverse position Xb in the vicinity of the equilibrium bubble position Xc, and the
slope associated with this variation, Ks(Re, χ), is the stiffness of the spring. The effective
mass of the system that undergoes successive accelerations during bounces is proportional
to the fluid volume entrained by the bubble in its transverse motion. This effective
mass, say Mv(Re, χ), varies over time, owing to the time variations of the bubble–wall
separation and those of the bubble shape. Moreover, it also depends on the amount of
fluid enclosed in the volume occupied by the streamwise vortices, as these time-dependent
structures move with the bubble (Dabiri 2006). Since the mass-spring system oscillates
with a dimensionless radian frequency Ω = 2πSt = (Ks/Mv)

1/2, variations of the reduced
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frequency observed in figure 14 are due to those of Ks and Mv with Re and χ . The
experimental data of TM (their figure 7) suggest that Ks varies only slowly with the
Reynolds number in the case of nearly spherical bubbles. In contrast, one expects the
strength of the streamwise vortices to grow significantly with Re at a given χ (or with
Ga at a given Bo). To check this point, snapshots of the ω̄y distribution throughout the
parameter range Ga ≥ 15, Bo ≤ 0.5 are plotted in figure 15. This figure fully confirms the
above guess, the size of the streamwise vortices at the moment they reach their maximum
extension exhibiting a marked and gradual growth with Ga in each series. This growth
translates directly into an increase of the effective mass Mv , yielding a decrease of St with
Ga (or Re) if Ks variations remain small, in line with the numerical findings reported in
figure 14. To the best of our knowledge, no detailed determination of the net transverse
force has been achieved so far with significantly deformed bubbles, so that variations of
Ks with Re for aspect ratios larger than approximately 1.1 are unknown. Nevertheless, the
gradual decrease of St with Ga is observed whatever Bo in figure 14, making us believe that
the above argument remains valid, even for Bo � 0.1. The lack of knowledge regarding the
variations of Ks with χ at a given Reynolds number also makes it difficult to rationalise
the variations of St with χ (or Bo). However, a partial clue may be extracted from the
above results. First, figure 15 does not reveal any significant variation in the size of the
streamwise vortices with the Bond number, at least up to Bo ≈ 0.15. Therefore, one has
to conclude that Mv does not change much with the bubble oblateness for such modest
deformations. In contrast, as discussed above, figure 13 and table 3 establish that, at a given
Re, the oblateness controls the equilibrium position Xc, shifting it towards the fluid interior
as χ increases. Since the vortical and irrotational contributions to the transverse force
vary less steeply with the bubble position as the separation increases (keep in mind that
both decrease approximately as X−n

b , with n < 2 ≤ 4 according to TM), the stiffness Ks,
which is the slope of the net transverse force in the vicinity of Xc, is expected to decrease
as χ increases. Combining the above arguments suggests that St ≡ (2π)−1(Ks/Mv)

1/2 is
a decreasing function of χ for low-to-moderate deformations, which figure 14 confirms
whatever Ga. The above arguments are not sufficient to explain the re-increase of St with
Bo observed for larger oblatenesses in the upper three series (Ga ≥ 25). This surprising
trend results presumably from the combined variations of Ks and Mv . Only a specific study
of the near-wall variations of the transverse force as a function of χ for a fixed oblate
spheroidal bubble may help rationalise completely the complex variations of St with the
bubble shape in the future.

4.2. Connection between regular near-wall bouncing and wall vorticity
Section 3.3 established the existence of a vortex shedding process in the periodic bouncing
scenario observed for the specific parameter sets (Bo, Ga) = (0.05, 25) and (0.25, 30). To
get more insight into the connection between vortex shedding and periodic bouncing, we
examined the evolution of ω̄y(T) for all (Bo, Ga) sets in which the bubble motion follows
this scenario, i.e. all configurations located above and on the left of the dashed red line in
figure 15. This examination confirmed that the shedding process takes place in all cases.
Conversely, no vortex shedding is observed in the other two regimes. Since the pair of
streamwise vortices directly contributes to the repulsive transverse force on the bubble, it
appears that the regular bouncing motion is closely related to the flow characteristics that
make this shedding possible. According to figure 2(a), periodic bouncing is only observed
with Bond numbers less than 0.3, hence, with nearly spherical or moderately deformed
bubbles. In an unbounded domain where the fluid is at rest, the wake of such bubbles
is stable (Magnaudet & Mougin 2007), and therefore, remains axisymmetric. Hence, the
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Figure 15. Isosurfaces ω̄y = −0.5 (black) and +0.5 (grey) of the streamwise vorticity in the half-space z < 0
taken at the moment the streamwise vortices reach their maximum extension. Maxima of ω̄y are much smaller
in some cases, especially near the top right corner of the figure. In such cases, the threshold is reduced by a
factor of 10 and these snapshots provide a zoomed-out view in which bubbles appear smaller. The red dashed
line marks the border between the periodic bouncing and damped bouncing regimes.

generation of the streamwise vortex pair in the presence of a wall is made possible by
the velocity gradients present in the gap, which result from the no-slip condition. More
specifically, given the finite span of the bubble, the vertical fluid velocity is non-uniform
in the spanwise direction (∂zuy /= 0). Therefore, the spanwise wall vorticity ωw

z ≈ ∂xuy|x=0
associated with the near-wall shear flow induces a vortex tilting term, ωw

z ∂zuy, resulting in
a non-zero streamwise vorticity component, ωy. This generation mechanism prompts to an
examination of the connection between ωw

z and the shedding of the vortex pair.
To gain some insight into this relationship, we examine the evolution of the peak

values of the wall vorticity ωw
z and the surface vorticity ωs

z for the two parameter sets
(Bo, Ga) = (0.3, 25) and (0.35, 25). Although the two sets have aspect ratios
and Reynolds numbers with close values ((χ, Re) = (1.40, 99.8) and (1.48, 99.0),
respectively), the first case belongs to the periodic bouncing regime while the
second corresponds to an overdamped bouncing motion, as illustrated in figure 16(a).
Figure 16(b) compares the evolutions of the normalised wall and surface spanwise
vorticity components, both of which are made non-dimensional here by the advective
time scale R/‖v(t)‖, implying ω∗w

z = 2ω̄w
z Ga/Re and ω∗s

z = 2ω̄s
zGa/Re. Since the

vertical fluid velocity is close to ‖v(t)‖ just ahead of and behind the bubble, i.e. at
a distance from the wall of the order of RXb(T), |ω∗w

z |(T) may be thought of as a
measure of the inverse of the instantaneous non-dimensional bubble–wall separation.
While ω∗s

z(T) (dashed lines) remains relatively constant and keeps similar values
in both cases, the two evolutions of ω∗w

z (T) reveal striking differences. Specifically,
the magnitude of ω∗w

z stabilises around a value of 5.0 for (Bo, Re) = (0.35, 25).
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Figure 16. Evolution of some characteristics of the bubble and fluid motions for the parameter sets
(Bo, Ga) = (0.3, 25) (red lines) and (0.35, 25) (green lines). (a) Normalised wall-normal bubble position
Xb(T); (b) peak values of the normalised surface vorticity |ω∗s
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Figure 17. Variation of the maximum normalised wall vorticity, |ω∗
z

w|, with the Bond and Galilei numbers.
Symbols are identical to those of figure 2, with red � and red � referring to the periodic bouncing regime (with
and without bubble–wall collisions, respectively), blue � and blue � referring to lateral migration away from
the wall (with and without path instability, respectively), and green � corresponding to the damped bouncing
regime. Values of Ga increase from bottom to top. In cases involving direct bubble–wall collisions, |ω∗

z
w| is

estimated in the approaching stage at the moment when δ̄ ≈ 5Δ̄min. The thick horizontal line corresponds to
max(|ω∗

z
w|) = 6.0.

In contrast, it undergoes regular oscillations for (Bo, Ga) = (0.3, 25), peaking at roughly
7.5 when the bubble is closest to the wall, a value almost twice as large as that of ω∗s

z.
These observations suggest that the shedding of streamwise vortices occurs only in the
presence of large enough ω∗w

z . This suggestion is further validated in figure 17, which
gathers the maximum normalised wall vorticity, max(|ω∗w

z |), for all cases studied in this
work. It is observed that in all periodic bouncing cases, the maximum of |ω∗w

z | exceeds a
value of 6.0. Keeping Ga fixed, this maximum is seen to peak at Bo = 0.05, irrespective
of Ga. Therefore, the shedding of streamwise vortices in the bubble wake, itself a key
ingredient of the periodic bouncing regime, is confirmed to be closely associated with the
existence of a sufficiently intense ω∗w

z , i.e. of a sufficiently small minimum bubble–wall
separation.
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5. Summary and concluding remarks

In this work we conducted time-dependent three-dimensional resolved numerical
simulations to study the rising motion of a single deformable bubble released near a
vertical hydrophilic wall in a quiescent liquid. Our investigation essentially focused on
the moderately inertial regimes in which bubbles ascend in a straight line when the fluid
domain is unbounded. In line with available experimental findings, this investigation
confirms that three distinct types of near-wall paths may take place in the range of
parameters we considered, namely migration away from the wall, damped near-wall
oscillations and periodic near-wall bouncing. More specifically, the physical picture that
emerges from the simulations is as follows.

(a) If the Galilei number is lower than a critical Bo-dependent value, Ga1(Bo) = O(10)

(or equivalently a Reynolds number less than Re1 ≈ 35), or if the Bond number is
larger than a weakly Ga-dependent critical value, Bo2(Ga) ≈ 0.35–0.4, the scene
is dominated by the vortical mechanism associated with the tiny flow correction
induced by the interaction of the wake with the wall at large distances downstream of
the bubble. Under such conditions (which correspond to blue symbols in figures 2a
and 3), the bubble is consistently repelled from the wall throughout its ascent and
whatever the initial distance separating it from the wall.

(b) If Ga > Ga1 and Bo < Bo2, the transverse force acting on the bubble is dominated
down to a short (Ga, Bo)-dependent distance to the wall, Xc, by the attractive
Bernoulli mechanism predicted by potential flow theory and resulting from the
acceleration of the flow in the gap. Below this critical separation, the near-wall
vortical activity is strong enough to keep the net transverse force locally repulsive.
Nevertheless, the consequences of the near-wall repulsive mechanisms may take the
following two different forms.
(i) If the critical separation Xc(Bo, Ga) is large enough because viscous effects are

still significant in the bulk, the bubble reaches this position in a quasi-steady
manner. Under such conditions, it may enter the near-wall repulsive region, but
does not get close enough to the wall for vorticity in the gap to be sufficiently
intense to trigger vortex shedding. Hence, the wake remains quasi-stationary
(although fully three dimensional) and the transverse motion damps gradually.
This is the picture encountered in the range Re1 ≤ Re ≤ Re2 ≈ 65 with nearly
spherical bubbles. Since wake effects are reinforced by the bubble deformation,
this regime subsists up to higher Reynolds numbers for bubbles having
intermediate Bond numbers Bo1(Ga) ≤ Bo ≤ Bo2(Ga), with Bo1 increasing in
the range 0.2–0.35 with Ga (green symbols in figures 2a and 3).

(ii) On the contrary, if viscous effects in the bulk are weak enough for the bubble to
keep a sufficient transverse velocity when it approaches the critical separation,
it may get so close to the wall that the normalised wall vorticity ω∗w

z defined in
§ 4.2 exceeds the threshold value of 6.0. Then, vortex shedding sets in, providing
a repulsive contribution capable of driving the bubble back to its previous
extreme lateral position in the attractive region, despite the viscous drag that
opposes this departing motion. This is the essence of the mechanisms that make
the existence of a periodic bouncing regime possible. This regime is encountered
for Ga ≥ Ga1 ≈ 18 and Bo ≤ Bo1(Ga), which corresponds to bubbles with a
low-to-moderate deformation, the maximum oblateness varying from 1.15 at
Ga = 18 to 1.5 at Ga = 30 (red symbols in figures 2a and 3).
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It is important to note that, in contrast to bouncing phenomena near a horizontal or
slightly inclined wall, time variations of the bubble shape do not appear to play a central
role when the wall is vertical. These variations are significant, bubbles becoming less
(respectively more) oblate when they get very close to (respectively depart from) the wall,
as the results discussed in § 3.3 establish. However, we showed that this evolution is partly
a consequence of the variations of the bubble rise speed, which is forced to decrease
when the gap becomes very thin and to re-increase when it widens, owing to the no-slip
condition at the wall. Of course, these changes in the bubble shape alter all quantities
influenced by the body geometry, such as the effective mass of fluid it entrains laterally,
the viscous resistance involved in the transverse motion or the attractive contribution to
the transverse force. Nevertheless, their consequences on the transverse motion appear to
be minor compared with those of the vortex shedding process.

As additional simulations performed with fixed spherical bubbles confirmed, this vortex
shedding phenomenon is specific to freely moving bubbles having a transverse motion
with respect to the wall. Indeed, in the parameter range considered here, the flow past
weakly or moderately deformed bubbles held at a fixed distance from the wall is strictly
stationary. When the bubble is maintained close enough to the wall, the no-slip condition
forces the flow in the gap to be strongly sheared. The classical vortex tilting mechanism
then leads to a wake dominated by the presence of a pair of counter-rotating streamwise
vortices in which fluid particles rotate in such a way that the fluid located in between
the two vortices is deflected towards the wall, yielding a repulsive transverse force. With
bouncing bubbles, the same generation mechanism holds and the two streamwise vortices
keep the same orientation as in the fixed-bubble configuration, but they undergo a periodic
shedding cycle intimately related to the transverse motion of the bubble. More specifically,
the vortices start to form when the bubble–wall gap reaches its minimum, and grow
continuously throughout the departing stage of the bounce. Shedding takes place when
the gap reaches its maximum, and the wake then remains virtually free of streamwise
vorticity throughout the approaching stage. Hence, the shedding cycle is not locked to
the instantaneous transverse velocity of the bubble (which vanishes at both extremities
of the lateral oscillations), nor to its acceleration (which vanishes near the centreline of
the oscillations). Rather, its dynamics appears to depend in a complex manner on the past
history of the transverse motion, making the repulsive force provided by the streamwise
vortices look like a ‘memory’ effect.

Results of the present study help clarify several of the physical mechanisms responsible
for the different regimes of the wall-induced migration of a deformable bubble. These
results may be used to develop predictive low-order models capable of reproducing the
observed path characteristics in all three regimes. Clearly, most ingredients of such models
are already qualitatively known, although their detailed variations with respect to the
Reynolds number have most of the time been determined only for spherical or nearly
spherical bubbles. This is the case of the virtual mass force predicted by potential flow
theory and of the viscous drag force associated with the transverse motion, which may
both be roughly estimated as a function of the bubble–wall separation. Similarly, the
quasi-steady inertial transverse force has been determined for spherical bubbles held at
fixed distances from the wall (Shi et al. 2020; Shi 2024). Therefore, what is essentially
lacking at present is a model capable of properly modulating this force as a function of
time, so as to mimic its actual time variations imposed by the vortex shedding process. The
bubble kinematics provided by this study over a significant range of flow conditions may
be used to build heuristically such a model. For this, knowing the bubble position, velocity
and acceleration at every instant of time, and assuming known approximate expressions
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for all other forces, the time-dependent vortex-induced force could be estimated, and its
evolution could be connected to those of the transverse velocity and acceleration to derive
empirical ‘kernel’ functions.
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Appendix A. Numerical tests for (Bo, Ga) = (0.073, 21.9)

In a first series of preliminary tests, we focused on the parameter set
(Bo, Ga) = (0.073, 21.9), aiming at replicating the near-wall bouncing motion observed
by TM.

The accuracy of the simulations carried out with Basilisk significantly depends on
the Courant–Friedrichs–Lewy (CFL) number, NCFL, the standard tolerance Tε on the
Poisson solver providing the pressure field, the grid refinement criteria for the volume
fraction ζC and the velocity ζu, and the dimensionless minimum grid size Δ̄min. In all
considered cases, we set ζC = 10−3, which ensures that all grid cells near the bubble
surface are refined using Δ̄min. The reference case was run with NCFL = 0.5, Tε = 10−4,
ζu = 1 × 10−2 and Δ̄min = 1/68. Zhang et al. (2021) and Zhang, Ni & Magnaudet
(2022), who considered the problem of two identical bubbles initially rising inline for
Ga up to 90 and 0.02 ≤ Bo ≤ 1, showed that these numerical settings, together with
ζC = 10−3, provide reliable predictions. An example of the corresponding grid structure
in the symmetry plane z = 0 for the present problem is illustrated in figure 18. The grid is
captured at the moment when the bubble is closest to the wall. Due to the very narrow gap,
the minimum grid size is reduced to Δ̄min = 1/136 instead of Δ̄min = 1/68 (the reason
behind this choice will be discussed later) to improve the local resolution.

Experimental results (TM) indicated that the corresponding motion is symmetric with
respect to z = 0, a conclusion confirmed by the results we obtained in the base test
case mentioned above. This motivated us to consider only a half-domain in subsequent
simulations and to use a symmetry boundary condition on the plane z = 0. Figure 19(a–d)
summarise the results obtained for the time evolution of the wall-normal bubble position
Xb(T). While the prediction is hardly affected by any further decrease in either NCFL or
Tε, significant variations take place with decreasing ζu (figure 19c) and Δ̄min (figure 19d).
These variations are no surprise: using a smaller ζu increases the resolution in the bubble
wake, while a smaller Δ̄min improves the resolution in the gap, a crucial region of the flow
when the bubble gets very close to the wall. For the considered parameter set, the Reynolds
number is around 100, so that the dimensionless thickness of the bubble boundary layer
is about 0.1. With Δ̄min = 1/68 and ζu = 10−2, more than six grid points are usually
located in the immediate vicinity of the bubble, ensuring a sufficient resolution of the
boundary layer. Decreasing ζu from 10−2 to 2 × 10−3, the typical non-dimensional size
of the grid cells within the far wake (located about ten radii downstream of the bubble)
is reduced from 1/17 to 1/34. This refinement only leads to a slightly larger maximum
of Xb after each bounce. However, achieving this minor improvement is computationally
expensive, as the total number of grid cells increases from 1.1 million to 7 million, even
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(a)

(b) (c)

Figure 18. Illustration of the grid structure in the symmetry plane z = 0 slightly before the gap reaches its
minimum (Δmin = 1/136). In each panel the bubble rises from right to left. Its surface is marked with a red
line; the wall is indicated by a dark green line at the bottom.

when considering only a half-domain. This is why, to save computational resources, we
decided to use ζu = 10−2 in all runs. Note that the small staircases that may be discerned in
the isocontours in the wake region in figures 6(g-i–i-i) and similar are a direct consequence
of this compromise in the choice for ζu, and no longer exist with ζu = 2 × 10−3.

More pronounced variations in the evolution of Xb(T) are observed when changing
Δ̄min, highlighting the importance of achieving a sufficient spatial resolution in the
gap. As indicated in figure 19(d), while the bouncing frequency is weakly affected, the
predicted amplitude of the lateral displacement of the bubble centroid during each bounce
exhibits a sizeable increase when reducing Δ̄min from 1/68 to 1/136, resulting in a 5 %
increase of the crest-to-crest amplitude of the oscillations. The good agreement between
the results obtained with Δ̄min = 1/136 and those with Δ̄min = 1/272 suggests that using
Δ̄min = 1/136 is sufficient to achieve an almost grid-independent solution on macroscopic
quantities, such as Xb(T). Nevertheless, lubrication effects at stake when the bubble moves
very close to the wall start to be reasonably captured only with Δ̄min = 1/272. Indeed,
as figure 19(e) reveals, the minimum gap thickness increases dramatically when Δ̄min is
decreased from = 1/68 to 1/136, eventually stabilising at δ̄ ≈ 0.013 with Δ̄min = 1/272.
The very small minimum, δ̄ ≈ 2 × 10−3, observed with the coarsest resolution is well
below the corresponding Δ̄min, leading to a situation of ‘direct collision.’ This situation
is avoided with Δ̄min = 1/136, but only one-and-a-half cells lie in the film when the gap
reaches its minimum. Last, three grid cells are located in the gap with Δ̄min = 1/272,
which is a bare minimum to resolve the semi-Poiseuille flow therein.

To further reduce computational costs, we adjust Δ̄min depending on the separation
distance, so that the grid is more refined only when the bubble moves very close to the
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Figure 19. Effects of (a) NCFL, (b) Tε , (c) ζu and (d) Δmin, on the predicted lateral position Xb(T). (e) Effect
of Δmin on the gap thickness δ̄(T); the colour code is similar to that of panel (c) and the successive Δmin are
materialised by the horizontal dashed lines. The bubble centroid is initially located at X0 = 2.

wall. Therefore, Δ̄min is decreased from 1/68 to 1/136 when the dimensionless gap δ̄ is
less than 0.15. This ensures that the number of cells in the gap is always larger than ten for
δ̄ ≥ 0.075. The comparison in figure 19(d) indicates that this adaptive refinement strategy
(the results of which are labelled as adaptive in the figure) is able to faithfully replicate the
results obtained by prescribing Δ̄min = 1/136 from the beginning of the simulation.

The above discussion indicates that the numerical error may be minimised at a
reasonable computational cost by setting NCFL = 0.5, Tε = 10−4, ζu = 1 × 10−2 and
lowering Δ̄min from 1/68 to 1/136 only when δ̄(T) is less than 0.15. The reliability of
this parameter set may be assessed by comparing the corresponding predictions with the
experimental results of TM. Figure 20(a) shows the predicted Reynolds number Re based
on the bubble rise speed as a function of time. The corresponding mean value, averaged
over a single bouncing period, is approximately 96.09, closely aligning with the measured
value of 96.25. Figure 20(b) presents a similar comparison for the bubble aspect ratio
χ . According to the prediction, χ decreases down to 1.08 when the bubble is closest to
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Figure 20. Results for (a) the Reynolds number Re and (b) aspect ratio χ . In (b) the two blue lines highlight
the maximum and minimum χ observed in the experiment.

the wall and increases to 1.14 when it achieves its maximum separation. These extreme
values align well with the measured ones. In the above experiments, the evolution of the
wall-normal distance Xb(T) was found to be accurately fitted as (in present notations)

Xb(T) = Xc + Ā sin ΩT, with Xc = 1.3, Ā = 0.256, Ω = 0.379. (A1)

In contrast, in the numerical prediction reported in figure 19, the parameters of the
oscillatory bubble motion are

Xc = 1.29, Ā = 0.27, Ω = 0.781. (A2a–c)

Compared with the experimental determinations, the mean transverse position Xc and the
amplitude Ā are replicated satisfactorily. In contrast, the predicted bouncing frequency
appears to be twice as large as the measured value. To ascertain the source of this
overestimate, we investigated the effects of certain parameters that may significantly
influence the bouncing frequency. We first noted that the initial dimensionless separation
X0 in the experiment is around 1.4, which is smaller than that in our tests. To determine
whether this difference might contribute to the discrepancy, we performed additional runs
at X0 = 1.5 and 1.25. As observed in figure 21(a), although the duration required for the
bubble to approach the wall decreases significantly with decreasing X0, the subsequent
oscillatory motion is barely affected by X0. Another potential cause of discrepancy could
be a slight tilt of the vertical wall with respect to the vertical, leading to a decrease in
the attractive transverse force, owing to the non-zero projection of the buoyancy force in
the wall-normal direction. To check this effect, we increased the tilt angle up to −θ = 2◦
(figure 21b), with θ defined to be positive if the wall-normal projection of the buoyancy
force points towards the wall. While this change reduces the bouncing frequency, thereby
reducing the disagreement with the observed Ω , it significantly increases the amplitude of
the oscillations, yielding an obvious overestimate on Ā.

Continuing with geometrical flow parameters, we questioned the possible influence of
the boundary conditions at the wall on the bouncing frequency. Up to this point, the wall
was assumed to be smooth and to impose a no-slip condition to the fluid. We explored two
variants of this boundary condition. One maintains the no-slip condition but assumes the
wall to be rough, while the other maintains the wall perfectly flat but assumes the fluid
to obey a free-slip condition on it. In the first variant, the rough wall is conceptualised
as a two-dimensional sinusoidal wave in the (x, y) plane, described as X = 0.1| sin 5πY|.
Figure 22(a) provides a sketch of the corresponding configuration. Figure 22(b) compares
the resulting lateral motion of the bubble with that predicted in the reference case. It may
be seen that the wall roughness, as described in this simple approach, has only a minimal
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Figure 21. Influence of two parameters on the bouncing frequency. (a) Effect of the initial separation X0.
(b) Effect of a small wall inclination with respect to the vertical.
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Figure 22. Influence of the wall roughness and possible fluid slip at the wall on the bubble lateral motion.
(a) ‘Rough’ wall, modelled as a sinusoidal wave in the (x, y) plane (with the spanwise vorticity ω̄z shown
with coloured isocontours). (b) Prediction of the lateral bubble motion resulting from the different boundary
conditions at the wall.

influence on the bouncing frequency. In contrast, switching from the no-slip condition to
the free-slip one makes the near-wall bubble motion transition from the regular bouncing
regime to a regime in which the bubble quickly reaches a stable equilibrium position a
significant distance apart from the wall.

Having found no satisfactory explanation to the discrepancy on the bouncing frequency
by changing several physical and geometrical parameters of the system, we also questioned
some numerical aspects. In particular, we examined the possible influence of the empirical
interpolation rule used to evaluate the dynamic viscosity of the fluid near the bubble
surface. In all tests presented above, the harmonic weighting described by (2.3b) was
used. Alternatively, the arithmetic weighting, similar to that used for density in (2.3a),
is routinely employed in many studies. As noted by Tryggvason, Scardovelli & Zaleski
(2011), the primary distinction between the two approaches is that the arithmetic mean
tends to ‘favour’ the largest viscosity, yielding, for instance, μ(C = 1/2) ≈ μ2/2 if the
viscosity of fluid 2 is much larger than that of fluid 1, whereas the harmonic mean ‘favours’
the smallest viscosity, yielding μ(C = 1/2) ≈ 2μ1 in the same case. The influence of the
choice of the interpolation rule for μ(C) on the lateral motion of the bubble is underscored
in figure 23. According to figure 23(a), employing the arithmetic mean slightly increases
the duration of the initial transient required for the bubble to come close to the wall, and
results in a marginally larger bubble–wall mean separation during the bouncing cycle.
Figure 23(b) presents the velocity diagram of the bubble over a full cycle. It shows that
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Figure 23. Influence of the interpolation rule (harmonic mean versus arithmetic mean) used to estimate
the dynamic viscosity of the two-phase mixture. (a) Time history of the bubble wall-normal position, Xb.
(b) Velocity diagram built on the vertical (Vy) and wall-normal (Vx) components of the bubble velocity over a
full period of the bouncing motion.

the maximum vertical velocity achieved with the arithmetic weighting is somewhat lower
than that resulting from the harmonic weighting (by nearly 1.5 %), while the maximum
negative horizontal velocity predicted with the second option is 6 % larger than that
obtained with the harmonic weighting. These observations align with the intuitive idea
that the arithmetic weighting induces slightly more pronounced viscous effects. However,
differences between the two predictions remain small, and certainly not large enough to
cause a significant overestimate in the bouncing frequency.

In summary, none of the possibilities considered above is responsible for the discrepancy
on the bouncing frequency noticed with respect to the experimental results of TM. Turning
to experiments, and excluding a typo since figure 9 of TM provides a record of Xb
versus the dimensional time t, it is unlikely that the discrepancy may be due to some
contamination of the bubble surface by impurities, since silicone oils are non-polar.
Similarly, the influence of a possible non-Newtonian behaviour of the oil in the narrow
gap separating the bubble from the wall, where the shear rate is large, is unlikely.
Indeed, silicone oils subjected to high shear rates are shear thinning, which would tend
to lower viscous effects and, hence, to promote the bouncing motion. Non-hydrodynamic
interactions between the bubble surface and the wall, which add a ‘disjoining’ contribution
to the pressure field in the gap, seem more realistic candidates since the minimum gap is
only a few microns. Of course, testing this possibility is beyond the scope of the present
work. Instead, we decided to conduct additional tests on the motion of a single bubble close
to an inclined or horizontal wall, to make sure that our purely hydrodynamic numerical
predictions are reliable. The results of these tests and the comparison with available
experimental data are detailed in Appendix B.

Appendix B. Tests with a bubble bouncing near an inclined or horizontal wall

We ran several additional tests in situations where an air bubble bounces near a flat
horizontal or inclined wall. We first considered the case of a bubble rising up to a
horizontal, hydrophilic wall, selecting the parameter set (Bo, Ga) = (0.074, 63). This
corresponds to an air bubble with an equivalent radius R = 0.74 mm rising in hyper-clean
water, as considered experimentally by Kosior et al. (2014). Experimental results indicate
that the flow field exhibits an axial symmetry. Therefore, we ran the simulations by
constraining the flow to remain axisymmetric with respect to the minor axis of the bubble.
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Figure 24. Evolution of a bubble with (Bo, Ga) = (0.074, 63) rising towards a horizontal wall.
(a) Wall-normal position of the bubble centroid. (b) Geometrical aspect ratio. In both panels, T = 0
corresponds to the moment when the bubble–wall distance reaches its first minimum.

This adaptation allowed us to refine the grid down to Δ̄min = 1/544, making it possible to
further examine the grid independence of the predictions.

Figure 24 depicts the evolution of the normalised wall-normal position of the bubble
centroid, Yb, and the bubble aspect ratio, χ . The predicted χ (figure 24b) is seen to
closely match the experimental results, suggesting that a grid refinement down to only
Δ̄min = 1/68 is sufficient to capture the dynamics of the bubble deformation. Figure 24(a)
reveals a slight underestimate of the maximum separation the bubble achieves after
the second collision, especially with Δ̄min = 1/68. Nevertheless, this small difference
does not significantly affect the predicted bouncing frequency. More precisely, the
dimensionless time duration between the third and fourth collisions is approximately
1.78 in the experiment. In the simulations, this time duration is approximately 1.65 for
Δ̄min = 1/68 and 1.675 for Δ̄min = 1/544. In both cases, the relative difference with the
experiments is less than 8 %, much smaller than that observed in the presence of a vertical
wall.

The second configuration we considered corresponds to a clean bubble rising close to
an inclined wall, as experimentally investigated by Barbosa et al. (2016). We focus on the
parameter set (Bo, Ga) = (0.14, 27), corresponding to an air bubble with an equivalent
radius R = 0.55 mm rising in a silicone oil slightly more viscous than water but having
a surface tension four times less than that of water (case E1 in Barbosa et al. 2016).
The wall inclination angle, θ , defined to be positive if the wall-normal projection of the
buoyancy force points towards the wall, was varied from 5◦ to 70◦ (θ = 0◦ corresponds to
a vertical wall). Barbosa et al. (2016) showed that the bubble trajectory transitions from
a near-wall bouncing regime to a sliding regime beyond a critical inclination angle θc,
with 10◦ < θc < 15◦. Present predictions perfectly agree with these findings. In particular,
in figure 25(a) the bubble is seen to bounce regularly for θ = 5◦ and 10◦, while the
oscillations of its centroid are quickly damped and the bubble later slides along the wall for
θ = 15◦, maintaining a constant gap with δ̄ ≈ 0.1. Figure 25(b) shows how the Reynolds
number based on the time-averaged bubble velocity along the wall-parallel direction varies
with the wall inclination. Again, numerical predictions are in excellent agreement with
experimental data.

Appendix C. Influence of initial separation

The results discussed in the main body of the paper were obtained with an initial
bubble–wall separation X0 = 2. However, the conclusions drawn from these results are
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Figure 26. Bubble trajectories corresponding to different initial separations X0 = 2 (orange), 1.5 (purple)
and 1.25 (dark blue). The corresponding (Bo, Ga) are indicated at the top of each panel.

valid irrespective of the initial separation, provided that it is ‘not too large’ for wall effects
to remain sizeable. To support this claim, we examined the six typical cases discussed
in § 3, comparing the results obtained with initial separations X0 = 2, 1.5 and 1.25.
Figures 26, 27 and 28 show the bubble trajectories and the evolution of Vx(Xb) and Vy(Xb)
in these three cases, respectively.

In the parameter range where the bubble performs periodic bounces
((Bo, Ga) = (0.05, 25) and (0.25, 30)), the predicted bubble trajectories (figure 26) differ
only within the first period of bouncing. In particular, the maximum wall-normal position
that the bubble achieves during this early stage depends on X0. In contrast, the bubble
motion reaches a fully developed state from the second period of bouncing, and the
vertical displacement and amplitude of the lateral drift during a single period then remain
unaffected by X0. Accordingly, in this stage, the profiles of the wall-normal and vertical
velocities of the bubble centroid, Vx(Xb) and Vy(Xb), collapse on a single curve (denoted
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with open circles in figures 27 and 28, respectively). This establishes the rapid memory
loss of bubbles with respect to X0 in the bouncing regime.

In the two damped bouncing configurations, (Bo, Ga) = (0.05, 15) and (0.25, 20),
the initial separation affects the vertical displacement achieved by the bubble before it
stabilises at the rest position Xc. Close inspection indicates that the smaller the initial offset
|X0 − Xc|, the shorter the vertical displacement needed. This is confirmed in figure 27
where, in each quasi-period of the motion, the curve with the smallest initial offset is
seen to stay closest to the fixed point (Xb = Xc, Vx = 0) where all curves eventually
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concentrate. The same feature may be observed in figure 28, the fixed point then being
(Xb = Xc, Vy = Vf ), with Vf the final rise speed.

Last, in the two cases where the bubble departs from the wall, the effects of the initial
separation depend on the specific details of the bubble motion. In the case where no
path instability takes place ((Bo, Ga) = (0.5, 15)), the maximum Vx achieved in the initial
stage increases with decreasing X0 (figure 27). Beyond the initial stage, the wall-normal
and vertical velocity components are seen to depend solely on the local wall-normal
distance, Xb. Therefore, although the trajectories do not overlap, the path of a bubble
with a given X0 is just a replication of the path of another bubble released at a larger
X0. In the marginal case (Bo, Ga) = (1, 30), a bubble rising in an unbounded expanse
of fluid exhibits a zigzagging path (Cano-Lozano et al. 2016; Bonnefis et al. 2024). In
the presence of a vertical wall, the mean lateral drift is driven by the wake–wall vortical
interaction mechanism. Conversely, the oscillations in the lateral drift are essentially due
to the path instability. This may be appreciated in figure 27 where, beyond Xb ≈ 3, the
maximum and minimum of the wall-normal velocity achieved in each period of bouncing
have almost the same magnitude. These results also indicate that the larger X0, the smaller
the wall-induced asymmetry in the flow, hence, the longer it takes for the path instability to
saturate (consider the growth of the oscillations of the red curve corresponding to X0 = 2
in figure 27). Of course, once the saturated state is reached, the characteristics of the
motion are no longer affected by X0, as figures 27 and 28 evidence.

Appendix D. Wake structure past a spherical bubble translating steadily close to a
wall

To gain some additional insight into the dynamic evolution of the vortical structures
during a regular bouncing, we ran simulations about a spherical bubble held fixed in
a wall-bounded uniform flow. The parameters Re and Xb were selected to match those
corresponding to points c, d, f and g in figure 8(a-ii). These simulations were carried out
using the in-house JADIM code developed at the Institut de Mécanique des Fluides de
Toulouse. The corresponding numerical details may be found in Shi et al. (2020) and Shi
(2024).

Figure 29 presents the structure of the vorticity field obtained in this stationary
configuration. The distribution of the spanwise vorticity (first four panels) closely mirrors
that obtained with a freely moving bubble (see the panels with the corresponding labels
in figure 10), except that the extension of the wall region with significant positive vorticity
is larger in the fixed-bubble configuration. In contrast, the structure of the streamwise
vorticity field (last four panels of figure 29) differs notably from that observed past a freely
moving bubble. Specifically, the intensity of ω̄y at points c and d is markedly higher in the
case of a fixed bubble. This difference arises because the wake requires a certain time to
‘respond’ to the vortex stretching/tilting process resulting from the shear flow present in
the gap. This time lag is especially evident at point c, where ω̄y appears minimal for a
freely moving bubble (figure 10c-ii), while ω̄z exhibits significant values in the gap at the
same instant of time (figure 10c-i). Conversely, the streamwise vorticity at points f and g
is more pronounced with a freely moving bubble, although the shear flow in the gap is
weaker than in the fixed-bubble case (compare panels f -i–g-i in the two figures).

The above differences in the two ω̄y distributions highlight the importance of
unsteadiness in the instantaneous vorticity distribution past the bubble. This influence
translates into significant ‘memory’ effects (i.e. effects that depend on the past history of
the transverse motion) in the lateral force balance on the bubble. Since the streamwise
vortices displayed in figure 29(c-ii–g-ii) correspond to the classical Lighthill lift
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(i) (i) (i) (i) (ii) (ii) (ii) (ii)

(c) (d) ( f ) (g) (c) (d) ( f ) (g)

Figure 29. Vortical structure past a spherical bubble moving steadily parallel to a rigid wall in a stagnant fluid.
Results are shown for (c-i,ii) (Re, Xb) = (131, 1.25), (d-i,ii) (126, 1.125), (g-i,ii) (106, 1.125) and (f -i,ii) (112,
1.25). These (Re, Xb) sets are similar to those of the freely moving bubble at points c, d, g and f in figure 8(a-ii).
The colour bar used for the ω̄z isocontours (c-i, d-i, f -i, g-i) and the selected isovalues for ω̄y (c-ii, d-ii, f -ii,
g-ii) are consistent with those of figure 10.

mechanism, they result in a stationary force directed away from the wall. For a freely
moving bubble experiencing bounces, the time-dependent generation/disappearance of the
streamwise vortices yields an attractive (respectively repulsive) ‘memory’ correction to
this repulsive stationary force during the time the bubble approaches (respectively departs
from) the wall. Consequently, at the equilibrium transverse position where the quasi-steady
transverse force vanishes, its transient counterpart is attractive in the approach stage and
repulsive in the return stage, prompting the bubble to always deviate from its equilibrium
position.
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