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Abstract

Given a forward mapping Φ : RN → RM , the region {x ∈ RN , ∥Φ(x)−
y∥2 ≤ ε}, where y ∈ RM is a given vector and ε ≥ 0 is a perturbation am-
plitude, represents the set of all possible inputs x that could have produced
the measurement y within an acceptable error margin. This set reflects
the inherent uncertainty or indeterminacy in recovering the true input x
solely from the noisy observation y, which is a key challenge in inverse
problems. In this work, we develop a numerical algorithm called Jackpot
(Jacobian Kernel Projection Optimization) which approximates this set
with a low-dimensional adversarial manifold. The proposed algorithm
leverages automatic differentation, allowing it to handle complex, high
dimensional mappings such as those found when dealing with dynamical
systems or neural networks. We demonstrate the effectiveness of our al-
gorithm on various challenging large-scale, non-linear problems including
parameter identification in dynamical systems and blind image deblurring.
The algorithm is integrated within the Python package deepinv.

1 Introduction

Let Φ : RN → RM denote an arbitrary C1 mapping and x⋆ ∈ RN denote a point.
Our main objective in this paper is to design a numerical algorithm to describe
the set Sε defined by

Sε def
=
{
x ∈ RN , ∥Φ(x)− Φ(x⋆)∥2 ≤ ε

}
(1)

= Φ−1 (B (Φ(x⋆), ε)) ,

for some ε ≥ 0, where ∥ · ∥2 denotes the standard ℓ2-norm and B(y, r) denotes
an ℓ2-ball centered at y of radius r. As will be explained later, many important
practical problems can be framed in this manner.

If the mapping Φ is linear, then Sε is an ellipsoid that can be characterized
using linear algebra tools. In the general nonlinear case, the set Sε is the sublevel
set of a near arbitrary function. Indeed, an arbitrary closed set E can be written
as the 0-level set of the function Φ(x) = dist(x, E)2. Given the level of generality,
it is unreasonable to expect solving the problem properly for all mappings Φ.
Describing Sε is more challenging than finding all the global minimizers of a
near arbitrary non convex function.

Therefore, we aim for a more modest goal: describe Sε locally around the
point x⋆. Additionally, we seek to approximate this set by another one of
relatively low intrinsic dimensionality. This serves two purposes: i) to design
tractable algorithms and ii) to provide an output that can be easily visualized.
Our main objective in this paper can therefore be summarized as follows.
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Main objective Given a mapping Φ : RN → RM and a point x⋆ ∈ RN , find a
D-dimensional manifoldMε

δ that approximates the set

Sεδ
def
= {x ∈ B(x⋆, δ), ∥Φ(x)− Φ(x⋆)∥2 ≤ ε}, (2)

where δ ≥ 0 bounds the diameter of the approximating manifold. The set Sεδ
can be encountered under different names, depending on the scientific field:
equivalence domain [21], low misfit region [15], solution set [31] or uncertainty
region [16]. Throughout this paper, we will call it uncertainty region.

We are particularly interested in complex models Φ (e.g. dynamical systems,
neural networks), which can lead to problems involving high-dimensional (latent)
spaces. Throughout the paper, we assume that the Jacobian of Φ can be
accessed either through analytical derivation or by using automatic differentation
algorithms.

1.1 Application examples

Many problems involve identifying parameters of physical, biomedical, or chemical
systems from indirect observations. The primary applications we have in mind
are related to the field of inverse problems. In this field, the set Sε describes
what can be identified in a system and what cannot. Let us illustrate this point
with a few examples studied in the numerical experiments.

1.1.1 Identifying dynamical systems parameters

Assume that some dynamical system u : R+ → RP×D of P particles in RD is
governed by a first or second order equation:

u̇(t) = f(u(t), x) or ü(t) = f(u(t), x)

where u(t) = (u1(t), . . . , uP (t)) denotes the particles positions and f : RP×D ×
RN → RP×D is a force or velocity field parameterized by the vector x ∈ RN .
After measuring the particles positions at multiple time points, we would like to
recover the unknown parameter x that describes the dynamical system.

An example that we will be studied later is the solar system, where u(t)
represents the positions of P = N planets at time t, f are forces given by Newton’s
second law of attraction and x ∈ RN is the mass of the different planets. We
assume that a measurement system (e.g. telescope) returns estimates of the
positions u at some times, leading to a measurement vector (y1, . . . , yK) of the
form yk = u(tk)+bk for sampling times t1 < · · · < tK and unknown measurement
errors bk.

The scientific question we would like to answer is: can we recover the mass
of the planets from the partial observation of their positions? To this end, we
can set Φ : x 7→ (u(t1), . . . , u(tK)) and find a first guess x⋆ of the mass using a
least square regression:

x⋆ = argmin
x∈RN

1

2
∥Φ(x)− y∥22.
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Describing the set Sεδ provides a much finer description of the uncertainties
than the single estimate x⋆. As we will demonstrate, our algorithm reveals that
predicting the mass of Pluto is highly challenging. This observation aligns with
historical estimates: initially, Pluto’s mass was thought to be twice that of Earth,
but in 2015, the New Horizons probe measured it to be just 1/455th of Earth’s
mass.

1.1.2 Blind inverse problems

Assume that we acquire measurements y of the form

y = P(A(θ)(x)),

where P : RM → RM represents a perturbation (e.g. noise, quantization) and
θ ∈ RN is a parameter that describes the state of an acquisition system A(θ) :
RN ′ → RM . This parameter could represent an unknown point spread function
in optics or uncertain projection angles in tomography for instance. The goal in
blind inverse problems is to recover both x and θ from the measurements y.

One approach we will explore in the numerical section involves constructing
a learned reconstruction mapping R(A(θ), y), which, given a forward operator
A(θ) and a measurement vector y, outputs an estimate x̂(θ) = R(A(θ), y) of x.
Then, a simple approach to estimate θ is to minimize the discrepancy:

argmin
θ∈RN

1

2
∥A(θ)(x̂(θ))− y∥22 ,

ensuring that the pair (A(θ), x̂(θ)) is coherent with the observation y.
By setting Φ(θ) = A(θ)(x̂(θ)) and exploring Sεδ around a local minimizer θ⋆,

we can identify all pairs coherent with the data. This is a way to describe some
uncertainty properties of the blind inverse problem.

1.1.3 Bayesian posterior exploration

Similar to the previous example, assume that a system yields measurements y of
the form

y = P(A(x)),

where A : RN → RM is a known operator describing the acquisition device.
Whenever A is not invertible, recovering x from y requires regularization. An
elegant approach to formalize this principle uses Bayesian reasoning: we assume
that x is the realization of some random vector x with probability distribution
function px. This makes it possible to construct a posterior distribution

px|y(x|y) =
py|x(y|x) · px(x)

py(y)
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and Bayesian estimators such as the Maximum A Posteriori (MAP) estimate:

x̂MAP(y)
def
= argmax

x∈RN

px|y(x|y)

= argmin
x∈RN

− log
(
py|x(y|x)

)
− log (px(x)) .

The prior px can be handcrafted or learned with large databases. The latter
strategy oftentimes provides surprisingly good results, which are rapidly replacing
older strategies [44, 43, 53]. In scientific applications, it however becomes critical
to certify the results, i.e. describe what information can be safely regarded as
valid and the one which is uncertain.

One approach to achieving this involves describing the high probability region

Hα = {x ∈ RN , log px|y(x|y) ≥ α} (3)

for some probability threshold α. However, the prior px(x) can often only be
accessed indirectly through its gradient [28, 58]. In that situation, another
approach is to compute a local minimizer x⋆ of the posterior distribution and to
explore the set

Sεδ =
{
x ∈ B(x⋆, δ), ∥∇ log px|y(x|y)∥2 ≤ ε

}
. (4)

This problem fits our formalism with Φ = ∇ log px|y(·|y) and Φ(x⋆) = 0, since x⋆

is a minimizer. When x⋆ = x̂MAP, we have Sεδ ⊆ Hα for some parameter ε > 0
that depends on α and sufficiently small δ > 0. However the reverse inclusion is
not true in general.

1.2 Related works

As illustrated by these examples, describing uncertainty regions can be useful in
various fields such as system identification, inverse and blind inverse problems,
data assimilation. It can also be regarded as a type of sensibility analysis or
uncertainty quantification. Let us review some approaches available in the
literature. We will use the nomenclature of the identifiability theory [59], which
classifies the study as structural in the noiseless setting (ε = 0) and practical
when noise is considered (ε > 0).

1.2.1 Structural identifiability

Using our notation, global structural identifiability means that S0 = {x⋆} while
local structural identifiability means that there exists δ > 0 such that S0δ = {x⋆}.
The literature devoted to those two notions of identifiability is vast. Under
mild regularity assumptions on Φ, a necessary and sufficient condition for local
structural identifiability is given by ker(JΦ(x

⋆)) = {0}, where JΦ(x
⋆) ∈ RM×N

is the Jacobian matrix of Φ at x⋆ [52]. When Φ is linear, this condition reads
ker(Φ) = {0} and implies global structural identifiability. Beyond the linear
case, there exist rich theories regarding the (local) identifiability of bilinear
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inverse problems [38, 33], phase retrieval problems [30, 22], partial differential
equations [57] or neural networks [46, 9], to name a few.

When x⋆ is non-identifiable, the analysis and characterization of the non-
trivial set S0 locally around x⋆ has also been the object of many works. Existing
methods include computing the uncertainty region S0 in explicit form using
differential algebra [6], numerical algebraic geometry (e.g. diffalg [26], daisy [7])
or Lie group theory [40]. However, these algebraic methods are limited to the
analysis of rational functions and become computationally prohibitive as the
number of parameters increases.

1.2.2 Practical identifiability

Practical identifiability, which guarantees stability to noise on the observations,
is the main topic of this paper. Alternative names are sensitivity analysis or un-
certainty quantification, which are closely related. For the local characterization
of the uncertainty region Sε, various approaches exist.

Coordinate-based methods Coordinate-based methods examine the model’s
sensitivity along each direction of the canonical basis. In this setting, the function
x 7→ exp (−∥Φ(x)− Φ(x⋆)∥2) is often called likelihood.

Profile likelihood methods [56, 50] compute one-dimensional profiles. The
profiles are evaluated by fixing one coordinate and optimizing over the remaining
ones:

min
x∈RN

xi=x⋆
i +tj

∥Φ(x)− Φ(x⋆)∥2.

This is done for different deviations tj ∈ R and all coordinates i. The directions i,
where the likelihood is high are uncertain. An illustration with simple likelihood
functions is given in Fig. 1. Notice that in practice, only endpoints of the
confidence intervals are computed [18]. A weakness of these approaches is that
they act component-wise. Hence, in Fig. 1 examples (a), (b), we see that the
profiles change a lot depending on the coordinate system, showing that the profile
directions should be chosen with care. In Fig. 1 (c) for instance, the profiles
are locally flat in both directions, while the uncertainty is only one-dimensional
along the unit circle.

A possible approach to avoid this drawback, is to find meaningful directions
using the Fisher information matrix, defined by JΦ(x

⋆)T · JΦ(x⋆). The eigen-
vectors associated to the lowest singular values indicate the directions which
are hardest to identify. This idea was used by [14] to identify combinations of
coordinates which are jointly identifiable and draw profiles likelihood for these
subsets only. A similar mechanism is at the core of our approach, though used
in a different manner.

Monte Carlo sampling methods One way to express our problem is to
recover Φ−1(B(Φ(x⋆), ε)), the pre-image by Φ of a ball centered on Φ(x⋆). A
simple way to do so is to deploy a Monte Carlo sampling method [42]. A few
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Figure 1: Illustration of the profile likelihood method. The red-black curves are
the level sets of the discrepancy ∥Φ(·)−Φ(x⋆)∥2. The discrepancy profiles along
each axis are plotted in black, together with the confidence intervals in green.
In (a), (b), we fixed A = diag(.2, 1), an unitary matrix U and x⋆ = (0, 0). In (c),
we fixed x⋆ = (1, 0).

samples yk for 1 ≤ k ≤ K are drawn at random within B(Φ(x⋆), ε). Then, the
antecedents can be computed as

x̂k
def
= argmin

x∈RN

∥Φ(x)− yk∥22. (5)

The discrete set (x̂k) provides a snapshot of Sε. An illustration is provided
in Fig. 2 with our basic examples.

Statistical analyses of the samples (x̂k) can then be performed to quantify
the uncertainty. These include, for instance, variance or covariance estimates,
bootstrapping [24], sensitivity-based methods [23, 4], or randomize-then-optimize
strategies [5].

(a) Φ = A

(b) Φ = UAUT (c) Φ(x) = ∥x∥22

Figure 2: Illustration of Monte Carlo sampling on the same examples as in
Fig. 1. The set Sε is represented in green and the sampling points are in blue.

As opposed to the profile likelihood approach, Monte Carlo sampling accounts
for relationships between coordinates. Yet, it suffers from multiple weaknesses.

• It can be computationally expensive given that each sample x̂k requires
solving an optimization problem and that the number of sampling points
required for statistical analyses grows exponentially with the dimension of
the problem [16, 17].
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• For degenerate problems, where Φ is non injective, the optimization problem
may possess multiple minimizers. In those situations, sampling becomes
inefficient. In Fig. 2 (c) for instance, we started the optimization algorithm
by setting xinit = x⋆ as an initialization point. As a result, the sampling
approach only yields a 1D subset of Sε, that does not capture the complete
annulus.

• Uniform sampling in B(Φ(x⋆), ε) might not translate to a uniform sampling
in Sε, potentially over-representing some regions and under-representing
others. This issue will be striking in our numerical experiments.

Some of these challenges can be addressed with advanced diffusion models,
which have recently gained significant attention in artificial intelligence research.
These methods were initially developed for generative modeling tasks [25] and
have since been adapted for various inverse problems [12, 36, 11]. Ongoing
research focuses on certifying the accuracy of posterior sampling [54] and im-
proving the efficiency of sample generation. However, given the computational
cost of these approaches, we have chosen not to use them for comparisons.

Geometric analysis Finally, the last class of methods, the one we endorse,
aims to compute geometrically the structure of the set Sε. [3] proved that the
boundary of Sε is a N−1-dimensional manifold and proposed a numerical method
to compute its boundary. It relies on the construction of a complete vector
field tangential to the level sets of ∥Φ(x)− Φ(x⋆)∥2. Then, the determination
of the boundary of Sε amounts to solve an ODE. This approach is limited to
low-dimensional problems such as the two-dimensional non-polynomial and was
applied only to three-dimensional polynomial by [3]. Instead of considering the
whole space, [49] proposed to determine a trajectory referred to as minimally
disruptive curve or talweg within the structural or practical non-identifiable sets
S0 and Sε. This trajectory is a one-dimensional sub-manifold approximation of
Sε with the smallest discrepancy values. However, it is unclear how to extend
this approach to higher dimensions. Another approach given by [55] consists in
successively eliminating one parameter at a time to finally obtain a partial low-
dimensional boundary of the uncertainty region. This method is not applicable
to high-dimensional problems.

For further details and references related to these approaches, we refer the
reader to the comprehensive reviews [41, 59, 35].

1.3 Main contribution

We aim at advancing the field of local practical identifiability by designing the
Jackpot algorithm. It is applicable to large dimensional problems and yields
a manifold of arbitrary (but preferably small) dimension D. This manifold is
constructed so as to provide a good approximation of the ε-uncertainty region
in Hausdorff distance, regardless of the non-linear and non-algebraic nature of
the model. A simple illustration of its output is given in Fig. 5.
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The proposed algorithm is based on automatic differentiation, allowing us
to tackle high-dimensional problems. In particular, we illustrate its behavior in
problems involving dynamical systems and neural networks. It is being integrated
within the Python package deepinv.

2 The Jackpot algorithm and its guarantees

Our main goal is to describe Sεδ = {x ∈ B(x⋆, δ), ∥Φ(x) − Φ(x⋆)∥2 ≤ ε}, the
local ε2/2-sublevel set of the function

F (x)
def
=

1

2
∥Φ(x)− Φ(x⋆)∥22. (6)

In what follows, to measure how well we approximate the set Sεδ , we will use
Kolmogorov and Hausdorff distances which we define next.

Definition 1 (D-width or Kolmogorov distance). Let G(D,N) denote the set
of D- dimensional vector subspaces in dimension N (the Grassmanian). The
Kolmogorov distance δD of a set S ⊂ RN is defined by:

δD(S) def
= inf

V∈G(D,N)
sup
x∈S

inf
v∈V
∥x− v∥2. (7)

It measures how well a set S can be approximated by a D-dimensional
subspace. Let us also recall the notion of Hausdorff distance.

Definition 2 (Hausdorff distance). For two subsets X ,Y of a metric space
(M, d), the Hausdorff distance is defined as

dH(X ,Y) def
= max

{
sup
x∈X

d(x,Y), sup
y∈Y

d(X , y)
}

(8)

= inf
η≥0
{X ⊆ Y + B(0, η) and Y ⊆ X + B(0, η)} . (9)

This distance intuitively measures how much a set should be dilated to
include the other one and vice versa.

In this section, we start by proposing a linear manifold approximation M̃ε
δ

obtained from a quadratic approximation of F at x⋆. This allows us to present
the main approximation results in a simplified format. We then turn to the
construction of a more precise nonlinear manifold approximation Mε

δ. We
describe its approximation guarantees, and a practical algorithm to compute it.

2.1 Linear approximation

Under a C2 regularity assumption, we can approximate F by a quadratic function.
Most terms in the Taylor expansion vanish since x⋆ is a minimizer and for any
h ∈ RN , we obtain:

F (x⋆ + h) =
1

2
∥JΦ(x⋆) · h∥22 + o(∥h∥22). (10)

9
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This motivates us to consider the quadratic approximation of F at x⋆:

F̃ (x)
def
=

1

2
∥JΦ(x⋆) · (x− x⋆)∥22. (11)

The uncertainty region can be described as the ε2/2-sublevel set of this function,

denoted S̃ε =
{
x ∈ RN , F̃ (x) ≤ ε2/2

}
. Similarly to the definition of Sεδ , we

also set

S̃εδ =

{
x ∈ B(x⋆, δ), F̃ (x) ≤ ε2

2

}
. (12)

2.1.1 Approximation result

In the linear case, the best approximation of S̃ε by a D-dimensional subspace
is explicit using the singular vectors of the Jacobian matrix of Φ. We can
indeed decompose the Jacobian as JΦ(x) = U(x)Σ(x)V T (x), where U(x) ∈
RM×M and V (x) ∈ RN×N are orthogonal matrices and Σ(x) ∈ RM×N is a
diagonal rectangular matrix with nonnegative and decaying entries. We let

J⋆ def
= JΦ(x

⋆) = U⋆Σ⋆V ⋆,T , where U⋆ = [u⋆
1, . . . , u

⋆
M ], V ⋆ = [v⋆1 , . . . , v

⋆
N ],

diag(Σ⋆) = [σ⋆
1 , . . . , σ

⋆
R⋆ , 0, . . . , 0], and R⋆ is the rank of J⋆. By convention,

we let σ⋆
R⋆+1, σ

⋆
R⋆+2, . . . , σ

⋆
N = 0. The following description is standard.

Proposition 3. (From [32]) The sublevel set S̃ε is a (degenerate) hyper-ellipsoid
with axes aligned with the vectors (v⋆n). The length of the ellipsoid along the
semi-axis v⋆n is given by ε

σ⋆
n
for n ∈ {1, . . . , R⋆} and it is infinite for the other

axes.

The following result is rather standard in approximation theory, see e.g. [47,
Thm. 1.3]. First the uncertainty region is approximated by an affine subspace L
and then by a troncation of this subset which gives the approximation manifold
M̃ε

δ of S̃εδ . Guarantees on the approximation distances are also provided and
the proof is provided in Appendix A.1.1.

Proposition 4. Firstly, the affine D−dimensional affine space that best approx-

imates S̃ε for the Kolmogorov distance is given by Tx⋆
def
= x⋆ + V⋆

D with

V⋆
D

def
= span

(
v⋆N−D+1, . . . , v

⋆
N

)
. (13)

The Kolmogorov distance is given by δD(S̃ε − x⋆) = ε
σ⋆
N−D

.

Secondly, for any δ > 0, we define the set

M̃ε
δ

def
=
{
x ∈ Tx⋆ ;

∥∥Σ⋆V ⋆,T (x− x⋆)
∥∥2
2
≤ ε2 and ∥x− x⋆∥2 ≤ δ

}
. (14)

It satisfies the following equality:

dH(M̃ε
δ, S̃εδ ) = min

(
ε

σ⋆
N−D

, δ

)
. (15)

This linearized approximate set M̃ε
δ was already described in [16].
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2.1.2 Lowest singular vectors computation

The results above show that the singular values and singular vectors of the
Jacobian J⋆ = JΦ(x

⋆) play a critical role for the description of the set S̃ε.
To compute them, two operation are required: i) evaluating the Jacobian ma-
trix or matrix-vector products with it and ii) computing the singular value
decomposition.

Jacobian computation Computing matrix-vector products with the Jacobian
can be achieved efficiently using automatic differentiation algorithms. In Pytorch
for instance, this can be achieved through the torch.jvp and torch.vjp functions.
If the dimension N or M is sufficiently small, then the whole Jacobian matrix
J⋆ can be evaluated and stored. If the dimensions are too large, then automatic
differentation algorithms make it possible to compute left and right matrix-vector
products, i.e. products of the form J⋆v or uTJ⋆ for arbitrary directions u ∈ RM

and v ∈ RN .

Singular vectors computation The computation of singular pairs of J⋆ or
the eigenpairs of J⋆,TJ⋆ are two equivalent problems. The latter is known as a
symmetric eigenvalue problem [45]. Several algorithms, called eigensolvers [39],
have been developed for this purpose. If the matrix is small enough, traditional
decomposition methods based on the QR algorithm can be used.

In high dimension, we adopted the Locally Optimal Block Preconditioned
Conjugate Gradient (LOBPCG) method [34, 13]. It is matrix-free: it only
requires matrix-vector products and does not process the entire matrix. The
computation is achieved by optimizing the generalized Rayleigh quotient. For
X ∈ RN×D, this quotient is defined as

f(X) = Tr
((

XTX
)−1

(J⋆X)TJ⋆X
)
. (16)

As such, finding the D leftmost singular vectors of J⋆ consists in finding the
minimizer of

argmin
X∈St(N,D)

f(X),

where St(N,D)
def
=
{
X ∈ RN×D ; XTX = IdD

}
is the set of N×D orthonormal

matrices also called the Stiefel manifold. The LOBPCG algorithm can be
interpreted as a manifold gradient descent [1] with a carefully designed step-size
based on the previous iterates.

2.2 Nonlinear approximation

We now turn to the approximation of the sublevel sets of F without resorting to
a quadratic approximation: we want to find a D-dimensional manifoldMε

δ that
approximates Sεδ well.
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2.2.1 The Jackpot manifold

The linear subspace Tx⋆ = x⋆ + V⋆
D can be a poor approximation of Sε when Φ

is nonlinear. However, it is a natural tangent space for the setMε
δ at x⋆. The

idea behind our algorithm consists in bending this tangent space, to better fit
the uncertainty region Sεδ . A similar idea was proposed by W. Rheinboldt for
polynomials in [51]. However, the algorithm was limited to three dimensions
and could not visualize the uncertainty region, as it was constrained to the case
where ε = 0.

In mathematical terms, we want to find a one-to-one map γ that sends points
of Tx⋆ onto Sε. This can be achieved thanks to the following optimization
problem:

γ(z)
def
= argmin

V ⋆,T
D (x−x⋆)=z

1

2
∥Φ(x)− Φ(x⋆)∥22 , (Pz)

where
V ⋆
D

def
= [v⋆N−D+1, · · · , v⋆N−1, v

⋆
N ] ∈ RN×D. (17)

The constraint V ⋆,T
D (x−x⋆) = z means that the projection of γ(z) on the tangent

space Tx⋆ has coordinate z. It ensures the injectivity of the map γ. The argmin
notation refers to a local minimizer near x⋆. The main tools appearing in this
description are depicted in Fig. 3.

A simple illustration To illustrate this principle, we consider the mapping
Φ(x) = 1

2∥x∥
2
2 and set x⋆ = e1, where (e1, . . . , eN ) is the canonical basis. It

is a basic example from a broader context named algebraic implicit curves
parameterization. For this specific function, the set S0 is a sphere of radius 1
centered at 0. The tangent space is the hyperplane orthogonal to e1 passing
through x⋆. Simple computation yields γ(z) =

√
1− ∥z∥22e1 +

∑N
n=2 znen. We

see that the proposed parameterization allows us to recover the half sphere, which
is illustrated in Fig. 3. This example also shows the importance of considering
local minimizers, since the problem (Pz) admits two global minimizers.

Main definition The mapping γ provides a good candidate manifold that
approximates the uncertainty region Sεδ . It writes as follows.

Definition 5 (The Jackpot manifold). For δ > 0, we define the set

Mε
δ

def
=
{
γ(z) ; z ∈ RD, ∥Φ(γ(z))− Φ(x⋆)∥2 ≤ ε and ∥γ(z)− x⋆∥2 ≤ δ

}
. (18)

As shown below, this set is well defined provided that δ is small enough. The
proof is provided in Appendix A.2.1

Theorem 6 (Manifold approximation is well defined). Let Φ : RN → RM be a
C1 map, x⋆ ∈ RN , and D ≥ dimker JΦ(x

⋆) denote an integer.
Then there exists a neighborhood U ⊆ RD such that (Pz) admits a unique

solution γ(z) for z ∈ U . Moreover, the mapping γ : U → RN verifies γ(0D) = x⋆

and it has the following properties

12



Figure 3: Summary of Jackpot (JACobian Kernel Projection by OpTimization).
In this example, we set Φ(x) = ∥x∥22, ε = 0 and x⋆ = e1. In this setting, the
uncertainty region Sε is just a unit sphere, and the affine space Tx⋆ is the tangent
space to Sε at x⋆. The uncertainty region is obtained by projecting the tangent
plane onto Sε.

• If Φ is of class C2, then γ is of class C1.

• If Φ is of class C1 and JΦ is locally Lipschitz and definable, then γ is a
locally Lipschitz definable function.

Remark 7. The second condition in Theorem 6 is weaker than the first one
and allows us to handle a larger class of operators. The notion of definable
function [8] generalizes the notion of (implicitly defined) semi-algebraic function.
It encompasses all functions commonly considered in engineering. We refer the
reader to [8, Appendix A.2] for a precise definition.

Our approximation manifoldMε
δ is now well defined. In what follows we will

refer to γ as the parameterization of the manifoldMε
δ.

2.2.2 Approximation guarantees

In this paragraph, we show in Theorem 10 thatMε
δ provides a good approxima-

tion of Sεδ under certain regularity assumptions.

Assumption 8 (A simple approximability condition). Let

Pz =
{
x ∈ Sεδ , V

⋆,T
D (x− x⋆) = z

}
denote the slice of Sεδ which has coordinate z on Tx⋆ . We assume that

sup
z∈RD

∥γ(z)−x⋆∥2≤δ

diam(Pz) ≤ η. (19)

This assumption is illustrated in Fig. 4. Notice that the value η > 0 can be
large even if the set is thin, when the set is bent a lot with respect to Tx⋆ . For a
C2 mapping Φ, the thickness η can be controlled by regularity properties as shown
in the following proposition, the proof of which is deferred to Appendix A.2.2.
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Figure 4: An illustration of Assumption 8. The slices Pz of Sεδ have a diameter
uniformly bounded by η.

Proposition 9 (Uniformly bounded curvature). Assume that Φ is of class C2,
that D ≥ dimker(JΦ(x

⋆)) = N −R⋆ and that the Hessian tensor HΦ satisfies

∥HΦ∥2,δ
def
= sup

x,x′,x′′∈B(x⋆,δ)

∥HΦ(x)(x
′, x′′)∥2

∥x′∥2 ∥x′′∥2
<

σ⋆
N−D

δ

where σ⋆
N−D is the (N−D)-th singular value of the Jacobian JΦ(x

⋆). Then
Assumption 8 is verified with

η =
2ε

σ⋆
N−D − δ∥HΦ∥2,δ

. (20)

We are now in a position to show how wellMε
δ approximates Sεδ in terms of

the Hausdorff distance defined in (2). The proof is provided in Appendix A.2.2.

Theorem 10 (Approximation guarantees). Set a point x⋆ ∈ RN , a map Φ
of class C2, a threshold ε > 0 and D ≥ dimker JΦ(x

⋆). Then Mε
δ defines a

manifold with parameterization γ for sufficiently small δ > 0.
Moreover, under Assumption 8, Mε

δ is a good approximation of Sεδ in the
sense that:

dH(Mε
δ, Sεδ ) ≤ η, (21)

where dH is defined in (2). More precisely, we have

Mε
δ ⊆ Sεδ ⊆Mε

δ + B(0, η). (22)

Remark 11. A few remarks are in order:

• In the linear case, since the Hessian is null, any radius δ > 0 suits as long
as the dimension D satisfies D ≥ dimker JΦ(x

⋆).

• An upper-bound on the Hessian norm ∥HΦ∥2,δ is

sup
x∈B(x⋆,δ)

∥∥∥(σmax (HΦm
(x)))m≤M

∥∥∥
2

with Φm being the m-th component of Φ.
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2.2.3 Numerical computation

From a numerical perspective, we have to discretize the manifoldMε
δ. This can

be done by evaluating (Pz) on a discrete subset Z = {zk}0≤k≤K of RD. We let
Mε

δ(Z) denote the discretized manifold:

Mε
δ(Z)

def
= Mε

δ ∩ {γ(z); z ∈ Z} . (23)

The main problem now reduces to evaluating γ for grid points Z satisfying
the constraints. The principle is to propagate a front starting from z = 0D with
a grid-search algorithm and to solve (Pz) at each z. A pseudo-code is given in
Algorithm 1. We detail the two steps below.

Grid search In this work, we simply discretize RD with a Cartesian grid.
Other choices such as the honeycomb pattern are possible, but have not been
explored. Fixing a grid length s > 0, we define the following Cartesian grid

Zs
def
=
(
sZD

)
∩ B∞(0D, δ) = s

{
−
⌊
δ

s

⌋
, . . . ,

⌊
δ

s

⌋}D

. (24)

Since the initial point γ(0) = x⋆ is known, the grid search should start with
the point 0D ∈ Z. Solving (Pz) can be achieved with first order methods, which
require a starting point. Since γ is a smooth mapping, a good approximation
of γ(z) is γ(z′) for some z′ where γ has already been computed. This leads to
consider a grid search method starting from 0D ∈ Z and passing from neighbor
to neighbor. The Breadth-First Search (BFS) algorithm is well suited for this
task. We add a graph structure G = (Z,E) (where E is the set of edges) on the
grid in order to apply this algorithm. Given this structure, the natural choice of
initial guess for the optimization at a non already-explored node is thus given by
the closest already computed neighbor. BFS method also makes it possible to
stop the search in the neighborhood of a vertex whenever one of the two criteria
defining (23) are violated.

Optimization algorithm Each step of Algorithm 1 requires solving the
optimization problem (Pz). Obtaining the following result is based on insert-
ing the linear constraint in the objective function. Its proof is provided in
Appendix A.3.1.

Proposition 12. Let Π⊥
def
= IdN − V ⋆

DV ⋆,T
D be the orthogonal projection on the

subspace (ImV ⋆
D)⊥ and consider the following optimization problem for z ∈ RD

η⊥(z)
def
= argmin

x∈RN

1

2
∥Φ(x⋆ + V ⋆

Dz +Π⊥x)− Φ(x⋆)∥22 . (P ′
z)

Then there exists a local neighbor U ⊆ RD of 0D such that the solution γ of
(Pz) verifies for z ∈ U ,

γ(z) = x⋆ + V ⋆
Dz +Π⊥η⊥(z). (25)

15



Algorithm 1 BFS parameterization ofMε
δ(Z)

Inputs of the model:
• Φ : RN → RM a C1 mapping.
• x⋆ ∈ RN an estimation of input parameter.
• 1 ≤ D < N the manifold dimension.
• V ⋆

D ∈ RN×D the D lowest right singular vectors of JΦ(x
⋆).

Inputs of the paramaterization:
• δ > 0 a radius around x⋆ (to deal with ∥x− x⋆∥2 ≤ δ).
• ε > 0 a discrepancy threshold (to deal with ∥Φ(x)− Φ(x⋆)∥2 ≤ ε).
• G = (Z,E) a connected graph with 0D ∈ Z ⊆ RD.

Initialization:
η⊥(0D)← 0N .
γ(0D)← x⋆.
repeat

(z, zprev)← the couple (non-evaluated, evaluated) neighboring vertices with
smallest distance.
η⊥(z)← solution of (P ′

z) initialized at η⊥(zprev) with an L-BFGS method.

γ(z)← x⋆ + V ⋆
Dz + (IdN − V ⋆

DV ⋆,T
D )η⊥(z).

if ∥Φ(γ(z))− Φ(x⋆)∥2>ε or ∥γ(z)− x⋆∥2>δ then
Remove vertex z from Z and all its edges from E.

end if
until No couple (z, zprev) exists
Return {γ(z)}z∈Z

Moreover, if Φ is of class C2, a gradient descent algorithm applied to (P ′
z)

converges linearly.

As before, the argmin notation refers to a local minimizer near 0N .
To further accelerate the computation of γ(z) we propose to use a quasi-

Newton method on (P ′
z). More specifically we suggest to use a L-BFGS method.

It accelerates the convergence by using a preconditionning based on an estimation
of the Hessian using the gradients at each step. We summarize the whole process
and give a pseudo-code in Algorithm 1.

Approximation result One can extend the approximation result of the
previous section to this discrete framework. The proof of the following corollary
is provided in Appendix A.3.2.

Corollary 13. Under the same assumptions as in Theorem 10, and using a
Cartesian grid Z = Zs defined in (24), the discretized manifold provides a good
approximation of the uncertainty region. Specifically, we have

dH(Mε
δ(Z),Sεδ ) ≤ η + L

√
D
s

2
, (26)
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where L > 0 is the Lipschitz constant of the local solution γ to (Pz), dH is the
Hausdorff distance as defined in Definition 2, and η > 0 is the threshold defined
in Theorem 10.

2.2.4 Discussion

Before turning to the numerical experiments, we describe the strengths and
weaknesses of the approach in order to highlight the problems for which it is
best suited.

Behavior on the toy examples To begin with, let us illustrate how the
algorithm behaves on the three introductory examples of Fig. 1. We see that the
algorithm outputs one dimensional sets (in blue), which correctly approximate
the uncertainty regions in all three cases. The method suffers neither from the
limitation of the choice of coordinates as were profile likelihood methods, nor
from the instability of Monte Carlo-based methods when the Jacobian of Φ is
degenerate.

(a) Φ = A
(b) Φ = UAUT

(c) Φ(x) = ∥x∥22

Figure 5: Illustration of the proposed Jackpot method with D = 1 on the same
examples as in Fig. 1. The low dimensional manifoldMε

δ is represented with
blue lines. In contrast to the profile likelihood method, the profile is computed
along the most suitable direction. In addition, the setMε

δ is the best possible
one-dimensional approximation of the 2 dimensional ellipses in (a) and (b). In
example (c), the approximating setMε

δ precisely coincides with the unit circle
(i.e., Sεδ ), except on the extremities.

Adapting to large dimensions Since the LOBPCG algorithm is matrix-free
and combined with an automatic differentiation algorithm, our algorithm is
scalable to large model (up to millions of parameters). The approximation being
of smallest dimension D, it can be represented quite easily at least for dimensions
D = 1, 2, 3. Depending on the geometry of the problem, our method gives a full
exploration of the uncertainty region or only a partial one as shown in Fig. 6.

When is it most useful? From our theoretical analysis in Section 2.2.2, one
can see that the low-dimensional manifoldMε

δ is a good approximation of Sεδ
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provided that D is sufficient large relatively to the number of “low” singular
values of JΦ(x

⋆). Yet, for large-scale problems, it is not possible to set D too
large due to computational limitations. This leads us to classify problems in
three categories depending on the Jacobian singular spectrum, as illustrated in
Fig. 6.

• When the Jacobian is well-conditioned (“flat” spectrum, Fig. 6.a), we have
practical local identifiability and the Jackpot method will detect it.

• When the Jacobian is badly-conditioned, we distinguish two cases.

– If the spectrum admits few low singular values with a sharp transition
(Fig. 6.b), Sεδ can be well approximated by a low-dimensional manifold
and the Jackpot method will compute it.

– Otherwise (e.g., Fig. 6.c), Sεδ cannot be well approximated by a low-
dimensional manifold. In this situation, the manifoldMε

δ computed
by Jackpot (with “small” D) will only partially represent Sεδ .

Notice that in the last case, we cannot expect to “sketch” the uncertainty set
efficiently due to its intrinsically high dimensional nature.

N(c)

n

σn

Sε

Mε

N(a)

n

σn

Sε

Mε

N(b)

n

σn

Sε

Mε

Figure 6: Relation between Jacobian singular spectrum and manifold approxi-
mation of the uncertainty region Sε. (a) No small singular values: the problem
is identifiable. (b) Small number of small singular values. (c) Large number of
small singular values. The set Sε can not be approximated by a low dimensional
manifold.

Adversarial versus natural perturbations Our goal in this paper is to
design a manifold that approximates Sε = Φ−1 (B (Φ(x⋆), ε)) in Hausdorff
distance. We call the resulting set an adversarial manifold. The directions
(v⋆N−D+1, . . . , v

⋆
N ) represent the perturbation directions that most significantly

affect the inverse map Φ−1. These directions also capture the local geometry of
Sε most effectively, as seen in Theorem 10.
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In contrast, Monte Carlo sampling methods serve a different purpose: they
simulate “natural” perturbations, which are typically observed in real-world
scenarios. Given a random vector Y = Φ(x)+B, where B follows some probability
distribution µ, they capture the pushforward distribution Φ−1

♯ (µ (· − Φ(x))).
Points derived from the Jackpot method, however, may possess very low likelihood
and would almost never appear through Monte Carlo sampling. This distinction
becomes clearer in our numerical experiments.

Adversarial and natural perturbations offer distinct advantages, depending on
the nature of uncertainty one aims to describe. Adversarial perturbations [2] are
critical in scenarios where incorrect decisions may lead to severe consequences, as
they identify the worst-case distortions. On the other hand, natural perturbations
provide an averaged view of uncertainty, reflecting more common or benign
variations.

The limitations of locality Our approximation and our analysis is only
local. For instance, in Fig. 3, only half of the circle can be parameterized by
our method. Hence the method should only be used locally. Solutions such as a
periodic reassessment of the tangent plane could be considered, but we did not
explore this rather computationally heavy approach in this paper.

3 Numerical experiments

In this section, we provide a few numerical examples on complex problems
and compare it with some alternatives in the main three cases of practical
identifiability described in Section 1.1.

3.1 Measuring masses in the Solar system

In this first example, we address the problem of identifying the masses of five
planets of the solar system (Jupiter, Saturn, Uranus, Neptun, and Pluto), from
their approximate positions at a few time points. We assume that the planets
are moving according to Newton’s law of gravitation. This corresponds to the
problem described in section 1.1.1.

Notation We sort the planets with respect to their distance to the Sun. We
let 1 ≤ n ≤ N denote the index of the n-th outer planet and associate the index
0 to the Sun. We let un(t) ∈ R3 denote the positions in AU of the n-th planet
at time t, in an heliocentric frame. Therefore u0(t) = 0 for all time. We let
wn denote the weight of the n-th planet in the solar mass unit, that is w0 = 1.
Moreover, we let u(t) = (u1(t), . . . , uN (t)) ∈ RN×3 denote the vector of positions
and w = (w1, . . . , wN ) denote the vector of masses. The time is expressed in
years. The time t = 0 corresponds to January 1, 2000. Initial positions and
speeds are taken from [29].
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(a) planet trajectories (250y), measurements (5y) (b) Jacobian singular values  

(c) Jacobian singular vectors  (d) Misfit evolution (e) Masses evolution  

Figure 7: Solar system experiment with Jackpot. After measuring the approxi-
mate planet’s positions for 5 years, we wish to recover their masses. The spectrum
of the Jacobian (b) indicates that a direction is particularly uncertain. Looking
at the Jacobian singular vectors (c), we see that it corresponds to Pluto’s mass.
In (d) and (e), we see the evolution of the misfit and of the masses along the 1D
setMε

δ, and observe that all masses are stable (relative to their mass), except
Pluto’s which can vary by 4 orders of magnitude.

Modeling The solar system can be modeled through the second order dynam-
ical system:

u0(t) = 0

ün(t)
def
= −

N∑
n′=0

Gwn′

∥un(t)− un′(t)∥32
(un(t)− un′(t)), 1 ≤ n ≤ N.

(27)

To discretize this system, we use a Runge-Kutta scheme of order 4 [10]. This
yields a forward mapping Φ of the form:

Φ : w 7→ (u(tk))0≤k≤K , (28)

where tk = k∆t denote uniformly spaced sampling points. The measurements
are taken on a period of 5 years within intervals of ∆t = 7 days, leading to
K = 260 positions for each planet. Notice that 5 Earth-years do not cover a
complete revolution for the outer planets. For instance, Pluto’s revolution lasts
about 250 years. This is illustrated on Fig. 7 (a), where the black lines illustrate
the measurements. We add white Gaussian noise to the measurements with a
standard deviation ε = 1000 km (≃ 7 · 10−6 AU, where AU is the Earth-Sun
distance). This yields a measurements vector y = Φ(w̄) + b, where w̄ denotes
the true planets’ weights and b is the random perturbation.
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Uncertainty with Jackpot To estimate the masses w, we first solve the
nonlinear problem

w⋆ = argmin
w∈RN

1

2
∥Φ(w)− y∥22 (29)

using a gradient descent to high accuracy. The gradient is evaluated through
automatic differentiation.

This gives a fairly good estimate of Pluto’s mass, overestimating the true
estimate by 4%. Then, we run algorithm 1. The singular values of the Jacobian
of Φ are displayed in Fig. 7 b). As can be seen, the last singular value is nearly
ten times smaller than the others. Taking a close look at the singular vectors in
Fig. 7 c), shows that the last singular vector is entirely concentrated on Pluto’s
mass, indicating that the estimation of this planet’s mass is dubious.

We then compute a D=1-dimensional manifold approximationMε
δ of the

uncertainty region with the Jackpot method. As can be seen in Fig. 7, we can
vary the range of Pluto’s mass within the range [10−10, 10−6], while staying
consistent with the data. In that range, the other planets masses nearly do not
change (at least relative to their weight). This illustrates a huge uncertainty on
the mass of Pluto when evaluating it with 5 years of planetary observations only.

Comparisons with other approaches In Fig. 8 we use profile likelihood
on this problem to estimate the uncertainty. This problem is particularly well
suited to this approach, since only Pluto’s mass is uncertain. In this case, we
see that all profiles are concentrated on the true planets mass, apart for Pluto.
There, the profile likelihood method recovers the same uncertainty interval as
the one provided by Jackpot. The only difference is that Jackpot was able to
automatically find this direction, without having to explore all of them. Also
notice that profile-likelihood methods would likely bring partial information
on the uncertainty if Pluto was discarded from the set. Indeed, the top-left
4x4 block in Fig. 7 c) indicates strong correlation effects between the different
weights.

We do not show the results of the Monte Carlo sampling method since it
fails for this example. Indeed, the sampling process only provides points that
are very close to x⋆, and the method fails to recover the uncertainty set. This
phenomenon is similar to the one observed in Fig. 2 (c): the regression problem
to recover the samples xi is very flat along the direction of Pluto’s mass.

3.2 Blind deblurring

In this section, we explore the problem described in section 1.1.2. Observing a
biological object with a microscope yields diffraction limited (i.e. blurry) images.
When the impulse response, or Point Spread Function (PSF) of the system is
unknown, improving the image sharpness requires solving a blind deblurring
problem. In this section, we showcase how Jackpot makes it possible to evaluate
uncertainty on the recovered blur kernels and images.
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Figure 8: Profile likelihood on the solar system problem. The blue stars represent
the true values of the parameters. Green segments represent confident interval.
Black dashed lines represent the error threshold ε. Profile likelihood detects the
Pluto’s mass non-identifiability.

Modeling We consider the classical image formation model

y = k(θ) ∗ x+ b, (30)

where x ∈ RM denotes the observed sample, ∗ denotes the convolution product,
b ∈ RM is a noise vector, and k : RN → RM represents the point spread function
(PSF) of the system. It depends on parameters θ ∈ RN . The scalar theory of
diffraction [19], informs us that the PSF k(θ) can be characterized by its pupil
function; a two-dimensional function supported on a disk whose radius depends
on the numerical aperture of the objective and the wavelength of the collected
light. A common practice is to expand this pupil function on a truncated Zernike
polynomial basis [19]. With this model, only a few Zernike polynomials are
sufficient to describe a rich class of realistic PSF that includes typical aberrations.
Hence, in our model (30), θ ∈ RN denotes the vector of Zernike coefficients.
We fix N = 8 in this work, corresponding to the following optical aberrations:
defocus, vertical and oblique astigmatism, trefoil and coma and primary spherical.
The blind inverse problem consists in estimating both θ and x from y.

To that end, we follow the approach proposed by [20]. We first train a
reconstruction mapping R(θ, y) which computes an estimate x̂(θ) such that the
pair (θ, x̂(θ)) is coherent with the data y. In this experiment, R is a deep plug-
and-play image restoration method (DPIR). It corresponds to a half-quadratic
splitting algorithm where the proximal step is replaced by a DRUNet denoiser
with pre-trained weights [60]. Equipped with this (non-blind) reconstruction
mapping R, we want to find the pair (θ, x̂(θ)) that best fits the data y. That
is, we want to minimize ∥k(θ) ∗R(θ, y)− y∥22. Using a Bayesian formalism, this

means that we are trying to find the maximum a posteriori pair (θ̂, x̂(θ̂)). This
blind deblurring problem can be cast in our framework by using the following
forward mapping

Φ : θ 7→ k(θ) ∗R(θ, y). (31)

In the first row of Fig. 9 we display the input image (a) as well as the noiseless
measurements (b) we generated for this experiment.
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Uncertainty with Jackpot Given y, we first estimate the parameters θ⋆ by
solving

θ⋆ = argmin
θ∈RN

1

2
∥Φ(θ)− y∥22 (32)

using a gradient descent with automatic differentiation. In Fig. 9 (c) and (d) we
show the associated PSF k(θ⋆) and deconvolved image x̂(θ⋆) = R(θ⋆, y). Note
that the image seems significantly better resolved than the observation, which
suggests that reconstruction mapping R is constructed carefully.

Then, we run Algorithm 1. The singular values of the Jacobian of Φ and
the two last singular vectors are displayed in Fig. 9 (e) and (f), respectively. As
opposed to the previous experiment, we see no clear gap in the amplitude of
the last singular values. The singular vectors are clearly mixing the different
Zernike coefficients, suggesting that the profile likelihood methods will struggle
indicating the main directions of uncertainty.

We then compute a D=2-dimensional manifold approximationMε
δ of the

uncertainty region with the Jackpot method. We obtain a parameterization of
the Zernike coefficients vector θ(z) for z ∈ R2 with θ(0) = θ⋆. In Fig. 9 (g), we
report the SNR between the outputs Φ(θ(z)) and Φ(θ⋆). The level line of 40dBs
is displayed in green.

In Fig. 11 we show how the profile likelihood behaves on this problem. The
confidence intervals obtained with the profile likelihood method are also displayed
as blue segments in Fig. 9 (g). They have been projected on the tangent plane
Tθ⋆ for comparison. As can be seen from this plot, the profile likelihood method
significantly underestimates the uncertainty domain, since the blue segments
tips are far from the level line boundaries.

In Fig. 10, we provide some zoomed regions of the deblurred images in (a)
and of the corresponding PSF in (b) for different parameters θ(z) ∈Mε

δ. The
corresponding parameters z are shown as red stars in Fig. 9 (g). We see that it
is possible to significantly deform the PSFs with a negligible modification of the
measurements. We can also observe on Fig.s 10 (a) and (b) that some structures
of the sample can be hallucinated without affecting the measurements too much.
Overall, this shows that the studied blind deblurring process is unstable, though
it produces sharp and nice looking images for all parameters.

Finally, let us mention that the Monte Carlo sampling method strongly
underestimates uncertainty regions as illustrated in Fig. 12. The reason is related
to the fact that we wish to recover a relatively low dimensional manifold (less
than 8), but add noise on a high dimensional space of color images (200×200×3).

3.3 Posterior exploration for an image deblurring problem

In contrast to the previous section, we tackle regular inverse problems where the
forward operator A is known perfectly.
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Figure 9: Blind delurring experiment. The reconstructed image x̂(θ⋆) = R(θ⋆, y)
in (d) seems significantly sharper than the observation y. There is no clear gap
for the lowest singular values in (e), suggesting that the uncertainty domain has
a rather large intrinsic dimension. In (f), the Zernike coefficients of the two last
singular vectors of J⋆ are mixed, meaning that the main uncertainty directions
are not aligned with pure optical abberations. In (g), we evaluated the function
SNR(Φ(θ),Φ(θ⋆)) for θ ∈Mε

δ. The level line of 40dB, corresponding to a high
fidelity is displayed as a green curve. We also projected the confidence intervals
obtained with the profile likelihood method as blue segments.

Formalism We explore the problem described in Section 1.1.3. Given y =
Ax+ b, with b ∼ N (0, σ2Id), we construct the MAP estimator

x̂MAP

def
= argmin

x∈RN

− log px|y(x|y)

= argmin
x∈RN

1

2σ2
∥Ax− y∥22 − log px(x).

By first order optimality conditions, x̂MAP satisfies

∇ log px|y (x̂MAP|y) =
1

σ2
AT (Ax̂MAP − y)−∇ log px(x̂MAP) = 0. (33)

The term ∇ log px(x̂MAP) can be estimated using a learned denoiser and Tweedie
formula [25]. In this paper, we use the denoiser proposed by [27], which enables
to compute both the log likelihood and its gradient.

Following Section 1.1.3, we set Φ = −∇ log px|y (·|y). The uncertainty region
Sεδ now can be interpreted as the set of images with smallest gradient amplitude.
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(a) Zoom on blue and green regions in Fig. 9 (a) (b) PSF k(θ(z))

Figure 10: Blind deblurring identifiability - Grid sampling of the 2-dimensional
manifoldMε

δ. (a-b) Grid sampling of image differences |x̂(θ(z))− x⋆|. (c) PSF
grid-sampling k(θ(z)).
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Figure 11: Profile likelihood on blind inverse problem. The blue stars represent
the true values of the parameters. The green segments represent confidence
intervals. The two first coefficients seem less identifiable than the other from
this analysis.

We compute x̂MAP using a gradient descent run for many iterations to reach a
near 0 gradient.

Jackpot results We treat the 200× 200 color image shown on Fig. 13d. The
forward operator A is defined as a convolution with the PSF shown on Fig. 13a.
Its discrete Fourier transform is shown on Fig. 13b. It possesses only two zeros
(green crosses). Considering the Fourier transform symmetries for real signals, it
means that the kernel is 2D for each color channel and therefore dim(ker(A)) = 6.
This deblurring problem can be considered as mildly ill-posed.

The resulting blurry image and recovered images are shown on Fig. 13e and
14a respectively. The five last singular values of the Jacobian matrix J⋆ are
displayed in Fig. 14d. Surprisingly, they all possess roughly the same amplitude.
We could expect that the only directions of uncertainty are unlocalized patterns
such as the one in Fig. 13c. Looking closer at the associated singular vectors in
Fig. 14e, we see that they all consist of localized and highly oscillatory patterns.
The reason why the uncertainty patterns can be localized is that we do not
constrain Ax = y, but just promote it through the data term 1

2σ2 ∥Ax − y∥22,
leaving space for more uncertainty.

In this examples, profile-likelihood methods are unusable due to the too large
number of parameters (3× 200× 200). We propose a comparison with Monte
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(a) Monte Carlo sampling (b) Jackpot

Figure 12: Violinplots of the Zernike coefficients obtained using a Monte Carlo
sampling with 1000 points (left) and the Jackpot algorithm (right) for the blind
deblurring experiment. Observe that the amplitudes obtained with Monte Carlo
sampling are about 103 times lower than those obtained with Jackpot, illustrating
the large discrepancy between natural and adversarial perturbations.

(a) PSF
(b) PSF spec-
trum

(c) Kernel ele-
ment (d) Reference

(e) Blurry image
y

Figure 13: The deblurring problem. To illustrate Jackpot, we designed a specific
PSF with a highly oscillatory 2D kernel (null-space). An element is shown in
(c).

Carlo sampling in Fig. 15. After drawing 1000 samples, we display maximal
pixel-wise distance to x⋆ both for the Monte Carlo and the Jackpot methods.
As can be seen, the Monte Carlo method significantly underestimates the size of
the uncertainty region. This again illustrates the difference between the effect of
natural (Monte Carlo) and adversarial (Jackpot) perturbations.

A Proofs

A.1 Linear Approximation

A.1.1 Proof of Proposition 4

Defining the ellipsoid E def
= {x ∈ RN ;

∥∥Σ⋆V ⋆,T (x− x⋆)
∥∥2
2
≤ ε2} we can refor-

mulate
S̃εδ = E ∩ B(x⋆, δ) and M̃ε

δ = E ∩ B(x⋆, δ) ∩ Tx⋆ . (34)
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(a) Recovered x⋆ (b) Jackpot v⋆N (c) Jackpot v⋆N−1
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n
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(d) Singular values

(e) The last 5 leftmost eigenvectors of J⋆ for the deblurring inverse
problem.

Figure 14: Recovered image x⋆, 2 images recovered by Jackpot, the singular
spectrum and 5 leftmost eigenpairs of J⋆.

(a) Monte Carlo sampling (b) Jackpot with D = 2 (c) Jackpot with D = 10

Figure 15: Comparison between Monte Carlo sampling and Jackpot for image
deblurring. The pixel-wise maximum distance with x⋆ is displayed for 1000
Monte Carlo points in (a) and for 20 Jackpot points and D = 2 in (b) and 100
Jackpot points and D = 10 in (c). Notice the different amplitude ranges.

As M̃ε
δ = S̃εδ ∩ Tx⋆ ⊆ S̃εδ , the Hausdorff distance is given by dH(M̃ε

δ, S̃εδ ) =

supx∈S̃ε
δ
d(x,M̃ε

δ). Without considering the constraint x ∈ B(x⋆, δ), we get the

same for E and E ∩ Tx⋆

dH(E ∩ Tx⋆ , E) = sup
x∈E

d(x, E ∩ Tx⋆). (35)

Now, we can consider the following equivalent optimization problem

sup
x∈E

1

2

∥∥(IdN −ΠV⋆
D
)(x− x⋆)

∥∥2
2
. (36)

as d(x, E ∩ Tx⋆)2 =
∥∥(IdN −ΠV⋆

D
)(x− x⋆)

∥∥2
2
where V⋆

D is defined in (13). The
associated Lagrangian is given by

L(λ, x) = 1

2

∥∥(IdN −ΠV⋆
D
)(x− x⋆)

∥∥2
2
− λ

2

(∥∥Σ⋆V ⋆,T (x− x⋆)
∥∥2
2
− ε2

)
. (37)

27



And its gradient is

∇L(λ, x) =

( ∑N
n=1 s

2
n(σ

⋆
n)

2 − ε2∑N−D
n=1 snv

⋆
n − λ

∑N
n=1(σ

⋆
n)

2snv
⋆
n

)
(38)

where we denote the coordinates x− x⋆ =
∑N

n=1 snv
⋆
n. The optimum is achieved

where the gradient vanishes, that is

N∑
n=1

s2n(σ
⋆
n)

2 = ε2 ;

{
sn = 0, ∀n ≥ N −D + 1

sn(1 + λσ⋆
n) = 0, ∀n ≤ N −D

.

From this, only one sn is non zero. Among the N −D local optima, only the
following is global as long as σ⋆

N−D < σ⋆
N−D−1 (otherwise, it is still a global

optimum but not unique)

sn = 0, ∀n ̸= N −D ; sN−D =
ε

σ⋆
N−D

and λ =
1

σ⋆
N−D

. (39)

Finally let’s add the constraint ∥x− x⋆∥2 ≤ δ. If δ > ε
σ⋆
N−D

, then the supremum

is achieved at x⋆+ ε
σ⋆
N
v⋆N−D. Otherwise, δ < ε

σ⋆
N−D

and the supremum is achieved

at x⋆ + δv⋆N−D. In both cases, the Hausdorff distance verifies (15).

A.2 Nonlinear Approximation

All proof are provided in a more general setting with the parametrization

γ(z)
def
= argmin

A(x−x⋆)=z

1

2
∥Φ(x)− Φ(x⋆)∥22 , (PA)

where A ∈ RD×N with 1 ≤ D ≤ N satisfies the following assumption.

Assumption 14. The matrix A verifies AAT = IdD and the matrix ΠimAT +
ΠkerA · JΦ(x⋆)TJΦ(x

⋆) is invertible. We denote the projections operators on the

image and kernel of A as ΠimAT
def
= ATA and ΠkerA

def
= IdN −ATA respectively.

The results provided in the main text are specific instances of the results
reported below with A = V ⋆,T

D for which Assumption 14 holds.

Lemma 15. Assumption 14 holds true for A = V ⋆,T
D .

Proof. With A = V ⋆,T
D , the matrix

ΠimAT +ΠkerA · JΦ(x⋆)TJΦ(x
⋆) = V ⋆

D Diag
(
σ2
1 , · · · , σ2

N−D, 1, · · · , 1
)
V ⋆,T
D

is invertible by construction of V ⋆,T
D .
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A.2.1 Proof of Theorem 6

Theorem 16. Let Φ : RN → RM be a C1 map, x⋆ ∈ RN , and A ∈ RD×N

satisfying Assumption 14. Then, there exists an open neighborhood U ⊆ RD such
that (PA) admits a unique solution γ : U → RN verifying γ(0D) = x⋆. Moreover,
it has the following properties

• If Φ is of class C2, then γ is of class C1. Moreover, its Jacobian is given by

Jγ(z) =
[
ΠimAT +ΠkerA · ∇2F (γ(z))

]−1
AT . (40)

• If Φ is of class C1 and JΦ is locally Lipschitz and definable, then γ is a
locally Lipschitz definable function. Moreover, we can express a conservative
Jacobian for γ as

J̃γ : z ⇒
{
[ΠimAT +ΠkerA ·B]

−1
AT ; B ∈ J̃∇F (γ(z))

}
. (41)

where F (x) = 1
2 ∥Φ(x)− Φ(x⋆)∥22 denotes the objective function of (PA).

Proof. Starting from the Karush-Kuhn-Tucker (KKT) conditions of Problem
(PA), the idea of the proof is to apply an implicit function theorem on the dual
formulation to get existence of solutions for both on primal and dual problems.
We moreover derive an explicit expression of the (conservative) Jacobian of γ.

From constraint optimization theory, the Lagrangian function associated to
(PA) reads

Lz(λ, x)
def
= F (x) + λT (A(x− x⋆)− z) .

where λ ∈ RD is the vector of Lagrange multipliers and F (x) = 1
2 ∥Φ(x)− Φ(x⋆)∥22

is the objective function. As Φ is of class C1, and given that the constraint is
linear, the KKT conditions reduce to

∇Lz
(λ, x) =

[
A(x− x⋆)− z
∇F (x) +ATλ

]
= 0D+N ,

for z ∈ RD. In particular, multiplying the second line of ∇Lz by A yields that
λ(z) = −A∇F (x) since AAT = IdD.

Hence, finding a solution (λ, x) of the KKT conditions of (PA) is equivalent
to solving the implicit system

G(z, x)
def
=

[
A(x− x⋆)− z

(IdN −ATA)∇F (x)

]
= 0D+N .

Let’s notice that G has values in RD+N but its image spans only the N dimen-
sional subspace RD ×KerA. Indeed, the matrix (IdN −ATA) is the projection
onto the subspace kerA = (imAT )⊥. Thus one can reduce the output dimension
of G to make it surjective while keeping the same zeros level sets. This is done
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by left multiplying with [AT , IdN ] which embeds the first term A(x− x⋆)− z of
G onto imAT while keeping the second term in (imAT )⊥. One obtains

H(z, x)
def
= AT (A(x− x⋆)− z) + (IdN −ATA)∇F (x).

Our problem is now equivalent to the following implicit equation

H(z, γ(z)) = 0N , (42)

for z ∈ RD and with H : RD × RN → RN defined before.
Given that a solution of (43) verifies the KKT conditions, it thus is also a

solution of the primal equation (PA). We now use two forms of implicit function
theorem to get existence of a solution of (43) and thus existence of a mapping γ
for (PA).

• C2 case: From implicit function theorem [37, Thm. 5.15], the only as-
sumption required is the invertibility condition on the second sub-matrix
D2H(0D, x⋆) of the differential DH = [D1H,D2H] of H at (0D, x⋆). With
some computations, one exactly recovers the second condition in Assump-
tion 14. Then as a consequence, the Jacobian of γ is given by

Jγ(z) = −D2H(z, γ(z))−1D1H(z, γ(z))

from which we recover the formula (41).

• C1 case: We use the Lipschitz definable version of implicit function theorem
from [8, Thm. 1]. As JΦ is locally Lipschitz and definable, so is F
and thus H. With γ(0D) = x⋆, one recovers H(0D, γ(0D)) = 0N . A
conservative Jacobian of H can be written as

J̃H : (z, x) ⇒
{[
−AT ,ΠimAT +ΠkerA ·B

]
; B ∈ J̃∇F (γ(z))

}
. (43)

Since ∇F (x) = JΦ(x)
T (Φ(x)− Φ(x⋆)), by path-differentiation rules, one

derives the formula

J̃∇F (x) =
{
B (Φ(x)− Φ(x⋆)) + JΦ(x)

TJΦ(x) ; B ∈ J̃JT
Φ
(x)
}

and evaluating in x = x⋆ provides, since the first term vanishes,

J̃∇F (x
⋆) =

{
JΦ(x

⋆)TJΦ(x
⋆)
}
. (44)

Finally inserting (45) in (44) allows us to express

J̃H(0D, x⋆) =
{[
−AT ,ΠimAT +ΠkerA · JΦ(x⋆)TJΦ(x

⋆)
]}

.

This last equation implies that the assumptions of [8, Thm. 1] are verified:
J̃H(0D, x⋆) is a singleton and thus convex and its second sub-matrix is
invertible from Assumption 14. This completes the proof.
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A.2.2 Proof of Proposition 9 and Theorem 10

Assumption 8, Proposition 9 and Theorem 10 are specific instances of Assumption
17, Proposition 18 and Theorem 19 below with A = V ⋆,T

D .

Assumption 17 (Controlled thickness). Let

Pz = {x ∈ Sεδ , A(x− x⋆) = z}

denote the slice of Sεδ which has coordinate z on Tx⋆ . We assume that

sup
z:∥γ(z)−x⋆∥2≤δ

diam(Pz) ≤ η. (45)

Proposition 18 (Uniformly bounded curvature). Let Φ be of class C2 and
assume that the Hessian tensor HΦ satisfies

∥HΦ∥2,δ
def
= sup

x,x′,x′′∈B(x⋆,δ)

∥HΦ(x)(x
′, x′′)∥2

∥x′∥2 ∥x′′∥2
<

σmin

δ

where σmin is the lowest singular value of the Jacobian JΦ(x
⋆) restricted to the

kernel of A. Then Assumption 17 is verified with

η =
2ε

σmin − δ∥HΦ∥2,δ
. (46)

Proof. Setting z ∈ B(0D, δ), let’s upper bound the diameter of the intersection
of Sεδ with the affine hyperplane A(· − x⋆) = z. When this slice is empty there is
nothing to do, and when it is not, it only remains to bound the norm ∥x1 − x2∥2
for any couple x1, x2 ∈ Sεδ verifying A(x1 − x⋆) = A(x2 − x⋆) = z.

To that end, one can remark that

∥Φ(x1)− Φ(x2)∥2 ≤ ∥Φ(x1)− Φ(x⋆)∥2 + ∥Φ(x
⋆)− Φ(x2)∥2 ≤ 2ε

as x1 and x2 belong to Sεδ . The remaining of the proof consists in lower bounding
the left-hand side by a term of the form µ ∥x1 − x2∥2 with some µ > 0.

Applying Taylor expansion formula on Φ and JΦ, one gets that there exists a
point c lying on the open segment between x1 and x2, (i.e., c = αx1 + (1− α)x2

for α ∈ (0, 1)), and a point c′ lying on the open segment between c and x⋆ (i.e.,
c′ = αc+ (1− α)x⋆ for α ∈ (0, 1)) such that

Φ(x1)− Φ(x2) = JΦ(c)(x1 − x2)

= JΦ(x
⋆)(x1 − x2) +HΦ(c

′)(c− x⋆)(x1 − x2).

Then, from the inverse triangular inequality, we get

∥Φ(x1)− Φ(x2)∥2 ≥ |∥JΦ(x
⋆)(x1 − x2)∥2 − ∥HΦ(c

′)(c− x⋆)(x1 − x2)∥2| . (47)

The first right term of (48) can be handled noticing that the difference x1 − x2

lies in the kernel of A since A(x1 − x2) = A(x1 − x⋆) +A(x⋆ − x2) = z − z = 0.
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Thus by definition of the minimal singular value of JΦ(x
⋆) restricted to the

kernel of A, denoted σmin, it follows that

∥JΦ(x⋆)(x1 − x2)∥2 ≥ σmin ∥x1 − x2∥2 .

Moreover, the second right term of (48) can be bounded using Hessian norm.
Indeed, since x⋆, x1 and x2 belong to the ball B(x⋆, δ), the points c and c′ are
also in B(x⋆, δ) by construction. It follows that

∥HΦ(c
′)(c− x⋆)(x1 − x2)∥2 ≤ ∥HΦ∥2,δ · δ · ∥x1 − x2∥2 .

And under the condition ∥HΦ∥2,δ · δ < σmin, equation (48) becomes

∥Φ(x1)− Φ(x2)∥2 ≥ (σmin − ∥HΦ∥2,δ · δ) ∥x1 − x2∥2
as intended.

Theorem 19. Let Φ : RN → RM be a function of class C2, x⋆ ∈ RN be a point,
A ∈ RD×N satisfying Assumption 14, and let ε > 0 be a threshold. Then Mε

δ

defines a manifold with parameterization γ in (PA) for sufficiently small δ > 0.
Moreover, under Assumption 17, the manifoldMε

δ is a good approximation of
Sεδ in the sense that:

dH(Mε
δ, Sεδ ) < η, (48)

where the Hausdorff distance dH is defined in (2). More precisely, we have the
following inclusions:

Mε
δ ⊆ Sεδ ⊆Mε

δ + B(0, η). (49)

Proof. First of all, from Theorem 16, the set Mε
δ is well defined for some

δ > 0 and by definition verifies the first inclusion Mε
δ ⊆ Sεδ . Furthermore,

using a standard result on smooth manifolds from [37], which is summarized
in Proposition 20 below, the image of γ locally defines an embedded manifold
since Jγ(0) is injective as the product of an invertible matrix with AT which is
injective by assumption.

To prove the second inclusion, given a point x̃ ∈ Sεδ , we need to find a point

x′ ∈ Mε
δ such that ∥x̃− x′∥2 ≤ η. A natural candidate is x′ def

= γ(z̃) with

z̃
def
= A(x̃− x⋆). Indeed, given that both x̃ and x′ are in Sεδ and (by definition)

verify A(x̃− x⋆) = A(x′ − x⋆) = z̃, Assumption 17 implies that ∥x̃− x′∥2 ≤ η.
Moreover, we have

∥Φ(γ(z̃))− Φ(x⋆)∥2 ≤ ∥Φ(x̃)− Φ(x⋆)∥2 ≤ ε, (50)

and thus x′ = γ(z̃) ∈Mε
δ. Note that the first inequality in (51) comes from the

fact that γ(z̃) solves (PA) while x̃ is an admissible point. The second one is due
to the fact that x̃ ∈ Sεδ . This completes the proof.

Proposition 20 (Injective Jacobian implies a local structure of manifold). Let
F : RN → RM be a function of class C1 and x⋆ ∈ RN . Assume that JF (x

⋆) is
injective. Then there exists a neighborhood U ⊂ RN of x⋆ such that F (U) is an
embedding submanifold of RN .
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Proof. First of all, JF is locally injective near x⋆ because of the lower semi-
continuity of the rank function. Indeed, the set of points on which JF is injective
can be reformulated as the inverse image of the open set R∗ under the continuous
map det(JT

F JF ) and thus is open.
From rank theorem [37, Thm. 5.13], up to diffeomorphisms, F is locally

equal to its Jacobian which is locally injective, so is F . We actually get that F
is locally an immersion.

From [37, Lem. 5.34], since F is locally an immersion, F is also locally an
embedding on a neighborhood U .

Finally from [37, Thm. 5.31], F (U) is an embedded submanifold as the image
of a smooth embedding, which concludes the proof.

A.3 Numerical computation

A.3.1 Proof of Proposition 12

Proof. Proof of Proposition 12. In (Pz), splitting the vector x− x⋆ ∈ RN within
the space decomposition RN = ImV ⋆

D ⊕ (ImV ⋆
D)⊥ yields the reformulation (P ′

z).

Here the constraint V ⋆,T
D (x− x⋆) = z is included in the objective function that

we denote

Fz : x 7→ 1

2
∥Φ(r(z, x))− Φ(x⋆)∥22 (51)

where r(z, x)
def
= x⋆ + V ⋆

Dz +Π⊥x.
The main strategy to locally prove the linear convergence of gradient descent

is to show a geometrical property on Fz. Since it is not locally strongly convex
we use some Polyak-Lojasiewicz (PL) condition:

Definition 21. For a real number µ > 0, a function f is said to verify the
µ-Lojasiewicz inequality if for all x,

1

2
∥∇f(x)∥22 ≥ µ(f(x)− f(x⋆)). (52)

The argumentation will proceed according to the following four steps, where
the results are verified locally around (z, x) = (0D, 0N ):

1. The restricted map F̃z
def
= Fz|(ImV ⋆

D)⊥ on (ImV ⋆
D)⊥ is strongly convex.

2. The map F̃z satisfies a PL inequality since any strongly convex map also
satisfies a PL inequality [48, lemma].

3. Since Fz only depends on the orthogonal part (ImV ⋆
D)⊥, i.e. Fz(x) = Fz(x

′)
whenever Π⊥x = Π⊥x

′, the objective function Fz also verifies the same PL
inequality.

4. Since Fz verifies a PL inequality and is also L-smooth for some L > 0
(since of class C1 on a neighbor set), this assures the linear convergence of
the gradient descent [48, thm. 4].
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The only remaining argument is to prove the first point : the local strong
convexity of the objective function. The Hessian of Fz at x is

∇2Fz(x) =Π⊥J
T
Φ (r(z, x))JΦ(r(z, x))Π⊥

+Π⊥H
T
Φ (r(z, x))(Φ(r(z, x))− Φ(x⋆)) ∈ RN×N .

Evaluating at (z, x) = (0D, 0N ) gives

H⋆ def
= Π⊥J

⋆,TJ⋆Π⊥ ∈ RN×N .

Restricted to the subspace (ImV ⋆
D)⊥, this matrix is a positive-definite matrix

with eigenvalues equal to σ2
1 ≥ · · · ≥ σ2

N−D > 0 since D > R⋆. Moreover, this

submatrix corresponds to the Hessian of the map F̃0 at x = 0N . By smoothness
of Φ, the map (z, x) 7→ ∇2F̃z(x) is continuous and thus the matrices ∇2F̃z(x)
remain locally positive-definite matrix for (z, x) on a neigborhood U × V of
(0D, 0N ). This property is a characterization of the strong convexity of the maps
F̃z retricted to V for all z ∈ U .

A.3.2 Proof of Corollary 13

From Theorem 6, one knows that the parameterization function γ is locally
Lipschitz. The key remaining argument is that any point z of the ball BD(0, δ)
is at most at a distance of

√
Ds/2 from a point z′ of the grid Zs. From Lipschitz

consideration, ∥γ(z)− γ(z′)∥2 ≤ L
√
Ds/2. This leads, using Theorem 19, the

following inequalities

dH(Sεδ , Mε
δ(Z)) ≤ dH(Sεδ , Mε

δ) + dH(Mε
δ, Mε

δ(Z))

≤ η + L
√
Ds/2,

which completes the proof.
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