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Executive Summary

This chapter assesses the present state of knowledge of Earth’s energy 
budget: that is, the main flows of energy into and out of the Earth 
system, and how these energy flows govern the climate response to 
a  radiative forcing. Changes in atmospheric composition and land 
use, like those caused by anthropogenic greenhouse gas emissions 
and emissions of aerosols and their precursors, affect climate 
through perturbations to Earth’s top-of-atmosphere energy budget. 
The effective radiative forcings (ERFs) quantify these perturbations, 
including any consequent adjustment to the climate system 
(but  excluding surface temperature response). How  the climate 
system responds to a given forcing is determined by climate feedbacks 
associated with physical, biogeophysical and biogeochemical 
processes. These feedback processes are assessed, as are useful 
measures of global climate response, namely equilibrium climate 
sensitivity (ECS) and the transient climate response (TCR). This chapter 
also assesses emissions metrics, which are used to quantify how the 
climate response to the emissions of different greenhouse gases 
compares to the response to the emissions of carbon dioxide (CO2). 
This chapter builds on the assessment of carbon cycle and aerosol 
processes from Chapters 5 and 6, respectively, to quantify non-CO2 
biogeochemical feedbacks and the ERF for aerosols. Other chapters in 
this Report use this chapter’s assessment of ERF, ECS and TCR to help 
understand historical and future temperature changes (Chapters  3 
and 4, respectively), the response to cumulative emissions and the 
remaining carbon budget (Chapter  5), emissions-based radiative 
forcing (Chapter 6) and sea level rise (Chapter 9). This chapter builds 
on findings from the IPCC Fifth Assessment Report (AR5), the Special 
Report on Global Warming of 1.5°C (SR1.5), the Special Report on 
the Ocean and Cryosphere in a Changing Climate (SROCC) and the 
Special Report on climate change, desertification, land degradation, 
sustainable land management, food security, and greenhouse 
gas luxes in terrestrial ecosystems (SRCCL). Very likely ranges are 
presented unless otherwise indicated.

Earth’s Energy Budget

Since AR5, the accumulation of energy in the Earth system, 
quantified by changes in the global energy inventory for all 
components of the climate system, has become established 
as a robust measure of the rate of global climate change on 
interannual-to-decadal time scales. Compared to changes in 
global surface air temperature (GSAT), the global energy inventory 
exhibits less variability, which can mask underlying climate trends. 
Compared to AR5, there is increased confidence in the quantification 
of changes in the global energy inventory due to improved 
observational records and closure of the sea level budget. Energy 
will continue to accumulate in the Earth system until at least the 
end of the 21st  century, even under strong mitigation scenarios, 
and will primarily be observed through ocean warming and 
associated with continued sea level rise through thermal expansion 
(high confidence). {7.2.2, Box 7.2, Table 7.1, Cross-Chapter Box 9.1, 
Table 9.5, 9.2.2, 9.6.3}

The global energy inventory increased by 282 [177 to 
387] Zettajoules (ZJ; 1021 Joules) for the period 1971–2006 and 
152 [100 to 205] ZJ for the period 2006–2018. This corresponds 
to an Earth energy imbalance of 0.50 [0.32 to 0.69] W m–2 for the 
period  1971–2006, increasing to 0.79 [0.52 to 1.06] W m–2 for 
the  period 2006–2018, expressed per unit area of Earth’s surface. 
Ocean heat uptake is by far the largest contribution and accounts for 
91% of the total energy change. Compared to AR5, the contribution 
from land heating has been revised upwards from about 3% to 
about 5%. Melting of ice and warming of the atmosphere account 
for about 3% and 1% of the total change respectively. More 
comprehensive analysis of inventory components and cross-validation 
of global heating rates from satellite and in situ observations lead 
to a  strengthened assessment relative to AR5 (high confidence). 
{Box 7.2, 7.2.2, Table 7.1, 7.5.2.3}

Improved quantification of effective radiative forcing, the climate 
system radiative response, and the observed energy increase in 
the Earth system for the period 1971–2018 demonstrate improved 
closure of the global energy budget compared to AR5. Combining 
the likely range of ERF with the central estimate of radiative response 
gives an expected energy gain of 340 [47 to 662] ZJ. Combining the 
likely range of climate response with the central estimate of ERF gives 
an expected energy gain of 340 [147 to 527] ZJ. Both estimates are 
consistent with an independent observation-based assessment of 
the global energy increase of 284 [96 to 471] ZJ, (very  likely range) 
expressed relative to the estimated 1850–1900 Earth energy imbalance 
(high confidence). {7.2.2, Box 7.2, 7.3.5, 7.5.2}

Since AR5, additional evidence for a  widespread decline 
(or dimming) in solar radiation reaching the surface is found 
in the observational records between the 1950s and 1980s, 
with a  partial recovery (brightening) at many observational 
sites thereafter (high confidence). These trends are neither 
a local phenomenon nor a measurement artefact (high confidence). 
Multi-decadal variation in anthropogenic aerosol emissions are 
thought to be a  major contributor (medium confidence), but 
multi-decadal variability in cloudiness may also have played a role. 
The downward and upward thermal radiation at the surface has 
increased in recent decades, in line with increased greenhouse 
gas concentrations and associated surface and atmospheric warming 
and moistening (medium confidence). {7.2.2}

Effective Radiative Forcing

For carbon dioxide, methane, nitrous oxide and 
chlorofluorocarbons, there is now evidence to quantify the 
effect on ERF of tropospheric adjustments (e.g., from changes 
in atmospheric temperatures, clouds and water vapour). 
The assessed ERF for a doubling of carbon dioxide compared 
to 1750 levels (3.93 ± 0.47 W m–2) is larger than in AR5. Effective 
radiative forcings (ERF), introduced in AR5, have been estimated for 
a larger number of agents and shown to be more closely related to the 
temperature response than the stratospheric-temperature adjusted 
radiative forcing. For carbon dioxide, the adjustments include the 
physiological effects on vegetation (high confidence). {7.3.2}
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The total anthropogenic ERF over the industrial era 
(1750–2019) was 2.72 [1.96 to 3.48] W m–2. This estimate 
has increased by 0.43 W m–2 compared to AR5 estimates for 
1750–2011. This increase includes +0.34  W m–2 from increases 
in atmospheric concentrations of well-mixed greenhouse gases 
(including halogenated species) since 2011, +0.15 W m–2 from 
upwards revisions of their radiative efficiencies and +0.10 W m–2 
from re-evaluation of the ozone and stratospheric water vapour ERF. 
The 0.59 W m–2 increase in ERF from greenhouse gases is partly offset 
by a better-constrained assessment of total aerosol ERF that is more 
strongly negative than in AR5, based on multiple lines of evidence 
(high confidence). Changes in  surface reflectance from land-use 
change, deposition of light-absorbing particles on ice and snow, and 
contrails and aviation-induced cirrus have also contributed to the 
total anthropogenic ERF over the industrial era, with –0.20 [–0.30 to 
–0.10] W m–2 (medium confidence), +0.08  [0  to 0.18] W  m–2 (low 
confidence) and +0.06 [0.02  to 0.10]  W  m–2 (low  confidence), 
respectively. {7.3.2, 7.3.4, 7.3.5}

Anthropogenic emissions of greenhouse gases and their 
precursors contribute an ERF of 3.84 [3.46 to 4.22] W m–2 
over the  industrial era (1750–2019). Most of this total 
ERF, 3.32  [3.03  to 3.61] W m–2, comes from the well-mixed 
greenhouse gases, with changes in ozone and stratospheric 
water vapour (from methane oxidation) contributing 
the remainder. The ERF of greenhouse gases is composed of 
2.16  [1.90  to  2.41] W  m–2 from carbon dioxide, 0.54 [0.43  to 
0.65] W m–2 from methane, 0.41 [0.33 to 0.49] W m–2 from halogenated 
species, and 0.21 [0.18 to 0.24] W m–2 from nitrous oxide. The ERF for 
ozone is 0.47 [0.24 to 0.71] W m–2. The estimate of ERF for ozone 
has increased since AR5 due to revised estimates  of precursor 
emissions and better accounting for effects of tropospheric ozone 
precursors in the stratosphere. The estimated ERF for methane has 
slightly increased due to a combination of increases from improved 
spectroscopic treatments being somewhat offset by accounting for 
adjustments (high confidence). {7.3.2, 7.3.5}

Aerosols contribute an ERF of –1.3 [–2.0 to –0.6] W m–2 over 
the industrial era (1750–2014) (medium confidence). The ERF 
due to aerosol–cloud interactions (ERFaci) contributes most 
to the magnitude of the total aerosol ERF (high confidence) 
and is assessed to be –1.0 [–1.7 to –0.3] W m–2 (medium 
confidence), with the remainder due to aerosol–radiation 
interactions (ERFari), assessed to be –0.3 [–0.6 to 0.0] W m–2 

(medium confidence). There has been an increase in the estimated 
magnitude but a  reduction in the uncertainty of the total aerosol 
ERF relative to AR5, supported by a  combination of increased 
process-understanding and progress in modelling and observational 
analyses. ERF estimates from these separate lines of evidence are 
now consistent with each other, in contrast to AR5, and support the 
assessment that it is virtually certain that the total aerosol ERF is 
negative. Compared to AR5, the assessed magnitude of ERFaci has 
increased, while the magnitude of ERFari has decreased. The total 
aerosol ERF over the period 1750–2019 is less certain than the 
headline statement assessment. It is also assessed to be smaller 
in magnitude at –1.1 [–1.7 to –0.4] W m–2, primarily due to recent 
emissions changes (medium confidence). {7.3.3, 7.3.5, 2.2.6}

Climate Feedbacks and Sensitivity

The net effect of changes in clouds in response to global 
warming is to amplify human-induced warming, that is, the 
net cloud feedback is positive (high confidence). Compared to 
AR5, major advances in the understanding of cloud processes 
have increased the level of confidence and decreased the 
uncertainty range in the cloud feedback by about 50%. 
An assessment of the low-altitude cloud feedback over the subtropical 
oceans, which was previously the major source of uncertainty in the 
net cloud feedback, is improved owing to a combined use of climate 
model simulations, satellite observations, and explicit simulations 
of clouds, altogether leading to strong evidence that this type of 
cloud amplifies global warming. The net cloud feedback, obtained 
by summing the cloud feedbacks assessed for individual regimes, 
is 0.42 [–0.10 to +0.94] W m–2 °C–1. A net negative cloud feedback is 
very unlikely (high confidence). {7.4.2, Figure 7.10, Table 7.10}

The combined effect of all known radiative feedbacks (physical, 
biogeophysical, and non-CO2 biogeochemical) is to amplify the 
base climate response, also known as the Planck temperature 
response (virtually certain). Combining these feedbacks with the 
base climate response, the net feedback parameter based on process 
understanding is assessed to be –1.16 [–1.81 to –0.51] W m–2 °C–1, 
which is slightly less negative than that inferred from the overall ECS 
assessment. The combined water-vapour and lapse-rate feedback 
makes the largest single contribution to global warming, whereas 
the cloud feedback remains the largest contribution to overall 
uncertainty. Due to the state-dependence of feedbacks, as evidenced 
from paleoclimate observations and from models, the net feedback 
parameter will increase (become less negative) as global temperature 
increases. Furthermore, on long time scales the ice-sheet feedback 
parameter is very likely positive, promoting additional warming on 
millennial time scales as ice sheets come into equilibrium with the 
forcing (high confidence). {7.4.2, 7.4.3, 7.5.7}

Radiative feedbacks, particularly from clouds, are expected 
to become less negative (more amplifying) on multi-decadal 
time scales as the spatial pattern of surface warming 
evolves, leading to an ECS that is higher than was inferred 
in AR5 based on warming over the instrumental record. 
This new understanding, along with updated estimates 
of historical temperature change, ERF, and Earth’s energy 
imbalance, reconciles previously disparate ECS estimates 
(high confidence). However, there is currently insufficient evidence 
to quantify a  likely range of the magnitude of future changes to 
current climate feedbacks. Warming over the instrumental record 
provides robust constraints on the lower end of the ECS range 
(high  confidence), but owing to the possibility of future feedback 
changes it does not, on its own, constrain the upper end of the range, 
in contrast to what was reported in AR5. {7.4.4, 7.5.2, 7.5.3}

Based on multiple lines of evidence the best estimate of ECS is 
3°C, the likely range is 2.5°C to 4°C, and the very likely range 
is 2°C to 5°C. It is virtually certain that ECS is larger than 1.5°C. 
Substantial advances since AR5 have been made in quantifying ECS 
based on feedback process understanding, the instrumental record, 
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paleoclimates and emergent constraints. There is a  high level of 
agreement among the different lines of evidence. All lines of evidence 
help rule out ECS values below 1.5°C, but currently it is not possible 
to rule out ECS values above 5°C. Therefore, the 5°C upper end of 
the very likely range is assessed to have medium confidence and the 
other bounds have high confidence. {7.5.5}

Based on process understanding, warming over the instrumental 
record, and emergent constraints, the best estimate of TCR is 
1.8°C, the likely range is 1.4°C to 2.2°C and the very likely 
range is 1.2°C to 2.4°C (high confidence). {7.5.5}

On average, Coupled Model Intercomparison Project Phase 6 
(CMIP6) models have higher mean ECS and TCR values than 
the Phase 5 (CMIP5) generation of models. They also have 
higher mean values and wider spreads than the assessed best 
estimates and very likely ranges within this Report. These higher 
ECS and TCR values can, in some models, be traced to changes in 
extra-tropical cloud feedbacks that have emerged from efforts to 
reduce biases in these clouds compared to satellite observations 
(medium confidence). The broader ECS and TCR ranges from CMIP6 
also lead the models to project a range of future warming that is wider 
than the assessed warming range, which is based on multiple lines of 
evidence. However, some of the high-sensitivity CMIP6 models are less 
consistent with observed recent changes in global warming and with 
paleoclimate proxy data than models with ECS within the very likely 
range. Similarly, some of the low-sensitivity models are less consistent 
with the paleoclimate data. The CMIP models with the highest ECS 
and TCR values provide insights into low-likelihood, high-impact 
outcomes, which cannot be excluded based on currently available 
evidence (high confidence). {4.3.1, 4.3.4, 7.4.2, 7.5.6}

Climate Response

The total human-forced GSAT change from 1750 to 2019 
is calculated to be 1.29 [0.99 to 1.65] °C. This calculation 
is  an emulator-based estimate, constrained by the historic 
GSAT and ocean heat content changes from Chapter  2 and 
the ERF, ECS and TCR from this chapter. The calculated GSAT 
change is composed of a  well-mixed greenhouse gas warming of 
1.58 [1.17  to 2.17] °C (high confidence), a  warming from ozone 
changes of 0.23  [0.11 to 0.39] °C (high confidence), a  cooling of 
–0.50 [–0.22 to –0.96] °C from aerosol effects (medium confidence), 
and a –0.06 [–0.15 to +0.01] °C contribution from surface reflectance 
changes from land-use change and light-absorbing particles on 
ice and snow (medium confidence). Changes in solar and volcanic 
activity are assessed to have together contributed a small change of 
–0.02 [–0.06 to +0.02] °C since 1750 (medium confidence). {7.3.5}

Uncertainties regarding the true value of ECS and TCR are 
the dominant source of uncertainty in global temperature 
projections over the 21st  century under moderate to high 
greenhouse gas emissions scenarios. For scenarios that reach 
net zero carbon dioxide emissions, the uncertainty in the 
ERF values of aerosol and other short-lived climate forcers 
contribute substantial uncertainty in projected temperature. 

Global ocean heat uptake is a  smaller source of uncertainty in 
centennial-time scale surface warming (high confidence). {7.5.7}

The assessed historical and future ranges of GSAT change in this 
Report are shown to be internally consistent with the Report’s 
assessment of key physical-climate indicators: greenhouse gas 
ERFs, ECS and TCR. When calibrated to match the assessed ranges 
within the assessment, physically based emulators can reproduce 
the best estimate of GSAT change over 1850–1900 to 1995–2014 to 
within 5% and the very likely range of this GSAT change to within 
10%. Two physically based emulators match at least two-thirds of the 
Chapter  4-assessed projected GSAT changes to within these levels 
of precision. When used for multi-scenario experiments, calibrated 
physically based emulators can adequately reflect assessments 
regarding future GSAT from Earth system models and/or other lines of 
evidence (high confidence). {Cross-Chapter Box 7.1}

It is now well understood that the Arctic warms more quickly 
than the Antarctic due to differences in radiative feedbacks 
and ocean heat uptake between the poles, but that surface 
warming will eventually be amplified in both the Arctic and 
Antarctic (high confidence). The causes of this polar amplification 
are well understood, and the evidence is stronger than at the 
time of AR5, supported by better agreement between modelled 
and observed polar amplification during warm paleo time periods 
(high confidence). The Antarctic warms more slowly than the Arctic 
owing primarily to upwelling in the Southern Ocean, and even at 
equilibrium is expected to warm less than the Arctic. The rate of Arctic 
surface warming will continue to exceed the global average over this 
century (high confidence). There is also high confidence that Antarctic 
amplification will emerge as the Southern Ocean surface warms on 
centennial time scales, although only low confidence regarding 
whether this feature will emerge during the 21st century. {7.4.4}

The assessed global warming potentials (GWP) and global 
temperature-change potentials (GTP) for methane and nitrous 
oxide are slightly lower than in AR5 due to revised estimates 
of their lifetimes and updated estimates of their indirect 
chemical effects (medium confidence). The assessed metrics now 
also include the carbon cycle response for non-CO2 gases. The carbon 
cycle estimate is lower than in AR5, but there is high confidence in 
the need for its inclusion and in the quantification methodology. 
Metrics for methane from fossil fuel sources account for the extra 
fossil CO2 that these emissions contribute to the atmosphere and so 
have slightly higher emissions metric values than those from biogenic 
sources (high confidence). {7.6.1}

New emissions metric approaches such as GWP* and the 
combined-GTP (CGTP) are designed to relate emissions rates 
of short-lived gases to cumulative emissions of CO2. These 
metric approaches are well suited to estimate the GSAT 
response from aggregated emissions of a  range of gases 
over time, which can be done by scaling the cumulative CO2 

equivalent emissions calculated with these metrics by the 
transient climate response to cumulative emissions of CO2. 
For a given multi-gas emissions pathway, the estimated contribution 
of emissions to surface warming is improved by using either these 
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new metric approaches or by treating short- and long-lived GHG 
emissions pathways separately, as compared to approaches that 
aggregate emissions of GHGs using standard GWP or GTP emissions 
metrics. By contrast, if emissions are weighted by their 100-year 
GWP or GTP values, different multi-gas emissions pathways with the 
same aggregated CO2 equivalent emissions rarely lead to the same 
estimated temperature outcome (high confidence). {7.6.1, Box 7.3}

The choice of emissions metric affects the quantification of net 
zero GHG emissions and therefore the resulting temperature 
outcome after net zero emissions are achieved. In general, 
achieving net zero CO2 emissions and declining non-CO2 radiative 
forcing would be sufficient to prevent additional human-caused 
warming. Reaching net zero GHG emissions as quantified by 
GWP-100 typically results in global temperatures that peak and 
then decline after net zero GHGs emissions are achieved, though 
this outcome depends on the relative sequencing of mitigation of 
short-lived and long-lived species. In contrast, reaching net zero GHG 
emissions when quantified using new emissions metrics such as 
CGTP or GWP* would lead to approximate temperature stabilization 
(high confidence). {7.6.2}
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7.1 Introduction, Conceptual Framework, 
and Advances Since the Fifth 
Assessment Report

This chapter assesses the major physical processes that affect the 
evolution of Earth’s energy budget and the associated changes in 
surface temperature and the broader climate system, integrating 
elements that were dealt with separately in previous reports.

The top-of-atmosphere (TOA) energy budget determines the net amount 
of energy entering or leaving the climate system. Its  time variations 
can be monitored in three ways, using: (i) satellite observations of the 
radiative fluxes at the TOA; (ii) observations of the accumulation of 
energy in the climate system; and (iii) observations of surface energy 
fluxes. When the TOA energy budget is changed by a human or natural 
cause (a ‘radiative forcing’), the climate system responds by warming 
or cooling (i.e., the system gains or loses energy). Understanding 
of changes in the Earth’s energy flows helps understanding of the 
main physical processes driving climate change. It also provides 
a fundamental test of climate models and their projections.

This chapter principally builds on the IPCC Fifth Assessment Report 
(AR5; Boucher, 2012; Church et al., 2013; M. Collins et al., 2013; Flato 
et al., 2013; Hartmann et al., 2013; Myhre et al., 2013b; Rhein et al., 
2013). It also builds on the subsequent IPCC Special Report on Global 
Warming of 1.5°C (SR1.5; IPCC, 2018), the Special Report  on 
the Ocean and Cryosphere in a  Changing Climate (SROCC; IPCC, 
2019a) and the Special Report on climate change, desertification, 
land degradation, sustainable land management, food security, 

and greenhouse gas fluxes in terrestrial ecosystems (SRCCL; IPCC, 
2019b), as well as community-led assessments (e.g., Bellouin et al. 
(2020) covering aerosol radiative forcing and Sherwood et al. (2020) 
covering equilibrium climate sensitivity).

Throughout this chapter, global surface air temperature (GSAT) 
is used to quantify surface temperature change (Cross-Chapter 
Box  2.3 and Section  4.3.4). The total energy accumulation in 
the Earth system represents a  metric of global change that is 
complementary to GSAT but shows considerably less variability on 
interannual-to-decadal time scales (Section  7.2.2). Research and 
new observations since AR5 have improved scientific confidence in 
the quantification of changes in the global energy inventory and 
corresponding estimates of Earth’s energy imbalance (Section 7.2). 
Improved understanding of adjustments to radiative forcing and of 
aerosol–cloud interactions have led to revisions of forcing estimates 
(Section 7.3). New approaches to the quantification and treatment 
of feedbacks (Section 7.4) have improved the understanding of their 
nature and time-evolution, leading to a better understanding of how 
these feedbacks relate to equilibrium climate sensitivity (ECS). This 
has helped to reconcile disparate estimates of ECS from different 
lines of evidence (Section 7.5). Innovations in the use of emissions 
metrics have clarified the relationships between metric choice 
and temperature policy goals (Section  7.6), linking this chapter to 
WGIII which provides further information on metrics, their use, and 
policy goals beyond temperature. Very likely (5–95%) ranges are 
presented unless otherwise indicated. In particular, the addition of 
‘(one standard deviation)’ indicates that the range represents one 
standard deviation.

Chapter 7: The Earth’s energy budget Chapter 7: Quick guide

Cross-chapter boxes

Section 7.1
Introduction and advances

Observations of Earth‘s energy budget
7.2 | FAQ 7.1

Polar amplification
7.4.4.1

Aerosols
7.3.3 | 7.3.5 | FAQ 7.2

Clouds
7.3.3.2 | 7.4.2.4 | FAQ 7.2

Paleoclimate data
7.4.3.2 | 7.5.3

Synthesis of forcing, feedbacks and climate sensitivity
7.3.5 | 7.4.2.7 | 7.5.5 | FAQ 7.3

Emissions metrics and climate policy
7.6.2

Box 7.1
Energy budget framework

Box 7.2
Global energy budget

Box 7.2
Physical considerations in 
emissions-metric choice

CC Box 7.1
Physical emulation of Earth system models

Chapter 7 assesses the major physical processes affecting the evolution of Earth’s 
energy budget and the associated changes in temperature and the climate system.

Key topics and corresponding sub-sections

Boxes

Section 7.2
Energy budget

Section 7.3
Radiative forcing

Section 7.4
Climate feedbacks

Section 7.6
Metrics

Section 7.5
Climate sensitivity

FAQs

(a)

Figure 7.1 | Visual guide to Chapter 7. Panel (a) Overview of the chapter. 
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Figure 7.1 (continued): Panel (b) Visual abstract of the chapter, illustrating why the Earth’s energy budget matters and how it relates to the underlying chapter assessment. 
The methods used to assess processes and key new fi ndings relative to AR5 are highlighted. Upper schematic adapted from Von Schuckmann et al. (2020).
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In Box  7.1 an energy budget framework is introduced, which 
forms the basis for the discussions and scientific assessment in the 
remainder of this chapter and across the Report. The framework 
reflects advances in the understanding of the Earth system response 
to climate forcing since the publication of AR5. A schematic of this 
framework and the key changes relative to the science reported in 
AR5 are provided in Figure 7.1.

A simple way to characterize the behaviour of multiple aspects of 
the climate system at once is to summarize them using global-scale 
metrics. This Report distinguishes between ‘climate metrics’ (e.g., ECS, 
TCR) and ‘emissions metrics’ (e.g., global warming potential, GWP, or 
global temperature-change potential, GTP), but this distinction is not 
definitive. Climate metrics are generally used to summarize aspects 
of the surface temperature response (Box  7.1). Emissions metrics 
are generally used to summarize the relative effects of emissions of 
different forcing agents, usually greenhouse gases (GHGs; Section 7.6). 
The climate metrics used in this report typically evaluate how the 
Earth system response varies with atmospheric gas concentration or 
change in radiative forcing. Emissions metrics evaluate how radiative 
forcing or a key climate variable (such as GSAT) is affected by the 
emissions of a certain amount of gas. Emissions-related metrics are 
sometimes used in mitigation policy decisions such as trading GHG 
reduction measures and life cycle analysis. Climate metrics are useful 
to gauge the range of future climate impacts for adaptation decisions 
under a  given emissions pathway. Metrics such as the transient 
climate response to cumulative emissions of carbon dioxide (TCRE) 
are used in both adaptation and mitigation contexts: for gauging 
future global surface temperature change under specific emissions 
scenarios, and to estimate remaining carbon budgets that are used 
to inform mitigation policies (Section 5.5).

Given that TCR and ECS are metrics of GSAT response to 
a  theoretical doubling of atmospheric CO2 (Box  7.1), they do not 
directly correspond to the warming that would occur under realistic 
forcing scenarios that include time-varying CO2 concentrations and 
non-CO2 forcing agents (such as aerosols and land-use changes). 
It has been argued that TCR, as a metric of transient warming, is 
more policy-relevant than ECS (Frame et al., 2006; Schwartz, 2018). 
However, as detailed in Chapter  4, both established and recent 
results (Forster et  al., 2013; Gregory et  al., 2015; Marotzke and 
Forster, 2015; Grose et al., 2018; Marotzke, 2019) indicate that TCR 
and ECS help explain variation across climate models both over the 
historical period and across a range of concentration-driven future 
scenarios. In emission-driven scenarios the carbon cycle response 
is also important (Smith et  al., 2019). The proportion of variation 
explained by ECS and TCR varies with scenario and the time period 
considered, but both past and future surface warming depend on 
these metrics (Section 7.5.7).

Regional changes in temperature, rainfall, and climate extremes 
have been found to correlate well with the forced changes in GSAT 
within Earth System Models (ESMs; Section 4.6.1; Giorgetta et  al., 
2013; Tebaldi and Arblaster, 2014; Seneviratne et  al., 2016). While 
this so-called ‘pattern scaling’ has important limitations arising from, 
for instance, localized forcings, land-use changes, or internal climate 
variability (Deser et al., 2012; Luyssaert et al., 2014), changes in GSAT 
nonetheless explain a substantial fraction of inter-model differences 
in projections of regional climate changes over the 21st  century 
(Tebaldi and Knutti, 2018). This Chapter’s assessments of TCR and 
ECS thus provide constraints on future global and regional climate 
change (Chapters 4 and 11).

Box 7.1 | The Energy Budget Framework: Forcing and Response

The forcing and response energy budget framework provides a methodology to assess the effect of individual drivers of global surface 
temperature response, and to facilitate the understanding of the key phenomena that set the magnitude of this temperature response. 
The framework used here is developed from that adopted in previous IPCC reports (see Ramaswamy et al., 2019 for a discussion). 
Effective Radiative Forcing (ERF), introduced in AR5 (Boucher et al., 2013; Myhre et al., 2013b) is more explicitly defined in this 
Report and is employed as the central definition of radiative forcing (Sherwood et al., 2015, Box 7.1, Figure 1a). The framework has also 
been extended to allow variations in feedbacks over different time scales and with changing climate state (Sections 7.4.3 and 7.4.4).

The global surface air temperature (GSAT) response to perturbations that give rise to an energy imbalance is traditionally approximated by 
the following linear energy budget equation, in which ΔN represents the change in the top-of-atmosphere (TOA) net energy flux, ΔF is an 
effective radiative forcing perturbation to the TOA net energy flux, α is the net feedback parameter and ΔT is the change in GSAT:

ΔN = ΔF + α ΔT

ERF is the TOA energy budget change resulting from the perturbation, excluding any radiative response related to a change in GSAT 
(i.e., ΔT = 0). Climate feedbacks (α) represent those processes that change the TOA energy budget in response to a given ΔT.

The effective radiative forcing, ERF (ΔF; units: W m–2) quantifies the change in the net TOA energy flux of the Earth system due to 
an imposed perturbation (e.g., changes in greenhouse gas or aerosol concentrations, in incoming solar radiation, or land-use change). 
ERF is expressed as a change in net downward radiative flux at the TOA following adjustments in both tropospheric and stratospheric 
temperatures, water vapour, clouds, and some surface properties, such as surface albedo from vegetation changes, that are uncoupled to

(Box 7.1, Equation 7.1)
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Box 7.1 (continued)

any GSAT change (Smith et al., 2018b). These adjustments affect the TOA energy balance and hence the ERF. They are generally assumed 
to be linear and additive (Section 7.3.1). Accounting for such processes gives an estimate of ERF that is more representative of the climate 
change response associated with forcing agents than stratospheric-temperature-adjusted radiative forcing (SARF) or the instantaneous 
radiative forcing (IRF; Section  7.3.1). Adjustments are processes that are independent of GSAT change, whereas feedbacks  refer to 
processes caused by GSAT change. Although adjustments generally occur on time scales of hours to several months, and feedbacks 
respond to ocean surface temperature changes on time scales of a year or more, time scale is not used to separate the defi nitions. ERF has 
often been approximated as the TOA energy balance change due to an imposed perturbation in climate model simulations with sea surface 
temperature and sea-ice concentrations set to their pre-industrial climatological values (e.g., Forster et al., 2016). However, to match 
the adopted forcing–feedback framework, the small effects of any GSAT change from changes in land surface temperatures need to be 
removed from the TOA energy balance in such simulations to give an approximate measure of ERF (Box 7.1, Figure 1b and Section 7.3.1).

approximate ERF:fixed surface temperatures and sea-ice 
approximate ERF: land adjustment removed 
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Box 7.1, Figure 1 | Schematics of the forcing–feedback framework adopted within the assessment, following Equation 7.1. The fi gure illustrates 
how the Earth’s top-of-atmosphere (TOA) net energy fl ux might evolve for a hypothetical doubling of atmospheric CO2 concentration above pre-industrial levels, where 
an initial positive energy imbalance (energy entering the Earth system, shown on the y-axis) is gradually restored towards equilibrium as the surface temperature 
warms (shown on the x-axis). (a) illustrates the defi nitions of effective radiative forcing (ERF) for the special case of a doubling of atmospheric CO2 concentration, the 
feedback parameter and the equilibrium climate sensitivity (ECS). (b) illustrates how approximate estimates of these metrics are made within the chapter and how 
these approximations might relate to the exact defi nitions adopted in panel (a).

The feedback parameter, α (units: W m–2 °C–1) quantifi es the change in net energy fl ux at the TOA for a given change in GSAT. Many 
climate variables affect the TOA energy budget, and the feedback parameter can be decomposed, to fi rst order, into a sum of terms 

where x represents a variable of the Earth system that has a direct effect on the energy budget at the TOA. The sum of the feedback terms 
(i.e., α in Equation 7.1) governs Earth’s equilibrium GSAT response to an imposed ERF. In previous assessments, α and the related ECS 
have been associated with a distinct set of physical processes (Planck response and changes in water vapour, lapse rate, surface albedo, 
and clouds; Charney et al., 1979). In this assessment, a more general defi nition of α and ECS is adopted such that they include additional 
Earth system processes that act across many time scales (e.g., changes in natural aerosol emissions or vegetation). Because, in our 
assessment, these additional processes sum to a near-zero value, including these additional processes does not change the assessed 
central value of ECS but does affect its assessed uncertainty range (Section 7.4.2). Note that there is no standardized notation or sign 
convention for the feedback parameter in the literature. Here the convention is used that the sum of all feedback terms (the net feedback 
parameter, α) is negative for a stable climate that radiates additional energy to space with a GSAT increase, with a more negative value 
of α corresponding to a stronger radiative response and thus a smaller GSAT change required to balance a change in ERF (Equation 7.1). 
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Box 7.1 (continued)

A change in process x amplifies the temperature response to a forcing when the associated feedback parameter αx is positive (positive 
feedback) and dampens the temperature response when αx is negative (negative feedback). New research since AR5 emphasizes how 
feedbacks can vary over different time scales (Section 7.4.4) and with climate state (Section 7.4.3), giving rise to the concept of an 
‘effective feedback parameter’ that may be different from the equilibrium value of the feedback parameter governing ECS (Section 7.4.3).

The equilibrium climate sensitivity, ECS (units: °C), is defined as the equilibrium value of ΔT in response to a sustained doubling 
of atmospheric CO2 concentration from a pre-industrial reference state. The value of ERF for this scenario is denoted by ΔF2xCO2, giving 
ECS = –ΔF2xCO2/α from Equation 7.1 applied at equilibrium (Box 7.1, Figure 1a and Section 7.5). ‘Equilibrium’ refers to a steady state 
where ΔN averages to zero over a multi-century period. ECS is representative of the multi-century to millennial ΔT response to ΔF2xCO2, 
and is based on a CO2 concentration change so any feedbacks that affect the atmospheric concentration of CO2 do not influence 
its value. As employed here, ECS also excludes the long-term response of the ice sheets (Section 7.4.2.6) which may take multiple 
millennia to reach equilibrium, but includes all other feedbacks. Due to a number of factors, studies rarely estimate ECS or α  at 
equilibrium or under CO2 forcing alone. Rather, they give an ‘effective feedback parameter’ (Section 7.4.1 and Box 7.1, Figure 1b) or 
an ‘effective ECS’ (Section 7.5.1 and Box 7.1, Figure 1b), which represent approximations to the true values of α or ECS. The ‘effective 
ECS’ represents the equilibrium value of ΔT in response to a sustained doubling of atmospheric CO2 concentration that would occur 
assuming the ‘effective feedback parameter’ applied at that equilibrium state. For example, a feedback parameter can be estimated 
from the linear slope of ΔN against ΔT over a set number of years within ESM simulations of an abrupt doubling or quadrupling 
of atmospheric CO2 (2×CO2 or 4×CO2, respectively), and the ECS can be estimated from the intersect of this regression line with 
ΔN = 0 (Box 7.1, Figure 1b). To infer ECS from a given estimate of effective ECS necessitates that assumptions are made for how ERF 
varies with CO2 concentration (Section 7.3.2) and how the slope of ΔN against ΔT relates to the slope of the straight line from ERF to 
ECS (Section 7.5 and Box 7.1, Figure 1b). Care has to be taken when comparing results across different lines of evidence to translate 
their estimates of the effective ECS into the ECS definition used here (Section 7.5.5).

The transient climate response, TCR (units: °C), is defined as the ΔT for the hypothetical scenario in which CO2 increases at 1% yr –1 
from a pre-industrial reference state to the time of a doubling of atmospheric CO2 concentration (year 70; Section 7.5). TCR is based 
on a CO2 concentration change, so any feedbacks that affect the atmospheric concentration of CO2 do not influence its value. It is 
a measure of transient warming accounting for the strength of climate feedbacks and ocean heat uptake. The transient climate 
response to cumulative emissions of carbon dioxide (TCRE) is defined as the transient ΔT per 1000 Gt C of cumulative CO2 
emissions increase since the pre-industrial period. TCRE combines information on the airborne fraction of cumulative CO2 emissions 
(the fraction of the total CO2 emitted that remains in the atmosphere at the time of doubling, which is determined by carbon cycle 
processes) with information on the TCR. TCR is assessed in this chapter, whereas TCRE is assessed in Chapter 5 (Section 5.5).

7.2 Earth’s Energy Budget and its 
Changes Through Time

Earth’s energy budget encompasses the major energy flows of relevance 
for the climate system (Figure 7.2). Virtually all the energy that enters or 
leaves the climate system does so in the form of radiation at the TOA. 
The TOA energy budget is determined by the amount of incoming solar 
(shortwave) radiation and the outgoing radiation that is composed of 
reflected solar radiation and outgoing  thermal (longwave) radiation 
emitted by the climate system. In a steady-state climate, the outgoing 
and incoming radiative components are essentially in balance in the 
long-term global mean, although there are still fluctuations around this 
balanced state that arise through internal climate variability (Brown 
et  al., 2014; Palmer and McNeall, 2014). However, anthropogenic 
forcing has given rise to a persistent imbalance in the global mean 
TOA radiation budget that is often referred to as Earth’s energy 
imbalance (e.g., Trenberth et al., 2014; von Schuckmann et al., 2016), 
which is a key element of the energy budget framework (N; Box 7.1, 
Equation 7.1) and an important metric of the rate of global climate 
change (Hansen et al., 2005a; von Schuckmann et al., 2020). In addition 

to the TOA energy fluxes, Earth’s energy budget  al.o includes the 
internal flows of energy within the climate system, which characterize 
the climate state. The surface energy budget consists of the net solar 
and thermal radiation as well as the non-radiative components such as 
sensible, latent and ground heat fluxes (Figure 7.2, upper panel). It is 
a key driver of the global water cycle, atmosphere and ocean dynamics, 
as well as a variety of surface processes.

7.2.1 Present-day Energy Budget

Figure 7.2 (upper panel) shows a schematic representation of Earth’s 
energy budget for the early 21st century, including globally averaged 
estimates of the individual components (Wild et al., 2015). Clouds are 
important modulators of global energy fluxes. Thus, any perturbations 
in the cloud fields, such as forcing by aerosol–cloud interactions 
(Section  7.3) or through cloud feedbacks (Section  7.4) can have 
a strong influence on the energy distribution in the climate system. 
To illustrate the overall effects that clouds exert on energy fluxes, 
Figure 7.2 (lower panel) also shows the energy budget in the absence 
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Figure 7.2 | Schematic representation of the global mean energy budget of the Earth (upper panel), and its equivalent without considerations of cloud 
effects (lower panel). Numbers indicate best estimates for the magnitudes of the globally averaged energy balance components in W m–2 together with their uncertainty 
ranges in parentheses (5–95% confidence range), representing climate conditions at the beginning of the 21st century. Note that the cloud-free energy budget shown in the 
lower panel is not the one that Earth would achieve in equilibrium when no clouds could form. It rather represents the global mean fluxes as determined solely by removing 
the clouds but otherwise retaining the entire atmospheric structure. This enables the quantification of the effects of clouds on the Earth energy budget and corresponds to 
the way clear-sky fluxes are calculated in climate models. Thus, the cloud-free energy budget is not closed and therefore the sensible and latent heat fluxes are not quantified 
in the lower panel. Figure adapted from Wild et al. (2015, 2019).
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of clouds, with otherwise identical atmospheric and surface radiative 
properties. It has been derived by taking into account information 
contained in both in situ and satellite radiation measurements taken 
under cloud-free conditions (Wild et al., 2019). A comparison of the 
upper and lower panels in Figure  7.2 shows that without clouds, 
47  W m–2 less solar radiation is reflected back to space globally 
(53 ± 2 W m–2 instead of 100 ± 2 W m–2), while 28 W m–2 more thermal 
radiation is emitted to space (267 ± 3 W m–2 instead of 239 ± 3 W m–2). 
As a result, there is a 20 W m–2 radiative imbalance at the TOA in the 
clear-sky energy budget (Figure  7.2, lower panel), suggesting that 
the Earth would warm substantially if there were no clouds.

The AR5 (Church et al., 2013; Hartmann et al., 2013; Myhre et al., 2013b) 
highlighted the progress that had been made in quantifying the TOA 
radiation budget following new satellite observations that became 
available in the early 21st  century (Clouds and the Earth’s Radiant 
Energy System, CERES; Solar Radiation and Climate Experiment, 
SORCE). Progress in the quantification of changes in incoming solar 
radiation at the TOA is discussed in Chapter  2 (Section  2.2). Since 
AR5, the CERES Energy Balance EBAF Ed4.0 product was released, 
which includes algorithm improvements and consistent input datasets 
throughout the record (Loeb et  al., 2018b). However, the overall 
precision of these fluxes (uncertainty in global mean TOA flux of 
1.7% (1.7 W m–2) for reflected solar and 1.3% (3.0 W m–2) for outgoing 
thermal radiation at the 90% confidence level) is not sufficient to 
quantify the Earth’s energy imbalance in absolute terms. Therefore, 
the CERES EBAF reflected solar and emitted thermal TOA fluxes were 
adjusted, within the estimated uncertainties, to ensure that the net 
TOA flux for July 2005 to June 2015 was consistent with the estimated 
Earth’s energy imbalance for the same period based on ocean heat 
content (OHC) measurements and energy uptake estimates for the 
land, cryosphere and atmosphere (Section  7.2.2.2; Johnson et  al., 
2016; Riser et al., 2016). ESMs typically show good agreement with 
global mean TOA fluxes from CERES-EBAF. However, as some ESMs are 
known to calibrate their TOA fluxes to CERES or similar data (Hourdin 
et al., 2017), this is not necessarily an indication of model accuracy, 
especially as ESMs show significant discrepancies on regional scales, 
often related to their representation of clouds (Trenberth and Fasullo, 
2010; Donohoe and Battisti, 2012; Hwang and Frierson, 2013; J.-L.F. Li 
et al., 2013; Dolinar et al., 2015; Wild et al., 2015).

The radiation components of the surface energy budget are associated 
with substantially larger uncertainties than at the TOA, since they 
are less directly measured by passive satellite sensors and require 
retrieval algorithms and ancillary data for their estimation (Raschke 
et al., 2016; Kato et al., 2018; Huang et al., 2019). Confidence in the 
quantification of the global mean surface radiation components has 
increased recently, as independent estimates now converge to within 
a few W m–2 (Wild, 2017). Current best estimates for downward solar 
and thermal radiation at Earth’s surface are approximately 185 W m–2 
and 342 W m–2, respectively (Figure 7.2). These estimates are based on 
complementary approaches that make use of satellite products from 
active and passive sensors (L’Ecuyer et  al., 2015; Kato et  al., 2018) 
and information from surface observations and Earth system models 
(ESMs; Wild et al., 2015). Inconsistencies in the quantification of the 
global mean energy and water budgets discussed in AR5 (Hartmann 
et al., 2013) have been reconciled within the (considerable) uncertainty 

ranges of their individual components (Wild et al., 2013, 2015; L’Ecuyer 
et  al., 2015). However, on regional scales, the closure of the surface 
energy budgets remains a  challenge with satellite-derived datasets 
(Loeb et al., 2014; L’Ecuyer et al., 2015; Kato et al., 2016). Nevertheless, 
attempts have been made to derive surface energy budgets over land 
and ocean (Wild et al., 2015), over the Arctic (Christensen et al., 2016b), 
and over individual continents and ocean basins (L’Ecuyer et al., 2015; 
Thomas et al., 2020). Since AR5, the quantification of the uncertainties 
in surface energy flux datasets has improved. Uncertainties in global 
monthly mean downward solar and thermal fluxes in the CERES-EBAF 
surface dataset are, respectively, 10 W m–2 and 8 W m–2 (converted to 
5–95% ranges; Kato et al., 2018). The uncertainty in the surface fluxes 
for polar regions is larger than in other regions (Kato et al., 2018) due 
to the limited number of surface sites and larger uncertainty in surface 
observations (Previdi et  al., 2015). The uncertainties in ocean mean 
latent and sensible heat fluxes are approximately 11 W m–2 and 5 W m–2 
(converted to 5–95% ranges), respectively (L’Ecuyer et al., 2015). A recent 
review of the latent and sensible heat flux accuracies over the period 
2000–2007 highlights significant differences between several gridded 
products over ocean, where root-mean-squared differences between 
the multi-product ensemble and data at more than 200  moorings 
reached up to 25 W m–2 for latent heat and 5 W m–2 for sensible heat 
(Bentamy et  al., 2017). This uncertainty stems from the retrieval of 
flux-relevant meteorological variables, as well as from differences in the 
flux parametrizations (Yu, 2019). Estimating the uncertainty in sensible 
and latent heat fluxes over land is difficult because of the large temporal 
and spatial variability. The flux values over land computed with three 
global datasets vary by 10–20% (L’Ecuyer et al., 2015).

ESMs also show larger discrepancies in their surface energy fluxes than 
at the TOA due to weaker observational constraints, with a spread of 
typically 10–20 W m–2 in the global average, and an even greater 
spread at regional scales (J.-L.F. Li et al., 2013; Wild et al., 2013; Boeke 
and Taylor, 2016; Wild, 2017, 2020; C. Zhang et al., 2018). Differences 
in the land-averaged downward thermal and solar radiation in CMIP5 
ESMs amount to more than 30 and 40 W m–2, respectively (Wild et al., 
2015). However, in the global multi-model mean, the magnitudes of 
the energy budget components of the CMIP6 ESMs generally show 
better agreement with reference estimates than previous model 
generations (Wild, 2020).

In summary, since AR5, the magnitudes of the global mean energy 
budget components have been quantified more accurately, not only at 
the TOA, but also at the Earth’s surface, where independent estimates 
of the radiative components have converged (high confidence). 
Considerable uncertainties remain in regional surface energy budget 
estimates as well as their representation in climate models.

7.2.2 Changes in Earth’s Energy Budget

7.2.2.1 Changes in Earth’s Top-of-atmosphere Energy Budget

Since 2000, changes in top-of-atmosphere (TOA) energy fluxes can 
be tracked from space using CERES satellite observations (Figure 7.3). 
The variations in TOA energy fluxes reflect the influence of internal 
climate variability, particularly that of El Niño–Southern Oscillation 
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(ENSO), in addition to radiative forcing of the climate system and 
climate feedbacks (Allan et al., 2014; Loeb et al., 2018b). For example, 
globally, the reduction in both outgoing thermal and reflected solar 
radiation during La Niña conditions in 2008/2009 led to an energy 
gain for the climate system, whereas enhanced outgoing thermal and 
reflected solar radiation caused an energy loss during the El Niños of 
2002/2003 and 2009/2010 (Figure 7.3; Loeb et al., 2018b). An ensemble 
of CMIP6 models is able to track the variability in global mean TOA 

fluxes observed by CERES, when driven with prescribed sea surface 
temperatures (SSTs) and sea ice concentrations (Figure 7.3; Loeb et al., 
2020). Under cloud-free conditions, the CERES record shows a near 
zero trend in outgoing thermal radiation (Loeb et al., 2018b), which – 
combined with an increasing surface upwelling thermal flux – implies 
an increasing clear-sky greenhouse effect (Raghuraman et al., 2019). 
Conversely, clear-sky solar reflected TOA radiation in the CERES record 
covering March 2000 to September 2017 shows a decrease due to 

Figure 7.3 | Anomalies in global mean all-sky top-of-atmosphere (TOA) fluxes from CERES-EBAF Ed4.0 (solid black lines) and various CMIP6 climate models 
(coloured lines) in terms of (a) reflected solar, (b) emitted thermal and (c) net TOA fluxes. The multi-model means are additionally depicted as solid red lines. 
Model fluxes stem from simulations driven with prescribed sea surface temperatures (SSTs) and all known anthropogenic and natural forcings. Shown are anomalies of 12-month 
running means. All flux anomalies are defined as positive downwards, consistent with the sign convention used throughout this chapter. The correlations between the multi-model 
means (solid red lines) and the CERES records (solid black lines) for 12-month running means are: 0.85 for the global mean reflected solar; 0.73 for outgoing thermal radiation; 
and 0.81 for net TOA radiation. Figure adapted from Loeb et al. (2020). Further details on data sources and processing are available in the chapter data table (Table 7.SM.14).
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reductions in aerosol optical depth in the Northern Hemisphere and 
sea ice fraction (Loeb et al., 2018a; Paulot et al., 2018).

An effort to reconstruct variations in net TOA fluxes back to 1985, 
based on a combination of satellite data, atmospheric reanalysis and 
high-resolution climate model simulations (Allan et  al., 2014; Liu 
et  al., 2020), exhibits strong interannual variability associated with 
the volcanic eruption of Mount Pinatubo in 1991 and the ENSO events 
before 2000. The same reconstruction suggests that Earth’s energy 
imbalance increased by several tenths of a W m–2 between the periods 
1985–1999 and 2000–2016, in agreement with the assessment of 
changes in the global energy inventory (Section 7.2.2.2, and Box 7.2, 
Figure  1). Comparisons of year-to-year variations in Earth’s energy 
imbalance estimated from CERES and independent estimates based 
on ocean heat content change are significantly correlated with similar 
phase and magnitude (Johnson et al., 2016; Meyssignac et al., 2019), 
promoting confidence in both satellite and in situ-based estimates 
(Section 7.2.2.2).

In summary, variations in the energy exchange between Earth and space 
can be accurately tracked since the advent of improved observations 
since the year 2000 (high confidence), while reconstructions indicate 
that the Earth’s energy imbalance was larger in the 2000s than in the 
1985–1999 period (high confidence).

7.2.2.2 Changes in the Global Energy Inventory

The global energy inventory quantifies the integrated energy gain 
of the climate system associated with global ocean heat uptake, 
warming of the atmosphere, warming of the land, and melting of ice. 
Due to energy conservation, the rate of accumulation of energy  in 
the Earth system (Section  7.1) is equivalent to the Earth energy 
imbalance (ΔN in Box  7.1, Equation 7.1). On annual and longer 
time scales, changes in the global energy inventory are dominated 
by changes in global ocean heat content (OHC; Rhein et al., 2013; 
Palmer and McNeall, 2014; Johnson et al., 2016). Thus, observational 
estimates and climate model simulations of OHC change are critical 
to the understanding of both past and future climate change 
(Sections 2.3.3.1, 3.5.1.3, 4.5.2.1 and 9.2.2.1).

Since AR5, both modelling and observation-based studies have 
established Earth’s energy imbalance (characterized by OHC change) 
as a more robust metric of the rate of global climate change than 
GSAT on interannual-to-decadal time scales (Palmer and McNeall, 
2014; von Schuckmann et al., 2016; Wijffels et al., 2016; Cheng et al., 
2018; Allison et al., 2020). This is because GSAT is influenced by large 
unforced variations, for example linked to ENSO and Pacific Decadal 
Variability (Roberts et al., 2015; Yan et al., 2016; Cheng et al., 2018). 
Measuring OHC change more comprehensively over the full ocean 
depth results in a higher signal-to-noise ratio and a time series that 
increases steadily over time (Box 7.2, Figure 1; Allison et al., 2020). 
In addition, understanding of the potential effects of historical ocean 
sampling on estimated global ocean heating rates has improved 
(Durack et al., 2014; Good, 2017; Allison et al., 2019) and there are 
now more estimates of OHC change available that aim to mitigate the 
effect of limited observational sampling in the Southern Hemisphere 
(Lyman and Johnson, 2008; Cheng et al., 2017; Ishii et al., 2017).

The assessment of changes in the global energy inventory for 
the  periods 1971–2018, 1993–2018 and 2006–2018 draws upon 
the  latest observational time series and the assessments presented 
in other chapters of this report. The estimates of OHC change come 
directly from the assessment presented in Chapter 2 (Section 2.3.3.1). 
The assessment of land and atmospheric heating comes from von 
Schuckmann et al. (2020), based on the estimates of Cuesta-Valero 
et al. (2021) and Steiner et al. (2020), respectively. Heating of inland 
waters, including lakes, reservoirs and rivers, is estimated to account 
for <0.1% of the total energy change, and is therefore omitted from 
this assessment (Vanderkelen et al., 2020). The cryosphere contribution 
from the melting of grounded ice is based on the mass-loss 
assessments presented in Chapter  9, Section  9.4.1 (Greenland 
Ice Sheet), Section  9.4.2 (Antarctic Ice Sheet) and Section  9.5.1 
(glaciers). Following AR5, the estimate of heating associated with 
loss of Arctic sea ice is based on a reanalysis (Schweiger et al., 2011), 
following the methods described by Slater et  al. (2021). Chapter  9 
(Section 9.3.2) finds no significant trend in Antarctic sea ice area over 
the observational record, so a zero contribution is assumed. Ice melt 
associated with the calving and thinning of floating ice shelves is 
based on the decadal rates presented in Slater et al. (2021). For all 
cryospheric components, mass loss is converted to heat input using 
a latent heat of fusion of 3.34 × 105 J Kg–1 °C–1 with the second-order 
contributions from variations associated with ice type and warming 
of ice from sub-freezing temperatures disregarded, as in AR5. The net 
change in energy, quantified in Zettajoules (1 ZJ = 1021  Joules), 
is computed for each component as the difference between the 
first and last year of each period (Table  7.1). The uncertainties in 
the depth-interval contributions to OHC are summed to get the 
uncertainty in global OHC change. All other uncertainties are assumed 
to be independent and added in quadrature. 

For the period 1971–2010, AR5 (Rhein et al., 2013) found an increase 
in the global energy inventory of 274 [196 to 351] ZJ with a 93% 
contribution from total OHC change, approximately 3% for both ice 
melt and land heating, and approximately 1% for warming of the 
atmosphere. For the same period, this Report finds an upwards revision 
of OHC change for the upper (<700 m depth) and deep (>700 m depth) 
ocean of approximately 8% and 20%, respectively, compared to AR5 
and a modest increase in the estimated uncertainties associated with 
the ensemble approach of Palmer et al. (2021). The other substantive 
change compared to AR5 is the updated assessment of land heating, 
with values approximately double those assessed previously, based 
on a  more comprehensive analysis of the available observations 
(von Schuckmann et al., 2020; Cuesta-Valero et al., 2021). The result 
of these changes is an assessed energy gain of 329 [224 to 434] ZJ 
for the period 1971–2010, which is consistent with AR5 within the 
estimated uncertainties, despite the systematic increase.

The assessed changes in the global energy inventory (Box  7.2, 
Figure 1, and Table 7.1) yields an average value for Earth’s energy 
imbalance (N in Box 7.1, Equation 7.1) of 0.57 [0.43 to 0.72] W m–2 
for the period 1971–2018, expressed relative to Earth’s surface 
area (high  confidence). The estimates for the periods 1993–2018 
and 2006–2018 yield substantially larger values of 0.72  [0.55  to 
0.89] W m–2 and 0.79 [0.52 to 1.06] W m–2, respectively, consistent with 
the increased radiative forcing from GHGs (high confidence). For the 
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period 1971–2006, the total energy gain was 282 [177 to 387] ZJ, with 
an equivalent Earth energy imbalance of 0.50 [0.32 to 0.69] W m–2. 
To  put these numbers in context, the 2006–2018 average Earth 
system heating is equivalent to approximately 20 times the annual 
rate of global energy consumption in 2018.1

Consistent with AR5 (Rhein et al., 2013), this Report finds that ocean 
warming dominates the changes in the global energy inventory 
(high confidence), accounting for 91% of the observed change for 
all periods considered (Table 7.1). The contributions from the other 
components across all periods are approximately 5% from land 
heating, 3% for cryosphere heating and 1% associated with warming 
of the atmosphere (high confidence). The assessed percentage 
contributions are similar to the recent study by von Schuckmann et al. 
(2020) and the total heating rates are consistent within the assessed 
uncertainties. Cross-validation of heating rates based on satellite and 
in situ observations (Section 7.2.2.1), and closure of the global sea 
level budget using consistent datasets (Cross-Chapter Box 9.1 and 
Table 9.5), strengthen scientific confidence in the assessed changes 
in the global energy inventory relative to AR5.

7.2.2.3 Changes in Earth’s Surface Energy Budget

The AR5 (Hartmann et  al., 2013) reported pronounced changes 
in multi-decadal records of in situ observations of surface solar 
radiation, including a  widespread decline between the 1950s and 
1980s, known as ‘global dimming’, and a partial recovery thereafter, 
termed ‘brightening’ (Section 12.4). These changes have interacted 
with closely related elements of climate change, such as global and 
regional warming rates (Z. Li et al., 2016; Wild, 2016; Du et al., 2017; 
Zhou et al., 2018a), glacier melt (Ohmura et al., 2007; Huss et al., 
2009), the intensity of the global water cycle (Wild, 2012) and 
terrestrial carbon uptake (Mercado et  al., 2009). These observed 
changes have also been used as emergent constraints to quantify 
aerosol effective radiative forcing (Section 7.3.3.3).

Since AR5, additional evidence for dimming and/or subsequent 
brightening up to several percent per decade, based on direct surface 
observations, has been documented in previously less-studied areas 

1 https://ourworldindata.org/energy, accessed 13 April 2021.

of the globe, such as Iran, Bahrain, Tenerife, Hawaii, the Taklaman 
Desert and the Tibetan Plateau (Elagib and Alvi, 2013; You et al., 2013; 
Garcia et al., 2014; Longman et al., 2014; Rahimzadeh et al., 2015). 
Strong decadal trends in surface solar radiation remain evident after 
careful data quality assessment and homogenization of long-term 
records (Sanchez-Lorenzo et  al., 2013, 2015; Manara et  al., 2015, 
2016; Wang et al., 2015; Z. Li et al., 2016; Wang and Wild, 2016; Y. He 
et al., 2018; Yang et al., 2018). Since AR5, new studies on the potential 
effects of urbanization on solar radiation trends indicate that these 
effects are generally small, with the exception of some specific sites 
in Russia and China (Wang et al., 2014; Imamovic et al., 2016; Tanaka 
et al., 2016). Also, surface-based solar radiation observations have 
been shown to be representative over large spatial domains of up 
to several degrees latitude/longitude on monthly and longer time 
scales (Hakuba et al., 2014; Schwarz et al., 2018). Thus, there is high 
confidence that the observed dimming between the 1950s and 1980s 
and the subsequent brightening are robust and do not arise from 
measurement artefacts or localized phenomena.

As noted in AR5 (Hartmann et al., 2013) and supported by recent studies, 
the trends in surface solar radiation are less spatially coherent since the 
beginning of the 21st century, with evidence for continued brightening 
in parts of Europe and the USA, some stabilization in China and India, 
and dimming in other areas (Augustine and Dutton, 2013; Sanchez-
Lorenzo et al., 2015; Manara et al., 2016; Soni et al., 2016; Wang and 
Wild, 2016; Jahani et al., 2018; Pfeifroth et al., 2018; Yang et al., 2018; 
Schwarz et  al., 2020). The CERES-EBAF satellite-derived dataset of 
surface solar radiation (Kato et al., 2018) does not indicate a globally 
significant trend over the short period 2001–2012 (Zhang et al., 2015), 
whereas a statistically significant increase in surface solar radiation of 
+3.4 W m−2 per decade over the period 1996–2010 has been found 
in the Satellite Application Facility on Climate Monitoring (CM SAF) 
record of the geostationary satellite Meteosat, which views Europe, 
Africa and adjacent ocean (Posselt et al., 2014).

Since AR5, there is additional evidence that strong decadal changes 
in surface solar radiation have occurred under cloud-free conditions, 
as shown for long-term observational records in Europe, USA, China, 
India and Japan (Xu et al., 2011; Gan et al., 2014; Manara et al., 2016; 

Table 7.1 | Contributions of the different components of the global energy inventory for the periods 1971–2018, 1993–2018 and 2006–2018 (Box 7.2 
and Cross-Chapter Box 9.1). Energy changes are computed as the difference between annual mean values or year mid-points. The total heating rates correspond to Earth’s 
energy imbalance and are expressed per unit area of Earth’s surface.

Component
1971–2018 1993–2018 2006–2018

Energy Gain (ZJ) % Energy Gain (ZJ) % Energy Gain (ZJ) %

Ocean
0–700 m
700–2000 m 
>2000 m

396.0 [285.7 to 506.2]
241.6 [162.7 to 320.5] 
123.3 [96.0 to 150.5]

31.0 [15.7 to 46.4]

91.0
55.6
28.3
7.1

263.0 [194.1 to 331.9]
151.5 [114.1 to 188.9]
82.8 [59.9 to 105.6]
28.7 [14.5 to 43.0]

91.0
52.4
28.6
10.0

138.8 [86.4 to 191.3]
75.4 [48.7 to 102.0]
49.7 [29.0 to 70.4]
13.8 [7.0 to 20.6]

91.1
49.5
32.6
9.0

Land 21.8 [18.6 to 25.0] 5.0 13.7 [12.4 to 14.9] 4.7 7.2 [6.6 to 7.8] 4.7

Cryosphere 11.5 [9.0 to 14.0] 2.7 8.8 [7.0 to 10.5] 3.0 4.7 [3.3 to 6.2] 3.1

Atmosphere 5.6 [4.6 to 6.7] 1.3 3.8 [3.2 to 4.3] 1.3 1.6 [1.2 to 2.1] 1.1

TOTAL 434.9 [324.5 to 545.3] ZJ 289.2 [220.3 to 358.1] ZJ 152.4 [100.0 to 204.9] ZJ

Heating Rate 0.57 [0.43 to 0.72] W m–2 0.72 [0.55 to 0.89] W m–2 0.79 [0.52 to 1.06] W m–2
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Soni et al., 2016; Tanaka et al., 2016; Kazadzis et al., 2018; J. Li et al., 
2018; Yang et al., 2019; Wild et al., 2021). This suggests that changes 
in the composition of the cloud-free atmosphere, primarily in aerosols, 
contributed to these variations, particularly since the second half of 
the 20th  century (Wild, 2016). Water vapour and other radiatively 
active gases seem to have played a minor role (Wild, 2009; Mateos 
et al., 2013; Posselt et al., 2014; Yang et al., 2019). For Europe and East 
Asia, modelling studies also point to aerosols as an important factor 
for dimming and brightening by comparing simulations that include 
or exclude variations in anthropogenic aerosol and aerosol-precursor 
emissions (Golaz et al., 2013; Nabat et al., 2014; Persad et al., 2014; 
Folini and Wild, 2015; Turnock et  al., 2015; Moseid et  al., 2020). 
Moreover, decadal changes in surface solar radiation have often 
occurred in line with changes in anthropogenic aerosol emissions 
and associated aerosol optical depth (Streets et al., 2006; Wang and 
Yang, 2014; Storelvmo et al., 2016; Wild, 2016; Kinne, 2019). However, 
further evidence for the influence of changes in cloudiness on dimming 
and brightening is emphasized in some studies (Augustine and 
Dutton, 2013; Parding et al., 2014; Stanhill et al., 2014; Pfeifroth et al., 
2018; Antuña-Marrero et al., 2019). Thus, the contribution of aerosol 
and clouds to dimming and brightening is still debated. The relative 
influence of cloud-mediated aerosol effects versus direct aerosol 
radiative effects on dimming and brightening in a specific region may 
depend on the prevailing pollution levels (Section 7.3.3; Wild, 2016).

ESMs and reanalyses often do not reproduce the full extent of 
observed dimming and brightening (Wild and Schmucki, 2011; Allen 
et al., 2013; Zhou et al., 2017a; Storelvmo et al., 2018; Moseid et al., 
2020; Wohland et al., 2020), potentially pointing to inadequacies in 
the representation of aerosol mediated effects or related emissions 
data. The inclusion of assimilated aerosol optical depth inferred from 
satellite retrievals in the MERRA2 reanalysis (Buchard et al., 2017; 
Randles et al., 2017) helps to improve the accuracy of the simulated 
surface solar radiation changes in China (Feng and Wang, 2019). 
However, non-aerosol-related deficiencies in model representations 
of clouds and circulation, and/or an underestimation of natural 
variability, could further contribute to the lack of dimming and 
brightening in ESMs (Wild, 2016; Storelvmo et al., 2018).

The AR5 reported evidence for an increase in surface downward 
thermal radiation based on different studies covering 1964 to 2008, in 

line with what would be expected from an increased radiative forcing 
from GHGs and the warming and moistening of the atmosphere. 
Updates of the longest observational records from the Baseline 
Surface Radiation Network continue to show an increase at the 
majority of sites, in line with an overall increase predicted by ESMs 
of the order of 2 W m–2 per decade (Wild, 2016). Upward longwave 
radiation at the surface is rarely measured but is expected to have 
increased over the same period due to rising surface temperatures.

Turbulent fluxes of latent and sensible heat are also an important 
part of the surface energy budget (Figure 7.2). Large uncertainties 
in measurements of surface turbulent fluxes continue to prevent the 
determination of their decadal changes. Nevertheless, over the ocean, 
reanalysis-based estimates of linear trends from 1948–2008 indicate 
high spatial variability and seasonality. Increases in magnitudes of 
4 to 7 W m–2 per decade for latent heat and 2 to 3 W m–2 per decade 
for sensible heat in the western boundary current regions are mostly 
balanced by decreasing trends in other regions (Gulev and Belyaev, 
2012). Over land, the terrestrial latent heat flux is estimated to have 
increased in magnitude by 0.09 W m–2 per decade from 1989–1997, 
and subsequently decreased by 0.13 W m–2 per  decade from 
1998–2005 due to soil-moisture limitation mainly in the Southern 
Hemisphere (derived from Mueller et al., 2013). These trends are small 
in comparison to the uncertainty associated with satellite-derived 
and in situ observations, as well as from land-surface models forced 
by observations and atmospheric reanalyses. Ongoing advances 
in remote sensing of evapotranspiration from space (Mallick 
et  al., 2016; Fisher et  al., 2017; McCabe et  al., 2017a, b), as well 
as  terrestrial water storage (Rodell et al., 2018) may contribute to 
future constraints on changes in latent heat flux.

In summary, since AR5, multi-decadal decreasing and increasing trends 
in surface solar radiation of up to several percent per decade have 
been detected at many more locations, even in remote areas. There is 
high confidence that these trends are widespread, and not localized 
phenomena or measurement artefacts. The origin of these trends is 
not fully understood, although there is evidence that anthropogenic 
aerosols have made a substantial contribution (medium confidence). 
There is medium confidence that downward and upward thermal 
radiation has increased since the 1970s, while there remains low 
confidence in the trends in surface sensible and latent heat.

Box 7.2 | The Global Energy Budget

This box assesses the present knowledge of the global energy budget for the period 1971–2018, that is, the balance between radiative 
forcing, the climate system radiative response and observations of the changes in the global energy inventory (Box 7.2, Figure 1a,d).

The net effective radiative forcing (ERF) of the Earth system since 1971 has been positive (Section 7.3 and Box 7.2, Figure 1b,e), mainly 
as a result of increases in atmospheric greenhouse gas concentrations (Sections 2.2.8 and 7.3.2). The ERF of these positive forcing 
agents have been partly offset by that of negative forcing agents, primarily due to anthropogenic aerosols (Section 7.3.3), which 
dominate the overall uncertainty. The net energy inflow to the Earth system from ERF for the period 1971–2018 is estimated to be 
937 ZJ (1 ZJ = 1021 J) with a likely range of 644 to 1259 ZJ (Box 7.2, Figure 1b).
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Box 7.2 (continued)

The ERF-induced heating of the climate system results in increased thermal radiation to space via the Planck response, but the picture 
is complicated by a variety of climate feedbacks (Section 7.4.2 and Box 7.1) that also infl uence the climate system radiative response 
(Box 7.2, Figure 1c). The total radiative response is estimated by multiplying the assessed net feedback parameter, α, from process-based 
evidence (Section 7.4.2 and Table 7.10) with the observed GSAT change for the period (Cross Chapter Box 2.3) and time-integrating 
(Box 7.2, Figure 1c). The net energy outfl ow from the Earth system associated with the integrated radiative response for the period 
1971–2018 is estimated to be 621 ZJ with a likely range of 419 to 823 ZJ. Assuming a pattern effect (Section 7.4.4) on α of –0.5 W m–2 °C–1

would lead to a systematically larger energy outfl ow by about 250 ZJ.

Box 7.2, Figure 1 | Estimates of the net cumulative energy change (ZJ = 1021 Joules) for the period 1971–2018 associated with: (a) observations of 
changes in the global energy inventory; (b) integrated radiative forcing; and (c) integrated radiative response. Black dotted lines indicate the central 
estimate with likely and very likely ranges as indicated in the legend. The grey dotted lines indicate the energy change associated with an estimated pre-industrial 
Earth energy imbalance of 0.2 W m–2 (a), and an illustration of an assumed pattern effect of –0.5 W m–2 °C–1 (c). Background grey lines indicate equivalent heating 
rates in W m–2 per unit area of Earth’s surface. Panels (d) and (e) show the breakdown of components, as indicated in the legend, for the global energy inventory and 
integrated radiative forcing, respectively. Panel (f) shows the global energy budget assessed for the period 1971–2018, that is, the consistency between the change 
in the global energy inventory relative to pre-industrial and the implied energy change from integrated radiative forcing plus integrated radiative response under 
a number of different assumptions, as indicated in the legend, including assumptions of correlated and uncorrelated uncertainties in forcing plus response. Shading 
represents the very likely range for observed energy change relative to pre-industrial levels and likely range for all other quantities. Forcing and response time series 
are expressed relative to a baseline period of 1850–1900. Further details on data sources and processing are available in the chapter data table (Table 7.SM.14).

Combining the likely range of integrated radiative forcing (Box  7.2, Figure  1b) with the central estimate of integrated radiative 
response (Box 7.2, Figure 1c) gives a central estimate and likely range of 340 [47 to 662] ZJ (Box 7.2, Figure 1f). Combining the likely 
range of integrated radiative response with the central estimate of integrated radiative forcing gives a likely range of 340 [147 to 
527] ZJ (Box 7.2, Figure 1f). Both calculations yield an implied energy gain in the climate system that is consistent with an independent 
observation-based assessment of the increase in the global energy inventory expressed relative to the estimated 1850–1900 

(b)(a) (c)

(f )(e)(d)
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Box 7.2 (continued)

Earth energy imbalance (Section 7.5.2 and Box 7.2, Figure 1a) with a central estimate and very likely range of 284 [96 to 471] ZJ 
(high confidence) (Box 7.2, Figure 1d; Table 7.1). Estimating the total uncertainty associated with radiative forcing and radiative 
response remains a scientific challenge and depends on the degree of correlation between the two (Box 7.2, Figure 1f). However, the 
central estimate of observed energy change falls well with the estimated likely range, assuming either correlated or uncorrelated 
uncertainties. Furthermore, the energy budget assessment would accommodate a  substantial pattern effect (Section  7.4.4.3) 
during 1971–2018 associated with systematically larger values of radiative response (Box 7.2, Figure 1c), and potentially improved 
closure of the global energy budget. For the period 1970–2011, AR5 reported that the global energy budget was closed within 
uncertainties (high confidence) and consistent with the likely range of assessed climate sensitivity (Church et  al., 2013). This 
Report provides a  more robust quantitative assessment based on additional evidence and improved scientific understanding.

In addition to new and extended observations (Section 7.2.2), confidence in the observed accumulation of energy in the Earth system 
is strengthened by cross-validation of heating rates based on satellite and in situ observations (Section  7.2.2.1) and closure of 
the global sea level budget using consistent datasets (Cross-Chapter Box 9.1 and Table 9.5). Overall, there is high confidence that 
the global energy budget is closed for 1971–2018 with improved consistency compared to AR5.

7.3 Effective Radiative Forcing

Effective radiative forcing (ERF) quantifies the energy gained or lost by 
the Earth system following an imposed perturbation (for instance in 
GHGs, aerosols or solar irradiance). As such it is a fundamental driver 
of changes in the Earth’s TOA energy budget. ERF is determined by 
the change in the net downward radiative flux at the TOA (Box 7.1) 
after the system has adjusted to the perturbation but excluding the 
radiative response to changes in surface temperature. This section 
outlines the methodology for ERF calculations (Section  7.3.1) and 
then assesses the ERF due to greenhouse gases (Section  7.3.2), 
aerosols (Section 7.3.3) and other natural and anthropogenic forcing 
agents (Section 7.3.4). These are brought together in Section 7.3.5 
for an overall assessment of the present-day ERF and its evolution 
over the historical time period from 1750 to 2019. The same section 
also evaluates the surface temperature response to individual ERFs.

7.3.1 Methodologies and Representation 
in Models: Overview of Adjustments

As introduced in Box 7.1, AR5 (Boucher et  al., 2013; Myhre et  al., 
2013b) recommended ERF as a more useful measure of the climate 
effects of a  physical driver than the stratospheric-temperature-
adjusted radiative forcing (SARF) adopted in earlier assessments. 
The AR5 assessed that the ratios of surface temperature change to 
forcing resulting from perturbations of different forcing agents were 
more similar between species using ERF than SARF. ERF extended the 
SARF concept to account for not only adjustments to stratospheric 
temperatures, but also responses in the troposphere and effects on 
clouds and atmospheric circulation, referred to as ‘adjustments’. 
For more details see Box 7.1. Since circulation can be affected, these 
responses are not confined to the locality of the initial perturbation 
(unlike the traditional stratospheric-temperature adjustment).

This chapter defines ‘adjustments’ as those changes caused by the 
forcing agent that are independent of changes in surface temperature, 

rather than defining a  specific time scale. The AR5 used the term 
‘rapid adjustment’, but in this assessment the definition is based on 
the independence from surface temperature rather than the rapidity. 
The definition of ERF in Box 7.1 aims to create a clean separation 
between forcing (energy budget changes that are not mediated by 
surface temperature) and feedbacks (energy budget changes that 
are mediated by surface temperature). This means that changes in 
land or ocean surface temperature patterns (for instance as identified 
by Rugenstein et al., 2016b) are not included as adjustments. As in 
previous assessments (Forster et al., 2007; Myhre et al., 2013b) ERFs 
can be attributed simply to changes in the forcing agent itself or 
attributed to components of emitted gases (Figure  6.12). Because 
ERFs can include chemical and biospheric responses to emitted 
gases, they can be attributed to precursor gases, even if those gases 
do not have a direct radiative effect themselves. Similar chemical and 
biospheric responses to forcing agents can also be included in the 
ERF in addition to their direct effects.

Instantaneous radiative forcing (IRF) is defined here as the change 
in the net TOA radiative flux following a perturbation, excluding any 
adjustments. SARF is defined here as the change in the net radiative 
flux at TOA following a  perturbation including the response to 
stratospheric temperature adjustments. These differ from AR5 where 
these quantities were defined at the tropopause (Myhre et al., 2013b). 
The net IRF values will be different using the TOA definition. The net 
SARF values will be the same as with the tropopause definition, 
but will have a  different partitioning between the longwave and 
shortwave. Defining all quantities at the TOA enables consistency in 
breaking down the ERF into its component parts.

The assessment of ERFs in AR5 was preliminary because ERFs were 
only available for a few forcing agents, so for many forcing agents the 
Report made the assumption that ERF and SARF were equivalent. This 
section discusses the body of work published since AR5. This work has 
computed ERFs across many more forcing agents and models; closely 
examined the methods of computation; quantified the processes 
involved in causing adjustments; and examined how well ERFs predict 
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the ultimate temperature response. This work is assessed to have led 
to a much-improved understanding and increased confidence in the 
quantification of radiative forcing across the Report. These same 
techniques allow for an evaluation of radiative forcing within Earth 
system models (ESMs) as a key test of their ability to represent both 
historical and future temperature changes (Sections 3.3.1 and 4.3.4).

The ERF for a  particular forcing agent is the sum of the IRF and 
the contribution from the adjustments, so in principle this could 
be constructed bottom-up by calculating the IRF and adding in the 
adjustment contributions one-by-one or together. However, there 
is no simple way to derive the global tropospheric adjustment 
terms or adjustments related to circulation changes without using 
a comprehensive climate model (e.g., CMIP5 or CMIP6). There have 
been two main modelling approaches used to approximate the ERF 
definition in Box 7.1. The first approach is to use the assumed linearity 
(Box 7.1, Equation 7.1) to regress the net change in the TOA radiation 
budget (ΔN) against change in global mean surface temperature 
(ΔT ) following a step change in the forcing agent (Box 7.1, Figure 1; 
Gregory et  al., 2004). The ERF (ΔF) is then derived from ΔN when 
ΔT = 0. Regression-based estimates of ERF depend on the temporal 
resolution of the data used (Modak et al., 2016, 2018). For the first 
few months of a  simulation both surface temperature change and 
stratospheric-temperature adjustment occur at the same time, leading 
to misattribution of the stratospheric-temperature adjustment to the 
surface temperature feedback. Patterns of sea surface temperature 
(SST) change also affect estimates of the forcing obtained by regression 
methods (Andrews et  al., 2015). At multi-decadal time scales the 
curvature of the relationship between net TOA radiation and surface 
temperature can also lead to biases in the ERF estimated from the 
regression method (Section 7.4; Armour et al., 2013; Andrews et al., 
2015; Knutti et al., 2017). The second modelling approach to estimate 
ERF is to set the ΔT term in Box 7.1 (Box 7.1, Equation 7.1) to zero. It is 
technically difficult to constrain land surface temperatures in ESMs 
(Shine et al., 2003; Ackerley and Dommenget, 2016; Andrews et al., 
2021), so most studies reduce the ΔT term by prescribing the SSTs 
and sea ice concentrations in a pair of ‘fixed-SST’ (fSST) simulations 
with and without the change in forcing agent (Hansen et al., 2005b). 
An approximation to ERF (ΔFfsst) is then given by the difference in 
ΔNfsst between the simulations. The fSST method has less noise due 
to internal variability than the regression method. Nevertheless 
a 30-year fSST integration or 10 × 20-year regression ensemble needs 
to be conducted in order to reduce the 5–95% confidence range to 
0.1 W m–2 (Forster et al., 2016).Neither the regression or fSST methods 
are practical for quantifying the ERF of agents with forcing magnitudes 
of the order of 0.1 W m–2 or smaller. The internal variability in the 
fSST method can be further constrained by nudging winds towards 
a  prescribed climatology (Kooperman et  al., 2012). This allows the 
determination of the ERF of forcing agents with smaller magnitudes 
but excludes adjustments associated with circulation responses 
(Schmidt et al., 2018). There are insufficient studies to assess whether 
these circulation adjustments are significant.

Since the near-surface temperature change over land, ΔTland, is not 
constrained in the fSST method, this response needs to be removed 
for consistency with the Section 7.1 definition. These changes in the 
near-surface temperature will also induce further responses in 

the tropospheric temperature and water vapour that should also be 
removed to conform with the physical definition of ERF. The radiative 
response to ΔTland can be estimated through radiative transfer 
modelling in which a kernel, k, representing the change in net TOA 
radiative flux per unit of change in near-surface temperature change 
over land (or an approximation using land surface temperature), is 
precomputed (Smith et  al., 2018b, 2020b; Richardson et  al., 2019; 
Tang et al., 2019). Thus ERF ≈ ΔFfsst – k ΔTland. Since k is negative 
this means that ΔFfsst underestimates the ERF. For 2×CO2, this 
underestimate is around 0.2 W m–2 (Smith et  al., 2018b, 2020b). 
There have been estimates of the corrections due to tropospheric 
temperature and water vapour (Tang et al., 2019; Smith et al., 2020b) 
showing additional radiative responses of comparable magnitude to 
those directly from ΔTland. An alternative to computing the response 
terms directly is to use the feedback parameter, α (Hansen et al., 2005b; 
Sherwood et al., 2015; Tang et al., 2019). This gives approximately 
double the correction compared to the kernel approach (Tang et al., 
2019). The response to land surface temperature change varies with 
location and even for GSAT change k is not expected to be the same 
as α (Section 7.4). One study where land surface temperatures are 
constrained in a model (Andrews et al., 2021) finds this constraint 
adds +1.0 W m–2 to ΔFfsst for 4×CO2, thus confirming the need for 
a  correction in calculations where this constraint is not applied. 
For this assessment the correction is conservatively based only on 
the direct radiative response kernel to ΔTland as this has a  strong 
theoretical basis to support it. While there is currently insufficient 
corroborating evidence to recommend including tropospheric 
temperature and water-vapour corrections in this assessment, it is 
noted that the science is progressing rapidly on this topic.

TOA radiative flux changes due to the individual adjustments can be 
calculated by perturbing the meteorological fields in a climate model’s 
radiative transfer scheme (partial radiative perturbation approach) 
(Colman, 2015; Mülmenstädt et al., 2019) or by using precomputed 
radiative kernels of sensitivities of the TOA radiation fluxes to 
changes in these fields (as done for near-surface temperature change 
above; Vial et al., 2013; Zelinka et al., 2014; Zhang and Huang, 2014; 
Smith et al., 2018b, 2020b). The radiative kernel approach is easier to 
implement through post-processing of output from multiple ESMs, 
whereas it is recognized that the partial radiation perturbation 
approach gives a more accurate estimate of the adjustments within 
the setup of a  single model and its own radiative transfer code. 
There  is little difference between using a  radiative kernel from the 
same or a different model when calculating the adjustment terms, 
except for stratospheric temperature adjustments where it is 
important to have sufficient vertical resolution in the stratosphere 
in the model used to derive the kernel (Smith et al., 2018b, 2020a).

For comparison with offline radiative transfer calculations the SARFs 
can be approximated by removing the adjustment terms (apart from 
stratospheric temperature) from the ERFs using radiative kernels to 
quantify the adjustment for each meteorological variable. Kernel 
analysis by Chung and Soden (2015) suggested a  large spread in 
CO2 SARF across climate models, but their analysis was based on 
regressing variables in a  coupled-ocean experiment rather than 
using a fSST approach which leads to a large spread due to natural 
variability (Forster et al., 2016). Adjustments computed from radiative 
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kernels are shown for seven different climate drivers (using a  fSST 
approach) in Figure  7.4. Table  7.2 shows the estimates of SARF, 
ΔFfsst and ERF (corrected for land surface temperature change) for 
2×CO2 from the nine climate models analysed in Smith et al. (2018b). 
The  SARF shows a  smaller spread over previous studies (Pincus 
et  al., 2016; Soden et  al., 2018) and most estimates are within 
10% of the multi-model mean and the assessment of 2×CO2 SARF 
in Section 7.3.2 (3.75 W m–2). It is not possible from these studies to 
determine how much of this reduction in spread is due to convergence 
in the model radiation schemes or the meteorological conditions 
of the model base states; nevertheless the level of agreement in 
this and earlier intercomparisons gives medium confidence in the 
ability of ESMs to represent radiative forcing from CO2. The 4×CO2 
CMIP6 fSST experiments (Smith et  al., 2020b) in Table  7.2 include 
ESMs with varying levels of complexity in aerosols and reactive 
gas chemistry. The CMIP6 experimental setup allows for further 
climate effects of CO2 (including on aerosols and ozone) depending 
on model complexity. The chemical effects are adjustments to CO2 
but are not separable from the SARF in the diagnosis in Table 7.2. 
In these particular models, this leads to higher SARF than when only 
CO2 varies, however there are insufficient studies to make a formal 
assessment of composition adjustments to CO2.

Table 7.2 | SARF, ΔFfsst, and ERF diagnosed from Earth system models for 
fixed-SST (fSST) CO2 experiments. 2×CO2 data taken from fixed atmospheric 
composition experiments (Smith et  al., 2018b). 4×CO2 data taken from CMIP6 
experiments with interactive aerosols (and interactive gas phase chemistry in some; 
Smith et al., 2020b). The radiative forcings from the 4×CO2 experiments are scaled by 
0.476 for comparison with 2×CO2 (Meinshausen et al., 2020). SARF is approximated 
by removing the (non-stratospheric-temperature) adjustment terms from the ERF. 
In Smith et al. (2018b), separation of temperature adjustments into tropospheric and 
stratospheric contributions is approximate based on a fixed tropopause of 100 hPa at 
the equator, varying linearly in latitude to 300 hPa at the poles. In Smith et al. (2020b), 
this separation is based on the model-diagnosed tropopause. ERF is approximated by 
removing the response to land surface temperature change from ΔFfsst. The confidence 
range is based on the inter-model standard deviation.

2×CO2 
Experiments
(Smith et al., 

2018b)

Stratospheric- 
temperature-

adjusted 
Radiative Forcing 

(SARF, W m–2)

ΔFfsst 

(W m–2)

Effective 
Radiative 
Forcing  

(ERF, W m–2)

HadGEM2-ES 3.45 3.37 3.58

NorESM1 3.67 3.50 3.70

GISS-E2-R 3.98 4.06 4.27

CanESM2 3.68 3.57 3.77

MIROC-SPRINTARS 3.89 3.62 3.82

NCAR-CESM1-CAM5 3.89 4.08 4.39

HadGEM3 3.48 3.64 3.90

IPSL-CM5A 3.50 3.39 3.61

MPI-ESM 4.27 4.14 4.38

NCAR-CESM1-CAM4 3.50 3.62 3.86

Multi-model 
mean and 5–95% 
confidence range

3.73 ± 0.44 3.70 ± 0.44 3.93 ± 0.48

0.476 × 4×CO2 
Experiments
(Smith et al., 

2020b)

Stratospheric- 
temperature-

adjusted 
Radiative Forcing 

(SARF, W m–2)

ΔFfsst 

(W m–2)

Effective 
Radiative 
Forcing  

(ERF, W m–2)

ACCESS-CM2 3.56 3.78 3.98

CanESM5 3.67 3.62 3.82

CESM2 3.56 4.24 4.48

CNRM-CM6-1 3.99 3.81 4.01

CNRM-ESM2-1 3.99 3.77 3.94

EC-Earth3 3.85 4.04

GFDL-CM4 3.65 3.92 4.10

GFDL-ESM4 3.27 3.68 3.85

GISS-E2-1-G 3.78 3.50 3.69

HadGEM3-GC31-LL 3.61 3.85 4.07

IPSL-CM6A-LR 3.84 3.81 4.05

MIROC6 3.63 3.48 3.69

MPI-ESM1-2-LR 3.74 3.97 4.20

MRI-ESM2-0 3.76 3.64 3.80

NorESM2-LM 3.58 3.88 4.10

NorESM2-MM 3.62 3.99 4.22

UKESM1-0-LL 3.49 3.78 4.01

Multi-model 
mean and 5–95% 
confidence range

3.67 ± 0.29 3.80 ± 0.30 4.00 ± 0.32 

Figure 7.4 | Radiative adjustments at top of atmosphere for seven different 
climate drivers as a proportion of forcing. Tropospheric temperature (orange), 
stratospheric temperature (yellow), water vapour (blue), surface albedo (green), 
clouds (grey) and the total adjustment (black) is shown. For the greenhouse gases 
(carbon dioxide, methane, nitrous oxide and CFC-12) the adjustments are expressed 
as a  percentage of stratospheric-temperature-adjusted radiative forcing (SARF), 
whereas for aerosol, solar and volcanic forcing they are expressed as a percentage 
of instantaneous radiative forcing (IRF). Land surface temperature response (outline 
red bar) is shown, but included in the definition of forcing. Data from Smith et al. 
(2018b) for carbon dioxide and methane; Smith et al. (2018b) and Gray et al. (2009) 
for solar; Hodnebrog et al. (2020b) for nitrous oxide and CFC-12; Smith et al. (2020b) 
for aerosol, and Marshall et al. (2020) for volcanic. Further details on data sources and 
processing are available in the chapter data table (Table 7.SM.14).
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ERFs have been found to yield more consistent values of GSAT change 
per unit forcing than SARF, that is, α shows less variation across different 
forcing agents (Rotstayn and Penner, 2001; Shine et al., 2003; Hansen 
et  al., 2005b; Marvel et  al., 2016; Richardson et  al., 2019). Having 
a consistent relationship between forcing and response is advantageous 
when making climate projections using simple models (Cross-Chapter 
Box 7.1) or emissions metrics (Section 7.6). The definition of ERF used in 
this assessment, which excludes the radiative response to land surface 
temperature changes, brings the α values into closer agreement than 
when SARF is used (Richardson et al., 2019), although for individual 
models there are still variations, particularly for more geographically 
localized forcing agents. However, even for ERF, studies find that 
α  is not identical across all forcing agents (Shindell, 2014; Shindell 
et al., 2015; Modak et al., 2018; Modak and Bala, 2019; Richardson 
et al., 2019). Section 7.4.4 discusses the effect of different SST response 
patterns on α. Analysis of the climate feedbacks (Kang and Xie, 2014; 
Gregory et  al., 2016, 2020; Marvel et  al., 2016; Duan et  al., 2018; 
Persad and Caldeira, 2018; Stuecker et al., 2018; Krishnamohan et al., 
2019) suggests a  weaker feedback (i.e., less-negative α) and hence 
larger sensitivity for forcing of the higher latitudes (particularly the 
Northern Hemisphere). Nonetheless, as none of these variations are 
robust across models, the ratio of 1/α  from non-CO2 forcing agents 
(with approximately global distributions) to that from doubling CO2 is 
within 10% of unity.

In summary, this Report adopts an estimate of ERF based on the 
change in TOA radiative fluxes in the absence of GSAT changes. 
This allows for a  theoretically cleaner separation between forcing 
and feedbacks in terms of factors respectively unrelated and related 
to GSAT change (Box  7.1). ERF can be computed from prescribed 
SST and sea ice experiments after removing the TOA energy budget 
change associated with the land surface temperature response. 
In  this assessment this is removed using a  kernel accounting only 
for the direct radiative effect of the land surface temperature 
response. To compare these results with sophisticated high spectral 
resolution radiative transfer models the individual tropospheric 
adjustment terms can be removed to leave the SARF. SARFs for 
2×CO2 calculated by ESMs from this method agree within 10% with 
the more sophisticated models. The new studies highlighted above 
suggest that physical feedback parameters computed within this 
framework have less variation across forcing agents. There is high 
confidence that an α based on ERF as defined here varies by less 
(less than variation 10% across a range of forcing agents with global 
distributions), than α based on SARF. For geographically localized 
forcing agents there are fewer studies and less agreement between 
them, resulting in low confidence that ERF is a suitable estimator of 
the resulting global mean near-surface temperature response.

7.3.2 Greenhouse Gases

High spectral resolution radiative transfer models provide the most 
accurate calculations of radiative perturbations due to greenhouse 
gases (GHGs), with errors in the instantaneous radiative forcing (IRF) 
of less than 1% (Mlynczak et al., 2016; Pincus et al., 2020). They can 
calculate IRFs with no adjustments, or SARFs by accounting for the 
adjustment of stratospheric temperatures using a  fixed dynamical 

heating. It is not possible with offline radiation models to account 
for other adjustments. The high-resolution model calculations of 
SARF for carbon dioxide, methane and nitrous oxide have been 
updated since AR5, which were based on Myhre et al. (1998). The 
new calculations include the shortwave forcing from methane and 
updates to the water vapour continuum (increasing the total SARF 
of methane by 25%) and account for the absorption band overlaps 
between carbon dioxide and nitrous oxide (Etminan et  al., 2016). 
The  associated simplified expressions, from a  re-fitting of the 
Etminan et al. (2016) results by Meinshausen et al. (2020), are given 
in Supplementary Material, Table 7.SM.1. The shortwave contribution 
to the IRF of methane has been confirmed independently (Collins 
et al., 2018). Since they incorporate known missing effects we assess 
the new calculations as being a  more appropriate representation 
than Myhre et al. (1998).

As described in Section  7.3.1, ERFs can be estimated using ESMs, 
however the radiation schemes in climate models are approximations 
to high spectral resolution radiative transfer models with variations 
and biases in results between the schemes (Pincus et  al., 2015). 
Hence ESMs alone are not sufficient to establish ERF best estimates 
for the well-mixed GHGs (WMGHGs). This assessment therefore 
estimates ERFs from a combined approach that uses the SARF from 
radiative transfer models and adds the tropospheric adjustments 
derived from ESMs.

In AR5, the main information used to assess components of ERFs 
beyond SARF was from Vial et  al. (2013) who found a  near-zero 
non-stratospheric adjustment (without correcting for near-surface 
temperature changes over land) in 4×CO2 CMIP5 model experiments, 
with an uncertainty of ±10% of the total CO2 ERF. No calculations 
were available for other WMGHGs, so ERF was therefore assessed to 
be approximately equal to SARF (within 10%) for all WMGHGs.

The effect of WMGHGs in ESMs can extend beyond their direct 
radiative effects to include effects on ozone and aerosol chemistry and 
natural emissions of ozone and aerosol precursors, and in the case of 
CO2 to vegetation cover through physiological effects. In some cases 
these can have significant effects on the overall radiative budget 
changes from perturbing WMGHGs within ESMs (Myhre et al., 2013b; 
Zarakas et al., 2020; O’Connor et al., 2021; Thornhill et al., 2021a). 
These composition adjustments are further discussed in Chapter  6 
(Section 6.4.2).

7.3.2.1 Carbon Dioxide (CO2)

The SARF for carbon dioxide (CO2) has been slightly revised due to 
updates to spectroscopic data and inclusion of the absorption band 
overlaps between N2O and CO2 (Etminan et al., 2016). The formulae 
fitting to the Etminan et  al. (2016) results in Meinshausen et  al. 
(2020) are used. This increases the SARF due to doubling CO2 slightly 
from 3.71 W m–2 in AR5 to 3.75 W m–2. Tropospheric responses to 
CO2 in fSST experiments have been found to lead to an approximate 
balance in their radiative effects between an increased radiative 
forcing due to water vapour, cloud and surface-albedo adjustments 
and a  decrease due to increased tropospheric temperature and 
land surface temperature response (Table  7.3; Vial et  al., 2013; 
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Zhang  and  Huang, 2014; Smith et  al., 2018b, 2020b). The ΔFfsst 
includes any effects represented within the ESMs on tropospheric 
adjustments due to changes in evapotranspiration or leaf area 
(mainly affecting surface and boundary-layer temperature, low-cloud 
amount, and albedo) from the CO2-physiological effects (Doutriaux-
Boucher et al., 2009; Cao et al., 2010; T.B. Richardson et al., 2018). 
The effect on surface temperature (negative longwave response) is 
consistent with the expected physiological responses and needs to 
be removed for consistency with the ERF definition. The split between 
surface and tropospheric temperature responses was not reported in 
Vial et al. (2013) or Zhang and Huang (2014) but the total of surface 
and tropospheric temperature response agrees with Smith et  al. 
(2018b, 2020b), giving medium confidence in this decomposition. 
Doutriaux-Boucher et al. (2009) and Andrews et al. (2021) (using the 
same land surface model) find a 13% and 10% increase respectively 
in ERF due to the physiological responses to CO2. The physiological 
adjustments are therefore assessed to make a substantial contribution 
to the overall tropospheric adjustment for CO2 (high confidence), 
but there is insufficient evidence to provide a quantification of the 
split between physiological and thermodynamic adjustments. These 
forcing adjustments due to the effects of CO2 on plant physiology 
differ from the biogeophysical feedbacks due to the effects of 
temperature changes on vegetation discussed in Section  7.4.2.5. 
The adjustment is assumed to scale with the SARF in the absence of 
evidence for non-linearity. The tropospheric adjustment is assessed 
from Table 7.3 to be +5% of the SARF with an uncertainty of 5%, 
which is added to the Meinshausen et al. (2020) formula for SARF. 
Due to the agreement between the studies and the understanding 
of the physical mechanisms there is medium confidence in the 
mechanisms underpinning the tropospheric adjustment, but low 
confidence in its magnitude.

The ERF from doubling CO2 (2×CO2) from the 1750 level (278 ppm; 
Section 2.2.3.3) is assessed to be 3.93 ± 0.47 W m–2 (high confidence). 
Its assessed components are given in Table  7.4. The combined 
spectroscopic and radiative transfer modelling uncertainties give an 
uncertainty in the CO2 SARF of around 10% or less (Etminan et al., 
2016; Mlynczak et al., 2016). The overall uncertainty in CO2 ERF is 
assessed as ±12%, as the more uncertain adjustments only account 
for a small fraction of the ERF (Table 7.3). The 2×CO2 ERF estimate 
is 0.2 W m–2 larger than using the AR5 formula (Myhre et al., 2013b) 
due to the combined effects of tropospheric adjustments which were 
assumed to be zero in AR5. CO2 concentrations have increased from 
278 ppm in 1750 to 410 ppm in 2019 (Section 2.2.3.3). The historical 
ERF estimate from CO2 is revised upwards from the AR5 value of 
1.82 ± 0.38 W m–2 (1750–2011) to 2.16 ± 0.26 W m–2 (1750–2019) in 
this assessment, from a combination of the revisions described above 
(0.06 W m–2) and the 19 ppm rise in atmospheric concentrations 
between 2011 and 2019 (0.27 W m–2). The ESM estimates of 2×CO2 
ERF (Table 7.2) lie within ±12% of the assessed value (apart from 
CESM2). The definition of ERF can also include further physiological 
effects – for instance on dust, natural fires and biogenic emissions 
from the land and ocean – but these are not typically included in the 
modelling setup for 2×CO2 ERF.

7.3.2.2 Methane (CH4)

The SARF for methane (CH4) has been substantially increased 
due to updates to spectroscopic data and inclusion of shortwave 
absorption (Etminan et al., 2016). Adjustments have been calculated 
in nine climate models by Smith et al. (2018b). Since CH4 is found 
to absorb in the shortwave near infrared, only adjustments from 
those models including this absorption are taken into account. 

Table 7.3 | Adjustments to the top-of-atmosphere (TOA) carbon dioxide forcing due to changes in stratospheric temperature, surface and tropospheric 
temperatures, water vapour, clouds, and surface albedo, as a  fraction of the stratospheric-temperature-adjusted radiative forcing (SARF). Effective 
radiative forcing (ERF) is defined in this Report as excluding the surface temperature response.

Percentage of SARF 
(source study)

Surface 
Temperature 

Tropospheric 
Temperature 

Stratospheric
Temperature

Surface 
Albedo 

Water 
Vapour 

Clouds
Troposphere
(Including 
Surface)

Troposphere
(Excluding 
Surface)

Vial et al. (2013) –20% combined N/A 2% 6% 11% –1% N/A

Zhang and Huang (2014) –23% combined 26% N/A 6% 16% –1% N/A

Smith et al. (2018b) –6% –16% 30% 3% 6% 12% –1% +5%

Smith et al. (2020b) –6% –15% 35% 3% 6% 15% +3% +9%

Table 7.4 | Assessed effective radiative forcing (ERF), stratospheric-temperature-adjusted radiative forcing (SARF) and tropospheric adjustments to 
2×CO2 change since pre-industrial times compared to the AR5 assessed range (Myhre et al., 2013b). Adjustments are due to changes in tropospheric temperatures, 
water vapour, clouds and surface albedo and land cover and are taken from Smith et al. (2018b) and assessed as a percentage of SARF (Table 7.3). Uncertainties are based on 
multi-model spread in Smith et al. (2018b). Note some of the uncertainties are anticorrelated, which means that they do not sum linearly.

2×CO2 Forcing
AR5

SARF/ERF 
(W m–2)

SARF
(W m–2)

Tropospheric 
Temperature 
Adjustment 

(W m–2)

Water 
Vapour 

Adjustment 
(W m–2)

Cloud 
Adjustment 

(W m–2)

Surface 
Albedo and 
Land-cover 
Adjustment 

(W m–2)

Total 
Tropospheric 
Adjustment 

(W m–2)

ERF 
(W m–2)

2×CO2 ERF components 3.71 3.75 –0.60 0.22 0.45 0.11 0.18 3.93

5–95% uncertainty ranges 
as percentage of ERF

10% (SARF)
20% (ERF)

<10% ±6% ±4% ±7% ±2% ±7% ±12%
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For these models  the adjustments act to reduce the ERF because 
the shortwave absorption leads to tropospheric heating and 
reductions in upper tropospheric cloud amounts. The adjustment 
is –14% ± 15%, which counteracts much of the increase in SARF 
identified by Etminan et al. (2016). Modak et al. (2018) also found 
negative forcing adjustments from a methane perturbation including 
shortwave absorption in the NCAR CAM5 model, in agreement with 
the above assessment. The uncertainty in the shortwave component 
leads to a higher radiative modelling uncertainty (14%) than for CO2 

(Etminan et al., 2016). When combined with the uncertainty in the 
adjustment, this gives an overall uncertainty of ±20%. There is high 
confidence in the spectroscopic revision but only medium confidence 
in the adjustment modification. CH4 concentrations have increased 
from 729 ppb in 1750 to 1866 ppb in 2019 (Section  2.2.3.3). 
The  historical ERF estimate from AR5 of 0.48 ± 0.10  W m–2 
(1750–2011) is revised to 0.54 ± 0.11 W m–2 (1750 to 2019) in this 
assessment from a combination of spectroscopic radiative efficiency 
revisions (+0.12 W m–2), adjustments (–0.08 W m–2) and the 63 ppb 
rise in atmospheric CH4 concentrations between 2011 and 2019 
(+0.03 W m–2). As the adjustments are assessed to be small, there 
is high confidence in the overall assessment of ERF from methane. 
Increased methane leads to tropospheric ozone production and 
increased stratospheric water vapour, so that an attribution of forcing 
to methane emissions gives a larger effect than that directly from the 
methane concentration itself. This is discussed in detail in Chapter 6 
(Section 6.4.2) and shown in Figure 6.12.

7.3.2.3 Nitrous oxide (N2O)

The tropospheric adjustments to nitrous oxide (N2O) have been 
calculated from 5 ESMs as 7% ± 13% of the SARF (Hodnebrog et al., 
2020b). This value is therefore taken as the assessed adjustment, but 
with low confidence. The radiative modelling uncertainty is ±10% 
(Etminan et al., 2016), giving an overall uncertainty of ±16%. Nitrous 
oxide concentrations have increased from 270 ppb in 1750 to 332 ppb 
in 2019 (Section  2.2.3.3). The historical ERF estimate from N2O is 
revised upwards from 0.17 ± 0.06 W m–2 (1750–2011) in AR5 to 
0.21 ± 0.03 W m–2 (1750–2019) in this assessment, of which 0.02 W m–2 
is due to the 7 ppb increase in concentrations, and 0.02 W m–2 to the 
tropospheric adjustment. As the adjustments are assessed to be small 
there remains high confidence in the overall assessment.

Increased nitrous oxide leads to ozone depletion in the upper 
stratosphere which will make a  positive contribution to the 
direct ERF here (Section  6.4.2 and Figure  6.12) when considering 
emissions-based estimates of ERF.

7.3.2.4 Halogenated Species

The stratospheric-temperature-adjusted radiative efficiencies (SARF 
per ppb increase in concentration) for halogenated compounds 
are reviewed extensively in Hodnebrog et al. (2020a), an update to 
those used in AR5. Many halogenated compounds have lifetimes 
short enough that they can be considered short-lived climate forcers 
(SLCFs; Table 6.1). As such, they are not completely ‘well-mixed’ and 
their vertical distributions are taken into account when determining 
their radiative efficiencies. The World Meteorological Organization 

(WMO, 2018) updated the lifetimes of many halogenated compounds 
and these were used in Hodnebrog et al. (2020a).

The tropospheric adjustments to chlorofluorocarbons (CFCs), 
specifically CFC-11 and CFC-12, have been quantified as 13% ± 10% 
and 12% ± 14% of the SARF, respectively (Hodnebrog et al., 2020b). 
The assessed adjustment to CFCs is therefore 12% ± 13% with 
low confidence due to the lack of corroborating studies. There have 
been no calculations for other halogenated species so for these the 
tropospheric adjustments are therefore assumed to be 0 ±  13% 
with low confidence. The radiative modelling uncertainties are 
14% and 24% for compounds with lifetimes greater than and less 
than five  years, respectively (Hodnebrog et  al., 2020a). The overall 
uncertainty in the ERFs of halogenated compounds is therefore 
assessed to be 19% and 26% depending on the lifetime. The ERF 
from CFCs is slowly decreasing, but this is compensated for by the 
increased forcing from the replacement species (HCFCs and HFCs). 
The ERF from HFCs has increased by 0.028 ± 0.05 W m–2. Thus, the 
concentration changes mean that the total ERF from halogenated 
compounds has increased since AR5 from 0.360 ± 0.036 W m–2 
to 0.408 ± 0.078 W m–2 (Table 7.5). Of this, 0.034 W m–2 is due to 
increased radiative efficiencies and tropospheric adjustments, and 
0.014 W m–2 is due to increases in concentrations. As the adjustments 
are assessed to be small there remains high confidence in the 
overall assessment.

Halogenated compounds containing chlorine and bromine lead 
to ozone depletion in the stratosphere which will reduce the 
associated ERF (Morgenstern et  al., 2020). Chapter  6 (Section  6.4 
and Figure 6.12) assesses the ERF contributions due to the chemical 
effects of reactive gases.

7.3.2.5 Ozone

Estimates of the pre-industrial to present-day tropospheric ozone 
radiative forcing are based entirely on models. The lack of pre-industrial 
ozone measurements prevents an observational determination. There 
have been limited studies of ozone ERFs (MacIntosh et  al., 2016; 
Xie et  al., 2016; Skeie et  al., 2020). Skeie et  al. (2020) found little 
net contribution to the ERF from tropospheric adjustment terms for 
1850–2000 change in ozone (tropospheric and stratospheric ozone 
combined), although MacIntosh et al. (2016) suggested that increases 
in stratospheric or upper tropospheric ozone reduces high-cloud 
and increases low-cloud, whereas an increase in lower tropospheric 
ozone reduces low-cloud. Further studies suggest that changes in 
circulation due to decreases in stratospheric ozone affect Southern 
Hemisphere clouds and the atmospheric levels of sea salt aerosol 
that would contribute additional adjustments, possibly of comparable 
magnitude to the SARF from stratospheric ozone depletion (Grise 
et al., 2013, 2014; Xia et al., 2016, 2020). ESM responses to changes 
in ozone-depleting substances (ODS) in CMIP6 show a much more 
negative ERF than would be expected from offline calculations 
of SARF (Morgenstern et  al., 2020; Thornhill et  al., 2021b) again 
suggesting a negative contribution from adjustments. However there 
is insufficient evidence available to quantify this effect.

https://doi.org/10.1017/9781009157896.009
Downloaded from https://www.cambridge.org/core. IP address: 176.165.113.174, on 19 Oct 2024 at 05:27:05, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://doi.org/10.1017/9781009157896.009
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


947

The Earth’s Energy Budget, Climate Feedbacks and Climate Sensitivity Chapter 7

7

Without sufficient information to assess whether the ERFs differ 
from SARF, this assessment relies on offline radiative transfer 
calculations of SARF for both tropospheric and stratospheric 
ozone. Checa-Garcia et  al. (2018) found SARF of 0.30 W m–2 for 
changes in ozone (1850–1860 to 2009–2014). These were based 
on precursor emissions and ODS concentrations from the Coupled 
Chemistry Model Initiative (CCMI) project (Morgenstern et al., 2017). 
Skeie et al. (2020) calculated an ozone SARF of 0.41 ± 0.12 W m–2 
(1850–2010; from five climate models and one chemistry transport 
model) using CMIP6 precursor emissions and ODS concentrations 
(excluding models without fully interactive ozone chemistry and 
one model with excessive ozone depletion). The ozone precursor 
emissions are higher in CMIP6 than in CCMI, which explains much of 
the increase compared to Checa-Garcia et al. (2018).

Previous assessments have split the ozone forcing into tropospheric 
and stratospheric components. This does not correspond to the division 
between ozone production and ozone depletion and is sensitive to 
the choice of tropopause (high confidence) (Myhre et  al., 2013b). 
The  contributions to total SARF in CMIP6 (Skeie et  al., 2020) are 
0.39 ± 0.07 and 0.02 ± 0.07 W m–2 for troposphere and stratosphere 
respectively (using a  150 ppb ozone tropopause definition). This 
small positive (but with uncertainty encompassing negative values) 
stratospheric ozone SARF is due to contributions from ozone 
precursors to lower stratospheric ozone and some of the CMIP6 models 
showing ozone depletion in the upper stratosphere, where depletion 
contributes a positive radiative forcing (medium confidence).

As there is insufficient evidence to quantify adjustments, for total 
ozone the assessed central estimate for ERF is assumed to be equal 
to SARF (low confidence) and follows Skeie et al. (2020), since that 
study uses the most recent emissions data. The dataset is extended 
over the entire historical period following Skeie et  al. (2020), 
with a  SARF for 1750–1850 of 0.03 W m–2 and for 2010–2018 of 
0.03 W m–2, to give 0.47 [0.24 to 0.70] W m–2 for 1750–2019. This 
maintains the 50% uncertainty (5–95% range) from AR5 which is 
largely due to the uncertainty in pre-industrial emissions (Rowlinson 
et al., 2020). There is also high confidence that this range includes 
uncertainty due to the adjustments. The CMIP6 SARF is more positive 
than the AR5 value of 0.31 W m–2 for the period 1850–2011 (Myhre 
et al., 2013b) which was based on the Atmospheric Chemistry and 
Climate Intercomparison Project (ACCMIP; Shindell et al., 2013). The 
assessment is sensitive to the assumptions on precursor emissions 
used to drive the models, which are larger in CMIP6 than ACCMIP.

In summary, although there is insufficient evidence to quantify 
adjustments, there is high confidence in the assessed range of ERF 
for ozone changes over the 1750–2019 period, giving an assessed 
ERF of 0.47 [0.24 to 0.70] W m–2.

7.3.2.6 Stratospheric Water Vapour

This section considers direct anthropogenic effects on stratospheric 
water vapour by oxidation of methane. Since AR5 the SARF from 
methane-induced stratospheric water vapour changes has been 
calculated in Winterstein et al., 2019, corresponding to 0.09 W m –2 
when scaling to 1850 to 2014 methane changes. This is marginally 
larger than the AR5 assessed value of 0.07 ± 0.05 W m–2 (Myhre 
et  al., 2013b). Wang and Huang (2020) quantified the adjustment 
terms to a stratospheric water vapour change equivalent to a forcing 
from a 2×CO2 warming (which has a different vertical profile). They 
found that the ERF was less than 50% of the SARF due to high-cloud 
decrease and upper tropospheric warming. The assessed ERF is 
therefore 0.05 ± 0.05 W m–2 with a lower limit reduced to zero and 
the central value and upper limit reduced to allow for adjustment 
terms. This still encompasses the two recent SARF studies. There is 
medium confidence in the SARF from agreement with the recent 
studies and AR5. There is low confidence in the adjustment terms.

Stratospheric water vapour may also change as an adjustment to 
species that warm or cool the upper troposphere–lower stratosphere 
region (Forster and Joshi, 2005; Stuber et al., 2005), in which case it 
should be included as part of the ERF for that compound. Changes in 
GSAT are also associated with changes in stratospheric water vapour 
as part of the water-vapour–climate feedback (Section 7.4.2.2).

7.3.2.7 Synthesis

The ERF of GHGs (excluding ozone and stratospheric water vapour) 
over 1750–2019 is assessed to be 3.32 ± 0.29 W m–2. It has 
increased by 0.49 W m–2 compared to AR5 (reference year 2011) 
(high confidence). Most of this has been due to an increase in CO2 
concentration since 2011 [0.27 ± 0.03] W m–2, with concentration 
increases in CH4, N2O and halogenated compounds adding 0.02, 
0.02 and 0.01 W m–2 respectively (Table  7.5). Changes in the 
radiative efficiencies (including adjustments) of CO2, CH4, N2O and 
halogenated compounds have increased the ERF by an additional 
0.15 W m–2 compared to the AR5 values (high confidence). Note 
that the ERFs in this section do not include chemical effects of 
GHGs on production or destruction of ozone or aerosol formation 
(Section 6.2.2). The ERF for ozone is considerably increased compared 
to AR5 due to an increase in the assumed ozone precursor emissions 
in CMIP6 compared to CMIP5, and better accounting for the effects 
of both ozone precursors and ODSs in the stratosphere. The ERF for 
stratospheric water vapour is slightly reduced. The combined ERF 
from ozone and stratospheric water vapour has increased since AR5 
by 0.10 ± 0.50 W m–2 (high confidence), although the uncertainty 
ranges still include the AR5 values.
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7.3.3 Aerosols

Anthropogenic activity, and particularly burning of biomass 
and fossil fuels, has led to a  substantial increase in emissions of 
aerosols and their precursors, and thus to increased atmospheric 
aerosol concentrations since the pre-industrial era (Sections 2.2.6 
and 6.3.5, and Figure 2.9). This is particularly true for sulphate and 
carbonaceous aerosols (Section 6.3.5). This has in turn led to changes 
in the scattering and absorption of incoming solar radiation, and also 
affected cloud micro- and macro-physics and thus cloud radiative 
properties. Aerosol changes are heterogeneous in both space and 
time and have impacted not just Earth’s radiative energy budget but 
also air quality (Sections 6.1.1 and 6.6.2). Here, the assessment is 
focused exclusively on the global mean effects of aerosols on Earth’s 
energy budget, while regional changes and changes associated 

with individual aerosol compounds are assessed in Chapter  6 
(Sections 6.4.1 and 6.4.2).

Consistent with the terminology introduced in Box  7.1, the ERF 
due to changes from direct aerosol–radiation interactions (ERFari) 
is equal to the sum of the instantaneous top-of-atmosphere (TOA) 
radiation change (IRFari) and the subsequent adjustments. Likewise, 
the ERF following interactions between anthropogenic aerosols and 
clouds (ERFaci, referred to as ‘indirect aerosol effects’ in previous 
assessment reports) can be divided into an instantaneous forcing 
component (IRFaci) due to changes in cloud droplet (and indirectly 
also ice crystal) number concentrations and sizes, and the subsequent 
adjustments of cloud water content or extent. While these changes 
are thought to be induced primarily by changes in the abundance 
of cloud condensation nuclei (CCN), a  change in the number of 

Table 7.5 | Present-day mole fractions in parts per trillion (pmol mol–1), except where specified, and effective radiative forcing (ERF, in W m–2) for 
the well-mixed greenhouse gases (WMGHGs). Data taken from Chapter 2 (Section 2.2.3). The data for 2011 (the time of the AR5 estimates) are also shown. Some of the 
concentrations vary slightly from those reported in AR5 owing to averaging different data sources. Individual species are reported where 1750–2019 ERF is at least 0.001 W m–2. 
Radiative efficiencies for the minor gases are given in Supplementary Material, Table 7.SM.7. Uncertainties in the ERF for all gases are dominated by the uncertainties in the 
radiative efficiencies. Tabulated global mixing ratios of all WMGHGs and ERFs from 1750 to 2019 are provided in Annex III.

Concentration ERF with Respect to 1850 ERF with Respect to 1750

2019 2011 1850 1750 2019 2011 2019 2011

CO2 (ppm) 409.9 390.5 285.5 278.3 2.012 ± 0.241 1.738 2.156 ± 0.259 1.882

CH4 (ppb) 1866.3 1803.3 807.6 729.2 0.496 ± 0.099 0.473 0.544 ± 0.109 0.521

N2O (ppb) 332.1 324.4 272.1 270.1 0.201 ± 0.030 0.177 0.208 ± 0.031 0.184

HFC-134a 107.6 62.7 0.0 0.0 0.018 0.010 0.018 0.010

HFC-23 32.4 24.1 0.0 0.0 0.006 0.005 0.006 0.005

HFC-32 20.0 4.7 0.0 0.0 0.002 0.001 0.002 0.001

HFC-125 29.4 10.3 0.0 0.0 0.007 0.002 0.007 0.002

HFC-143a 24.0 12.0 0.0 0.0 0.004 0.002 0.004 0.002

SF6 10.0 7.3 0.0 0.0 0.006 0.004 0.006 0.004

CF4 85.5 79.0 34.0 34.0 0.005 0.004 0.005 0.004

C2F6 4.8 4.2 0.0 0.0 0.001 0.001 0.001 0.001

CFC-11 226.2 237.3 0.0 0.0 0.066 0.070 0.066 0.070

CFC-12 503.1 528.6 0.0 0.0 0.180 0.189 0.180 0.189

CFC-113 69.8 74.6 0.0 0.0 0.021 0.022 0.021 0.022

CFC-114 16.0 16.3 0.0 0.0 0.005 0.005 0.005 0.005

CFC-115 8.7 8.4 0.0 0.0 0.002 0.002 0.002 0.002

HCFC-22 246.8 213.2 0.0 0.0 0.053 0.046 0.053 0.046

HCFC-141b 24.4 21.4 0.0 0.0 0.004 0.003 0.004 0.003

HCFC-142b 22.3 21.2 0.0 0.0 0.004 0.004 0.004 0.004

CCl4 77.9 86.1 0.0 0.0 0.013 0.014 0.013 0.014

Sum of HFCs (HFC-134a equivalent) 237.1 128.6 0.0 0.0 0.040 0.022 0.040 0.022

Sum of CFCs+HCFCs+other ozone 
depleting gases covered by the 
Montreal Protocol (CFC-12 equivalent)

1031.9 1050.1 0.0 0.0 0.354 0.362 0.354 0.362

Sum of PFCs (CF4 equivalent) 109.4 98.9 34.0 34.0 0.007 0.006 0.007 0.006

Sum of Halogenated species 0.408 ±0.078 0.394 0.408 ±0.078 0.394

Total 3.118 ±0.258 2.782 3.317 ±0.278 2.981
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ice nucleating particles (INPs) in the atmosphere may also have 
occurred, and thereby contributed to ERFaci by affecting properties of 
mixed-phase and cirrus (ice) clouds. In the following, an assessment 
of IRFari and ERFari (Section  7.3.3.1) focusing on observation-
based (Section 7.3.3.1.1) as well as model-based (Section 7.3.3.1.2) 
evidence is presented. The same lines of evidence are presented 
for IRFaci and ERFaci in Section 7.3.3.2. These lines of evidence are 
then compared with TOA energy budget constraints on the total 
aerosol ERF (Section  7.3.3.3) before an overall assessment of the 
total aerosol ERF is given in Section  7.3.3.4. For the model-based 
evidence, all estimates are generally valid for 2014 relative to 1750 
(the time period spanned by CMIP6 historical simulations), while for 
observation-based evidence the assessed studies use slightly different 
end points, but they all generally fall within a decade (2010–2020).

7.3.3.1 Aerosol–Radiation Interactions

Since AR5, deeper understanding of the processes that govern 
aerosol radiative properties, and thus IRFari, has emerged. Combined 
with new insights into adjustments to aerosol forcing, this progress 
has informed new observation- and model-based estimates of ERFari 
and associated uncertainties.

7.3.3.1.1 Observation-based lines of evidence

Estimating IRFari requires an estimate of industrial-era changes in 
aerosol optical depth (AOD) and absorption AOD, which are often 
taken from global aerosol model simulations. Since AR5, updates 
to methods of estimating IRFari based on aerosol remote sensing 
or data-assimilated reanalyses of atmospheric composition have 
been published. Ma et  al. (2014) applied the method of Quaas 
et  al. (2008) to updated broadband radiative flux measurements 
from CERES, MODIS-retrieved AODs, and modelled anthropogenic 
aerosol fractions to find a clear-sky IRFari of −0.6 W m−2. This would 
translate into an all-sky estimate of about −0.3 W m−2 based on the 
clear-sky to all-sky ratio implied by Kinne (2019). Rémy et al. (2018) 
applied the methods of Bellouin et al. (2013a) to the reanalysis by 
the Copernicus Atmosphere Monitoring Service, which assimilates 
MODIS total AOD. Their estimate of IRFari varies between −0.5 W m–2 

and  −0.6  W  m−2  over the period 2003–2018, and they attribute 
those relatively small variations to  variability in biomass-burning 
activity.  Kinne (2019) provided updated monthly total AOD and 
absorption AOD climatologies, obtained by blending multi-model 
averages with ground-based sun-photometer retrievals, to find 
a best estimate of IRFari of −0.4 W m−2. The updated IRFari estimates 
above are all scattered around the midpoint of the IRFari range of 
−0.35 ± 0.5 W m−2 assessed by AR5 (Boucher et al., 2013).

The more negative estimate of Rémy et al. (2018) is due to neglecting 
a small positive contribution from absorbing aerosols above clouds 
and obtaining a  larger anthropogenic fraction than Kinne (2019). 
Rémy et al. (2018) also did not update their assumptions on black 
carbon anthropogenic fraction and its contribution to absorption to 
reflect recent downward revisions (Section 7.3.3.1.2). Kinne (2019) 
made those revisions, so more weight is given to that study to assess 
the central estimate of satellite-based IRFari to be only slightly 
stronger than reported in AR5 at –0.4 W m–2. While uncertainties 

in the anthropogenic fraction of total AOD remain, improved 
knowledge of anthropogenic absorption results in a slightly narrower 
very likely  range here than in AR5. The assessed best estimate and 
very likely IRFari range from observation-based evidence is therefore 
–0.4 ± 0.4 W m–2, but with medium confidence due to the limited 
number of studies available.

7.3.3.1.2 Model-based lines of evidence

While observation-based evidence can be used to estimate IRFari, global 
climate models are needed to calculate the associated adjustments 
and the resulting ERFari, using the methods described in Section 7.3.1. 

A range of developments since AR5 affect model-based estimates 
of IRFari. Global emissions of most major aerosol compounds and 
their precursors are found to be higher in the current inventories, 
and with increasing trends. Emissions of the sulphate precursor 
SO2 are a notable exception; they are similar to those used in AR5 
and approximately time-constant in recent decades (Hoesly et  al., 
2018). Myhre et  al. (2017) showed, in a  multi-model experiment, 
that the net result of these revised emissions is an IRFari trend that 
is relatively flat in recent years (post-2000), a finding confirmed by 
a single-model study by Paulot et al. (2018).

In AR5, the assessment of the black carbon (BC) contribution to IRFari 
was markedly strengthened in confidence by the review by Bond et al. 
(2013), where a key finding was a perceived model underestimate 
of atmospheric absorption when compared to Aeronet observations 
(Boucher et  al., 2013). This assessment has since been revised 
considering: new knowledge on the effect of the temporal resolution 
of emissions inventories (Wang et al., 2016); the representativeness 
of Aeronet sites (Wang et  al., 2018); issues with comparing 
absorption retrieval to models (E. Andrews et  al., 2017); and the 
ageing (Peng et al., 2016), lifetime (Lund et al., 2018b) and average 
optical parameters (Zanatta et al., 2016) of BC. Consistent with these 
updates, Lund et al. (2018a) estimated the net IRFari in 2014 (relative 
to 1750) to be –0.17 W m–2, using CEDS emissions (Hoesly et al., 2018) 
as input to a chemical transport model. They attributed the weaker 
estimate relative to AR5 (–0.35 ± 0.5 W m–2; Myhre et al., 2013a) 
to stronger absorption by organic aerosol, updated parametrization 
of BC absorption, and slightly reduced sulphate cooling. Broadly 
consistent with Lund et al. (2018a), another single-model study by 
Petersik et al. (2018) estimated an IRFari of –0.19 W m–2. Another 
single-model study by Lurton et al. (2020) reported a more negative 
estimate at –0.38 W m–2, but is given less weight here because 
the model lacked interactive aerosols and instead used prescribed 
climatological aerosol concentrations.

The above estimates support a  less negative central estimate and 
a slightly narrower range compared to those reported for IRFari from 
ESMs in AR5 of –0.35 [–0.6 to –0.13] W m–2. The assessed central 
estimate and very likely IRFari range from model-based evidence 
alone is therefore –0.2 ± 0.2 W m–2 for 2014 relative to 1750, with 
medium confidence due to the limited number of studies available. 
Revisions due to stronger organic aerosol absorption, further 
developed BC parameterizations and somewhat reduced sulphate 
emissions in recent years.
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Since AR5 considerable progress has been made in the understanding 
of adjustments in response to a wide range of climate forcings, as 
discussed in Section 7.3.1. The adjustments in ERFari are principally 
caused by cloud changes, but also by lapse rate and atmospheric 
water vapour changes, all mainly associated with absorbing aerosols 
like BC. Stjern et  al. (2017) found that for BC, about 30% of the 
(positive) IRFari is offset by adjustments of clouds (specifically, an 
increase in low-clouds and decrease in high-clouds) and lapse rate, 
by analysing simulations by five Precipitation Driver Response Model 
Intercomparison Project (PDRMIP) models. Smith et  al. (2018b) 
considered more models participating in PDRMIP and suggested 
that about half the IRFari was offset by adjustments for BC, a finding 
generally supported by single-model studies (Takemura and Suzuki, 
2019; Zhao and Suzuki, 2019). Thornhill et al. (2021b) also reported 
a negative adjustment for BC based on AerChemMIP (Collins et al., 
2017) but found it to be somewhat smaller in magnitude than those 
reported in Smith et al. (2018b) and Stjern et al. (2017). In contrast, 
Allen et al. (2019) found a positive adjustment for BC and suggested 
that most models simulate negative adjustment for BC because of 
a misrepresentation of aerosol atmospheric heating profiles.

Zelinka et  al. (2014) used the approximate partial radiation 
perturbation technique to quantify the ERFari in 2000 relative 
to 1860 in nine CMIP5 models; they estimated the ERFari 
(accounting for a small contribution from longwave radiation) to be 
–0.27 ± 0.35 W m–2. However, it should be noted that in Zelinka et al. 
(2014) adjustments of clouds caused by absorbing aerosols through 
changes in the thermal structure of the atmosphere (termed the 
semidirect effect of aerosols in AR5) are not included in ERFari but 
in ERFaci. The corresponding estimate emerging from the Radiative 
Forcing Model Intercomparison Project (RFMIP, Pincus et al., 2016) 
is –0.25 ± 0.40 W m–2 (Smith et  al., 2020b), which is generally 
supported by single-model studies published since AR5 (Zhang et al., 
2016; Fiedler et al., 2017; Nazarenko et al., 2017; Zhou et al., 2017c, 
2018b; Grandey et al., 2018). A 5% inflation is applied to the CMIP5 
and CMIP6 fixed-SST derived estimates of ERFari from Zelinka et al. 
(2014) and Smith et al. (2020b) to account for land surface cooling 
(Table 7.6). Based on the above, ERFari from model-based evidence is 
assessed to be –0.25 ± 0.25 W m–2.

7.3.3.1.3 Overall assessment of IRFari and ERFari

The observation-based assessment of IRFari of –0.4 ± 0.4 W m–2 and 
the corresponding model-based assessment of –0.2 ± 0.2 W m–2 can 
be compared to the range of –0.45 to –0.05 W m–2 that emerged 
from a  comprehensive review in which an observation-based 
estimate of anthropogenic AOD was combined with model-derived 
ranges for all relevant aerosol radiative properties (Bellouin et  al., 
2020). Based on the above, IRFari is assessed to be –0.25 ± 0.2 W m–2 
(medium confidence).

ERFari from model-based evidence is –0.25 ± 0.25 W m–2, which 
suggests a  small negative adjustment relative to the model-based 
IRFari estimate, consistent with the literature discussed in 
Section 7.3.3.1.2. Adding this small adjustment to our assessed IRFari 
estimate of –0.25 W m–2, and accounting for additional uncertainty in 
the adjustments, ERFari is assessed to –0.3 ± 0.3 (medium confidence). 

This assessment is consistent with the 5–95% confidence range for 
ERFari in Bellouin et al. (2020) of –0.71 to –0.14 W m–2, and notably 
implies that it is very likely that ERFari is negative. Differences relative 
to Bellouin et al. (2020) reflect the range of estimates in Table 7.6 and 
the fact that an ERFari more negative than –0.6 W m–2 would require 
adjustments that considerably augment the assessed IRFari, which is 
not supported by the assessed literature.

7.3.3.2 Aerosol–Cloud Interactions

Anthropogenic aerosol particles primarily affect water clouds by 
serving as additional cloud condensation nuclei (CCN) and thus 
increasing cloud drop number concentration (Nd; Twomey, 1959). 
Increasing Nd while holding liquid water content constant reduces cloud 
drop effective radius (re), increases the cloud albedo, and induces an 
instantaneous negative radiative forcing (IRFaci). The  clouds are 

Table 7.6 | Present-day effective radiative forcing (ERF) due to changes 
in aerosol–radiation interactions (ERFari) and changes in aerosol–cloud 
interactions (ERFaci), and total aerosol ERF (ERFari+aci) from GCM CMIP6 
(2014 relative to 1850; Smith et  al., 2020b and later model results) and CMIP5 
(year 2000 relative to 1860; Zelinka et al., 2014). CMIP6 results are simulated as part 
of RFMIP (Pincus et al., 2016). An additional 5% is applied to the CMIP5 and CMIP6 
model results to account for land-surface cooling (Figure 7.4; Smith et al., 2020a).

Models
ERFari
(W m–2)

ERFaci
(W m–2)

ERFari+aci
(W m–2)

ACCESS-CM2 –0.24 –0.93 –1.17

ACCESS-ESM1-5 –0.07 –1.19 –1.25

BCC-ESM1 –0.79 –0.69 –1.48

CanESM5 –0.02 –1.09 –1.11

CESM2 +0.15 –1.65 –1.50

CNRM-CM6-1 –0.28 –0.86 –1.14

CNRM-ESM2-1 –0.15 –0.64 –0.79

EC-Earth3 –0.39 –0.50 –0.89

GFDL-CM4 –0.12 –0.72 –0.84

GFDL-ESM4 –0.06 –0.84 –0.90

GISS-E2-1-G (physics_version=1) –0.55 –0.81 –1.36

GISS-E2-1-G (physics_version=3) –0.64 –0.39 –1.02

HadGEM3-GC31-LL –0.29 –0.87 –1.17

IPSL-CM6A-LR –0.39 –0.29 –0.68

IPSL-CM6A-LR-INCA –0.45 –0.35 –0.80

MIROC6 –0.22 –0.77 –0.99

MPI-ESM-1-2-HAM +0.10 –1.40 –1.31

MRI-ESM2-0 –0.48 –0.74 –1.22

NorESM2-LM –0.15 –1.08 –1.23

NorESM2-MM –0.03 –1.26 –1.29

UKESM1-0-LL –0.20 –0.99 –1.19

CMIP6 average and 5–95% 
confidence range  
(2014 relative to 1850)

–0.25 ± 0.40 –0.86 ± 0.57 –1.11 ± 0.38

CMIP5 average and 5–95% 
confidence range  
(2000 relative to 1860)

–0.27 ± 0.35 –0.96 ± 0.55 –1.23 ± 0.48
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thought to subsequently adjust by a slowing of the drop coalescence 
rate, thereby delaying or suppressing rainfall. Rain generally reduces 
cloud lifetime and thereby liquid water path (LWP, i.e., the vertically 
integrated cloud water) and/or cloud fractional coverage (Cf; Albrecht, 
1989), thus any aerosol-induced rain delay or suppression would 
be expected to increase LWP and/or Cf. Such adjustments could 
potentially lead to an ERFaci considerably larger in magnitude than 
the IRFaci alone. However, adding aerosols to non-precipitating clouds 
has been observed to have the opposite effect (i.e., a reduction in LWP 
and/or Cf) (Lebsock et  al., 2008; Christensen and Stephens, 2011). 
These findings have been explained by enhanced evaporation of the 
smaller droplets in the aerosol-enriched environments, and resultant 
enhanced mixing with ambient air, leading to cloud dispersal.

A small subset of aerosols can also serve as ice nucleating particles 
(INPs) that initiate the ice phase in supercooled water clouds, and 
thereby alter cloud radiative properties and/or lifetimes. However, 
the ability of anthropogenic aerosols (specifically BC) to serve 
as INPs in mixed-phase clouds has been found to be negligible in 
recent laboratory studies (e.g.,  Vergara-Temprado et  al., 2018). 
No  assessment of the contribution to ERFaci from cloud phase 
changes induced by anthropogenic INPs will therefore be presented.

In ice (cirrus) clouds (cloud temperatures less than –40°C), INPs can 
initiate ice crystal formation at relative humidity much lower than 
that required for droplets to freeze spontaneously. Anthropogenic 
INPs can thereby influence ice crystal numbers and thus cirrus cloud 
radiative properties. At cirrus temperatures, certain types of BC 
have in fact been demonstrated to act as INPs in laboratory studies 
(Ullrich et al., 2017; Mahrt et al., 2018), suggesting a non-negligible 
anthropogenic contribution to INPs in cirrus clouds. Furthermore, 
anthropogenic changes to drop number also alter the number of 
droplets available for spontaneous freezing, thus representing 
a  second pathway through which anthropogenic emissions could 
affect cirrus clouds.

7.3.3.2.1 Observation-based evidence

Since AR5, the analysis of observations to investigate aerosol–cloud 
interactions has progressed along several axes: (i) The framework of 
forcing and adjustments introduced rigorously in AR5 has helped better 
categorize studies; (ii) the literature assessing statistical relationships 
between aerosol and cloud in satellite retrievals has grown, and 
retrieval uncertainties are better characterized; (iii) advances have 
been made to infer causality in aerosol–cloud relationships.

In AR5 the statistical relationship between cloud microphysical 
properties and aerosol index (AI; AOD multiplied by Ångström 
exponent) was used to make inferences about IRFaci were assessed 
alongside other studies which related cloud quantities to AOD. 
However, it is now well-documented that the latter approach leads to 
low estimates of IRFaci since AOD is a poor proxy for cloud-base CCN 
(Penner et al., 2011; Stier, 2016). Gryspeerdt et al. (2017) demonstrated 
that the statistical relationship between droplet concentration and 
AOD leads to an inferred IRFaci that is underestimated by at least 
30%, while the use of AI leads to estimates of IRFaci to within ±20%, 
if the anthropogenic perturbation of AI is known.

Further, studies assessed in AR5 mostly investigated linear relationships 
between cloud droplet concentration and aerosol (Boucher et  al., 
2013). Since in most cases the relationships are not linear, this leads 
to a  bias (Gryspeerdt et  al., 2016). Several studies did not relate 
cloud droplet concentration, but cloud droplet effective radius, to the 
aerosol (Brenguier et al., 2000). This is problematic because in order to 
infer IRFaci, stratification by cloud LWP is required (McComiskey and 
Feingold, 2012). Where LWP positively co-varies with aerosol retrievals 
(which is often the case), IRFaci inferred from such relationships is 
biased towards low values. Also, it is increasingly evident that different 
cloud regimes show different sensitivities to aerosols (Stevens and 
Feingold, 2009). Averaging statistics over regimes thus biases the 
inferred IRFaci (Gryspeerdt et  al., 2014b). The AR5 concluded that 
IRFaci estimates tied to satellite studies generally show weak IRFaci 
(Boucher et al., 2013), but when correcting for the biases discussed 
above, this is no longer the case.

Since AR5, several studies assessed the global IRFaci from satellite 
observations using different methods (Table 7.7). All studies relied 
on statistical relationships between aerosol and cloud quantities 
to infer sensitivities. Four studies inferred IRFaci by estimating the 
anthropogenic perturbation of Nd (cloud drop number concentration). 
For this, Bellouin et  al. (2013b) and Rémy et  al. (2018) made use 
of regional-seasonal regressions between satellite-derived Nd and 
AOD following Quaas et  al. (2008), while Gryspeerdt et  al. (2017) 

Table 7.7 | Studies quantifying aspects of the global effective radiative 
forcing due to aerosol–cloud interactions ERFaci that are mainly based on 
satellite retrievals and were published since AR5. All forcings/adjustments are 
presented as global annual mean values in W m–2. Most studies split the ERFaci into 
instantaneous radiative forcing (IRFaci) and adjustments in liquid water path (LWP) 
and cloud fraction (Cf) separately. All published studies only considered liquid clouds. 
Some studies assessed the IRFaci and the LWP adjustment together and called this 
‘intrinsic forcing’ (Christensen et al., 2017) and the cloud fraction adjustment ‘extrinsic 
forcing’. Published uncertainty ranges are converted to 5–95% confidence intervals, 
and ‘n/a’ indicates that the study did not provide an estimate for the relevant IRF/ERF.

IRFaci  
(W m–2)

Liquid Water 
Path (LWP) 
Adjustment  

(W m–2)

Cloud 
Fraction (Cf) 
Adjustment  

(W m–2)

Reference

–0.6 ± 0.6 n/a n/a Bellouin et al. (2013b)

–0.4 [–0.2 to –1.0] n/a n/a Gryspeerdt et al. (2017)

–1.0 ± 0.4 n/a n/a McCoy et al. (2017b)

n/a n/a
–0.5  

[–0.1 to –0.6]
Gryspeerdt et al. (2016)

n/a +0.3 to 0.0 n/a Gryspeerdt et al. (2019)

–0.8 ± 0.7 n/a n/a Rémy et al. (2018)

–0.53
–1.14 [–1.72 to –0.84]

–1.2 to –0.6
–0.69 [–0.99 to –0.44]

+0.15
n/a
n/a
n/a

n/a
n/a
n/a
n/a

Toll et al. (2019)
Hasekamp et al. (2019)
McCoy et al. (2020)
Diamond et al. (2020)

‘Intrinsic Forcing’ 

–0.5 ± 0.5 –0.5 ± 0.5 Chen et al. (2014)

–0.4 ± 0.3 n/a Christensen et al. (2016a)

–0.3 ± 0.4 –0.4 ± 0.5 Christensen et al. (2017)
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used AI instead of AOD in the regression to infer IRFaci. McCoy 
et al. (2017b) instead used the sulphate-specific mass derived in the 
MERRA aerosol reanalysis that assimilated MODIS AOD (Rienecker 
et al., 2011). All  approaches have in common the need to identify 
the anthropogenic perturbation of the aerosol to assess IRFaci. 
Gryspeerdt et  al. (2017) and Rémy et  al. (2018) used the same 
approach as Bellouin et  al. (2013b), while McCoy et  al. (2017b) 
used an anthropogenic fraction from the AEROCOM multi-model 
ensemble (Schulz et al., 2006). Chen et al. (2014), Christensen et al. 
(2016a) and Christensen et  al. (2017) derived the combination of 
IRFaci and the LWP adjustment to IRFaci (‘intrinsic forcing’ in their 
terminology). They relate AI and cloud albedo statistically and use the 
anthropogenic aerosol fraction from Bellouin et al. (2013b). This was 
further refined by Hasekamp et  al. (2019) who used additional 
polarimetric satellite information over ocean to obtain a better proxy 
for CCN. They derived an IRFaci of –1.14 [–1.72 to –0.84] W m–2. 
The variant by Christensen et al. (2017) is an update compared to 
the Chen et al. (2014) and Christensen et al. (2016a) studies in that it 
better accounts for ancillary influences on the aerosol retrievals such 
as aerosol swelling and three-dimensional radiative effects. McCoy 
et  al. (2020) used the satellite-observed hemispheric difference in 
Nd as an emergent constraint on IRFaci as simulated by GCMs to 
obtain a  range of –1.2 to –0.6 W m–2 (95% confidence interval). 
Diamond et al. (2020) analysed the difference in clouds affected by 
ship emissions with unperturbed clouds and based on this inferred 
a global IRFaci of –0.69 [–0.99 to –0.44] W m–2.

Summarizing the above findings related to statistical relationships and 
causal aerosol effects on cloud properties, there is high confidence 
that anthropogenic aerosols lead to an increase in cloud droplet 
concentrations. Taking the average across the studies providing IRFaci 
estimates discussed above and considering the general agreement 
among estimates (Table 7.7), IRFaci is assessed to be –0.7 ± 0.5 W m–2 

(medium confidence).

Multiple studies have found a positive relationship between cloud 
fraction and/or cloud LWP and aerosols (e.g.,  Nakajima et  al., 
2001; Kaufman and Koren, 2006; Quaas et  al., 2009). Since AR5, 
however, it has been documented that factors independent of 
causal aerosol–cloud interactions heavily influence such statistical 
relationships. These include the swelling of aerosols in the high 
relative humidity in the vicinity of clouds (Grandey et al., 2013) and the 
contamination of aerosol retrievals next to clouds by cloud remnants 
and cloud-side scattering (Várnai and Marshak, 2015; Christensen 
et al., 2017). Stratifying relationships by possible influencing factors 
such as relative humidity (Koren et al., 2010) does not yield satisfying 
results since observations of the relevant quantities are not available 
at the resolution and quality required. Another approach to tackle 
this problem was to assess the relationship of cloud fraction with 
droplet concentration (Gryspeerdt et  al., 2016; Michibata et  al., 
2016; Sato et al., 2018). The relationship between satellite-retrieved 
cloud fraction and Nd was found to be positive (Christensen et al., 
2016a, 2017; Gryspeerdt et al., 2016), implying an overall adjustment 
that leads to a more negative ERFaci. However, since retrieved Nd is 
biased low for broken clouds this result has been called into question 
(Grosvenor et  al., 2018). Zhu et  al. (2018) proposed to circumvent 
this problem by considering Nd of only continuous thick cloud covers, 

on the basis of which Rosenfeld et al. (2019) still obtained a positive 
relationship between cloud fraction and Nd relationship.

The relationship between LWP and cloud droplet number is debated. 
Most recent studies (primarily based on MODIS data) find negative 
statistical relationships (Michibata et al., 2016; Toll et al., 2017; Sato 
et al., 2018; Gryspeerdt et al., 2019), while Rosenfeld et al. (2019) 
obtained a  modest positive relationship. To increase confidence 
that observed relationships between aerosol emissions and cloud 
adjustments are causal, known emissions of aerosols and aerosol 
precursor gases into otherwise pristine conditions have been 
exploited. Ship exhaust is one such source. Goren and Rosenfeld 
(2014) suggested that both LWP and Cf increase in response 
to ship emissions, contributing approximately 75% to the total 
ERFaci in mid-latitude stratocumulus. Christensen and Stephens 
(2011) found that such strong adjustments occur for open-cell 
stratocumulus regimes, while adjustments are comparatively small 
in closed-cell regimes. Volcanic emissions have been identified 
as another important source of information (Gassó, 2008). From 
satellite observations, Yuan et  al. (2011) documented substantially 
larger Cf, higher cloud tops, reduced precipitation likelihood, and 
increased albedo in cumulus clouds in the plume of the Kīlauea 
volcano in Hawaii. Ebmeier et al. (2014) confirmed the increased LWP 
and albedo for other volcanoes. In contrast, for the large Holuhraun 
eruption in Iceland, Malavelle et al. (2017) did not find any large-scale 
change in LWP in satellite observations. However, when accounting 
for meteorological conditions, McCoy et al. (2018) concluded that for 
cyclonic conditions, the extra Holuhraun aerosol did enhance LWP. 
Toll et al. (2017) examined a  large sample of volcanoes and found 
a distinct albedo effect, but only modest LWP changes, on average. 
Gryspeerdt et  al. (2019) demonstrated that the negative LWP–Nd 
relationship becomes very small when conditioned on a  volcanic 
eruption, and therefore concluded that LWP adjustments are small 
in most regions. Similarly, Toll et al. (2019) studied clouds downwind 
of various anthropogenic aerosol sources using satellite observations 
and inferred an IRFaci of –0.52 W m–2 that was partly offset by 29% 
due to aerosol-induced LWP decreases.

Apart from adjustments involving LWP and Cf, several studies 
have also documented a  negative relationship between cloud-top 
temperature and AOD/AI in satellite observations (e.g., Koren et al., 
2005). Wilcox et al. (2016) proposed that this could be explained by 
black-carbon (BC) absorption reducing boundary-layer turbulence, 
which in turn could lead to taller clouds. However, it has been 
demonstrated that the satellite-derived relationships are affected 
by spurious co-variation (Gryspeerdt et al., 2014a), and it therefore 
remains unclear whether a systematic causal effect exists.

Identifying relationships between INP concentrations and cloud 
properties from satellites is intractable because the INPs generally 
represent a  very small subset of the overall aerosol population 
at any given time or location. For ice clouds, only a  few satellite 
studies have so far investigated responses to aerosol perturbations. 
Gryspeerdt et al. (2018) find a positive relationship between aerosol 
and ice crystal number for cold cirrus under strong dynamical forcing, 
which could be explained by an overall larger number of solution 
droplets available for homogeneous freezing in polluted regions. 
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Zhao et al. (2018) conclude that the sign of the relationship between 
ice crystal size and aerosol depends on humidity. While these 
studies support modelling results finding that ice clouds do respond 
to anthropogenic aerosols (Section  7.3.3.2.2), no quantitative 
conclusions about IRFaci or ERFaci for ice clouds can be drawn based 
on satellite observations.

Only a handful of studies have estimated the LWP and Cf adjustments 
that are needed for satellite-based estimates of ERFaci. Chen et al. 
(2014) and Christensen et al. (2017) used the relationship between 
cloud fraction and AI to infer the cloud fraction adjustment. 
Gryspeerdt et al. (2017) used a similar approach but tried to account 
for non-causal coorelations between aerosols and cloud fraction by 
using Nd

 as a mediating factor. These three studies together suggest 
a global Cf adjustment that augments ERFaci relative to IRFaci by 
–0.5 ± 0.4 W m–2 (medium confidence). For global estimates of the 
LWP adjustment, evidence is even scarcer. Gryspeerdt et al. (2019) 
derived an estimate of the LWP adjustment using a method similar 
to Gryspeerdt et al. (2016). They estimated that the LWP adjustment 
offsets 0–60% of the (negative) IRFaci (0.0 to +0.3 W m–2). Supporting 
an offsetting LWP adjustment, Toll et al. (2019) estimated a moderate 
LWP adjustment of 29% (+0.15 W m–2). The adjustment due to LWP is 
assessed to be small, with a central estimate and very likely range of 
0.2 ± 0.2 W m–2, but with low confidence due to the limited number 
of studies available.

Combining IRFaci and the associated adjustments in Cf and LWP 
(adding uncertainties in quadrature), considering only liquid-water 
clouds and evidence from satellite observations alone, the 
central estimate and very likely range for ERFaci is assessed to be 
–1.0  ±  0.7 W  m–2 (medium confidence). The confidence level and 
wider range for ERFaci compared to IRFaci reflect the relatively large 
uncertainties that remain in the adjustment contribution to ERFaci.

7.3.3.2.2 Model-based evidence

As in AR5, the representation of aerosol–cloud interactions in ESMs 
remains a challenge, due to the limited representation of important 
sub-gridscale processes, from the emissions of aerosols and their 
precursors to precipitation formation. ESMs that simulate ERFaci 
typically include aerosol–cloud interactions in liquid stratiform clouds 
only, while very few include aerosol interactions with mixed-phase, 
convective and ice clouds. Adding to the spread in model-derived 
estimates of ERFaci is the fact that model configurations and 
assumptions vary across studies, for example when it comes to the 
treatment of oxidants, which influence aerosol formation, and their 
changes through time (Karset et al., 2018).

In AR5, ERFaci was assessed as the residual of the total aerosol ERF 
and ERFari, as the total aerosol ERF was easier to calculate based 
on available model simulations (Boucher et  al., 2013). The central 
estimates of total aerosol ERF and ERFari in AR5 were –0.9 W m–2 and 
–0.45 W m–2, respectively, yielding an ERFaci estimate of –0.45 W m–2. 
This value is much less negative than the bottom-up estimate of 
ERFaci from ESMs presented in AR5 (–1.4 W m–2) and efforts have 
been made since to reconcile this difference. Zelinka et  al. (2014) 
estimated ERFaci to be –0.96 ± 0.55 W m–2 (including  semi-direct 

effects, and with land-surface cooling effect applied), based on 
nine CMIP5 models (Table 7.6). The corresponding ERFaci estimate 
based on 17 RFMIP models from CMIP6 is slightly less negative 
at –0.86  ±  0.57 W m–2 (Table  7.6). Other post-AR5 estimates of 
ERFaci based on single-model studies are either in agreement with 
or slightly larger in magnitude than the CMIP6 estimate (Gordon 
et al., 2016; Fiedler et al., 2017, 2019; Neubauer et al., 2017; Karset 
et  al., 2018; Regayre et  al., 2018; Zhou et  al., 2018b; Golaz et  al., 
2019; Diamond et al., 2020).

The adjustment contribution to the CMIP6 ensemble mean ERFaci 
is –0.20 W m–2, though with considerable differences between 
the models (Smith et  al., 2020b). Generally, this adjustment in 
ESMs arises mainly from LWP changes (e.g.,  Ghan et  al., 2016), 
while satellite observations suggest that cloud cover adjustments 
dominate and that aerosol effects on LWP are overestimated in ESMs 
(Bender et  al., 2019). Large-eddy-simulations also tend to suggest 
an overestimated aerosol effect on cloud lifetime in ESMs, but some 
report an aerosol-induced decrease in cloud cover that is at odds 
with satellite observations (Seifert et al., 2015). Despite this potential 
disagreement when it comes to the dominant adjustment mechanism, 
a  substantial negative contribution to ERFaci from adjustments is 
supported both by observational and modelling studies.

Contributions to ERFaci from anthropogenic aerosols acting as INPs 
are generally not included in CMIP6 models. Two global modelling 
studies incorporating parametrizations based on recent laboratory 
studies both found a negative contribution to ERFaci (Penner et al., 2018; 
McGraw et al., 2020), with central estimates of –0.3 and –0.13 W m–2, 
respectively. However, previous studies have produced model estimates 
of opposing signs (Storelvmo, 2017). There is thus limited evidence and 
medium agreement for a small negative contribution to ERFaci from 
anthropogenic INP-induced cirrus modifications (low confidence).

Similarly, aerosol effects on deep convective clouds are typically not 
incorporated in ESMs. However, cloud-resolving modelling studies 
support non-negligible aerosol effects on the radiative properties of 
convective clouds and associated detrained cloud anvils (Tao et al., 
2012). While global ERF estimates are currently not available for 
these effects, the fact that they are missing in most ESMs adds to the 
uncertainty range for the model-based ERFaci.

From model-based evidence, ERFaci is assessed to –1.0 ± 0.8 W m–2 
(medium confidence). This assessment uses the mean ERFaci in 
Table 7.6 as a starting point, but further allows for a small negative 
ERF contribution from cirrus clouds. The uncertainty range is based on 
those reported in Table 7.6, but widened to account for uncertain but 
likely non-negligible processes currently unaccounted for in ESMs.

7.3.3.2.3 Overall assessment of ERFaci

The assessment of ERFaci based on observational evidence alone 
(–1.0 ± 0.7 W m–2) is very similar to the one based on model evidence 
alone (–1.0 ± 0.8 W m–2), in strong contrast to what was reported 
in AR5. This reconciliation of observation-based and model-based 
estimates is the result of considerable scientific progress and reflects 
comparable revisions of both model-based and observation-based 
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estimates. The strong agreement between the two largely independent 
lines of evidence increases confidence in the overall assessment of the 
central estimate and very likely range for ERFaci of –1.0 ± 0.7 W m–2 
(medium confidence). The assessed range is consistent with but 
narrower than that reported by the review of Bellouin et al. (2020) of 
–2.65 to –0.07 W m–2. The difference is primarily due to a wider range 
in the adjustment contribution to ERFaci in Bellouin et  al. (2020), 
however adjustments reported relative to IRFaci ranging from 40% 
to 150% in that study are fully consistent with the ERFaci assessment 
presented here.

7.3.3.3 Energy Budget Constraints on the Total Aerosol ERF

Energy balance models of reduced complexity have in recent years 
increasingly been combined with Monte Carlo approaches to provide 
valuable ‘top-down’ (also called inverse) observational constraints 
on the total aerosol ERF. These top-down approaches report ranges 
of aerosol ERF that are found to be consistent with the global mean 
temperature record and, in some cases, also observed ocean heat 
uptake. However, the total aerosol ERF is also used together with the 
historical temperature record in Section 7.5 to constrain equilibrium 
climate sensitivity (ECS) and transient climate response (TCR). Using 
top-down estimates as a separate line of evidence also for the total 
aerosol ERF would therefore be circular. Nevertheless, it is useful 
to examine the development of these estimates since AR5, and the 
degree to which these estimates are consistent with the upper and 
lower bounds of the assessments of total aerosol ERF (ERFari+aci).

When the first top-down estimates emerged (e.g., Knutti et al., 2002), 
it became clear that some of the early (‘bottom-up’) ESM estimates 
of total aerosol ERF were inconsistent with the plausible top-down 
range. However, as more inverse estimates have been published, it 
has increasingly become clear that they too are model-dependent 
and span a wide range of ERF estimates, with confidence intervals 
that in some cases do not overlap (Forest, 2018). It has also become 
evident that these methods are sensitive to revised estimates of other 
forcings and/or updates to observational datasets. A  recent review 
of 19 such estimates reported a mean of –0.77 W m–2 for the total 
aerosol ERF, and a 95% confidence interval of [–1.15 to –0.31] W m–2 

(Forest, 2018). Adding to that review, a  more recent study using 
the same approach reported an estimate of total aerosol ERF of 
–0.89  [–1.82 to –0.01] W m–2 (Skeie et  al., 2018). However, in the 
same study, an alternative way of incorporating ocean heat content in 
the analysis produced a total aerosol ERF estimate of –1.34 [–2.20 to 
–0.46] W m–2, illustrating the sensitivity to the manner in which 
observations are included. A new approach to inverse estimates took 
advantage of independent climate radiative response estimates from 
eight prescribed SST and sea ice-concentration simulations over the 
historical period to estimate the total anthropogenic ERF. From this 
a total aerosol ERF of –0.8 [–1.6 to +0.1] W m–2 was derived (valid 
for near-present relative to the late 19th  century). This range was 
found to be more invariant to parameter choices than earlier inverse 
approaches (Andrews and Forster, 2020).

Beyond the inverse estimates described above, other efforts 
have been made since AR5 to constrain the total aerosol ERF. For 
example, Stevens (2015) used a simple (one-dimensional) model to 

simulate the historical total aerosol ERF evolution consistent with 
the observed temperature record. Given the lack of temporally 
extensive cooling trends in the 20th-century record and the fact that 
the historical evolution of GHG forcing is relatively well constrained, 
the study concluded that a  more negative total aerosol ERF than 
–1.0 W m–2 was incompatible with the historical temperature record. 
This was countered by Kretzschmar et al. (2017), who argued that 
the model employed in Stevens (2015) was too simplistic to account 
for the effect of geographical redistributions of aerosol emissions 
over time. Following the logic of Stevens (2015), but basing their 
estimates on a subset of CMIP5 models as opposed to a simplified 
modelling framework, Kretzschmar et al. argued that a total aerosol 
ERF as negative as –1.6 W  m–2 was consistent with the observed 
temperature record. Similar arguments were put forward by Booth 
et al. (2018), who emphasized that the degree of non-linearity of the 
total aerosol ERF with aerosol emissions is a central assumption in 
Stevens (2015).

The historical temperature record was also the key observational 
constraint applied in two additional studies (Rotstayn et al., 2015; 
Shindell et al., 2015) based on a subset of CMIP5 models. Rotstayn 
et  al. (2015) found a  strong temporal correlation (>0.9) between 
the total aerosol ERF and the global surface temperature. They used 
this relationship to produce a best estimate for the total aerosol ERF 
of –0.97 W m–2, but with considerable unquantified uncertainty, in 
part due to uncertainties in the TCR. Shindell et al. (2015) came to 
a similar best estimate for the total aerosol ERF of –1.0 W m–2 and 
a 95% confidence interval of –1.4 to –0.6 W m–2 but based this on 
spatial temperature and ERF patterns in the models in comparison 
with observed spatial temperature patterns.

A separate observational constraint on the total ERF was proposed 
by Cherian et al. (2014), who compared trends in downward fluxes of 
solar radiation observed at surface stations across Europe (described 
in Section 7.2.2.3) to those simulated by a subset of CMIP5 models. 
Based on the relationship between solar radiation trends and the 
total aerosol ERF in the models, they inferred a total aerosol ERF of 
–1.3 W m–2 and a standard deviation of ± 0.4 W m–2.

Based solely on energy balance considerations or other observational 
constraints, it is extremely likely that the total aerosol ERF is negative 
(high confidence), but extremely unlikely that the total aerosol ERF is 
more negative than –2.0 W m–2 (high confidence).

7.3.3.4 Overall Assessment of Total Aerosol ERF

In AR5 (Boucher et al., 2013), the overall assessment of total aerosol 
ERF (ERFari+aci) used the median of all ESM estimates published prior 
to AR5 of –1.5 [–2.4 to –0.6] W m–2 as a starting point, but placed more 
confidence in a subset of models that were deemed more complete 
in their representation of aerosol–cloud interactions. These models, 
which included aerosol effects on mixed-phase, ice and/or convective 
clouds, produced a smaller estimate of –1.38 W m–2. Likewise, studies 
that constrained models with satellite observations (five in total), 
which produced a median estimate of –0.85 W m–2, were given extra 
weight. Furthermore, a longwave ERFaci of 0.2 W m–2 was added to 
studies that only reported shortwave ERFaci values. Finally, based on 
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higher resolution models, doubt was raised regarding the ability of 
ESMs to represent the cloud-adjustment component of ERFaci with 
fidelity. The expert judgement was therefore that aerosol effects 
on cloud lifetime were too strong in the ESMs, further reducing the 
overall ERF estimate. The above lines of argument resulted in a total 
aerosol assessment of –0.9 [–1.9 to –0.1] W m–2 in AR5.

Here, the best estimate and range is revised relative to AR5 (Boucher 
et al., 2013), partly based on updates to the above lines of argument. 
Firstly, the studies that included aerosol effects on mixed-phase 
clouds in AR5 relied on the assumption that anthropogenic black 
carbon (BC) could act as INPs in these clouds, which has since 
been challenged by laboratory experiments (Kanji et  al., 2017; 
Vergara-Temprado et al., 2018). There is no observational evidence of 
appreciable ERFs associated with aerosol effects on mixed-phase and 
ice clouds (Section 7.3.3.2.1), and modelling studies disagree when it 
comes to both their magnitude and sign (Section 7.3.3.2.2). Likewise, 
very few ESMs incorporate aerosol effects on deep convective 
clouds, and cloud-resolving modelling studies report different 
effects on cloud radiative properties depending on environmental 
conditions (Tao et al., 2012). Thus, it is not clear whether omitting 
such effects from ESMs would lead to any appreciable ERF biases, 
or if so, what the sign of such biases would be. As a result, all ESMs 
are given equal weight in this assessment. Furthermore, there is now 
a considerably expanded body of literature which suggests that early 
modelling studies that incorporated satellite observations may have 
resulted in overly conservative estimates of the magnitude of ERFaci 
(Section 7.3.3.2.1). Finally, based on an assessment of the longwave 
ERFaci in the CMIP5 models, the offset of +0.2 W m–2 applied in AR5 
appears to be too large (Heyn et al., 2017). As in AR5, there is still 
reason to question the ability of ESMs to simulate adjustments in 
LWP and cloud cover in response to aerosol perturbation, but it is 
not clear that this will result in biases that exclusively increase the 
magnitude of the total aerosol ERF (Section 7.3.3.2.2).

The assessment of total aerosol ERF here uses the following lines of 
evidence: satellite-based evidence for IRFari; model-based evidence 
for IRFari and ERFari; satellite-based evidence of IRFaci and ERFaci; 
and finally model-based evidence for ERFaci. Based on this, ERFari and 
ERFaci for 2014 relative to 1750 are assessed to be –0.3 ± 0.3 W m–2 
and –1.0 ± 0.7 W m–2, respectively. There is thus strong evidence 
for a substantive negative total aerosol ERF, which is supported by 
the broad agreement between observation-based and model-based 
lines of evidence for both ERFari and ERFaci that has emerged since 
AR5 (Gryspeerdt et  al., 2020). However, considerable uncertainty 
remains, particularly with regards to the adjustment contribution 
to ERFaci, as well as missing processes in current ESMs, notably 
aerosol effects on mixed-phase, ice and convective clouds. This leads 
to a medium confidence in the estimate of ERFari+aci and a slight 
narrowing of the uncertainty range. Because the estimates informing 
the different lines of evidence are generally valid for approximately 
2014 conditions, the total aerosol ERF assessment is considered valid 
for 2014 relative to 1750.

Combining the lines of evidence and adding uncertainties in 
quadrature, the ERFari+aci estimated for 2014 relative to 1750 
is assessed to be –1.3 [–2.0 to –0.6] W m–2 (medium confidence). 

The  corresponding range from Bellouin et  al. (2019) is –3.15 to 
–0.35 W m–2, thus there is agreement for the upper bound while the 
lower bound assessed here is less negative. A  lower bound more 
negative than –2.0 W m–2 is not supported by any of the assessed 
lines of evidence. There is high confidence that ERFaci contributes 
most (75–80%) to the total aerosol effect (ERFari+aci). In contrast 
to AR5 (Boucher et al., 2013), it is now virtually certain that the total 
aerosol ERF is negative. Figure 7.5 depicts the aerosol ERFs from the 
different lines of evidence along with the overall assessments.

As most modelling and observational estimates of aerosol ERF have 
end points in 2014 or earlier, there is limited evidence available for 
the assessment of how aerosol ERF has changed from 2014 to 2019. 
However, based on a general reduction in global mean AOD over this 
period (Section  2.2.6 and Figure  2.9), combined with a  reduction 
in emissions of aerosols and their precursors in updated emissions 
inventories (Hoesly et  al., 2018), the aerosol ERF is assessed to 
have decreased in magnitude from about 2014 to 2019 (medium 
confidence). Consistent with Figure 2.10, the change in aerosol ERF 
from about 2014 to 2019 is assessed to be +0.2 W m–2, but with 
low confidence due to limited evidence. Aerosols are therefore 
assessed to have contributed an ERF of –1.1 [–1.7 to –0.4] W m–2 
over 1750–2019 (medium confidence).

Figure 7.5 | Net aerosol effective radiative forcing (ERF) from different 
lines of evidence. The headline AR6 assessment of –1.3 [–2.0 to –0.6] W m–2 
is highlighted in purple for 1750–2014 and compared to the AR5 assessment of 
–0.9  [–1.9 to –0.1] W m–2 for 1750–2011. The evidence comprising the AR6 
assessment is shown below this: energy balance constraints [–2 to 0 W m–2 with 
no best estimate]; observational evidence from satellite retrievals of –1.4 [–2.2 to 
–0.6] W m–2; and climate model-based evidence of –1.25 [–2.1 to –0.4] W m–2. 
Estimates from individual CMIP5 (Zelinka et al., 2014) and CMIP6 (Smith et al., 2020b 
and Table 7.6) models are depicted by blue and red crosses respectively. For each 
line of evidence the assessed best-estimate contributions from ERFari and ERFaci 
are shown with darker and paler shading respectively. The observational assessment 
for ERFari is taken from the IRFari. Uncertainty ranges are represented by black bars 
for the total aerosol ERF and depict very likely ranges. Further details on data sources 
and processing are available in the chapter data table (Table 7.SM.14).
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7.3.4 Other Agents

In addition to the large anthropogenic ERFs associated with 
WMGHGs and atmospheric aerosols assessed in Sections 7.3.2 
and 7.3.3, land-use change, contrails and aviation-induced cirrus, 
and light-absorbing particles deposited on snow and ice have also 
contributed to the overall anthropogenic ERF and are assessed in 
Sections 7.3.4.1, 7.3.4.2 and 7.3.4.3. Changes in solar irradiance, 
galactic cosmic rays, and volcanic eruptions since pre-industrial 
times combined represent the natural contribution to the total 
(anthropogenic + natural) ERF and are discussed in Sections 7.3.4.4, 
7.3.4.5 and 7.3.4.6.

7.3.4.1 Land Use

Land-use forcing is defined as those changes in land-surface 
properties directly caused by human activity rather than by climate 
processes (see also Section  2.2.7). Land-use change affects the 
surface albedo. For example, deforestation typically replaces darker 
forested areas with brighter cropland, and thus imposes a negative 
radiative forcing on climate, while afforestation and reforestation 
can have the opposite effect. Precise changes depend on the nature 
of the forest, crops and underlying soil. Land-use change also affects 
the amount of water transpired by vegetation (Devaraju et al., 2015). 
Irrigation of land directly affects evaporation (Sherwood et  al., 
2018), causing a  global increase of 32,500 m3 s−1 due to human 
activity. Changes in evaporation and transpiration affect the latent 
heat budget, but do not directly affect the top-of-atmosphere (TOA) 
radiative fluxes. The lifetime of water vapour is so short that the 
effect of changes in evaporation on the greenhouse contribution 
of water vapour are negligible (Sherwood et  al., 2018). However, 
evaporation can affect the ERF through adjustments, particularly 
through changes in low-cloud amounts. Land management affects 
the emissions or removal of GHGs from the atmosphere (such as 
CO2, CH4, N2O). These emissions changes have the greatest effect on 
climate (Ward et al., 2014), however they are already included in GHG 
inventories. Land-use change also affects the emissions of dust and 
biogenic volatile organic compounds (BVOCs), which form aerosols 
and affect the atmospheric concentrations of ozone and methane 
(Section 6.2.2). The effects of land use on surface temperature and 
hydrology were recently assessed in SRCCL (Jia et al., 2019).

Using the definition of ERF from Section  7.1, the adjustment in 
land-surface temperature is excluded from the definition of ERF, 
but changes in vegetation and snow cover (resulting from land-use 
change) are included (Boisier et al., 2013). Land-use change in the 
mid-latitudes induces a  substantial amplifying adjustment in snow 
cover. Few climate model studies have attempted to quantify the 
ERF of land-use change. T. Andrews et al. (2017) calculated a very 
large surface albedo ERF (–0.47 W m–2) from 1860 to 2005 in the 
HadGEM2-ES model, although they did not separate out the surface 
albedo change from snow cover change. HadGEM2-ES is known 
to overestimate the amount of boreal trees and shrubs in the 
unperturbed state (Collins et al., 2011) so will tend to overestimate 
the ERF associated with land-use change. The increases in dust in 
HadGEM2-ES contributed an extra –0.25 W m–2, whereas cloud cover 
changes added a small positive adjustment (0.15 W m–2) consistent 

with a  reduction in transpiration. A  multi-model quantification of 
land-use forcing in CMIP6 models (excluding one outlier) (Smith 
et  al., 2020b) found an IRF of –0.15  ± 0.12 W m–2 (1850–2014), 
and an ERF (correcting for land-surface temperature change) of 
–0.11 ± 0.09 W m–2. This shows a  small positive adjustment term 
(mainly from a  reduction in cloud cover). CMIP5 models show an 
IRF of –0.11  [–0.16 to –0.04] W m–2 (1850–2000) after excluding 
unrealistic models (Lejeune et al., 2020).

The contribution of land-use change to albedo changes has recently 
been investigated using MODIS and AVHRR to attribute surface albedo 
to geographically specific land-cover types (Ghimire et  al., 2014). 
When combined with a historical land-use map (Hurtt et al., 2011) 
this gives a SARF of –0.15 ± 0.01 W m–2 for the period 1700–2005, of 
which approximately –0.12 W m–2 is from 1850. This study accounted 
for correlations between vegetation type and snow cover, but not the 
adjustment in snow cover identified in T. Andrews et al. (2017).

The indirect contributions of land-use change through biogenic 
emissions is very uncertain. Decreases in BVOCs reduce ozone and 
methane (Unger, 2014), but also reduce the formation of organic 
aerosols and their effects on clouds (Scott et al., 2017). Adjustments 
through changes in aerosols and chemistry are model dependent 
(Zhu et al., 2019b; Zhu and Penner, 2020), and it is not yet possible to 
make an assessment based on a limited number of studies.

The contribution of irrigation (mainly to low-cloud amount) is 
assessed as –0.05 [–0.1 to 0.05] W  m–2 for the historical period 
(Sherwood et al., 2018).

Because the CMIP5 and CMIP6 modelling studies are in agreement 
with Ghimire et  al. (2014), that study is used as the assessed 
albedo ERF. Adding the irrigation effect to this gives an overall 
assessment of the ERF from land-use change of –0.20 ± 0.10 W m–2 
(medium confidence). Changes in ERF since 2014 are assumed to 
be small compared to the uncertainty, so this ERF applies to the 
period 1750–2019. The uncertainty range includes uncertainties in 
the adjustments.

7.3.4.2 Contrails and Aviation-induced Cirrus

ERF from contrails and aviation-induced cirrus is taken from the 
assessment of Lee et  al. (2020), at 0.057 [0.019 to 0.098] W m–2 
in 2018 (see Section 6.6.2 for an assessment of the total effects of 
aviation). This is rounded up to address its low confidence and the 
extra year of air traffic to give an assessed ERF over 1750–2019 of 
0.06 [0.02 to 0.10] W m–2. This assessment is given low confidence due 
to the potential that processes missing from the assessment would 
affect the magnitude of contrails and aviation-induced cirrus ERF.

7.3.4.3 Light-absorbing Particles on Snow and Ice

In AR5, it was assessed that the effects of light-absorbing particles 
(LAPs) did probably not significantly contribute to recent reductions 
in Arctic ice and snow (Vaughan et  al., 2013). The SARF from 
LAPs on snow and ice was assessed to 0.04 [0.02 to 0.09] W m–2 
(Boucher et al., 2013), a range appreciably lower than the estimates 
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given in AR4 (Forster et  al., 2007). This effect was assessed to be 
low confidence (medium evidence, low agreement) (Table  8.5 in 
Myhre et al., 2013b).

Since AR5 there has been progress in the understanding of the 
physical state and processes in snow that govern the albedo 
reduction by black carbon (BC). The SROCC (IPCC, 2019a) assessed 
that there is high confidence that darkening of snow by deposition 
of BC and other light-absorbing aerosol species increases the rate of 
snow melt (Section 2.2 in Hock et al., 2019; Section 3.4 in Meredith 
et al., 2019). C. He et al. (2018) found that taking into account both 
the non-spherical shape of snow grains and internal mixing of BC 
in snow significantly altered the effects of BC on snow albedo. The 
reductions of snow albedo by dust and BC have been measured and 
characterized in the Arctic, the Tibetan Plateau, and mid-latitude 
regions subject to seasonal snowfall, including North America and 
northern and eastern Asia (Qian et al., 2015).

Since AR5, two further studies of global IRF from black carbon on 
snow deposition are available, with best estimates of 0.01 W m–2 
(Lin et  al., 2014) and 0.045 W m–2 (Namazi et  al., 2015). Organic 
carbon deposition on snow and ice has been estimated to contribute 
a  small positive IRF of 0.001 to 0.003 W m–2 (Lin et  al., 2014). 
No  comprehensive global assessments of mineral dust deposition 
on snow are available, although the effects are potentially large 
in relation to the total effect of LAPs on snow and ice forcing 
(Yasunari et al., 2015).

Most radiative forcing estimates have a  regional emphasis. 
The regional focus makes estimating a global mean radiative forcing 
from aggregating different studies challenging, and the relative 
importance of each region is expected to change if the global pattern 
of emissions sources changes (Bauer et al., 2013). The lower bound 
of the assessed range of BC on snow and ice is extended to zero 
to encompass Lin et al. (2014), with the best estimate unchanged, 
resulting in 0.04 [0.00 to 0.09] W m–2. The efficacy of BC on snow 
forcing was estimated to be 2 to 4 times as large as for an equivalent 
CO2 forcing as the effects are concentrated at high latitudes in the 
cryosphere (Bond et al., 2013). However, it is unclear how much of 
this effect is due to radiative adjustments leading to a higher ERF, 
and how much comes from a  less negative feedback α due to the 
high-latitude nature of the forcing. To estimate the overall ERF, 
the IRF is doubled assuming that part of the increased efficacy is due 
to adjustments. This gives an overall assessed ERF of +0.08 [0.00 to 
0.18] W m–2, with low confidence.

7.3.4.4 Solar

Variations in the total solar irradiance (TSI) represent a  natural 
external forcing agent. The dominant cycle is the solar 11-year 
activity cycle, which is superimposed on longer cycles (Section 2.2). 
Over the last three 11-year cycles, the peak-to-trough amplitude in 
TSI has differed by about 1 W m–2 between solar maxima and minima 
(Figure 2.2).

The fractional variability in the solar irradiance, over the solar cycle 
and between solar cycles, is much greater at short wavelengths 

in the 200–400 nanometre (nm) band than for the broad visible/
infrared band that dominates TSI (Krivova et al., 2006). The IRF can be 
derived simply by ΔTSI × (1 – albedo)/4 irrespective of wavelength, 
where the best estimate of the planetary albedo is usually taken to 
be 0.29 and ΔTSI represents the change in total solar irradiance 
(Stephens et al., 2015). (The factor 4 arises because TSI is per unit 
area of Earth  cross section presented to the Sun and IRF is per 
unit area of Earth’s surface). The adjustments are expected to be 
wavelength dependent. Gray et al. (2009) determined a stratospheric 
temperature adjustment of –22% to spectrally resolved changes in 
the solar radiance over one solar cycle. This negative adjustment is 
due to stratospheric heating from increased absorption by ozone at 
the short wavelengths, increasing the outgoing longwave radiation 
to space. A multi-model comparison (Smith et al., 2018b) calculated 
adjustments of –4% due to stratospheric temperatures and –6% due 
to tropospheric processes (mostly clouds), for a change in TSI across 
the spectrum (Figure 7.4). The smaller magnitude of the stratospheric 
temperature adjustment is consistent with the broad spectral change 
rather than the shorter wavelengths characteristic of solar variation. 
A single-model study also found an adjustment that acts to reduce 
the forcing (Modak et  al., 2016). While there has not yet been 
a  calculation based on the appropriate spectral change, the –6% 
tropospheric adjustment from Smith et al. (2018b) is adopted along 
with the Gray et  al. (2009) stratospheric temperature adjustment. 
The ERF due to solar variability over the historical period is therefore 
represented by 0.72 × ΔTSI × (1 – albedo)/4 using the TSI timeseries 
from Chapter 2 (Section 2.2.1).

The AR5 (Myhre et  al., 2013b) assessed solar SARF from around 
1750 to 2011 to be 0.05 [0.00 to 0.10] W m–2 which was computed 
from the seven-year mean around the solar minima in 1745 (being 
closest to 1750) and 2008 (being the most recent solar minimum). 
The inclusion of tropospheric adjustments that reduce ERF (compared 
to SARF in AR5) has a negligible effect on the overall forcing. Prior to 
the satellite era, proxy records are used to reconstruct historical solar 
activity. In AR5, historical records were constructed using observations 
of solar magnetic features. In this assessment historical time series 
are constructed from radiogenic compounds in the biosphere and in 
ice cores that are formed from cosmic rays (Steinhilber et al., 2012).

In this assessment the TSI from the Paleoclimate Model 
Intercomparison Project Phase 4 (PMIP4) reconstruction is used 
(Section 2.2.1; Jungclaus et al., 2017). Proxies constructed from the 
14C and 10Be radiogenic records for the SATIRE-M model (Vieira et al., 
2011) and 14C record for the PMOD model (Shapiro et  al., 2011) 
for the 1745 solar minimum provide ERFs for 1745–2008 of –0.01, 
–0.02 and 0.00 W m–2 respectively. An independent dataset from the 
National Oceanic and Atmospheric Administration’s Climate Data 
Record (Coddington et  al., 2016; Lean, 2018) provides an ERF for 
1745–2008 of +0.03 W m–2. One substantially higher ERF estimate of 
+0.35 W m–2 derived from TSI reconstructions is provided by Egorova 
et  al. (2018). However, the estimate from Egorova et  al. (2018) 
hinges on assumptions about long-term changes in the quiet Sun 
for which there is no observed evidence. Lockwood and Ball (2020) 
analysed the relationship between observed changes in cosmic ray 
fluxes and recent, more accurate, TSI data and derived ERF between 
–0.01 and +0.02 W m–2, and Yeo et al. (2020) modelling showed the 
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maximum possible ERF to be 0.26 ± 0.09 W m–2. Hence the Egorova 
et  al. (2018) estimate is not explicitly taken into account in the 
assessment presented in this section.

In contrast to AR5, the solar ERF in this assessment uses full solar 
cycles rather than solar minima. The pre-industrial TSI is defined as 
the mean from all complete solar cycles from the start of the 14C 
SATIRE-M proxy record in 6755 BCE to 1744 CE. The mean TSI from 
solar cycle 24 (2009–2019) is adopted as the assessment period for 
2019. The best estimate solar ERF is assessed to be 0.01 W m–2, using 
the 14C reconstruction from SATIRE-M, with a likely range of –0.06 to 
+0.08 W m–2 (medium confidence). The uncertainty range is adopted 
from the evaluation of Lockwood and Ball (2020) using a  Monte 
Carlo analysis of solar activity from the Maunder Minimum to 2019 
from several datasets, leading to an ERF of –0.12 to +0.15 W m–2. 
The Lockwood and Ball (2020) full uncertainty range is halved as the 
period of reduced solar activity in the Maunder Minimum had ended 
by 1750 (medium confidence).

7.3.4.5 Galactic Cosmic Rays

Variations in the flux of galactic cosmic rays (GCR) reaching the 
atmosphere are modulated by solar activity and affect new particle 
formation in the atmosphere through their link to ionization of 
the troposphere (Lee et  al., 2019). It has been suggested that 
periods of high GCR flux correlate with increased aerosol and 
CCN concentrations and therefore also with cloud properties 
(e.g., Dickinson, 1975; Kirkby, 2007).

Since AR5, the link between GCR and new particle formation has been 
more thoroughly studied, particularly by experiments in the CERN 
CLOUD chamber (Cosmics Leaving OUtdoor Droplets; Dunne et al., 
2016; Kirkby et al., 2016; Pierce, 2017). By linking the GCR-induced 
new particle formation from CLOUD experiments to CCN, Gordon 
et  al. (2017) found that the CCN concentration for low-clouds 
differed by 0.2–0.3% between solar maximum and solar minimum. 
Combined with relatively small variations in the atmospheric ion 
concentration over centennial time scales (Usoskin et  al., 2015), it 
is therefore unlikely that cosmic ray intensity affects present-day 
climate via nucleation (Yu and Luo, 2014; Dunne et al., 2016; Pierce, 
2017; Lee et al., 2019).

Studies continue to seek a relationship between GCR and properties 
of the climate system based on correlations and theory. Svensmark 
et  al. (2017) proposed a  new mechanism for ion-induced increase 
in aerosol growth rate and subsequent influence on the CCN 
concentration. The study does not include an estimate of the 
resulting effect on atmospheric CCN concentration and cloud 
radiative properties. Furthermore, Svensmark et  al. (2009, 2016) 
find correlations between GCRs and aerosol and cloud properties 
in satellite and ground-based data. Multiple studies investigating 
this link have challenged such correlations (Kristjánsson et al., 2008; 
Calogovic et al., 2010; Laken, 2016).

AR5 concluded that the GCR effect on CCN is too weak to have any 
detectable effect on climate and no robust association was found 
between GCR and cloudiness (Boucher et  al., 2013). Published 

literature since AR5 robustly supports these conclusions with key 
laboratory, theoretical and observational evidence. There is high 
confidence that GCRs contribute a  negligible ERF over the period 
1750–2019.

7.3.4.6 Volcanic Aerosols

There is large episodic negative radiative forcing associated with 
sulphur dioxide (SO  2) being ejected into the stratosphere from 
explosive volcanic eruptions, accompanied by more frequent smaller 
eruptions (Figure  2.2 and Cross-Chapter Box  4.1). From SO2 gas, 
reflective sulphate aerosol is formed in the stratosphere where it may 
persist for months to years, reducing the incoming solar radiation. 
The volcanic SARF in AR5 (Myhre et  al., 2013b) was derived by 
scaling the stratospheric aerosol optical depth (SAOD) by a factor of 
–25 W m–2 per unit SAOD from Hansen et al. (2005b). Quantification 
of the adjustments to SAOD perturbations from climate model 
simulations have determined a significant positive adjustment driven 
by a  reduction in cloud amount (Figure 7.4; Marshall et al., 2020). 
Analysis of CMIP5 models provides a mean ERF of –20 W m–2 per 
unit SAOD (Larson and Portmann, 2016). Single-model studies with 
successive generations of Hadley Centre climate models produce 
estimates between –17 and –19 W m–2 per unit SAOD (Gregory et al., 
2016; Marshall et al., 2020), with some evidence that ERF may be non-
linear with SAOD for large eruptions (Marshall et al., 2020). Analysis 
of the volcanically active periods of 1982–1985 and 1990–1994 using 
the CESM1(WACCM) aerosol–climate model provided an SAOD-
to-ERF relationship of –21.5 (± 1.1) W m–2 per unit SAOD (Schmidt 
et al., 2018). Volcanic SO2 emissions may contribute a positive forcing 
through effects on upper tropospheric ice clouds, due to additional 
ice nucleation on volcanic sulphate particles (Friberg et  al., 2015; 
Schmidt et  al., 2018), although one observational study found no 
significant effect (Meyer et  al., 2015). Due to low agreement, the 
contribution of sulphate aerosol effects on ice clouds to volcanic ERF 
is not included in the overall assessment.

Non-explosive volcanic eruptions generally yield negligible global 
ERFs due to the short atmospheric lifetimes (a few weeks) of volcanic 
aerosols in the troposphere. However, as discussed in Section 7.3.3.2, 
the massive fissure eruption in Holuhraun, Iceland persisted for 
months in 2014 and 2015 and did in fact result in a  marked and 
persistent reduction in cloud droplet radii and a  corresponding 
increase in cloud albedo regionally (Malavelle et al., 2017). This shows 
that non-explosive fissure eruptions can lead to strong regional and 
even global ERFs, but because the Holuhraun eruption occurred in 
Northern Hemisphere winter, solar insolation was weak and the 
observed albedo changes therefore did not result in an appreciable 
global ERF (Gettelman et al., 2015).

The ERF for volcanic stratospheric aerosols is assessed to be 
–20 ± 5 W m–2 per unit SAOD (medium confidence) based on the 
CMIP5 multi-model mean from the Larson and Portmann (2016) 
SAOD forcing efficiency calculations combined with the single-model 
results of Gregory et al. (2016), Schmidt et al. (2018) and Marshall 
et al. (2020). This is applied to the SAOD time series from Chapter 2 
(Section  2.2.2) to generate a  time series of ERF and temperature 
response shown in Chapter 2 (Figure 2.2 and Figure 7.8, respectively). 
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The period from 500 BCE to 1749 CE, spanning back to the start of 
the record of Toohey and Sigl (2017), is defined as the pre-industrial 
baseline and the volcanic ERF is calculated using an SAOD anomaly 
from this long-term mean. As in AR5, a pre-industrial to present-day 
ERF assessment is not provided due to the episodic nature of 
volcanic eruptions.

7.3.5 Synthesis of Global Mean Radiative 
Forcing, Past and Future

7.3.5.1 Major Changes in Forcing since the IPCC 
Fifth Assessment Report

The AR5 introduced the concept of effective radiative forcing (ERF) 
and radiative adjustments, and made a preliminary assessment that 
the tropospheric adjustments were zero for all species other than 
the effects of aerosol–cloud interaction and black carbon. Since AR5, 
new studies have allowed for a  tentative assessment of values for 
tropospheric adjustments to CO2, CH4, N2O, some CFCs, solar forcing, 
and stratospheric aerosols, and to place a  tighter constraint on 
adjustments from aerosol–cloud interaction (Sections 7.3.2, 7.3.3 
and 7.3.4). In AR6, the definition of ERF explicitly removes the land-
surface temperature change as part of the forcing, in contrast to AR5 
where only sea surface temperatures were fixed. The ERF is assessed 
to be a better predictor of modelled equilibrium temperature change 
(i.e., less variation in feedback parameter) than SARF (Section 7.3.1).

As discussed in Section 7.3.2, the radiative efficiencies for CO2, CH4 
and N2O have been updated since AR5 (Etminan et al., 2016). There 
has been a  small (1%) increase in the stratospheric-temperature-
adjusted CO2 radiative efficiency, and a +5% tropospheric adjustment 
has been added. The stratospheric-temperature-adjusted radiative 
efficiency for CH4 is increased by approximately 25% (high confidence). 
The tropospheric adjustment is tentatively assessed to be –14% (low 
confidence). A  +7% tropospheric adjustment has been added to 
the radiative efficiency for N2O and +12% to CFC-11 and CFC-12 
(low confidence).

For aerosols there has been a convergence of model and observational 
estimates of aerosol forcing, and the partitioning of the total aerosol 
ERF has changed. Compared to AR5 a greater fraction of the ERF is 
assessed to come from ERFaci compared to the ERFari. It is now assessed 
as virtually certain that the total aerosol ERF (ERFari+aci) is negative.

7.3.5.2 Summary ERF Assessment

Figure 7.6 shows the industrial-era ERF estimates for 1750 to 2019 
for the concentration change in different forcing agents. The assessed 
uncertainty distributions for each individual component are combined 
with a  100,000-member Monte Carlo simulation that samples the 
different distributions, assuming they are independent, to obtain 
the overall assessment of total present-day ERF (Supplementary 
Material 7.SM.1). The corresponding emissions-based ERF figure is 
shown in Chapter 6 (Figure 6.12).

Figure 7.6 | Change in effective radiative forcing (ERF) from 1750 to 2019 by contributing forcing agents (carbon dioxide, other well-mixed greenhouse 
gases (WMGHGs), ozone, stratospheric water vapour, surface albedo, contrails and aviation-induced cirrus, aerosols, anthropogenic total, and solar). 
Solid bars represent best estimates, and very likely (5–95%) ranges are given by error bars. Non-CO2 WMGHGs are further broken down into contributions from methane (CH4), 
nitrous oxide (N2O) and halogenated compounds. Surface albedo is broken down into land-use changes and light-absorbing particles on snow and ice. Aerosols are broken down 
into contributions from aerosol–cloud interactions (ERFaci) and aerosol–radiation interactions (ERFari). For aerosols and solar, the 2019 single-year values are given (Table 7.8), 
which differ from the headline assessments in both cases. Volcanic forcing is not shown due to the episodic nature of volcanic eruptions. Further details on data sources and 
processing are available in the chapter data table (Table 7.SM.14).
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The total anthropogenic ERF over the industrial era (1750–2019) is 
estimated as 2.72 [1.96 to 3.48] W m–2 (high confidence) (Table 7.8 and 
Annex III). This represents a 0.43 W m–2 increase over the assessment 
made in AR5 (Myhre et  al., 2013b) for the period 1750–2011. This 
increase is a result of compensating effects. Atmospheric concentration 
increases of GHGs since 2011 and upwards revisions of their forcing 
estimates have led to a 0.59 W m–2 increase in their ERF. However, the 
total aerosol ERF is assessed to be more negative compared to AR5, 
due to revised estimates rather than trends (high confidence).

Greenhouse gases, including ozone and stratospheric water vapour from 
methane oxidation, are estimated to contribute an ERF of 3.84 [3.46 to 
4.22] W m–2 over 1750–2019. Carbon dioxide continues to contribute 
the largest part (56 ± 16%) of this GHG ERF (high confidence).

As discussed in Section 7.3.3, aerosols have in total contributed an ERF 
of –1.1 [–1.7 to –0.4] W m–2 over 1750–2019 (medium confidence). 

Aerosol–cloud interactions contribute approximately 75–80% of 
this ERF with the remainder due to aerosol–radiation interactions 
(Table 7.8).

For the purpose of comparing forcing changes with historical 
temperature change (Section  7.5.2), longer averaging periods are 
useful. The change in ERF from the second half of the 19th century 
(1850–1900) compared with a  recent period (2006–2019) is 
+2.20 [1.53 to 2.91] W m–2, of which 1.71 [1.51 to 1.92] W m–2 is due 
to CO2.

7.3.5.3 Temperature Contribution of Forcing Agents

The estimated contribution of forcing agents to the 2019 global 
surface air temperature (GSAT) change relative to 1750 is shown in 
Figure 7.7. These estimates were produced using the concentration-
derived ERF time series presented in Figure  2.10 and described 

Table 7.8 | Summary table of effective radiative forcing (ERF) estimates for AR6 and comparison with the four previous IPCC assessment reports. Prior to 
AR5 values are stratospheric-temperature-adjusted radiative forcing (SARF). For AR5 aerosol–radiation interactions (ari) and aerosol–cloud interactions (aci) are ERF; all other 
values assume ERF equals SARF. Ranges shown are 5–95%. Volcanic ERF is not added to the table due to the episodic nature of volcanic eruptions which makes it difficult 
to compare to the other forcing mechanisms. Solar ERF is based on total solar irradiance (TSI) and not spectral variation.

Driver

Global Mean Effective Radiative Forcing (W m–2)

SAR
(1750–1993)

TAR
(1750–1998)

AR4
(1750–2005)

AR5
(1750–2011)

AR6
(1750–2019)

Comment

CO2 1.56 [1.33 to 1.79] 1.46 [1.31 to 1.61] 1.66 [1.49 to 1.83] 1.82 [1.63 to 2.01] 2.16 [1.90 to 2.41] Increases in concentrations. 
Changes to radiative 
efficiencies.
Inclusion of tropospheric 
adjustments.

CH4 0.47 [0.40 to 0.54 0.48 [0.41 to 0.55] 0.48 [0.43 to 0.53] 0.48 [0.43 to 0.53] 0.54 [0.43 to 0.65]

N2O 0.14 [0.12 to 0.16] 0.15 [0.14 to 0.16] 0.16 [0.14 to 0.18] 0.17 [0.14 to 0.20] 0.21 [0.18 to 0.24]

Halogenated species 0.26 [0.22 to 0.30] 0.36 [0.31 to 0.41] 0.33 [0.30 to 0.36] 0.36 [0.32 to 0.40] 0.41 [0.33 to 0.49]

Tropospheric ozone 0.4 [0.2 to 0.6] 0.35 [0.20 to 0.50] 0.35 [0.25 to 0.65] 0.40 [0.20 to 0.60]

0.47 [0.24 to 0.71]

Revised precursor emissions. 
No tropospheric adjustment 
assessed. No troposphere–
stratosphere separation.

Stratospheric ozone –0.1 [–0.2 to –0.05] –0.15 [–0.25 to –0.05] –0.05 [–0.15 to 0.05] –0.05 [–0.15 to 0.05]

Stratospheric 
water vapour

Not estimated [0.01 to 0.03] 0.07 [0.02 to 0.1] 0.07 [0.02 to 0.12] 0.05 [0.00 to 0.10]
Downward revision due 
to adjustments.

Aerosol–radiation 
interactions

–0.5 [–0.25 to –1.0] Not estimated –0.50 [–0.90 to –0.10] –0.45 [–0.95 to 0.05] –0.22 [–0.47 to 0.04]

ERFari magnitude reduced by 
about 50% compared to AR5, 
based on agreement between 
observation-based and 
modelling-based evidence.

Aerosol–cloud 
interactions

[–1.5 to 0.0]
(sulphate only)

[–2.0 to 0.0]
(all aerosols)

–0.7 [–1.8 to –0.3]
(all aerosols)

–0.45 [–1.2 to 0.0] –0.84 [–1.45 to –0.25]

ERFaci magnitude increased 
by about 85% compared to 
AR5, based on agreement 
between observation-based 
and modelling-based lines 
of evidence.

Land use Not estimated –0.2 [–0.4 to 0.0] –0.2 [–0.4 to 0.0] –0.15 [–0.25 to –0.05] –0.20 [–0.30 to –0.10] Includes irrigation.

Surface albedo (black + 
organic carbon aerosol 
on snow and ice)

Not estimated Not estimated 0.10 [0.00 to 0.20] 0.04 [0.02 to 0.09] 0.08 [0.00 to 0.18]
Increased since AR5 
to better account for 
temperature effects.

Combined contrails and 
aviation-induced cirrus

Not estimated [0.00 to 0.04] Not estimated 0.05 [0.02 to 0.15] 0.06 [0.02 to 0.10] Narrower range since AR5.

Total anthropogenic Not estimated Not estimated 1.6 [0.6 to 2.4] 2.3 [1.1 to 3.3] 2.72 [1.96 to 3.48]
Increase due to GHGs, 
compensated slightly by 
aerosol ERFaci.

Solar irradiance 0.3 [0.1 to 0.5] 0.3 [0.1 to 0.5] 0.12 [0.06 to 0.30] 0.05 [0.0 to 0.10] 0.01 [–0.06 to 0.08]
Revised historical TSI 
estimates and methodology.

https://doi.org/10.1017/9781009157896.009
Downloaded from https://www.cambridge.org/core. IP address: 176.165.113.174, on 19 Oct 2024 at 05:27:05, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://doi.org/10.1017/9781009157896.009
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


961

The Earth’s Energy Budget, Climate Feedbacks and Climate Sensitivity Chapter 7

7

in  Supplementary Material 7.SM.1.3. The resulting GSAT changes 
over time are shown in Figure 7.8. The historical time series of ERFs 
for the WMGHGs can be derived by applying the ERF calculations of 
Section 7.3.2 to the observed time series of WMGHG concentrations 
in Chapter 2 (Section 2.2).

These ERF timeseries are combined with a  two-layer emulator 
(Cross-Chapter Box 7.1 and Supplementary Material 7.SM.2) using 
a  2237-member constrained Monte Carlo sample of both forcing 
uncertainty (by sampling ERF ranges) and climate response (by 
sampling ECS, TCR and ocean heat capacity ranges). The net model 
warming over the historical period is matched to the assessment 
of historical GSAT warming from 1850–1900 to 1995–2014 of 
0.85 [0.67 to 0.98] °C (Cross-Chapter Box 2.3) and ocean heat content 
change from 1971 to 2018 (Section  7.2.2.2). Therefore the model 
gives the breakdown of the GSAT trend associated with different 
forcing mechanisms that are consistent with the overall GSAT 
change. The model assumes that there is no variation in feedback 
parameter across forcing mechanisms (Section 7.3.1) and variations 
in the effective feedback parameter over the historical record 
(Section 7.4.4). The distribution of ECS was informed by Section 7.5.5 
and chosen to approximately maintain the best estimate and likely/
very likely ranges assessed in that section (see also Supplementary 

Material 7.SM.2). The TCR has an ensemble median value of 1.81°C, 
in good agreement with Section  7.5.5. Two error bars are shown 
in Figure  7.7. The dashed error bar shows the contribution of ERF 
uncertainty (as assessed in the subsections of Section 7.3) employing 
the best estimate of climate response with an ECS of 3.0°C. The solid 
bar is the total response uncertainty using the Section 7.5.5 assessment 
of ECS. The uncertainty in the historical temperature contributions 
ofthe different forcing agents is mostly due to uncertainties in ERF, 
yet for the WMGHG the uncertainty is dominated by the climate 
response as its ERF is relatively well known (Figure 7.7). From the 
assessment of emulator responses in Cross-Chapter Box 7.1, there is 
high confidence that calibrated emulators such as the one employed 
here can represent the historical GSAT change between 1850–1900 
and 1995–2014 to within 5% for the best estimate and 10% for the 
very likely range (Supplementary Material, Table 7.SM.4). This gives 
high confidence in the overall assessment of GSAT change for the 
response to ERFs over 1750–2019 derived from the emulator.

The total human forced GSAT change from 1750 to 2019 is calculated 
to be 1.29 [1.00 to 1.65] °C (high confidence). Although the total 
emulated GSAT change has high confidence, the confidence of the 
individual contributions matches those given for the ERF assessment in 
the subsections of Section 7.3. The calculated GSAT change is comprised 

Figure 7.7 | The contribution of forcing agents to 2019 temperature change relative to 1750 produced using the two-layer emulator (Supplementary 
Material 7.SM.2), constrained to assessed ranges for key climate metrics described in Cross-Chapter Box 7.1. The results are from a 2237-member ensemble. 
Temperature contributions are expressed for carbon dioxide, other well-mixed greenhouse gases (WMGHGs), ozone, stratospheric water vapour, surface albedo, contrails and 
aviation-induced cirrus, aerosols, solar, volcanic, and total. Solid bars represent best estimates, and very likely (5–95%) ranges are given by error bars. Dashed error bars show the 
contribution of forcing uncertainty alone, using best estimates of ECS (3.0°C), TCR (1.8°C) and two-layer model parameters representing the CMIP6 multi-model mean. Solid error 
bars show the combined effects of forcing and climate response uncertainty using the distribution of ECS and TCR from Tables 7.13 and 7.14, and the distribution of calibrated 
model parameters from 44 CMIP6 models. Non-CO2 WMGHGs are further broken down into contributions from methane (CH4), nitrous oxide (N2O) and halogenated compounds. 
Surface albedo is broken down into land-use changes and light-absorbing particles on snow and ice. Aerosols are broken down into contributions from aerosol–cloud interactions 
(ERFaci) and aerosol–radiation interactions (ERFari). Further details on data sources and processing are available in the chapter data table (Table 7.SM.14).
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Cross-Chapter Box 7.1 | Physical Emulation of Earth System Models for Scenario Classifi cation 
and Knowledge Integration in AR6

Contributors: Zebedee R.J. Nicholls (Australia) , Malte Meinshausen (Australia/Germany), Piers Forster (United Kingdom), Kyle Armour 
(United States of America), Terje Berntsen (Norway), William Collins (United Kingdom), Christopher Jones (United Kingdom), Jared Lewis 
(Australia/New Zealand), Jochem Marotzke (Germany), Sebastian Milinski (Germany), Joeri Rogelj (United Kingdom/Belgium), 
Chris Smith (United Kingdom)

Climate model emulators are simple physically based models that are used to approximate large-scale climate responses of complex 
Earth system models (ESMs). Due to their low computational cost they can populate or span wide uncertainty ranges that ESMs 
cannot. They need to be calibrated to do this and, once calibrated, they can aid inter-ESM comparisons and act as ESM extrapolation 
tools to refl ect and combine knowledge from ESMs and many other lines of evidence (Geoffroy et al., 2013a; Good et al., 2013; Smith 
et al., 2018a). In AR6, the term ‘climate model emulator’ (or simply ‘emulator’) is preferred over ‘simple’ or ‘reduced-complexity climate 
model’ to reinforce their use as specifi cally calibrated tools (Cross-Chapter Box 7.1, Figure 1). Nonetheless, simple physically based

of a WMGHG warming of 1.58 [1.17 to 2.17] °C (high confi dence),
a  warming from ozone changes of 0.23  [0.11  to  0.39]  °C (high 
confi dence), and a cooling of –0.50 [–0.22 to –0.96] °C from aerosol 
effects (medium confi dence). The aerosol cooling has considerable 
regional time dependence (Section 6.4.3) but has weakened slightly 
over the last 20 years in the global mean (Figures 2.10 and 7.8). 
There is also a –0.06 [–0.15 to +0.01] °C contribution from surface 
refl ectance changes which is dominated by land-use change (medium 
confi dence). Changes in solar and volcanic activity are assessed to 
have together contributed a small change of –0.02 [–0.06 to +0.02] °C 
since 1750 (medium confi dence).

The total (anthropogenic + natural) emula ted GSAT between 
1850–1900 and 2010–2019 is 1.14 [0.89 to 1.45] °C, compared 
to the assessed GSAT of 1.06 [0.88 to 1.21] °C (Section 2.3.1 and 
Cross Chapter Box  2.3). The emulated response is slightly warmer 
than the observations and has a  larger uncertainty range. As the 
emulated response attempts to constrain to multiple lines of 
evidence (Supplementary Material 7.SM.2), only one of which is 
GSAT, they should not necessarily be expected to exactly agree. 
The larger uncertainty range in the emulated GSAT compared to the 
observations is refl ective of the uncertainties in ECS, TCR and ERF 
(particularly the aerosol ERF) that drive the emulator response.

The emulator gives a  range of GSAT response for the period 1750 
to 1850–1900 of 0.09 [0.04 to 0.14] °C from anthropogenic ERFs. 
These results are used as a line of evidence for the assessment of this 
change in Chapter 1 (Cross-Chapter Box 1.2), which gives an overall 
assessment of 0.1°C [likely range –0.1 to +0.3] °C.

Figure 7.8 presents the GSAT time series using ERF time series for 
individual forcing agents rather than their aggregation. It shows that 
for most of the historical period the long time scale total GSAT trend 
estimate from the emulator closely follows the CO2 contribution. 
The GSAT estimate from non-CO2 greenhouse gas forcing (from other 
WMGHGs and ozone) has been approximately cancelled out in the 
global average by a cooling GSAT trend from aerosols. However, since 
1980 the aerosol cooling trend has stabilized and may have started 
to reverse, so that over the last few decades the long-term warming 

has been occurring at a  faster rate than would be expected due 
to CO2 alone (high confi dence) (see also Sections 2.2.6 and 2.2.8). 
Throughout the record, but especially prior to 1930, periods of 
volcanic cooling dominate decadal variability. These estimates 
of the forced response are compared with model simulations and 
attributable warming estimates in Chapter 3 (Section 3.3.1).

Figure 7.8 | Attributed global surface air temperature change (GSAT) from 
1750 to 2019 produced using the two-layer emulator (Supplementary 
Material 7.SM.2), forced with ERF derived in this chapter (displayed in 
Figure 2.10) and climate response constrained to assessed ranges for key 
climate metrics described in Cross-Chapter Box 7.1. The results shown are the 
medians from a 2237-member ensemble that encompasses uncertainty in forcing and 
climate response (year-2019 best estimates and uncertainties are shown in Figure 7.7 
for several components). Temperature contributions are expressed for carbon dioxide 
(CO2), methane (CH4), nitrous oxide (N2O), other well-mixed greenhouse gases 
(WMGHGs), ozone (O3), aerosols, and other anthropogenic forcings, as well as total 
anthropogenic, solar, volcanic, and total forcing. Shaded uncertainty bands show very 
likely (5–95%) ranges. Further details on data sources and processing are available in 
the chapter data table (Table 7.SM.14).
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Cross-Chapter Box 7.1 (continued)

climate models have a long history of use in previous IPCC reports (Section 1.5.3.4). Climate model emulators can include carbon and 
other gas cycles and can combine uncertainties along the cause–effect chain, from emissions to temperature response. AR5 (M. Collins 
et al., 2013) used the MAGICC6 emulator (Meinshausen et al., 2011a) in a probabilistic setup (Meinshausen et al., 2009) to explore 
the uncertainty in future projections. A simple impulse response emulator (Good et al., 2011) was also used to ensure a consistent 
set of ESM projections could be shown across a range of scenarios. Chapter 8 in AR5 WGI (Myhre et al., 2013b) employed a two-layer 
emulator for quantifying global temperature-change potentials (GTP). In AR5 WGIII (Clarke et al., 2014), MAGICC6 was also used 
for the classification of scenarios, and in AR5 Synthesis Report (IPCC, 2014) this information was used to estimate carbon budgets. 
In SR1.5, two emulators were used to provide temperature projections of scenarios: the MAGICC6 model, which was used for the 
scenario classification, and the FaIR1.3 model (Millar et al., 2017; Smith et al., 2018a).

The SR1.5 found that the physically based emulators produced different projected non-CO2 forcing and identified the largely 
unexplained differences between the two emulators used as a  key knowledge gap (Forster et  al., 2018). This led to a  renewed 
effort to test the skill of various emulators. The Reduced Complexity Model Intercomparison Project (RCMIP; Nicholls et al., 2020) 
found that the latest generation of the emulators can reproduce key characteristics of the observed changes in global surface air 
temperature (GSAT) together with other key responses of ESMs (Cross-Chapter Box 7.1, Figure 1a). In particular, despite their reduced 
structural complexity, some emulators are able to replicate the non-linear aspects of ESM GSAT response over a range of scenarios. 
GSAT emulation has been more thoroughly explored in the literature than other types of emulation. Structural differences between 
emulation approaches lead to different outcomes and there are problems with emulating particular ESMs. In conclusion, there is 
medium confidence that emulators calibrated to single ESM runs can reproduce ESM projections of the forced GSAT response to 
other similar emissions scenarios to within natural variability (Meinshausen et al., 2011b; Geoffroy et al., 2013a; Dorheim et al., 2020; 
Nicholls et al., 2020; Tsutsui, 2020), although larger differences can remain for scenarios with very different forcing characteristics. 
For variables other than GSAT there has not yet been a comprehensive effort to evaluate the performance of emulators.

Application of emulators in AR6 WGI
Cross-Chapter Box 7.1 Table 1 shows the use of emulators within the WGI Report. The main use of emulation in the Report is to estimate 
GSAT change from effective radiative forcing (ERF) or concentration changes, where various versions of a two-layer energy budget 
emulator are used. The two-layer emulator is equivalent to a two-timescale impulse-response model (Supplementary Material 7.SM.2; 
Geoffroy et al., 2013b). Both a single configuration version and probabilistic forms are used. The emulator is an extension of the energy 
budget equation (Box 7.1, Equation 7.1) and allows for heat exchange between the upper- and deep-ocean layers, mimicking the 
ocean heat uptake that reduces the rate of surface warming under radiative forcing (Gregory, 2000; Held et al., 2010; Winton et al., 
2010; Armour, 2017; Mauritsen and Pincus, 2017; Rohrschneider et al., 2019). Although the same energy budget emulator approach 
is used, different calibrations are employed in various sections, to serve different purposes and keep lines of evidence as independent 
as possible. Chapter 9 additionally employs projections of ocean heat content from the Chapter 7 two-layer emulator to estimate the 
thermostatic component of future sea level rise (Section 9.6.3 and Supplementary Material 7.SM.2).

Cross-Chapter Box 7.1, Table 1 | Use of emulation within the WGI Report.

Section Application and Emulator Type Emulated Variables

Cross Chapter-Box 1.2 
Estimate anthropogenic temperature change pre-1850, based on radiative forcing time series from Chapter 7. Uses 
the Chapter 7 calibrated two-layer emulator: a two-layer energy budget emulator, probabilistically calibrated to AR6 
ECS, TCR, historical warming and ocean heat uptake ranges, driven by the Chapter 7 concentration-based ERFs.

GSAT

Section 3.3
Section 7.3

Investigation of the historical temperature response to individual forcing mechanisms to complement detection and 
attribution results. Uses the Chapter 7 calibrated two-layer emulator.

GSAT 

Box 4.1
Understanding the spread in GSAT increase of CMIP6 models and comparison to other assessments; assessment of 
contributions to projected temperature uncertainty. Uses a two-layer emulator calibrated to the Chapter 7 ECS and 
TCR assessment driven by Chapter 7 best-estimate ERFs.

GSAT

Section 4.6
Emulators used to assess differences in radiative forcing and GSAT response between RCP and SSP scenarios. Uses 
the Chapter 7 ERF time series and the MAGICC7 probabilistic emissions-driven emulator for GSAT calibrated to the 
WGI assessment.

ERF, GSAT

Section 4.7
Emulator used for long-term GSAT projections (post-2100) to complement the small number of ESMs with data beyond 
2100. Uses the MAGICC7 probabilistic emissions-driven emulator calibrated to the WGI assessment.

GSAT

Section 5.5
Estimated non-CO2 warming contributions of mitigation scenarios at the time of their net zero CO2 emissions for 
integration in the assessment of remaining carbon budgets. Uses the MAGICC7 probabilistic emissions-driven emulator 
calibrated to the WGI assessment.

GSAT
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Cross-Chapter Box 7.1 (continued)

Section Application and Emulator Type Emulated Variables

Section 6.6
Section 6.7

Estimated contributions to future warming from SLCFs across SSP scenarios based on ERF time series. Uses a single 
two-layer emulator configuration derived from the medians of MAGICC7 and FaIRv1.6.2 AR6 WG1 GSAT probabilistic 
responses and the best-estimate of ECS and TCR.

GSAT

Section 7.5
Estimating a process-based TCR from a process-based ECS. Uses a two-layer emulator in probabilistic form calibrated 
to process-based estimates from Chapter 7; a different calibration compared to the main Chapter 7 emulator.

TCR

Section 7.6
Deriving emissions metrics. Uses two-layer emulator configurations derived from MAGICC7 and FaIRv1.6.2 AR6 WG1 
probabilistic GSAT responses.

GTPs and their 
uncertainties

Section 9.6
Deriving global mean sea level projections. Uses the Chapter 7 calibrated two-layer emulator for GSAT and ocean heat 
content, where GSAT drives regional statistical emulators of ice sheets and glaciers.

Sea level and ice loss

Section 11.2 and 
Cross-Chapter Box 11.1

Regional patterns of response are compared to global mean trends. Assessed literature includes projections with 
a regional pattern scaling and variability emulator.

Various regional 
information 

Emissions-driven emulators (as opposed to ERF-driven or concentration-driven emulators) are also used in the Report. In Chapter 4 
(Section 4.6) MAGICC7 is used to emulate GSAT beyond 2100 since its long-term response has been assessed to be fit-for-purpose 
to represent the behaviour of ESMs. In Chapter  5 (Section  5.5) MAGICC7 is used to explore the non-CO2 GSAT contribution in 
emissions scenarios. In Chapter 6 and Chapter 7 (Section 7.6), two-layer model configurations are tuned to match the probabilistic 
GSAT responses of FaIRv1.6.2 and MAGICC7 emissions-driven emulators. For Chapter 6 the two median values from FaIRv1.6.2 and 
MAGICC7 emulators are averaged and then matched to the best-estimate ECS of 3°C and TCR of 1.8°C (Tables 7.13 and 7.14) under 
the best-estimate ERF due to a doubling of CO2 of 3.93 W m–2 (Table 7.4). For Section 7.6 a distribution of responses is used from the 
two emulators to estimate uncertainties in global temperature change potentials (GTP).

Emissions-driven emulators for scenario classification in AR6 WGIII
As in AR5 and SR1.5, emissions-driven emulators are used to communicate outcomes of the physical climate science assessment and 
uncertainties to quantify the temperature outcome associated with different emissions scenarios. In particular, the computational 
efficiency of these emulators allows the analysis of a large number of multi-gas emissions scenarios in terms of multiple characteristics, 
e.g., year of peak temperature or 2030 emissions levels, in line with keeping global warming to below 1.5°C or 2.0°C.

Four emissions-driven emulators have been considered as tools for WGIII to explore the range of GSAT response to multiple scenarios 
beyond those assessed in WGI. The four emulators are CICERO-SCM (Skeie et al., 2017, 2021), FaIRv1.6.2 (Millar et al., 2017; Smith 
et al., 2018a), MAGICC7 (Meinshausen et al., 2009) and OSCARv3.1.1 (Gasser et al., 2017a, 2020). Each emulator’s probabilistic 
distribution has been calibrated to capture the relationship between emissions and GSAT change. The calibration is informed by 
the WGI assessed ranges of ECS, TCR, historical GSAT change, ERF, carbon cycle metrics and future warming projections under the 
(concentration-driven) SSP scenarios. The emulators are then provided as a tool for WGIII to perform a GSAT-based classification of 
mitigation scenarios consistent with the physical understanding assessed in WGI. The calibration step reduced the emulator differences 
identified in SR1.5. Note that evaluation of both central and range estimates of each emulator’s probabilistic projections is important 
to assess the fitness-for-purpose for the classification of scenarios in WGIII, based on information beyond the central estimate of 
GSAT warming.

MAGICC7 and FaIRv1.6.2 emissions-based emulators are able to represent the WGI assessment to within small differences (defined 
here as within typical rounding precisions of ±5% for central estimates and ±10% for ranges) across more than 80% of metric ranges 
(Cross-Chapter Box 7.1, Table 2). Both calibrated emulators are consistent with assessed ranges of ECS, historical GSAT, historical 
ocean heat uptake, total greenhouse gas ERF, methane ERF and the majority of the assessed SSP warming ranges. FaIRv1.6.2 also 
matches the assessed central value of TCRE and airborne fraction. Whereas, MAGICC7 matches the assessed TCR ranges as well as 
providing a closer fit to the SSP warming ranges for the lower-emissions scenarios. In the evaluation framework considered here, 
CICERO-SCM represents historical warming to within 2% of the assessed ranges and also represents future temperature ranges 
across the majority of the assessment, although it lacks the representation of the carbon cycle. In this framework, OSCARv3.1.1 is less 
able to represent the assessed projected GSAT ranges although it matches the range of airborne fraction estimates closely and the 
assessed historical GSAT likely range to within 0.5%. Despite these identified limitations, both CICERO-SCM and OSCARv3.1.1 provide 
additional information for evaluating the sensitivity of scenario classification to model choice.

How emulators match the assessed ranges used for the evaluation framework is summarized here and in Table 2. The first is too-low 
projections for 2081–2100 under SSP1-1.9 (8% or 15% too low for the central estimate and 15% or 25% too low for the lower end in 
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Cross-Chapter Box 7.1 (continued)

the case of MAGICC7 or FaIRv1.6.2, respectively). The second is the representation of the aerosol ERF (both MAGICC7 and FaIRv1.6.2 
are greater than 8% less negative than the central assessed range and greater than 10% less negative for the lower assessed range), 
as energy balance models struggle to reproduce an aerosol ERF with a magnitude as strong as the assessed best estimate and still 
match historical warming estimates. Both emulators have medium to large differences compared to the TCRE and airborne fraction 
ranges (see notes beneath Cross-Chapter Box 7.1, Table 2). Finally, there is also a slight overestimate of the low end of the assessed 
historical GSAT range.

Cross-Chapter Box 7.1, Figure 1 | A comparison between the global surface air temperature (GSAT) response of various calibrated simple climate 
models, assessed ranges and Earth system models (ESMs). (a) and (b) compare the assessed historical GSAT time series (Section 2.3.1) with four multi-gas 
emulators calibrated to replicate numerous assessed ranges (panel (a); Cross-Chapter Box 7.1, Table 2) and also compares idealized CO2-only concentration scenario 
response for one ESM (IPSL CM6A-LR) and multiple emulators which participated in RCMIP Phase 1 (Nicholls et al., 2020) calibrated to that single ESM (panel (b)). (c)
and (d) compare this Report’s assessed ranges for GSAT warming (Box 4.1) under the multi-gas scenario SSP1-2.6 with the same calibrated emulators as in (a). For 
context, a range of CMIP6 ESM results are also shown (thin lines in (c) and open circles in (d)). Panel (b) adapted from Nicholls et al. (2020). Further details on data 
sources and processing are available in the chapter data table (Table 7.SM.14).
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Cross-Chapter Box 7.1, Figure 1 | A comparison between the global surface air temperature (GSAT) response of various calibrated simple 
climate models, assessed ranges and Earth system models (ESMs). (a) and (b) compare the assessed historical GSAT time series (Section 2.3.1) with four 
multi-gas emulators calibrated to replicate numerous assessed ranges (panel (a); Cross-Chapter Box 7.1, Table 2) and also compares idealized CO2-only concentration 
scenario response for one ESM (IPSL CM6A-LR) and multiple emulators which participated in RCMIP Phase 1 (Nicholls et al., 2020) calibrated to that single ESM 
(panel (b)). (c) and (d) compare this Report’s assessed ranges for GSAT warming (Box 4.1) under the multi-gas scenario SSP1-2.6 with the same calibrated emulators 
as in (a). For context, a range of CMIP6 ESM results are also shown (thin lines in (c) and open circles in (d)). Panel (b) adapted from Nicholls et al. (2020). Further 
details on data sources and processing are available in the chapter data table (Table 7.SM.14).
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Cross-Chapter Box 7.1 (continued)

Overall, there is high confidence that emulated historical and future ranges of GSAT change can be calibrated to be internally consistent 
with the assessment of key physical-climate indicators in this Report: greenhouse gas ERFs, ECS and TCR. When calibrated to match 
the assessed ranges of GSAT and multiple physical climate indicators, physically based emulators can reproduce the best estimate of 
GSAT change over 1850–1900 to 1995–2014 to within 5% and the very likely range of this GSAT change to within 10%. MAGICC7 
and FaIRv1.6.2 match at least two-thirds of the Chapter 4 assessed projected GSAT changes to within these levels of precision.

Cross-Chapter Box 7.1, Table 2 | Percentage differences between the emulator value and the WGI assessed best estimate and range for key 
metrics. Values are given for four emulators in their respective AR6-calibrated probabilistic setups. Absolute values of these indicators are shown in Supplementary 
Material, Table 7.SM.4.

Emulator CICERO-SCM FaIRv1.6.2 MAGICC7 OSCARv3.1.1

Assessed Range Lower Central Upper Lower Central Upper Lower Central Upper Lower Central Upper

Key metrics

ECS (°C) 26% 2% –18% 3% –2% 1% –3% –1% –3% –8% –15% –22%

TCRE (°C per 1000 GtC)** 29% –7% –21% 37% 5% –5% 50% –8% –20%

TCR (°C) 15% –5% –3% 14% 0% 3% 6% 4% 9% 26% 1% –14%

Historical warming and Effective Radiative Forcing 

GSAT warming (°C)
1995–2014 rel. 1850–1900

2% 0% 0% 7% 3% 4% 7% 1% –1% –0% –8% –0%

Ocean heat content change (ZJ)*
1971–2018

–24% –27% –29% 5% –4% –9% –1% –3% –6% –47% –39% 10%

Total Aerosol ERF (W m–2)
2005–2014 rel. 1750

36% 37% 10% 16% 12% 0% 10% 8% 8% 38% 15% –31%

GHG ERF (W m–2)
2019 rel. 1750

4% –5% –13% 1% 2% 1% 2% 1% –0% 1% 3% –3%

Methane ERF (W m–2)
2019 rel. 1750

31% 4% –13% 3% 3% 3% 0% –0% 3% 8% –1% –5%

Carbon Cycle metrics 

Airborne Fraction 1pctCO2 
(dimensionless)*
2×CO2

8% –3% –11% 12% 6% –1% 1% –0% 8%

Airborne Fraction 1pctCO2 
(dimensionless)*
4×CO2

12% 1% –9% 15% 4% –6% 5% –1% –1%

Future warming (GSAT) relative to 1995–2014

SSP1-1.9 (°C)

2021–2040 10% –4% 10% 3% 1% 11% 2% –0% 4% 12% –9% –25%

2041–2060 8% –9% 7% –11% –8% 6% –1% –1% 7% 12% –8% –31%

2081–2100 –12% –25% –2% –25% –15% 4% –15% –8% 3% 7% –10% –31%

SSP1-2.6 (°C)

2021–2040 7% –5% 5% 2% 1% 8% –1% –2% –0% 9% –9% –28%

2041–2060 8% –6% 2% –2% –2% 5% 0% 1% 2% 15% –6% –28%

2081–2100 –2% –14% –5% –8% –7% 1% –6% –1% 1% 17% –9% –29%

SSP2-4.5 (°C)

2021–2040 8% –5% 5% 7% –1% 2% 3% –3% –2% –5% –14% –30%

2041–2060 4% –4% 3% 1% –1% 2% 1% 1% 2% 8% –8% –28%

2081–2100 –1% –10% –3% –2% –3% 1% –2% 1% 3% 8% –4% –25%

SSP3-7.0 (°C)

2021–2040 11% –4% 1% 14% 1% –1% 10% 1% –0% –5% –15% –29%

2041–2060 4% –5% –0% 6% 0% –1% 7% 4% 1% 7% –8% –26%

2081–2100 –0% –8% –3% 3% –1% –1% 6% 3% 6% 5% –6% –25%

SSP5-8.5 (°C)

2021–2040 5% –7% 2% 9% 2% 4% 7% 1% 2% 1% –14% –30%

2041–2060 2% –8% –1% 4% 0% 4% 3% 2% 4% 10% –6% –24%

2081–2100 4% –7% –3% 6% –0% 1% 8% 4% 7% 9% –4% –25%
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Cross-Chapter Box 7.1 (continued)

Notes. Metrics calibrated against are equilibrium climate sensitivity, ECS (Section 7.5); transient climate response to cumulative CO2 emissions, TCRE (Section 5.5); 
transient climate response, TCR (Section  7.5), historical GSAT change (Section  2.3); ocean heat uptake (Sections 7.2 and 2.3); effective radiative forcing, ERF 
(Section 7.3); carbon cycle metrics, namely airborne fractions of idealized CO2 scenarios (taking the likely range as twice the standard deviation across the models 
analysed in Arora et al. (2020; see also Table 5.7, ‘cross-AR6 lines of evidence’ row); and GSAT projections under the concentration-driven SSP scenarios for the near 
term (2021–2040), mid-term (2041–2060) and long term (2081–2100) relative to 1995–2014 (Table 4.2). See Supplementary Material, Table 7.SM.4 for a version 
of this table with the absolute values rather than percentage differences. The columns labelled ‘upper’ and ‘lower’ indicate 5–95% ranges, except for the variables 
demarcated with an asterisk or double asterisk (* or **), where they denote likely ranges from 17–83%. Note that the TCRE assessed range (**) is wider than the 
combination of the TCR and airborne fraction to account for uncertainties related to model limitations (Table 5.7) hence it is expected that the emulators are too 
narrow on this particular metric and/or too wide on TCR and airborne fraction. For illustrative purposes, the cells are coloured as follows: white cells indicate small 
differences (up to ±5% for the central value and +10% for the ranges), light blue and light yellow cells indicate medium differences (up to +10% and –10% for light 
blue and light yellow for central values, respectively; up to ±20% for the ranges) and darker cells indicate larger positive (blue) or negative (yellow) differences. Note 
that values are rounded after the colours are applied.

7.4 Climate Feedbacks

The magnitude of global surface temperature change primarily 
depends on the strength of the radiative forcings and feedbacks, 
the latter defined as the changes of the net energy budget at the 
top-of-atmosphere (TOA) in response to a change in the GSAT (Box 7.1, 
Equation 7.1). Feedbacks in the Earth system are numerous, and it can 
be helpful to categorize them into three groups: (i) physical feedbacks; 
(ii) biogeophysical and biogeochemical feedbacks; and (iii) long-term 
feedbacks associated with ice sheets. The physical feedbacks (e.g., those 
associated with changes in lapse rate, water vapour, surface albedo, or 
clouds; Sections 7.4.2.1–7.4.2.4) and biogeophysical/biogeochemical 
feedbacks (e.g., those associated with changes in methane, aerosols, 
ozone, or vegetation; Section 7.4.2.5) act both on time scales that are 
used to estimate the equilibrium climate sensitivity (ECS) in models 
(typically 150 years, see Box 7.1) and on longer time scales required 
to reach equilibrium. Long-term feedbacks associated with ice sheets 
(Section  7.4.2.6) are relevant primarily after several centuries or 
more. The feedbacks associated with biogeophysical/biogeochemical 
processes and ice sheets, often collectively referred to as Earth system 
feedbacks, had not been included in conventional estimates of the 
climate feedback (e.g., Hansen et al., 1984), but the former can now 
be quantified and included in the assessment of the total (net) climate 
feedback. Feedback analysis represents a  formal framework for the 
quantification of the coupled interactions occurring within a complex 
Earth system in which everything influences everything else (e.g., Roe, 
2009). As  used here (as presented in Section  7.4.1), the primary 
objective of feedback analysis is to identify and understand the key 
processes that determine the magnitude of the surface temperature 
response to an external forcing. For each feedback, the basic underlying 
mechanisms and their assessments are presented in Section 7.4.2.

Up until AR5, process understanding and quantification of feedback 
mechanisms were based primarily on global climate models. Since 
AR5, the scientific community has undertaken a wealth of alternative 
approaches, including observational and fine-scale modelling 
approaches. This has in some cases led to more constrained feedbacks 
and, on the other hand, uncovered shortcomings in global climate 
models, which are starting to be corrected. Consequently, AR6 achieves 
a more robust assessment of feedbacks in the climate system that is 
less reliant on global climate models than in earlier assessment reports.

It has long been recognized that the magnitude of climate feedbacks 
can change as the climate state evolves over time (Manabe and 
Bryan, 1985; Murphy, 1995), but the implications for projected future 
warming have been investigated only recently. Since AR5, progress 
has been made in understanding the key mechanisms behind this 
time- and state-dependence. Specifically, the state-dependence 
is assessed by comparing climate feedbacks between warmer and 
colder climate states inferred from paleoclimate proxies and model 
simulations (Section 7.4.3). The time-dependence of the feedbacks 
is evident between the historical period and future projections and 
is assessed to arise from the evolution of the surface warming pattern 
related to changes in zonal and meridional temperature gradients 
(Section 7.4.4).

7.4.1 Methodology of the Feedback Assessment

The global surface temperature changes of the climate system are 
generally analysed with the classical forcing–feedback framework as 
described in Box  7.1 (Equation 7.1). In this equation α  is the net 
feedback parameter (W m–2 °C–1). As surface temperature changes in 
response to the TOA energy imbalance, many other climate variables 
also change, thus affecting the radiative flux at the TOA. The aggregate 
feedback parameter can then be decomposed into an approximate 
sum of terms α = Σx αx, where x is a vector representing variables 
that have a direct effect on the net TOA radiative flux N and  

Following the conventional definition, the physical climate feedbacks 
are here decomposed into terms associated with a vertically uniform 
temperature change (Planck response, P), changes in the water-vapour 
plus temperature lapse-rate (WV+LR), surface albedo (A) and 
clouds (C). The water-vapour plus temperature lapse rate feedback 
is further decomposed using two different approaches, one based 
on changes in specific humidity, the other on changes in relative 
humidity. Biogeochemical feedbacks arise due to changes in aerosols 
and atmospheric chemical composition in response to changes in 
surface temperature, and Gregory et al. (2009) and Raes et al. (2010) 
show that they can be analysed using the same framework as for 
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the physical climate feedbacks (Sections 5.4 and 6.4.5). Similarly, 
feedbacks associated with biogeophysical and ice-sheet changes can 
also be incorporated.

In global climate models, the feedback parameters αx in global 
warming conditions are often estimated as the mean differences in 
the radiative fluxes between atmosphere-only simulations in which 
the change in SST is prescribed (Cess et al., 1990), or as the regression 
slope of change in radiation flux against change in GSAT using 
atmosphere–ocean coupled simulations with abrupt CO2 changes 
(abrupt4xCO2) for 150 years (Box 7.1; Gregory et al., 2004; Andrews 
et  al., 2012; Caldwell et  al., 2016). Neither method is perfect, but 
both are useful and yield consistent results (Ringer et al., 2014). In 
the regression method, the radiative effects of land warming are 
excluded from the ERF due to doubling of CO2 (Section 7.3.2), which 
may overestimate feedback values by about 15%. At the same time, 
the feedback calculated using the regression over years 1–150 ignores 
its state-dependence on multi-centennial time scales (Section 7.4.3), 
probably giving an underestimate of α  by about 10% (Rugenstein 
et al., 2019). These effects are both small and approximately cancel 
each other in the ensemble mean, justifying the use of regression over 
150 years as an approximation to feedbacks in ESMs.

The change of the TOA radiative flux N as a function of the change of 
a climate variable x (such as water vapour) is commonly computed 
using the ‘radiative kernel’ method (Soden et al., 2008). In this method, 
the kernel ∂N/∂x is evaluated by perturbing x within a radiation code. 
Then multiplying the kernel by dx/dT inferred from observations, 
meteorological analysis or GCMs produces a value of αx.

Feedback parameters from lines of evidence other than global 
models are estimated in various ways. For example, observational 
data combined with GCM simulations could produce an emergent 
constraint on a  particular feedback (Hall and Qu, 2006; Klein and 
Hall, 2015), or the observed interannual fluctuations in the global 
mean TOA radiation and the surface air temperature, to which the 
linear regression analysis is applied, could generate a direct estimate 
of the climate feedback, assuming that the feedback associated with 
internal climate variability at short time scales can be a  surrogate 
of the feedback to CO2-induced warming (Dessler, 2013; Loeb et al., 
2016). The assumption is not trivial, but can be justified given that the 
climate feedbacks are fast enough to occur at the interannual time 
scale. Indeed, a  broad agreement has been obtained in estimates 
of individual physical climate feedbacks based on interannual 
variability and longer climate change time scales in GCMs (Zhou 
et al., 2015; Colman and Hanson, 2017). This means that the climate 
feedbacks estimated from the observed interannual fluctuations are 
representative of the longer-term feedbacks (decades to centuries). 
Care must be taken for these observational estimates because they 
can be sensitive to details of the calculation such as data sets and 
periods used (Dessler, 2013; Proistosescu et al., 2018). In particular, 
there would be a dependence of physical feedbacks on the surface 
warming pattern at the interannual time scale due, for example, to 
El Niño–Southern Oscillation. However, this effect both amplifies and 
suppresses the feedback when data include the positive and negative 
phases of the interannual fluctuation, and therefore the net bias will 
be small.

In summary, the classical forcing–feedback framework has been 
extended to include biogeophysical and non-CO2 biogeochemical 
feedbacks in addition to the physical feedbacks. It has also been used 
to analyse seasonal and interannual-to-decadal climate variations in 
observations and ESMs, in addition to long-term climate changes 
as seen in abrupt4xCO2 experiments. These developments allow an 
assessment of the feedbacks based on a  larger variety of lines of 
evidence compared to AR5.

7.4.2 Assessing Climate Feedbacks

This section provides an overall assessment of individual feedback 
parameters, αx, by combining different lines of evidence from 
observations, theory, process models and ESMs. To achieve this, 
we review the understanding of the key processes governing the 
feedbacks, why the feedback estimates differ among models, studies or 
approaches, and the extent to which these approaches yield consistent 
results. The individual terms assessed are the Planck response 
(Section  7.4.2.1) and feedbacks associated with changes in water 
vapour and lapse rate (Section 7.4.2.2), surface albedo (Section 7.4.2.3), 
clouds (Section 7.4.2.4), biogeophysical and non-CO2 biogeochemical 
processes (Section 7.4.2.5), and ice sheets (Section 7.4.2.6). A synthesis 
is provided in Section 7.4.2.7. Climate feedbacks in CMIP6 models are 
then evaluated in Section 7.4.2.8, with an explanation of how they 
have been incorporated into the assessment.

7.4.2.1 Planck Response

The Planck response represents the additional thermal or longwave (LW) 
emission to space arising from vertically uniform warming of the surface 
and the atmosphere. The Planck response αP, often called the Planck 
feedback, plays a fundamental stabilizing role in Earth’s climate and has 
a value that is strongly negative: a warmer planet radiates more energy 
to space. A  crude estimate of αP can be made using the normalized 
greenhouse effect g̃, defined as the ratio between the greenhouse effect 
G and the upwelling LW flux at the surface (Raval and Ramanathan, 
1989). Current estimates (Section 7.2, Figure 7.2) give G = 159 W m–2 and 
g̃ ≈ 0.4. Assuming g̃ is constant, one obtains for a surface temperature 
Ts = 288 K, αP = (g – 1) 4 σ T3

s ≈ –3.3 W m–2 °C–1, where σ is the Stefan–
Boltzmann constant. This parameter αP is estimated more accurately 
using kernels obtained from meteorological reanalysis or climate 
simulations (Soden and Held, 2006; Dessler, 2013; Vial et  al., 2013; 
Caldwell et al., 2016; Colman and Hanson, 2017; Zelinka et al., 2020). 
Discrepancies among estimates primarily arise because differences 
in cloud distributions make the radiative kernels differ (Kramer et al., 
2019). Using six different kernels, Zelinka et  al. (2020) obtained 
a  spread of ±0.1 W m–2 °C–1 (one standard deviation). Discrepancies 
among estimates secondarily arise from differences in the pattern of 
equilibrium surface temperature changes among ESMs. For the CMIP5 
and CMIP6 models this introduces a  spread of ±0.04  W  m–2  °C–1 
(one  standard deviation). The multi-kernel and multi-model mean of 
αP is equal to –3.20 W m–2 °C–1 for the CMIP5 and –3.22 W m–2 °C–1 
for the CMIP6 models (Supplementary Material, Table 7.SM.5). Overall, 
there is high confidence in the estimate of the Planck response, which is 
assessed to be αP  = –3.22 W m–2 °C–1 with a very likely range of –3.4 to 
–3.0 W m–2 °C–1 and a likely range of –3.3 to –3.1 W m–2 °C–1.
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The Planck temperature response ΔTP is the equilibrium temperature 
change in response to a forcing ΔF when the net feedback parameter 
is equal to the Planck response parameter: ΔTP = –ΔF / αP.

7.4.2.2 Water-vapour and Temperature Lapse-rate Feedbacks

Two decompositions are generally used to analyse the feedbacks 
associated with a  change in the water-vapour and temperature 
lapse-rate in the troposphere. As in any system, many feedback 
decompositions are possible, each of them highlighting a particular 
property or aspect of the system (Ingram, 2010; Held and Shell, 2012; 
Dufresne and Saint-Lu, 2016). The first decomposition considers 
separately the changes (and therefore feedbacks) in the lapse rate 
(LR) and specific humidity (WV). The second decomposition considers 
changes in the lapse rate assuming constant relative humidity (LR*) 
separately from changes in relative humidity (RH).

The specific humidity (WV) feedback, also known as the water-vapour 
feedback, quantifies the change in radiative flux at the TOA due to 
changes in atmospheric water vapour concentration associated with 
a change in global mean surface air temperature. According to theory, 
observations and models, the water vapour increase approximately 
follows the Clausius–Clapeyron relationship at the global scale 
with regional differences dominated by dynamical processes 
(Section 8.2.1; Sherwood et al., 2010a; Chung et al., 2014; Romps, 
2014; R. Liu et al., 2018; Schröder et al., 2019). Greater atmospheric 
water vapour content, particularly in the upper troposphere, results in 
enhanced absorption of LW and SW radiation and reduced outgoing 
radiation. This is a  positive feedback. Atmospheric moistening 
has been detected in satellite records (Section  2.3.1.3.3), it is 
simulated by climate models (Section  3.3.2.2), and the estimates 
agree within model and observational uncertainty (Soden et  al., 
2005; Dessler, 2013; Gordon et  al., 2013; Chung et  al., 2014). 
The estimate of this feedback inferred from satellite observations is 
αWV = 1.85 ± 0.32 W m–2 °C–1 (R. Liu et al., 2018). This is consistent 
with the value αWV = 1.77 ± 0.20 W m–2 °C–1 (one standard deviation) 
obtained with CMIP5 and CMIP6 models (Zelinka et al., 2020).

The lapse-rate (LR) feedback quantifies the change in radiative flux 
at the TOA due to a non uniform change in the vertical temperature 
profile. In the tropics, the vertical temperature profile is mainly driven 
by moist convection and is close to a moist adiabat. The warming is 
larger in the upper troposphere than in the lower troposphere (Manabe 
and Wetherald, 1975; Santer et al., 2005; Bony et al., 2006), leading 
to a  larger radiative emission to space and therefore a  negative 
feedback. This larger warming in the upper troposphere than at 
the surface has been observed over the last 20 years thanks to the 
availability of sufficiently accurate observations (Section 2.3.1.2.2). 
In the extratropics, the vertical temperature profile is mainly driven 
by a balance between radiation, meridional heat transport and ocean 
heat uptake (Rose et al., 2014). Strong winter temperature inversions 
lead to warming that is larger in the lower troposphere (Payne et al., 
2015; Feldl et al., 2017a) and a positive LR feedback in polar regions 
(Section 7.4.4.1; Manabe and Wetherald, 1975; Bintanja et al., 2012; 
Pithan and Mauritsen, 2014). However, the tropical contribution 
dominates, leading to a negative global mean LR feedback (Soden 
and Held, 2006; Dessler, 2013; Vial et al., 2013; Caldwell et al., 2016). 

The LR feedback has been estimated at interannual time scales 
using meteorological reanalysis and satellite measurements of 
TOA fluxes (Dessler, 2013). These estimates from climate variability 
are consistent between observations and ESMs (Dessler, 2013; 
Colman and Hanson, 2017). The mean and standard deviation of 
this feedback under global warming based on the cited studies are 
αLR = –0.50 ± 0.20 W m–2 °C–1 (Dessler, 2013; Caldwell et al., 2016; 
Colman and Hanson, 2017; Zelinka et al., 2020).

The second decomposition was proposed by Held and Shell (2012) to 
separate the response that would occur under the assumption that 
relative humidity remains constant from that due to the change in 
relative humidity. The feedback is decomposed into three: (i) change 
in  water vapour due to an identical temperature increase at the 
surface and throughout the troposphere assuming constant relative 
humidity, which will be called the Clausius–Clapeyron (CC) feedback 
here; (ii) change in LR assuming constant relative humidity (LR*); 
(iii) change in relative humidity (RH). Since AR5 it has been clarified 
that by construction, the sum of the temperature lapse rate and specific 
humidity (LR + WV) feedbacks is equal to the sum of the Clausius–
Clapeyron feedback, the lapse rate feedback assuming constant 
relative humidity, and the feedback from changes in relative humidity 
(that is, CC + LR* + RH). Therefore, each of these two sums may 
simply be referred to as the ‘water-vapour plus lapse-rate’ feedback.

The CC feedback has a  large positive value due to well understood 
thermodynamic and radiative processes: αCC = 1.36 ± 0.04 W m–2 °C–1 
(one standard deviation; Held and Shell, 2012; Zelinka et al., 2020). 
The lapse-rate feedback assuming a constant relative humidity (LR*) in 
CMIP6 models has small absolute values (αLR* = –0.10 ± 0.07 W m–2 °C–1 
(one standard deviation)), as expected from theoretical arguments 
(Ingram, 2010, 2013). It includes the pattern effect of surface warming 
that modulates the lapse rate and associated specific humidity 
changes (Po-Chedley et al., 2018b). The relative humidity feedback is 
close to zero (αRH = 0.00 ± 0.06 W m–2 °C–1 (one standard deviation)) 
and the spread among models is confined to the tropics (Sherwood 
et  al.,  2010b; Vial et  al., 2013; Takahashi et  al., 2016; Po-Chedley 
et al., 2018b). The change in upper tropospheric RH is closely related 
to model representation of current climate (Sherwood et al., 2010b; 
Po-Chedley et  al., 2019), and a  reduction in model RH biases is 
expected to reduce the uncertainty of the RH feedback. At interannual 
time scales, it has been shown that the change in RH in the tropics is 
related to the change of the spatial organization of deep convection 
(Holloway et al., 2017; Bony et al., 2020).

Both decompositions allow estimates of the sum of the lapse-rate and 
specific humidity feedbacks αLR+WV. The multi-kernel and multi-model 
mean of αLR+WV is equal to 1.24 and 1.26 W m–2 °C–1 respectively 
for CMIP5 and CMIP6 models, with a  standard deviation of 
0.10 W m–2 °C–1 (Zelinka et al., 2020). These values are larger than the 
recently assessed value of 1.15 W m–2 °C–1 by Sherwood et al. (2020) as 
a larger set of kernels, including those obtained from meteorological 
reanalysis, are used here.

Since AR5, the effect of the water vapour increase in the stratosphere 
as a  result of global warming has been investigated by different 
studies. This increase produces a positive feedback between 0.1 and 
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0.3 W m–2 °C–1 if the stratospheric radiative response is computed 
assuming temperatures that are adjusted with fixed dynamical 
heating (Dessler et al., 2013; Banerjee et al., 2019). However, various 
feedbacks reduce this temperature adjustment and the overall 
physical (water vapour, temperature and dynamical) stratospheric 
feedback becomes much smaller (0.0 to 0.1 W m–2 °C–1; Huang et al., 
2016, 2020; Li and Newman, 2020), with uncertainty arising from 
limitations of current ESMs in simulating stratospheric processes. 
The total stratospheric feedback is assessed at 0.05 ± 0.1 W m–2 °C–1 
(one standard deviation).

The combined ‘water-vapour plus lapse-rate’ feedback is positive. 
The main physical processes that drive this feedback are well understood 
and supported by multiple lines of evidence including models, theory 
and observations. The combined ‘water-vapour plus lapse-rate’ 
feedback parameter is assessed to be αLR+WV = 1.30 W m–2 °C–1, with 
a very likely range of 1.1 to 1.5 W m–2 °C–1 and a likely range of 1.2 to 
1.4 W m–2 °C–1 with high confidence.

7.4.2.3 Surface-albedo Feedback

Surface albedo is determined primarily by reflectance at Earth’s surface, 
but also by the spectral and angular distribution of incident solar 
radiation. Changes in surface albedo result in changes in planetary 
albedo that are roughly reduced by two-thirds, owing to atmospheric 
absorption and scattering, with variability and uncertainty arising 
primarily from clouds (Bender, 2011; Donohoe and Battisti, 2011; Block 
and Mauritsen, 2013). Temperature change induces surface-albedo 
change through several direct and indirect means. In the present climate 
and at multi-decadal time scales, the largest contributions by far are 
changes in the extent of sea ice and seasonal snow cover, as these 
media are highly reflective and are located in regions that are close 
to the melting temperature (Sections 2.3.2.1 and 2.3.2.2). Reduced 
snow cover on sea ice may contribute as much to albedo feedback as 
reduced extent of sea ice (Zhang et al., 2019). Changes in the snow 
metamorphic rate, which generally reduces snow albedo with warmer 
temperature, and warming-induced consolidation of light-absorbing 
impurities near the surface, also contribute secondarily to the albedo 
feedback (Flanner and Zender, 2006; Qu and Hall, 2007; Doherty et al., 
2013; Tuzet et al., 2017). Other contributors to albedo change include 
vegetation state (assessed separately in Section 7.4.2.5), soil wetness 
and ocean roughness.

Several studies have attempted to derive surface-albedo feedback 
from observations of multi-decadal changes in climate, but only 
over limited spatial and inconsistent temporal domains, inhibiting 
a purely observational synthesis of global surface-albedo feedback 
(αA). Flanner et al. (2011) applied satellite observations to determine 
that the northern hemisphere (NH) cryosphere contribution 
to  global αA over the period 1979–2008 was 0.48 [likely range 
0.29  to 0.78]  W  m–2  °C–1, with roughly equal contributions from 
changes in land snow cover and sea ice. Since AR5, and over 
similar periods of observation, Crook and Forster (2014) found an 
estimate of 0.8  ±  0.3 W  m–2 °C–1 (one standard deviation) for the 
total NH extratropical surface-albedo feedback, when averaged 
over global surface area. For Arctic sea ice alone, Pistone et  al. 
(2014) and Cao et  al. (2015) estimated the contribution to global 

αA to be 0.31  ±  0.04  W m–2 °C–1 (one standard deviation) and 
0.31 ± 0.08 W m–2 °C–1 (one standard deviation), respectively, whereas 
Donohoe et al. (2020) estimated it to be only 0.16 ± 0.04 W m–2 °C–1 
(one standard deviation). Much of this discrepancy can be traced to 
different techniques and data used for assessing the attenuation of 
surface-albedo change by Arctic clouds. For the NH land snow, Chen 
et  al. (2016) estimated that observed changes during 1982–2013 
contributed (after converting from NH temperature change to global 
mean temperature change) by 0.1 W m–2 °C–1 to global αA, smaller 
than the estimate of 0.24  W  m–2  °C–1 from Flanner et  al. (2011). 
The  contribution of the Southern Hemisphere (SH) to global αA is 
expected to be small because seasonal snow cover extent in the SH 
is limited, and trends in SH sea ice extent are relatively flat over much 
of the satellite record (Section 2.3.2).

CMIP5 and CMIP6 models show moderate spread in global αA, 
determined from century time scale changes (Qu and Hall, 2014; 
Schneider et  al., 2018; Thackeray and Hall, 2019; Zelinka et  al., 
2020), owing to variations in modelled sea ice loss and snow cover 
response in boreal forest regions. The multi-model mean global-scale 
αA (from all contributions) over the 21st  century in CMIP5 models 
under the RCP8.5 scenario was derived by Schneider et  al. (2018) 
to be 0.40 ± 0.10 W m–2 °C–1 (one standard deviation). Moreover, 
they found that modelled αA does not decline over the 21st century, 
despite large losses of snow and sea ice, though a weakened feedback 
is apparent after 2100. Using the idealized abrupt4xCO2, as for the 
other feedbacks, the estimate of the global-scale albedo feedback in 
the CMIP5 models is 0.35 ± 0.08 W m–2 °C–1 (one standard deviation; 
Vial et  al., 2013; Caldwell et  al., 2016). The CMIP6 multi-model 
mean varies from 0.3 to 0.5 W m–2 °C–1 depending on the kernel 
used (Zelinka et  al., 2020). Donohoe et al. (2020) derived a multi-
model mean αA and its inter-model spread of 0.37 ± 0.19 W m–2 °C–1 
from the CMIP5 abrupt4xCO2 ensemble, employing model-specific 
estimates of atmospheric attenuation and thereby avoiding bias 
associated with use of a single radiative kernel.

The surface-albedo feedback estimates using centennial changes 
have been shown to be highly correlated to those using seasonal 
regional changes for NH land snow (Qu and Hall, 2014) and Arctic 
sea ice (Thackeray and Hall, 2019). For the NH land snow, because 
the physics underpinning this relationship are credible, this opens the 
possibility to use it as an emergent constraint (Qu and Hall, 2014). 
Considering only the eight models whose seasonal cycle of albedo 
feedback falls within the observational range does not change 
the multi-model mean contribution to global αA (0.08 W m–2  °C–1) 
but decreases the inter-model spread by a  factor of two (from 
±0.03 to  ±0.015 W m–2 °C–1; Qu and Hall, 2014). For Arctic sea 
ice, Thackeray and Hall (2019) show that the seasonal cycle also 
provides an emergent constraint, at least until mid-century when the 
relationship degrades. They find that the CMIP5 multi-model mean 
of the Arctic sea ice contribution to αA is 0.13 W m–2 °C–1 and that 
the inter-model spread is reduced by a factor of two (from ±0.04 to 
±0.02 W m–2  °C–1) when the emergent constraint is used. This model 
estimate is smaller than observational estimates (Pistone et al., 2014; 
Cao et al., 2015) except those of Donohoe et al. (2020). This can be 
traced to CMIP5 models generally underestimating the rate of Arctic 
sea ice loss during recent decades (Section 9.3.1; Stroeve et al., 2012; 
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Flato et al., 2013), though this may also be an expression of internal 
variability, since the observed behaviour is captured within large 
ensemble simulations (Notz, 2015). CMIP6 models better capture the 
observed Arctic sea ice decline (Section 3.4.1). In the SH the opposite 
situation is observed. Observations show relatively fl at trends in SH 
sea ice over the satellite era (Section 2.3.2.1) whereas CMIP5 models 
simulate a small decrease (Section 3.4.1). SH αA is presumably larger 
in models than observations but only contributes about one quarter 
of the global αA. Thus, we assess that αA estimates are consistent, at 
global scale, in CMIP5 and CMIP6 models and satellite observations, 
though hemispheric differences and the role of internal variability 
need to be further explored.

Based on the multiple lines of evidence presented above that 
include observations, CMIP5 and CMIP6 models and theory, the 
global surface-albedo feedback is assessed to be positive with 
high confi dence. The basic phenomena that drive this feedback are 
well understood and the different studies cover a  large variety of 
hypotheses or behaviours, including how the evolution of clouds 
affects this feedback. The value of the global surface-albedo 
feedback is assessed to be αA = 0.35 W m–2 °C–1, with a very likely
range from 0.10 to 0.60 W m–2 °C–1 and a likely range from 0.25 to 
0.45 W m–2 °C–1 with high confi dence.

7.4.2.4 Cloud Feedbacks

7.4.2.4.1 Decomposition of clouds into regimes

Clouds can be formed almost anywhere in the atmosphere when 
moist air parcels rise and cool, enabling the water vapour to 
condense. Clouds consist of liquid water droplets and/or ice crystals, 
and these droplets and crystals can grow into larger particles of rain, 
snow or drizzle. These microphysical processes interact with aerosols, 

radiation and atmospheric circulation, resulting in a highly complex 
set of processes governing cloud formation and life cycles that 
operate across a wide range of spatial and temporal scales.

Clouds have various types, from optically thick convective clouds 
to thin stratus and cirrus clouds, depending upon thermodynamic 
conditions and large-scale circulation (Figure 7.9). Over the equatorial 
warm pool and inter-tropical convergence zone (ITCZ) regions, high 
SSTs stimulate the development of deep convective cloud systems, 
which are accompanied by anvil and cirrus clouds near the tropopause 
where the convective air outfl ows. The large-scale circulation 
associated with these convective clouds leads to subsidence over 
the subtropical cool ocean, where deep convection is suppressed by 
a  lower tropospheric inversion layer maintained by the subsidence 
and promoting the formation of shallow cumulus and stratocumulus 
clouds. In the extratropics, mid-latitude storm tracks control cloud 
formation, which occurs primarily in the frontal bands of extratropical 
cyclones. Since liquid droplets do not freeze spontaneously at 
temperatures warmer than approximately –40°C and ice nucleating 
particles that can aid freezing at warmer temperatures are scarce 
(see Section 7.3.3), extratropical clouds often consist both of super-
cooled liquid and ice crystals, resulting in mixed-phase clouds.

In the global energy budget at TOA, clouds affect shortwave (SW) 
radiation by refl ecting sunlight due to their high albedo (cooling 
the climate system) and also longwave (LW) radiation by absorbing 
the  energy from the surface and emitting at a  lower temperature 
to space, that is, contributing to the greenhouse effect, warming 
the climate system. In general, the greenhouse effect of clouds 
strengthens with height whereas the SW refl ection depends on 
the cloud optical properties. The effects of clouds on Earth’s energy 
budget are measured by the cloud radiative effect (CRE), which 
is the difference in the TOA radiation between clear and all skies 

Equator 30º 60º

Rising high clouds (+)

Surface warming

Rising of Tropopause

Fewer anvil clouds (-)

Enhanced stability

Destabilization

Fewer low clouds (+) Moreliquid from ice (-)

Rising of tropopause
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Pole

Major advances since AR5
Comprehensive assessment of feedbacks in 

   different cloud regimes (cf. Table 7.9)
Increased confidence of the positive low-cloud 

   amount feedback
Improved understanding of the cloud phase 

   change feedback

Figure 7.9 | Schematic cross section of diverse cloud responses to surface warming from the tropics to polar regions. Thick solid and dashed curves indicate the 
tropopause and the subtropical inversion layer in the current climate, respectively. Thin grey text and arrows represent robust responses in the thermodynamic structure to greenhouse 
warming, of relevance to cloud changes. Text and arrows in red, orange and green show the major cloud responses assessed with high, medium and low confi dence, respectively, 
and the sign of their feedbacks to the surface warming is indicated in the parenthesis. Major advances since AR5 are listed in the box. Figure adapted from Boucher et al. (2013).
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(see Section 7.2.1). In the present climate, the SW CRE tends to be 
compensated by the LW CRE over the equatorial warm pool, leading 
to the net CRE pattern showing large negative values over the 
eastern part of the subtropical ocean and the extratropical ocean 
due to the dominant influence of highly reflective marine low-clouds.

In a  first attempt to systematically evaluate equilibrium climate 
sensitivity (ECS) based on fully coupled general circulation models 
(GCMs) in AR4, diverging cloud feedbacks were recognized as 
a dominant source of uncertainty. An advance in understanding the 
cloud feedback was to assess feedbacks separately for different cloud 
regimes (Gettelman and Sherwood, 2016). A  thorough assessment 
of cloud feedbacks in different cloud regimes was carried out in AR5 
(Boucher et al., 2013), which assigned high or medium confidence for 
some cloud feedbacks but low or no confidence for others (Table 7.9). 
Many studies that estimate the net cloud feedback using CMIP5 
simulations (Vial et  al., 2013; Caldwell et  al., 2016; Zelinka et  al., 
2016; Colman and Hanson, 2017) show different values depending on 
the methodology and the set of models used, but often report a large 
inter-model spread of the feedback, with the 90% confidence interval 
spanning both weak negative and strong positive net feedbacks. 
Part of this diversity arises from the dependence of the model cloud 
feedbacks on the parametrization of clouds and their coupling to 
other sub-grid-scale processes (Zhao et al., 2015).

Since AR5, community efforts have been undertaken to understand 
and quantify the cloud feedbacks in various cloud regimes coupled 
with large-scale atmospheric circulation (Bony et al., 2015). For some 
cloud regimes, alternative tools to ESMs, such as observations, theory, 
high-resolution cloud resolving models (CRMs), and large eddy 
simulations (LES), help quantify the feedbacks. Consequently, the net 
cloud feedback derived from ESMs has been revised by assessing 
the regional cloud feedbacks separately and summing them with 
weighting by the ratio of fractional coverage of those clouds over the 
globe to give the global feedback, following an approach adopted 
in Sherwood et al. (2020). This ‘bottom-up’ assessment is explained 
below with a  summary of updated confidence of individual cloud 
feedback components (Table 7.9). Dependence of cloud feedbacks on 
evolving patterns of surface warming will be discussed in Section 7.4.4 
and is not explicitly taken into account in the assessment presented 
in this section.

7.4.2.4.2 Assessment for individual cloud regimes

High-cloud altitude feedback
It has long been argued that cloud-top altitude rises under global 
warming, concurrent with the rising of the tropopause at all latitudes 
(Marvel et al., 2015; Thompson et al., 2017). This increasing altitude 
of high-clouds was identified in early generation GCMs and the 
tropical high-cloud altitude feedback was assessed to be positive 
with high confidence in AR5 (Boucher et al., 2013). This assessment 
is supported by a  theoretical argument called the ‘fixed anvil 
temperature mechanism’, which ensures that the temperature of the 
convective detrainment layer does not change when the altitude of 
high-cloud tops increases with the rising tropopause (Hartmann and 
Larson, 2002). Because the cloud-top temperature does not change 
significantly with global warming, cloud LW emission does not 

increase even though the surface warms, resulting in an enhancement 
of the high-cloud greenhouse effect (a positive feedback; Yoshimori 
et al. (2020)). The upward shift of high-clouds with surface warming 
is detected in observed interannual variability and trends in satellite 
records for recent decades (Chepfer et al., 2014; Norris et al., 2016; 
Saint-Lu et  al., 2020). The observational detection is not always 
successful (Davies et al., 2017), but the cloud altitude shifts similarly in 
many CRM experiments (Khairoutdinov and Emanuel, 2013; Tsushima 
et al., 2014; Narenpitak et al., 2017). The high-cloud altitude feedback 
was estimated to be 0.5 W m–2 °C–1 based on GCMs in AR5, but is 
revised, using a recent re-evaluation that excludes aliasing effects by 
reduced low-cloud amounts, downward to 0.22 ± 0.12 W m–2  °C–1 
(one standard deviation; Zhou et  al., 2014; Zelinka et  al., 2020). 
In conclusion, there is high confidence in the positive high-cloud 
altitude feedback simulated in ESMs as it is supported by theoretical, 
observational, and process modelling studies.

Tropical high-cloud amount feedback
Updrafts in convective plumes lead to detrainment of moisture at 
a  level where the buoyancy diminishes, and thus deep convective 
clouds over high SSTs in the tropics are accompanied by anvil and 
cirrus clouds in the upper troposphere. These clouds, rather than 
the convective plumes themselves, play a  substantial role in the 
global TOA radiation budget. In the present climate, the net CRE 
of these clouds is small due to a cancellation between the SW and 
LW components (Hartmann et  al., 2001). However, high-clouds 
with different optical properties could respond to surface warming 
differently, potentially perturbing this radiative balance and therefore 
leading to a non-zero feedback.

A thermodynamic mechanism referred to as the ‘stability iris effect’ 
has been proposed to explain that the anvil cloud amount decreases 
with surface warming (Bony et  al., 2016). In this mechanism, 
a  temperature-mediated increase of static stability in the upper 
troposphere, where convective detrainment occurs, acts to balance 
a  weakened mass outflow from convective clouds, and thereby 
reduce anvil cloud areal coverage (Figure 7.9). The reduction of anvil 
cloud amount is accompanied by enhanced convective aggregation 
that causes a  drying of the surrounding air and thereby increases 
the LW emission to space that acts as a  negative feedback (Bony 
et al., 2020). This phenomenon is found in many CRM simulations 
(Emanuel et al., 2014; Wing and Emanuel, 2014; Wing et al., 2020) 
and also identified in observed interannual variability (Stein et  al., 
2017; Saint-Lu et al., 2020).

Despite the reduction of anvil cloud amount supported by several 
lines of evidence, estimates of radiative feedback due to high-cloud 
amount changes is highly uncertain in models. The assessment 
presented here is guided by combined analyses of TOA radiation and 
cloud fluctuations at interannual time scale using multiple satellite 
datasets. The observationally based local cloud amount feedback 
associated with optically thick high-clouds is negative, leading to 
its global contribution (by multiplying the mean tropical anvil cloud 
fraction of about 8%) of –0.24 ± 0.05 W m–2 °C–1 (one standard 
deviation) for LW (Vaillant de Guélis et  al., 2018). Also, there is 
a  positive feedback due to increase of optically thin cirrus clouds 
in the tropopause layer, estimated to be 0.09 ± 0.09 W  m–2  °C–1 
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(one  standard deviation; Zhou et  al., 2014). The negative LW 
feedback due to reduced amount of thick high-clouds is partly 
compensated by the positive SW feedback (due to less reflection of 
solar radiation), so that the tropical high-cloud amount feedback 
is assessed to be equal to or smaller than their sum. Consistently, 
the net high-cloud feedback in the tropical convective regime, 
including a  part of the altitude feedback, is estimated to have 
the global contribution of –0.13 ± 0.06 W m–2 °C–1 (one standard 
deviation; Williams and Pierrehumbert, 2017). The negative cloud 
LW feedback is considerably biased in CMIP5 GCMs (Mauritsen and 
Stevens, 2015; Su et al., 2017; Li et al., 2019) and highly uncertain, 
primarily due to differences in the convective parametrization (Webb 
et al., 2015). Furthermore, high-resolution CRM simulations cannot 
alone be used to constrain uncertainty because the results depend 
on parametrized cloud microphysics and turbulence (Bretherton 
et  al., 2014; Ohno et  al., 2019). Therefore, the tropical high-cloud 
amount feedback is assessed as negative but with low confidence 
given the lack of modelling evidence. Taking observational estimates 
altogether and methodological uncertainty into account, the global 
contribution of the high-cloud amount feedback is assessed to be 
–0.15 ± 0.2 W m–2 °C–1 (one standard deviation).

Subtropical marine low-cloud feedback
It has long been argued that the response of marine boundary-layer 
clouds over the subtropical ocean to surface warming was the largest 
contributor to the spread among GCMs in the net cloud feedback 
(Boucher et al., 2013). However, uncertainty of the marine low-cloud 
feedback has been reduced considerably since AR5 through combined 
knowledge from theoretical, modelling and observational studies 
(Klein et al., 2017). Processes that control the low-clouds are complex 
and involve coupling with atmospheric motions on multiple scales, 
from the boundary-layer turbulence to the large-scale subsidence, 
which may be represented by a  combination of shallow and deep 
convective mixing (Sherwood et al., 2014).

In order to disentangle the large-scale processes that cause the cloud 
amount either to increase or decrease in response to the surface 
warming, the cloud feedback has been expressed in terms of several 
‘cloud controlling factors’ (Qu et al., 2014, 2015; Zhai et al., 2015; 
Brient and Schneider, 2016; Myers and Norris, 2016; McCoy et  al., 
2017a). The advantage of this approach over conventional calculation 
of cloud feedbacks is that the temperature-mediated cloud response 
can be estimated without using information of the simulated cloud 
responses that are less well-constrained than the changes in the 
environmental conditions. Two dominant factors are identified for 
the subtropical low-clouds: a thermodynamic effect due to rising SST 
that acts to reduce low-cloud by enhancing cloud-top entrainment 
of dry air, and a  stability effect accompanied by an enhanced 
inversion strength that acts to increase low-cloud (Qu et al., 2014, 
2015; Kawai et  al., 2017). These controlling factors compensate 
with a  varying degree in different ESMs, but can be constrained 
by referring to the observed seasonal or interannual relationship 
between the low-cloud amount and the controlling factors in the 
environment as a  surrogate. The analysis leads to a  positive local 
feedback that has the global contribution of 0.14 to 0.36 W m–2 °C–1 
(Klein et  al., 2017), to which the feedback in the stratocumulus 
regime dominates over the feedback in the trade cumulus regime 

(Cesana et al., 2019; Radtke et al., 2021). The stratocumulus feedback 
may be underestimated because explicit simulations using LES show 
a  larger local feedback of up to 2.5 W  m–2  °C–1, corresponding to 
the global contribution of 0.2 W m–2 °C–1 by multiplying the mean 
tropical stratocumulus fraction of about 8% (Bretherton, 2015). 
Supported by different lines of evidence, the subtropical marine 
low-cloud feedback is assessed as positive with high confidence. 
Based on the combined estimate using LESs and the cloud 
controlling factor analysis, the global contribution of the feedback 
due to marine low-clouds equatorward of 30° is assessed to be 
0.2 ± 0.16 W m–2 °C–1 (one standard deviation), for which the range 
reflects methodological uncertainties.

Land cloud feedback
Intensification of the global hydrological cycle is a  robust feature 
of global warming, but at the same time, many land areas in 
the subtropics will experience drying at the surface and in the 
atmosphere (Section  8.2.2). This occurs due to limited water 
availability in these regions, where the cloudiness is consequently 
expected to decrease. Reduction in clouds over land is consistently 
identified in the CMIP5 models and also in a  GCM with explicit 
convection (Bretherton et al., 2014; Kamae et al., 2016a). Because 
low-clouds make up the majority of subtropical land clouds, this 
reduced amount of low-clouds reflects less solar radiation and leads 
to a positive feedback similar to the marine low-clouds. The mean 
estimate of the global land cloud  feedback in CMIP5 models is 
smaller than the marine low-cloud feedback, 0.08 ± 0.08 W m–2 °C–1 

(Zelinka et al., 2016). These values are nearly unchanged in CMIP6 
(Zelinka et al., 2020). However, ESMs still have considerable biases 
in the climatological temperature and cloud fraction over land, 
and the magnitude of this feedback has not yet been supported by 
observational evidence. Therefore, the feedback due to decreasing 
land clouds is assessed to be 0.08 ± 0.08 W m–2 °C–1 (one standard 
deviation) with low confidence.

Mid-latitude cloud amount feedback
Poleward shifts in the mid-latitude jets are evident since the 1980s 
(Section  2.3.1.4.3) and are a  feature of the large-scale circulation 
change in future projections (Section 4.5.1.6). Because mid-latitude 
clouds over the North Pacific, North Atlantic and Southern Ocean 
are induced mainly by extratropical cyclones in the storm tracks 
along the jets, it has been suggested that the jet shifts should be 
accompanied by poleward shifts in the mid-latitude clouds, which 
would result in a positive feedback through the reduced reflection 
of insolation (Boucher et al., 2013). However, studies since AR5 have 
revealed that this proposed mechanism does not apply in practice 
(Ceppi and Hartmann, 2015). While a poleward shift of mid-latitude 
cloud maxima in the free troposphere has been identified in satellite 
and ground-based observations (Bender et  al., 2012; Eastman and 
Warren, 2013), associated changes in net CRE are small because 
the responses in high and low-clouds to the jet shift act to cancel 
each other (Grise and Medeiros, 2016; Tselioudis et al., 2016; Zelinka 
et  al., 2018). This cancellation is not well captured in ESMs (Lipat 
et al., 2017), but the above findings show that the mid-latitude cloud 
feedback is not dynamically driven by the poleward jet shifts, which 
are rather suggested to occur partly in response to changes in high 
clouds (Y. Li et al., 2018).
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Thermodynamics play an important role in controlling extratropical 
cloud amount equatorward of about 50° latitude. Recent studies 
showed, using observed cloud controlling factors, that the mid-latitude 
low-cloud fractions decrease with rising SST, which also acts to 
weaken stability of the atmosphere unlike in the subtropics (McCoy 
et al., 2017a). ESMs consistently show a decrease of cloud amounts 
and a resultant positive SW feedback in the 30°–40° latitude bands, 
which can be constrained using observations of seasonal migration 
of cloud amount (Zhai et  al., 2015). Based on the qualitative 
agreement between observations and ESMs, the mid-latitude cloud 
amount feedback is assessed as positive with medium confidence. 
Following these emergent constraint studies using observations 
and CMIP5/6 models, the global contribution of net cloud amount 
feedback over 30°–60° ocean areas, covering 27% of the globe, 
is assessed at 0.09  ± 0.1 W m–2 °C–1 (one standard deviation), in 
which the uncertainty reflects potential errors in models’ low-cloud 
response to changes in thermodynamic conditions.

Extratropical cloud optical depth feedback
Mixed-phase clouds that consist of both liquid and ice are dominant 
over the Southern Ocean (50°S–80°S), which accounts for 20% of the 
net CRE in the present climate (Matus and L’Ecuyer, 2017). It has been 
argued that the cloud optical depth (opacity) will increase over the 
Southern Ocean as warming drives the replacement of ice-dominated 
clouds with liquid-dominated clouds (Tan et al., 2019). Liquid clouds 
generally consist of many small cloud droplets, while the crystals 
in ice clouds are orders of magnitude fewer in number and much 
larger, causing the liquid clouds to be optically thicker and thereby 
resulting in a  negative feedback (Boucher et  al., 2013). However, 
this phase-change feedback works effectively only below freezing 
temperature (Lohmann and Neubauer, 2018; Terai et al., 2019) and 
other processes that increase or decrease liquid water path (LWP) 
may also affect the optical depth feedback (McCoy et al., 2019).

Due to insufficient amounts of super-cooled liquid water in the 
simulated atmospheric mean state, many CMIP5 models overestimated 
the conversion from ice to liquid clouds with climate warming and 
the resultant negative phase-change feedback (Kay et  al., 2016a; 
Tan et al., 2016; Lohmann and Neubauer, 2018). This feedback can 
be constrained using satellite-derived LWP observations over the 
past 20 years that enable estimates of both long-term trends and 
the interannual relationship with SST variability (Gordon and Klein, 
2014; Ceppi et al., 2016; Manaster et al., 2017). The observationally-
constrained SW feedback ranges from –0.91 to –0.46 W m–2 °C–1 over 
40°S–70°S depending on the methodology (Ceppi et al., 2016; Terai 
et al., 2016). In some CMIP6 models, representation of super-cooled 
liquid water content has been improved, leading to weaker 
negative optical depth feedback over the Southern Ocean closer 
to observational estimates (Bodas-Salcedo et  al., 2019; Gettelman 
et al., 2019). This improvement at the same time results in a positive 
optical depth feedback over other extratropical ocean where LWP 
decreased in response to reduced stability in those CMIP6 models 
(Zelinka et al., 2020). Given the accumulated observational estimates 
and an improved agreement between ESMs and observations, the 
extratropical optical depth feedback is assessed to be small negative 
with medium confidence. Quantitatively, the global contribution of 
this feedback is assessed to have a value of –0.03 ± 0.05 W m–2 °C–1 

(one standard deviation) by combining estimates based on observed 
interannual variability and the cloud controlling factors.

Arctic cloud feedback 
Clouds in polar regions, especially over the Arctic, form at low altitude 
above or within a stable to neutral boundary layer and are known to 
co-vary with sea ice variability beneath. Because the clouds reflect 
sunlight during summer but trap LW radiation throughout the year, 
seasonality plays an important role in cloud effects on Arctic climate 
(Kay et al., 2016b). AR5 assessed that Arctic low-cloud amount will 
increase in boreal autumn and winter in response to declining sea 
ice in a  warming climate, due primarily to an enhanced upward 
moisture flux over open water. The cloudier conditions during these 
seasons result in more downwelling LW radiation, acting as a positive 
feedback on surface warming (Kay and Gettelman, 2009). Over 
recent years, further evidence of the cloud contribution to the Arctic 
amplification has been obtained (Section 7.4.4.1; Goosse et al., 2018). 
Space-borne lidar (light detection and ranging) observations show 
that the cloud response to summer sea ice loss is small and cannot 
overcome the cloud effect in autumn (Taylor et  al., 2015; Morrison 
et al., 2019). The seasonality of the cloud response to sea ice variability 
is reproduced in GCM simulations (Laîné et al., 2016; Yoshimori et al., 
2017). The agreement between observations and models indicates 
that the Arctic cloud feedback is positive at the surface. This leads 
to an Arctic cloud feedback at TOA that is likely positive, but very 
small in magnitude, as found in some climate models (Pithan and 
Mauritsen, 2014; Morrison et al., 2019). The observational estimates 
are sensitive to the analysis period and the choice of reanalysis data, 
and a  recent estimate of the TOA cloud feedback over 60°N–90°N 
using atmospheric reanalysis data and CERES satellite observations 
suggests a regional value ranging from –0.3 to +0.5 W m–2 °C–1, which 
corresponds to a global contribution of –0.02 to +0.03 W m–2 °C–1 
(R. Zhang et al., 2018). Based on the overall agreement between ESMs 
and observations, the Arctic cloud feedback is assessed to be small 
positive and has the value of 0.01 ± 0.05 W m–2 °C–1 (one standard 
deviation). The assessed range indicates that a negative feedback is 
almost as probable as a positive feedback, and the assessment that 
the Arctic cloud feedback is positive is therefore given low confidence.

7.4.2.4.3 Synthesis for the net cloud feedback

The understanding of the response of clouds to warming and 
associated radiative feedback has deepened since AR5 (Figure  7.9 
and FAQ 7.2). Particular progress has been made in the assessment of 
the marine low-cloud feedback, which has historically been a major 
contributor to the cloud feedback uncertainty but is no longer the 
largest source of uncertainty. Multiple lines of evidence (theory, 
observations, emergent constraints and process modelling) are now 
available in addition to ESM simulations, and the positive low-cloud 
feedback is consequently assessed with high confidence.

The best estimate of net cloud feedback is obtained by summing 
feedbacks associated with individual cloud regimes and assessed 
to be αC = 0.42 W  m–2 °C–1. By assuming that the uncertainties 
of individual cloud feedbacks are independent of each other, 
their standard deviations are added in quadrature, leading to the 
likely range of 0.12 to 0.72 W  m–2 °C–1 and the very likely range 
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of –0.10 to +0.94 W m–2 °C–1 (Table 7.10). This approach potentially 
misses feedbacks from cloud regimes that are not assessed, but almost 
all the major cloud regimes were taken into consideration (Gettelman 
and Sherwood, 2016) and therefore additional uncertainty will be 
small. This argument is also supported by an agreement between 
the net cloud feedback assessed here and the net cloud feedback 
directly estimated using observations. The observational estimate, 
which is sensitive to the period considered and is based on two 
atmospheric reanalyses (ERA-Interim and MERRA) and TOA radiation 
budgets derived from the CERES satellite observations for the years 
2000–2010, is 0.54 ± 0.7 W m–2 °C–1 (one standard deviation; Dessler, 
2013). The observational estimate overlaps with the assessed range 
of the net cloud feedback. The assessed very likely range is reduced 
by about 50% compared to AR5, but is still wide compared to those 
of other climate feedbacks (Table 7.10). The largest contribution to 
this uncertainty range is the estimate of tropical high-cloud amount 
feedback which is not yet well quantified using models.

In reality, different types of cloud feedback may occur simultaneously in 
one cloud regime. For example, an upward shift of high-clouds associated 
with the altitude feedback could be coupled to an increase/decrease of 
cirrus/anvil cloud fractions associated with the cloud amount feedback. 
Alternatively, slowdown of the tropical circulation with surface warming 
(Section 4.5.3 and Figure 7.9) could affect both high and low-clouds 
so that their feedbacks are co-dependent. Quantitative assessments 
of such covariances require further knowledge about cloud feedback 
mechanisms, which will further narrow the uncertainty range.

In summary, deepened understanding of feedback processes in 
individual cloud regimes since AR5 leads to an assessment of the 
positive net cloud feedback with high confidence. A small probability 
(less than 10%) of a net negative cloud feedback cannot be ruled 
out, but this would require an extremely large negative feedback 
due to decreases in the amount of tropical anvil clouds or increases 
in optical depth of extratropical clouds over the Southern Ocean; 
neither is supported by current evidence.

7.4.2.5 Biogeophysical and Non-CO2 Biogeochemical Feedbacks

The feedbacks presented in the previous sections (Sections 7.4.2.1–
7.4.2.4) are directly linked to physical climate variables (for example 
temperature, water vapour, clouds, or sea ice). The central role of 

climate feedbacks associated with these variables has been recognized 
since early studies of climate change. However, in addition to these 
physical climate feedbacks, the Earth system includes feedbacks for 
which the effect of global mean surface temperature change on the 
TOA energy budget is mediated through other mechanisms, such 
as the chemical composition of the atmosphere, or by vegetation 
changes. Among these additional feedbacks, the most important is 
the CO2 feedback that describes how a change of the global surface 
temperature affects the atmospheric CO2 concentration. In  ESM 
simulations in which CO2 emissions are prescribed, changes in surface 
carbon fluxes affect the CO2 concentration in the atmosphere, the 
TOA radiative energy budget, and eventually the global mean surface 
temperature. In ESM simulations in which the CO2 concentration 
is prescribed, changes in the carbon cycle allow compatible CO2 
emissions to be calculated, that is, the CO2 emissions that are 
compatible with both the prescribed CO2 concentration and the 
representation of the carbon cycle in the ESM. The CO2 feedback 
is assessed in Chapter 5 (Section 5.4). The framework presented in 
this chapter assumes that the CO2 concentration is prescribed, and 
our assessment of the net feedback parameter, α, does not include 
carbon cycle feedbacks on the atmospheric CO2 concentration 
(Section  7.1 and Box  7.1).  However, our assessment of α does 
include non-CO2 biogeochemical feedbacks (including effects due to 
changes in atmospheric methane concentration; Section  7.4.2.5.1) 
and biogeophysical feedbacks (Section  7.4.2.5.2). A  synthesis of 
the combination of biogeophysical and non-CO2 biogeochemical 
feedbacks is given in Section 7.4.2.5.3.

7.4.2.5.1 Non-CO2 biogeochemical feedbacks

The chemical composition of the atmosphere (beyond CO2 and water 
vapour changes) is expected to change in response to a  warming 
climate. These changes in greenhouse gases (methane, nitrous oxide 
and ozone) and aerosol amount (including dust) have the potential 
to alter the TOA energy budget and are collectively referred to as 
‘non-CO2 biogeochemical feedbacks’. Methane (CH4) and nitrous 
oxide (N2O) feedbacks arise partly from changes in their emissions 
from natural sources in response to temperature change; these are 
assessed in Chapter  5 (Section  5.4.7; see also Figure  5.29c). Here 
we exclude the permafrost CH4 feedback (Section 5.4.9.1.2) because, 
although associated emissions are projected to increase under 
warming on multi-decadal to centennial time scales, on longer time 

Table 7.9 | Assessed sign and confidence level of cloud feedbacks in different regimes in AR5 and AR6. For some cloud regimes, the feedback was not assessed 
in AR5, indicated by N/A.

Feedback AR5 AR6

High-cloud altitude feedback Positive (high confidence) Positive (high confidence)

Tropical high-cloud amount feedback N/A Negative (low confidence)

Subtropical marine low-cloud feedback N/A (low confidence) Positive (high confidence)

Land cloud feedback N/A Positive (low confidence)

Mid-latitude cloud amount feedback Positive (medium confidence) Positive (medium confidence)

Extratropical cloud optical depth feedback N/A Small negative (medium confidence)

Arctic cloud feedback Small positive (very low confidence) Small positive (low confidence)

Net cloud feedback Positive (medium confidence) Positive (high confidence)
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scales these emissions would eventually substantially decline as the 
permafrost carbon pools were depleted (Schneider von Deimling 
et  al., 2012, 2015). This leaves the wetland CH4, land N2O, and 
ocean N2O feedbacks, the assessed mean values of which sum to 
a  positive feedback parameter of +0.04 [0.02 to 0.06] W m–2 °C–1 
(Section  5.4.7). Other non-CO2 biogeochemical feedbacks that are 
relevant to the net feedback parameter are assessed in Chapter 6 
(Section 6.4.5 and Table 6.8). These feedbacks are associated with 
sea salt, dimethyl sulphide, dust, ozone, biogenic volatile organic 
compounds, lightning, and CH4 lifetime, and sum to a  negative 
feedback parameter of –0.20 [–0.41 to +0.01] W m–2 °C–1. The 
overall feedback parameter for non-CO2 biogeochemical feedbacks 
is obtained by summing the Chapter 5 and Chapter 6 assessments, 
which gives –0.16 [–0.37 to +0.05] W m–2 °C–1. However, there is 
low confidence in the estimates of both the individual non-CO2 
biogeochemical feedbacks as well as their total effect, as evident 
from the large range in the magnitudes of α from different studies, 
which can be attributed to diversity in how models account for these 
feedbacks and limited process-level understanding.

7.4.2.5.2 Biogeophysical feedbacks

Biogeophysical feedbacks are associated with changes in the spatial 
distribution and/or biophysical properties of vegetation, induced 
by surface temperature change and attendant hydrological cycle 
change. These vegetation changes can alter radiative fluxes directly 
via albedo changes, or via surface momentum or moisture flux 
changes and hence changes in cloud properties. However, the direct 
physiological response of vegetation to changes in CO2, including 
changes in stomatal conductance, is considered part of the CO2 
effective radiative forcing rather than a  feedback (Section 7.3.2.1). 
The time scale on which vegetation responds to climate change is 
relatively uncertain but can be from decades to hundreds of years 
(Willeit et al., 2014), and could occur abruptly or as a tipping point 
(Sections 5.4.9.1.1, 8.6.2.1 and 8.6.2.2); equilibrium only occurs 
when the soil system and associated nutrient and carbon pools 
equilibrate, which can take millennia (Brantley, 2008; Sitch et  al., 
2008). The overall effects of climate-induced vegetation changes may 
be comparable in magnitude to those from anthropogenic land-use 
and land-cover change (Davies-Barnard et al., 2015). Climate models 
that include a  dynamical representation of vegetation (e.g.,  Reick 
et al., 2013; Harper et al., 2018) are used to explore the importance 
of biogeophysical feedbacks (Notaro et  al., 2007; Brovkin et  al., 
2009; O’ishi et al., 2009; Port et al., 2012; Willeit et al., 2014; Alo and 
Anagnostou, 2017; W. Zhang et  al., 2018; Armstrong et  al., 2019). 
In AR5, it was discussed that such model experiments predicted 
that expansion of vegetation in the high latitudes of the Northern 
Hemisphere would enhance warming due to the associated surface-
albedo change, and that reduction of tropical forests in response 
to climate change would lead to regional surface warming, due to 
reduced evapotranspiration (M. Collins et al., 2013), but there was no 
assessment of the associated feedback parameter. The SRCCL stated 
that regional climate change can be dampened or enhanced by 
changes in local land cover, but that this depends on the location and 
the season; however, in general the focus was on anthropogenic land-
cover change, and no assessment of the biogeophysical feedback 
parameter was carried out. There are also indications of a  marine 

biogeophysical feedback associated with surface-albedo change due 
to changes in phytoplankton (Frouin and Iacobellis, 2002; Park et al., 
2015), but there is not currently enough evidence to quantitatively 
assess this feedback.

Since AR5, several studies have confirmed that a shift from tundra to 
boreal forests and the associated albedo change leads to increased 
warming in Northern Hemisphere high latitudes (high confidence) 
(Willeit et al., 2014; W. Zhang et al., 2018; Armstrong et al., 2019). 
However, regional modelling indicates that vegetation feedbacks may 
act to cool climate in the Mediterranean (Alo and Anagnostou, 2017), 
and in the tropics and subtropics the regional response is in general 
not consistent across models. On a global scale, several modelling 
studies have either carried out a feedback analysis (Stocker et al., 2013; 
Willeit et al., 2014) or presented simulations that allow a feedback 
parameter to be estimated (O’ishi et al., 2009; Armstrong et al., 2019), 
in such a way that the physiological response can be accounted for 
as a  forcing rather than a  feedback. The central estimates of the 
biogeophysical feedback parameter from these studies range from 
close to zero (Willeit et al., 2014) to +0.13 W m–2 °C–1 (Stocker et al., 
2013). An additional line of evidence comes from the mid-Pliocene 
warm period (MPWP, Chapter 2, Cross-Chapter Box 2.1), for which 
paleoclimate proxies provide evidence of vegetation distribution 
and CO2 concentrations. Model simulations that include various 
combinations of modern versus MPWP vegetation and CO2 allow an 
associated feedback parameter to be estimated, as long as account 
is also taken of the orographic forcing (Lunt et al., 2010, 2012b). This 
approach has the advantage over pure modelling studies in that the 
reconstructed vegetation is based on (paleoclimate) observations, 
and is in equilibrium with the CO2 forcing. However, there are 
uncertainties in the vegetation reconstruction in regions with little 
or no proxy data, and it is uncertain how much of the vegetation 
change is associated with the physiological response to CO2. This 
paleoclimate approach gives an estimate for the biogeophysical 
feedback parameter of +0.3 W m–2 °C–1.

Given the limited number of studies, we take the full range of estimates 
discussed above for the biogeophysical feedback parameter, and 
assess the very likely range to be from 0.0 to +0.3 W m–2 °C–1, with 
a central estimate of +0.15 W m–2 °C–1 (low confidence). Although this 
assessment is based on evidence from both models and paleoclimate 
proxies, and the studies above agree on the sign of the change, there is 
nonetheless limited evidence. Higher confidence could be obtained if 
there were more studies that allowed calculation of a biogeophysical 
feedback parameter (particularly from paleoclimates), and if the 
partitioning between biogeophysical feedbacks and physiological 
forcing were clearer for all lines of evidence.

7.4.2.5.3 Synthesis of biogeophysical and non-CO2 
biogeochemical feedbacks

The non-CO2 biogeochemical feedbacks are assessed in 
Section  7.4.2.5.1 to be –0.16 [–0.37 to +0.05] W m–2 °C–1 and the 
biogeophysical feedbacks are assessed in Section  7.4.2.5.2 to be 
+0.15  [0.0 to +0.3] W  m–2 °C–1. The sum of the biogeophysical 
and non-CO2 biogeochemical feedbacks is assessed to have 
a  central value of –0.01 W m–2 °C–1 and a  very likely range from 
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–0.27  to  +0.25 W  m–2  °C–1 (Table  7.10). Given the relatively long 
time scales associated with the biological processes that mediate the 
biogeophysical and many of the non-CO2 biogeochemical feedbacks, 
in comparison with the relatively short time scale of many of the 
underlying model simulations, combined with the small number of 
studies for some of the feedbacks, and the relatively small signals, this 
overall assessment has low confidence.

Some supporting evidence for this overall assessment can be 
obtained from the CMIP6 ensemble, which provides some pairs of 
instantaneous 4×CO2 simulations carried out using related models, 
with and without biogeophysical and non-CO2 biogeochemical 
feedbacks. This is not a  direct comparison because these pairs of 
simulations may differ by more than just their inclusion of these 
additional feedbacks; furthermore, not all biogeophysical and 
non-CO2 biogeochemical feedbacks are fully represented. However, 
a comparison of the pairs of simulations does provide a first-order 
estimate of the magnitude of these additional feedbacks. Séférian 
et  al. (2019) find a  slightly more negative feedback parameter in 
CNRM-ESM2-1 (with additional feedbacks) then in CNRM-CM6-1 
(a decrease of 0.02 W m–2 °C–1, using the linear regression method 
from years 10–150). Andrews et al. (2019) also find a slightly more 
negative feedback parameter when these additional feedbacks are 
included (a decrease of 0.04 W m–2 °C–1 in UKESM1 compared with 
HadGEM3-GC3.1). Both of these studies suggest a small but slightly 
negative feedback parameter for the combination of biogeophysical 
and non-CO2 biogeochemical feedbacks, but with relatively large 
uncertainty given (i) interannual variability and (ii) that feedbacks 
associated with natural terrestrial emissions of CH4 and N2O were not 
represented in either pair.

7.4.2.6 Long-Term Radiative Feedbacks Associated 
with Ice Sheets

Although long-term radiative feedbacks associated with ice sheets are 
not included in our definition of ECS (Box 7.1), the relevant feedback 
parameter is assessed here because the time scales on which these 
feedbacks act are relatively uncertain, and the long-term temperature 
response to CO2 forcing of the entire Earth system may be of interest.

Earth’s ice sheets (Greenland and Antarctica) are sensitive to climate 
change (Section  9.4; Pattyn et  al., 2018). Their time evolution is 
determined by both their surface mass balance and ice dynamic 
processes, with the latter being particularly important for the West 
Antarctic Ice Sheet. Surface mass balance depends on the net energy 
and hydrological fluxes at their surface, and there are mechanisms of 
ice-sheet instability that depend on ocean temperatures and basal 
melt rates (Section 9.4.1.1). The presence of ice sheets affects Earth’s 
radiative budget, hydrology, and atmospheric circulation due to their 
characteristic high albedo, low roughness length, and high altitude, 
and they influence ocean circulation through freshwater input from 
calving and melt (e.g.,  Fyke et  al., 2018). Ice-sheet changes also 
modify surface albedo through the attendant change in sea level 
and therefore land area (Abe-Ouchi et al., 2015). The time scale for 
ice sheets to reach equilibrium is of the order of thousands of years 
(Clark et al., 2016). Due to the long time scales involved, it is a major 
challenge to run coupled climate–ice sheet models to equilibrium, 

and as a  result, long-term simulations are often carried out with 
lower complexity models, and/or are asynchronously coupled.

In AR5, it was described that both the Greenland and Antarctic ice 
sheets would continue to lose mass in a warming world (M. Collins 
et  al., 2013), with a  continuation in sea level rise beyond the year 
2500 assessed as virtually certain. However, there was low confidence 
in the associated radiative feedback mechanisms, and as such, there 
was no assessment of the magnitude of long-term radiative feedbacks 
associated with ice sheets. That assessment is consistent with SROCC, 
wherein it was stated that ‘with limited published studies to draw 
from and no simulations run beyond 2100, firm conclusions regarding 
the net importance of atmospheric versus ocean melt feedbacks on 
the long-term future of Antarctica cannot be made.’

The magnitude of the radiative feedback associated with changes to 
ice sheets can be quantified by comparing the global mean long-term 
equilibrium temperature response to increased CO2 concentrations in 
simulations that include interactive ice sheets with that of simulations 
that do not include the associated ice sheet–climate interactions 
(Swingedouw et al., 2008; Vizcaíno et al., 2010; Goelzer et al., 2011; 
Bronselaer et  al., 2018; Golledge et  al., 2019). These simulations 
indicate that on multi-centennial time scales, ice-sheet mass loss leads 
to freshwater fluxes that can modify ocean circulation (Swingedouw 
et  al., 2008; Goelzer et  al., 2011; Bronselaer et  al., 2018; Golledge 
et al., 2019). This leads to reduced surface warming (by about 0.2°C 
in the global mean after 1000 years; Section 7.4.4.1.1; Goelzer et al., 
2011), although other work suggests no net global temperature 
effect of ice-sheet mass loss (Vizcaíno et  al., 2010). However, 
model simulations in which the Antarctic Ice Sheet is removed 
completely in a  paleoclimate context indicate a  positive global 
mean feedback on multi-millennial time scales due primarily to the 
surface-albedo change (Goldner et al., 2014a; Kennedy-Asser et al., 
2019); in Chapter 9 (Section 9.6.3) it is assessed that such ice-free 
conditions could eventually occur given 7°C–13°C of warming. This 
net positive feedback from ice-sheet mass loss on long time scales 
is also supported by model simulations of the mid-Pliocene Warm 
Period (MPWP; Cross-chapter Box  2.1) in which the volume and 
area of the Greenland and West Antarctic ice sheets are reduced in 
model simulations in agreement with geological data (Chandan and 
Peltier, 2018), leading to surface warming. As such, overall, on multi-
centennial time scales the feedback parameter associated with ice 
sheets is likely negative (medium confidence), but on multi-millennial 
time scales by the time the ice sheets reach equilibrium, the feedback 
parameter is very likely positive (high confidence) (Table  7.10). 
However, a relative lack of models carrying out simulations with and 
without interactive ice sheets over centennial to millennial time scales 
means that there is currently not enough evidence to quantify the 
magnitude of these feedbacks, or the time scales on which they act.

7.4.2.7 Synthesis

Table  7.10 summarizes the estimates and the assessment of the 
individual and the net feedbacks presented in the above sections. 
The uncertainty range of the net climate feedback was obtained by 
adding standard deviations of individual feedbacks in quadrature, 
assuming that they are independent and follow the Gaussian 
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distribution. It is virtually certain that the net climate feedback is 
negative, primarily due to the Planck temperature response, indicating 
that climate acts to stabilize in response to radiative forcing imposed 
to the system. Supported by the level of confidence associated with 
the individual feedbacks, it is also virtually certain that the sum of 
the non-Planck feedbacks is positive. Based on Table  7.10 these 
climate feedbacks amplify the Planck temperature response by about 
2.8 [1.9 to 5.9] times. Cloud feedback remains the largest contributor 
to uncertainty of the net feedback, but the uncertainty is reduced 
compared to AR5. A  secondary contribution to the net feedback 
uncertainty is the biogeophysical and non-CO2 biogeochemical 
feedbacks, which together are assessed to have a central value near 
zero and thus do not affect the central estimate of ECS. The net climate 
feedback is assessed to be –1.16 W m–2 °C–1, likely from –1.54  to 
–0.78 W m–2 °C–1, and very likely from –1.81 to –0.51 W m–2 °C–1.

Feedback parameters in climate models are calculated assuming 
that they are independent of each other, except for a  well-known 
co-dependency between the water vapour (WV) and lapse rate (LR) 
feedbacks. When the inter-model spread of the net climate feedback is 
computed by adding in quadrature the inter-model spread of individual 
feedbacks, it is 17% wider than the spread of the net climate feedback 
directly derived from the ensemble. This indicates that the feedbacks in 
climate models are partly co-dependent. Two possible co-dependencies 
have been suggested (Huybers, 2010; Caldwell et  al., 2016). One is 
a negative covariance between the LR and longwave cloud feedbacks, 
which may be accompanied by a  deepening of the troposphere 
(O’Gorman and Singh, 2013; Yoshimori et al., 2020) leading both to 
greater rising of high-clouds and a larger upper-tropospheric warming. 
The other is a  negative covariance between albedo and shortwave 
cloud feedbacks, which may originate from the Arctic regions: 
a reduction in sea ice enhances the shortwave cloud radiative effect 
because the ocean surface is darker than sea ice (Gilgen et al., 2018). 
This covariance is reinforced as the decrease of sea ice leads to an 
increase in low-level clouds (Mauritsen et  al., 2013). However, the 
mechanism causing these co-dependences between feedbacks is not 
well understood yet and a quantitative assessment based on multiple 
lines of evidence is difficult. Therefore, this synthesis assessment does 
not consider any co-dependency across individual feedbacks.

The assessment of the net climate feedback presented above is 
based on a single approach (i.e., process understanding) and directly 
results in a value for ECS given in Section 7.5.1; this is in contrast to 
the synthesis assessment of ECS in Section  7.5.5 which combines 
multiple approaches. The total (net) feedback parameter consistent 
with the final synthesis assessment of the ECS and Equation 7.1 
(Box 7.1) is provided there.

7.4.2.8 Climate Feedbacks in ESMs

Since AR5, many modelling groups have newly participated in CMIP 
experiments, leading to an increase in the number of models in 
CMIP6 (Section 1.5.4). Other modelling groups that contributed to 
CMIP5 also updated their ESMs for carrying out CMIP6 experiments. 
While some of the CMIP6 models share components and are 
therefore not independent, they are analysed independently when 
calculating climate feedbacks. This, and more subtle forms of model 
inter-dependence, creates challenges when determining appropriate 
model weighting schemes (Section 1.5.4). Additionally, it must be kept 
in mind that the ensemble sizes of the CMIP5 and CMIP6 models are 
not sufficiently large to sample the full range of model uncertainty.

The multi-model mean values of all physical climate feedbacks are 
calculated using the radiative kernel method (Section  7.4.1) and 
compared with the assessment in the previous sections (Figure 7.10). 
For CMIP models, there is a  discrepancy between the net climate 
feedback calculated directly using the time evolutions of ΔT and ΔN 
in each model and the accumulation of individual feedbacks, but it 
is negligibly small (Supplementary Material 7.SM.4). Feedbacks 
due to biogeophysical and non-CO2 biogeochemical processes are 
included in some models but neglected in the kernel analysis. In AR6, 
biogeophysical and non-CO2 biogeochemical feedbacks are explicitly 
assessed (Section 7.4.2.5).

All the physical climate feedbacks apart from clouds are very similar 
in the CMIP5 and CMIP6 model ensembles (see also Table 7.10). These 
values, where possible supported by other lines of evidence, are used 
for assessing feedbacks in Sections 7.4.2.1–7.4.2.3. A  difference 
found between CMIP5 and CMIP6 models is the net cloud feedback, 

Table 7.10 | Synthesis assessment of climate feedbacks (central estimate shown in bold). The mean values and their 90% ranges in CMIP5/6 models, derived using 
multiple radiative kernels (Zelinka et al., 2020) are also presented for comparison.

Feedback Parameter αx 
(W m–2 °C–1)

CMIP5 GCMs CMIP6 ESMs AR6 Assessed Ranges

Mean and 
5–95% Interval

Mean and 
5–95% Interval

Central Estimate
Very likely 

Interval
Likely Interval

Level of 
Confidence

Planck –3.20 [–3.3 to –3.1] –3.22 [–3.3 to –3.1] –3.22 –3.4 to –3.0 –3.3 to –3.1 high

WV+LR 1.24 [1.08 to 1.35] 1.25 [1.14 to 1.45] 1.30 1.1 to 1.5 1.2 to 1.4 high

Surface albedo 0.41 [0.25 to 0.56] 0.39 [0.26 to 0.53] 0.35 0.10 to 0.60 0.25 to 0.45 medium

Clouds 0.41 [–0.09 to 1.1] 0.49 [–0.08 to 1.1] 0.42 –0.10 to 0.94 0.12 to 0.72 high

Biogeophysical and non-CO2 
biogeochemical

Not evaluated Not evaluated –0.01 –0.27 to 0.25 –0.16 to 0.14 low

Residual of kernel estimates 0.06 [–0.17 to 0.29] 0.05 [–0.18 to 0.28 ]

Net (i.e., relevant for ECS) –1.08 [–1.61 to –0.68] –1.03 [–1.54 to –0.62] –1.16 –1.81 to –0.51 –1.54 to –0.78 medium

Long-term ice-sheet 
feedbacks (millennial scale)

>0.0 high
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which is larger in CMIP6 by about 20%. This change is the major 
cause of less-negative values of the net climate feedback in CMIP6 
than in CMIP5 and hence an increase in modelled ECS (Section 7.5.1).

A remarkable improvement of cloud representation in some CMIP6 
models is the reduced error of the too-weak negative shortwave CRE 
over the Southern Ocean (Bodas-Salcedo et al., 2019; Gettelman et al., 
2019) due to a more realistic simulation of supercooled liquid droplets 
and associated cloud optical depths that were biased low commonly 
in CMIP5 models (McCoy et  al., 2014a, b). Because the negative 
cloud optical depth feedback occurs due to ‘brightening’ of clouds via 
phase change from ice to liquid cloud particles in response to surface 
warming (Cesana and Storelvmo, 2017), the extratropical cloud 
shortwave feedback tends to be less negative or even slightly positive 
in models with reduced errors (Bjordal et al., 2020; Zelinka et al., 2020). 
The assessment of cloud feedbacks in Section  7.4.2.4 incorporates 
estimates from these improved ESMs. Yet, there still remain other 
shared model errors, such as in the subtropical low-clouds (Calisto 
et al., 2014) and tropical anvil clouds (Mauritsen and Stevens, 2015), 
hampering an assessment of feedbacks associated with these cloud 
regimes based only on ESMs (Section 7.4.2.4).

7.4.3 Dependence of Feedbacks on Climate Mean State

In the standard framework of forcings and feedbacks (Section 7.4.1 
and Box 7.1), the approximation is made that the strength of climate 
feedbacks is independent of the background global mean surface 
temperature. More generally, the individual feedback parameters, 
αx, are often assumed to be constant over a range of climate states, 

including those reconstructed from the past (encompassing a range 
of states warmer and colder than today, with varying continental 
geographies) or projected for the future. If this approximation holds, 
then the equilibrium global surface temperature response to a fi xed 
radiative forcing will be constant, regardless of the climate state 
to which that forcing is applied.

This approximation will break down if climate feedbacks are not 
constant, but instead vary as a function of, for example, background 
temperature (Roe and Baker, 2007; Zaliapin and Ghil, 2010; Roe and 
Armour, 2011; Bloch-Johnson et al., 2015), continental confi guration 
(Farnsworth et al., 2019), or confi guration of ice sheets (Yoshimori 
et al., 2009). If the real climate system exhibits this state-dependence, 
then the future equilibrium temperature change in response to 
large forcing may be different from that inferred using the standard 
framework, and/or different to that inferred from paleoclimates. Such 
considerations are important for the assessment of ECS (Section 7.5). 
Climate models generally include representations of feedbacks that 
allow state-dependent behaviour, and so model results may also 
differ from the predictions from the standard framework.

In AR5 (Boucher et  al., 2013), there was a  recognition that climate 
feedbacks could be state-dependent (Colman and McAvaney, 2009), 
but modelling studies that explored this ( e.g., Manabe and Bryan, 1985; 
Voss and Mikolajewicz, 2001; Stouffer and Manabe, 2003; Hansen et al., 
2005b) were not assessed in detail. Also in AR5 (Masson-Delmotte 
et  al.,  2013), it was assessed that some models exhibited weaker 
sensitivity to Last Glacial Maximum (LGM; Cross-Chapter Box  2.1) 
forcing than to 4×CO2 forcing, due to state-dependence in shortwave 
cloud feedbacks.

Figure 7.10 | Global mean climate feedbacks estimated in abrupt4xCO2 simulations of 29 CMIP5 models (light blue) and 49 CMIP6 models (orange), 
compared with those assessed in this Report (red). Individual feedbacks for CMIP models are averaged across six radiative kernels as computed in Zelinka et al. (2020). 
The white line, black box and vertical line indicate the mean, 66% and 90% ranges, respectively. The shading represents the probability distribution across the full range of GCM/
ESM values and for the 2.5–97.5 percentile range of the AR6 normal distribution. The unit is W m–2 °C–1. Feedbacks associated with biogeophysical and non-CO2 biogeochemical 
processes are assessed in AR6, but they are not explicitly estimated from general circulation models (GCMs)/Earth system models (ESMs) in CMIP5 and CMIP6. Further details 
on data sources and processing are available in the chapter data table (Table 7.SM.14).
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Here, recent evidence for state-dependence in feedbacks from 
modelling studies (Section  7.4.3.1) and from the paleoclimate 
record (Section 7.4.3.2) are assessed, with an overall assessment in 
Section 7.4.3.3. The focus is on temperature-dependence of feedbacks 
when the system is in equilibrium with the forcing; evidence for transient 
changes in the net feedback parameter associated with evolving spatial 
patterns of warming is assessed separately in Section 7.4.4.

7.4.3.1 State-dependence of Feedbacks in Models

There are several modelling studies since AR5 in which ESMs 
of varying complexity have been used to explore temperature 
dependence of feedbacks, either under modern (Hansen et al., 2013; 
Jonko et  al., 2013; Meraner et  al., 2013; Good et  al., 2015; Duan 
et al., 2019; Mauritsen et al., 2019; Rohrschneider et al., 2019; Stolpe 
et al., 2019; Bloch-Johnson et al., 2020; Rugenstein et al., 2020) or 
paleo (Caballero and Huber, 2013; Zhu et al., 2019a) climate conditions, 
typically by carrying out multiple simulations across successive CO2 
doublings. A  non-linear temperature response to these successive 
doublings may be partly due to forcing that increases more (or less) 
than expected from a purely logarithmic dependence (Section 7.3.2; 
Etminan et  al., 2016), and partly due to state-dependence in 
feedbacks; however, not all modelling studies have partitioned the 
non-linearities in temperature response between these two effects. 
Nonetheless, there is general agreement among ESMs that the net 
feedback parameter, α, increases (i.e., becomes less negative) as 
temperature increases from pre-industrial levels (i.e.,  sensitivity to 
forcing increases as temperature increases; e.g., Meraner et al., 2013; 
see Figure 7.11). The associated increase in sensitivity to forcing is, 
in most models, due to the water vapour (Section 7.4.2.2) and cloud 
(Section  7.4.2.4) feedback parameters increasing with warming 
(Caballero and Huber, 2013; Meraner et al., 2013; Zhu et al., 2019a; 
Rugenstein et  al., 2020; Sherwood et  al., 2020). These changes are 
offset partially by the surface-albedo feedback parameter decreasing 
(Jonko et  al., 2013; Meraner et  al., 2013; Rugenstein et  al., 2020), 
as a  consequence of a  reduced amount of snow and sea ice cover 
in a much warmer climate. At the same time, there is little change 
in the Planck response (Section 7.4.2.1), which has been shown in one 
model to be due to competing effects from increasing Planck emission 
at warmer temperatures and decreasing planetary emissivity due to 
increased CO2 and water vapour (Mauritsen et al., 2019). Analysis of 
the spatial patterns of the non-linearities in temperature response 
(Good et al., 2015) suggests that these patterns are linked to a reduced 
weakening of the AMOC, and changes to evapotranspiration. The 
temperature dependence of α is also found in model simulations of 
high-CO2 paleoclimates (Caballero and Huber, 2013; Zhu et al., 2019a). 
The temperature dependence is not only evident at very high CO2 
concentrations in excess of 4×CO2, but also apparent in the difference 
in temperature response to a  2×CO2 forcing compared with to 
a 4×CO2 forcing (Mauritsen et al., 2019; Rugenstein et al., 2020), and 
as such is relevant for interpreting century-scale climate projections.

Despite the general agreement that α increases as temperature 
increases from pre-industrial levels (Figure  7.11), other modelling 
studies have found the opposite (Duan et  al., 2019; Stolpe et  al., 
2019). Modelling studies exploring state-dependence in climates 
colder than today, including in cold paleoclimates such as the 

LGM, provide conflicting evidence of either decreased (Yoshimori 
et al., 2011) or increased (Kutzbach et al., 2013; Stolpe et al., 2019) 
temperature response per unit forcing during cold climates compared 
to the modern era.

In contrast to most ESMs, the majority of Earth system models of 
intermediate complexity (EMICs) do not exhibit state-dependence, 
or have a  net feedback parameter that decreases with increasing 
temperature (Pfister and Stocker, 2017). This is unsurprising since 
EMICs usually do not include process-based representations of 
water-vapour and cloud feedbacks. Although this shows that care 
must be taken when interpreting results from current generation 
EMICs, Pfister and Stocker (2017) also suggest that non-linearities 
in feedbacks can take a  long time to emerge in model simulations 
due to slow adjustment time scales associated with the ocean; 
longer simulations also allow better estimates of equilibrium 
warming (Bloch-Johnson et al., 2020). This implies that multi-century 
simulations (Rugenstein et  al., 2020) could increase confidence in 
ESM studies examining state-dependence.

The possibility of more substantial changes in climate feedbacks, 
sometimes accompanied by hysteresis and/or irreversibility, has been 
suggested from some theoretical and modelling studies. It has 
been postulated that such changes could occur on a global scale and 
across relatively narrow temperature changes (Popp et al., 2016; von 
der Heydt and Ashwin, 2016; Steffen et al., 2018; Schneider et al., 
2019; Ashwin and von der Heydt, 2020; Bjordal et al., 2020). However, 
the associated mechanisms are highly uncertain, and as such there is 
low confidence as to whether such behaviour exists at all, and in the 
temperature thresholds at which it might occur.

Overall, the modelling evidence indicates that there is medium 
confidence that the net feedback parameter, α, increases (i.e., becomes 
less negative) with increasing temperature (i.e., that sensitivity 
to forcing increases with increasing temperature), under global 
surface background temperatures at least up to 40°C (Meraner 
et  al., 2013; Seeley and Jeevanjee, 2021), and medium confidence 
that this temperature dependence primarily derives from increases 
in the water-vapour and shortwave cloud feedbacks. This assessment 
is further supported by recent analysis of CMIP6 model simulations 
(Bloch-Johnson et al., 2020) in the framework of nonlinMIP (Good 
et  al., 2016), which showed that out of 10 CMIP6 models, seven 
of them showed an increase of the net feedback parameter with 
temperature, primarily due to the water-vapour feedback.

7.4.3.2 State-dependence of Feedbacks in 
the Paleoclimate Proxy Record

Several studies have estimated ECS from observations of the 
glacial–interglacial cycles of the last approximately 2 million years, 
and found a  state-dependence, with more-negative α (i.e.,  lower 
sensitivity to forcing) during colder periods of the cycles and 
less-negative α during warmer periods (von der Heydt et al., 2014; 
Köhler et al., 2015, 2017; Friedrich et al., 2016; Royer, 2016; Snyder, 
2019); see summaries in Skinner (2012) and von der Heydt et  al. 
(2016). However, the nature of the state-dependence derived from 
these observations is dependent on the assumed ice-sheet forcing 

https://doi.org/10.1017/9781009157896.009
Downloaded from https://www.cambridge.org/core. IP address: 176.165.113.174, on 19 Oct 2024 at 05:27:05, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://doi.org/10.1017/9781009157896.009
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


981

The Earth’s Energy Budget, Climate Feedbacks and Climate Sensitivity Chapter 7

7

(Köhler et  al., 2015; Stap et  al., 2019), which is not well known, 
due to a  relative lack of proxy indicators of ice-sheet extent and 
distribution prior to the LGM (Cross-Chapter Box 2.1). Furthermore, 
many of these glacial–interglacial studies estimate a  very strong 
temperature-dependence of α (Figure 7.11) that is hard to reconcile 
with the other lines of evidence, including proxy estimates from 
warmer paleoclimates. However, if the analysis excludes time periods 
when the temperature and CO2 data are not well correlated, which 
occurs in general at times when sea level is falling and obliquity 
is decreasing, the state-dependence reduces (Köhler et  al., 2018). 
Despite these uncertainties, due to the agreement in the sign of the 
temperature-dependence from all these studies, there is medium 
confidence from the paleoclimate proxy record that the net feedback 
parameter, α, was less negative in the warm periods than in the cold 
periods of the glacial–interglacial cycles.

Paleoclimate proxy evidence from past high-CO2 time periods much 
warmer than present (the early Eocene and Paleocene–Eocene 
Thermal Maximum, PETM; Cross-Chapter Box  2.1) show that the 
feedback parameter increases as temperature increases (Anagnostou 
et  al., 2016, 2020; Shaffer et  al., 2016). However, such 
temperature-dependence of feedbacks was not found in the warm 
Pliocene relative to the cooler Pleistocene (Martínez-Botí et al., 2015), 
although the temperature changes are relatively small at this time, 
making temperature-dependence challenging to detect given the 
uncertainties in reconstructing global mean temperature and forcing. 
Overall, the paleoclimate proxy record provides medium confidence 
that the net feedback parameter, α, was less negative in these past 
warm periods than in the present day.

7.4.3.3 Synthesis of State-dependence of Feedbacks 
from Modelling and Paleoclimate Records

Overall, independent lines of evidence from models (Section 7.4.3.1) 
and from the paleoclimate proxy record (Section  7.4.3.2) lead to 
high confidence that the net feedback parameter, α, increases 
(i.e., becomes less negative) as temperature increases; that is, 
that sensitivity to forcing increases as temperature increases 
(Figure  7.11). This temperature-dependence should be considered 
when estimating ECS from ESM simulations in which CO2 is 
quadrupled (Section 7.5.5) or from paleoclimate observations from 
past time periods colder or warmer than today (Section  7.5.4). 
Although individual lines of evidence give only medium confidence, 
the overall high confidence comes from the multiple models that 
show the same sign of the temperature-dependence of α, the 
general agreement in evidence from the paleo proxy and modelling 
lines of evidence, and the agreement between proxy evidence from 
both cold and warm past climates. However, due to the large range 
in estimates of the magnitude of the temperature-dependence of 
α across studies (Figure  7.11), a  quantitative assessment cannot 
currently be given, which provides a  challenge for including this 
temperature-dependence in emulator-based future projections 
(Cross-Chapter Box 7.1). Greater confidence in the modelling lines of 
evidence could be obtained from simulations carried out for several 
hundreds of years (Rugenstein et al., 2020), substantially longer than 
in many studies, and from more models carrying out simulations at 
multiple CO2 concentrations. Greater confidence in the paleoclimate 

lines of evidence would be obtained from stronger constraints on 
atmospheric CO2 concentrations, ice-sheet forcing, and temperatures, 
during past warm climates.

7.4.4 Relationship Between Feedbacks 
and Temperature Patterns

The large-scale patterns of surface warming in observations since 
the 19th  century (Section  2.3.1) and climate model simulations 
(Section  4.3.1 and Figure  7.12a) share several common features. 
In particular, surface warming in the Arctic is greater than for the 
global average and greater than in the Southern Hemisphere (SH) 
high latitudes; and surface warming is generally greater over land 
than over the ocean. Observations and climate model simulations 
also show some notable differences. ESMs generally simulate 
a weakening of the equatorial Pacific Ocean zonal (east–west) SST 
gradient on multi-decadal to centennial time scales, with greater 
warming in the east than the west, but this trend has not been seen 
in observations (Section 9.2.1 and Figure 2.11b).

Chapter 4 (Section 4.5.1) discusses patterns of surface warming for 
21st-century climate projections under the Shared Socio-economic 
Pathways (SSP) scenarios. Chapter  9 (Section  9.2.1) assesses 
historical SST trends and the ability of coupled ESMs to replicate the 
observed changes. Chapter 4 (Section 4.5.1) discusses the processes 
that cause the land to warm more than the ocean (land–ocean 
warming contrast). This section assesses process understanding of 
the large-scale patterns of surface temperature response from the 

Temperature-dependence of α from ESMs and paleoclimate proxies 
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Figure 7.11 | Feedback parameter, α (W m–2 °C–1), as a function of global 
mean surface air temperature anomaly relative to pre-industrial, for ESM 
simulations (red circles and lines) (Caballero and Huber, 2013; Jonko et al., 2013; 
Meraner et al., 2013; Good et al., 2015; Duan et al., 2019; Mauritsen et al., 2019; 
Stolpe et al., 2019; Zhu et al., 2019a), and derived from paleoclimate proxies 
(grey squares and lines) (von der Heydt et  al., 2014; Anagnostou et  al., 2016, 
2020; Friedrich et al., 2016; Royer, 2016; Shaffer et al., 2016; Köhler et al., 2017; 
Snyder, 2019; Stap et  al., 2019). For the ESM simulations, the value on the x-axis 
refers to the average of the temperature before and after the system has equilibrated 
to a forcing (in most cases a CO2 doubling), and is expressed as an anomaly relative 
to an associated pre-industrial global mean temperature from that model. The light 
blue shaded square extends across the assessed range of α (Table 7.10) on the y-axis, 
and on the x-axis extends across the approximate temperature range over which the 
assessment of α is based (taken as from zero to the assessed central value of ECS; 
see Table 7.13). Further details on data sources and processing are available in the 
chapter data table (Table 7.SM.14).
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perspective of a  regional energy budget. It then assesses evidence 
from the paleoclimate proxy record for patterns of surface warming 
during past time periods associated with changes in atmospheric CO2 
concentrations. Finally, it assesses how radiative feedbacks depend 
on the spatial pattern of surface temperature, and thus how they 
can change in magnitude as that pattern evolves over time, with 
implications for the assessment of ECS based on historical warming 
(Sections 7.4.4.3 and 7.5.2.1).

7.4.4.1 Polar Amplification

Polar amplification describes the phenomenon where surface 
temperature change at high latitudes exceeds the global average 
surface temperature change in response to radiative forcing of the 
climate system. Arctic amplification, often defined as the ratio of 
Arctic to global surface warming, is a ubiquitous emergent feature 
of climate model simulations (Section  4.5.1 and Figure  7.12a; 
Holland and Bitz, 2003; Pithan and Mauritsen, 2014) and is also 
seen in observations (Section 2.3.1). However, both climate models 
and observations show relatively less warming of the SH high 
latitudes compared to the Northern Hemisphere (NH) high latitudes 
over the historical record (Section  2.3.1), a  characteristic that is 
projected to continue over the 21st  century (Section  4.5.1). Since 
AR5 there is a  much-improved understanding of the processes 
that drive polar amplification in the NH and delay its emergence 
in the SH (Section 7.4.4.1.1). Furthermore, the paleoclimate record 
provides evidence for polar amplification from multiple time periods 
associated with changes in CO2 (Hollis et  al., 2019; Cleator et  al., 
2020; McClymont et  al., 2020; Tierney et  al., 2020b), and allows 
an evaluation of polar amplification in model simulations of these 
periods (Section 7.4.4.1.2). Research since AR5 identifies changes in 
the degree of polar amplification over time, particularly in the SH, 
as a key factor affecting how radiative feedbacks may evolve in the 
future (Section 7.4.4.3).

7.4.4.1.1 Critical processes driving polar amplification

Several processes contribute to polar amplification under greenhouse 
gas forcing, including the loss of sea ice and snow (an amplifying 
surface-albedo feedback), the confinement of warming to near the 
surface in the polar atmosphere (an amplifying lapse-rate feedback), 
and increases in poleward atmospheric and oceanic heat transport 
(Pithan and Mauritsen, 2014; Goosse et al., 2018; Dai et al., 2019; 
Feldl et  al., 2020). Modelling and process studies since AR5 have 
led to an improved understanding of the combined effect of these 
different processes in driving polar amplification and how they differ 
between the hemispheres.

Idealized modelling studies suggest that polar amplification would 
occur even in the absence of any amplifying polar surface-albedo 
or lapse-rate feedbacks owing to changes in poleward atmospheric 
heat transport under global warming (Hall, 2004; Alexeev et al., 2005; 
Graversen and Wang, 2009; Alexeev and Jackson, 2013; Graversen 
et al., 2014; Roe et al., 2015; Merlis and Henry, 2018; Armour et al., 
2019). Poleward heat transport changes reflect compensating 
changes in the transport of latent energy (moisture) and dry-static 
energy (sum of sensible and potential energy) by atmospheric 

circulations (Alexeev et  al., 2005; Held and Soden, 2006; Hwang 
and Frierson, 2010; Hwang et al., 2011; Kay et al., 2012; Huang and 
Zhang, 2014; Feldl et al., 2017a; Donohoe et al., 2020). ESMs project 
that within the mid-latitudes, where eddies dominate the heat 
transport, an increase in poleward latent energy transport arises from 
an increase in the equator-to-pole gradient in atmospheric moisture 
with global warming, with moisture in the tropics increasing more 
than at the poles as described by the Clausius–Clapeyron relation 
(Section  8.2). This change is partially compensated by a  decrease 
in dry-static energy transport arising from a  weakening of the 
equator-to-pole temperature gradient as the polar regions warm 
more than the tropics.

Energy balance models that approximate atmospheric heat transport 
in terms of a  diffusive flux down the meridional gradient of 
near-surface moist static energy (sum of dry-static and latent energy) 
are able to reproduce the atmospheric heat transport changes seen 
within ESMs (Flannery, 1984; Hwang and Frierson, 2010; Hwang 
et  al., 2011; Rose et  al., 2014; Roe et  al., 2015; Merlis and Henry, 
2018), including the partitioning of latent and dry-static energy 
transports (Siler et  al., 2018b; Armour et  al., 2019). These models 
suggest that polar amplification is driven by enhanced poleward 
latent heat transport and that the magnitude of polar amplification 
can be enhanced or diminished by the latitudinal structure of radiative 
feedbacks. Amplifying polar feedbacks enhance polar warming and 
in turn cause a decrease in the dry-static energy transport to high 
latitudes (Alexeev and Jackson, 2013; Rose et al., 2014; Roe et al., 
2015; Bonan et  al., 2018; Merlis and Henry, 2018; Armour et  al., 
2019; Russotto and Biasutti, 2020). Poleward latent heat transport 
changes act to favour polar amplification and inhibit tropical 
amplification (Armour et  al., 2019), resulting in a  strongly polar-
amplified warming response to polar forcing and a more latitudinally 
uniform warming response to tropical forcing within ESMs (Alexeev 
et al., 2005; Rose et al., 2014; Stuecker et al., 2018). The important 
role for poleward latent energy transport in polar amplification is 
supported by studies of atmospheric reanalyses and ESMs showing 
that episodic increases in latent heat transport into the Arctic can 
enhance surface downwelling radiation and drive sea ice loss on 
sub-seasonal time scales (Woods and Caballero, 2016; Gong et al., 
2017; Lee et  al., 2017; B. Luo et  al., 2017), however this may be 
a smaller driver of sea ice variability than atmospheric temperature 
fluctuations (Olonscheck et al., 2019).

Regional energy budget analyses are commonly used to diagnose the 
relative contributions of radiative feedbacks and energy fluxes to polar 
amplification as projected by ESMs under increased CO2 concentrations 
(Figure  7.12; Feldl and Roe, 2013; Pithan and Mauritsen, 2014; 
Goosse et al., 2018; Stuecker et al., 2018). These analyses suggest that 
a primary cause of amplified Arctic warming in ESMs is the latitudinal 
structure of radiative feedbacks, which warm the Arctic more than 
the tropics (Figure  7.12b), and enhanced latent energy transport 
into the Arctic. That net atmospheric heat transport into the Arctic 
does not change substantially within ESMs, on average, under CO2 
forcing (Figure 7.12b) reflects a compensating decrease in poleward 
dry-static energy transport as a response to polar amplified warming 
(Hwang et al., 2011; Armour et al., 2019; Donohoe et al., 2020). The 
latitudinal structure of radiative feedbacks primarily reflects that of 
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Figure 7.12 | Contributions of effective radiative forcing, ocean heat uptake, atmospheric heat transport, and radiative feedbacks to regional surface 
temperature changes at year 100 of abrupt4xCO2 simulations of CMIP6 Earth system models (ESMs). 
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the surface-albedo and lapse-rate feedbacks,  which preferentially 
warm the Arctic (Graversen et al., 2014; Pithan and Mauritsen, 2014; 
Goosse et al., 2018). Latitudinal structure in the lapse-rate feedback 
reflects weak radiative damping to space with surface warming in 
polar regions, where atmospheric warming is constrained to the 
lower troposphere owing to stably stratified conditions, and strong 
radiative damping in the tropics, where warming is enhanced in the 
upper troposphere owing to moist convective processes. This is only 
partially compensated by latitudinal structure in the water-vapour 
feedback (Taylor et al., 2013), which favours tropical warming (Pithan 
and Mauritsen, 2014). While cloud feedbacks have been found to 
play little role in Arctic amplification in CMIP5 models (Pithan and 
Mauritsen, 2014; Goosse et  al., 2018; Figure  7.12b), less-negative 
cloud feedbacks at high latitude, as seen within some CMIP6 models 
(Zelinka et  al., 2020), tend to favour stronger polar amplification 
(Dong et al., 2020). A weaker Planck response at high latitudes, owing 
to less efficient radiative damping where surface and atmospheric 
temperatures are lower, also contributes to polar amplification (Pithan 
and Mauritsen, 2014). The effective radiative forcing of CO2 is larger in 
the tropics than at high latitudes, suggesting that warming would be 
tropically amplified if not for radiative feedbacks and poleward latent 
heat transport changes (Figure 7.12b–d; Stuecker et al., 2018).

While the contributions to regional warming can be diagnosed within 
ESM simulations (Figure 7.12), assessment of the underlying role of 
individual factors is limited by interactions inherent to the coupled 
climate system. For example, polar feedback processes are coupled and 
influenced by warming at lower latitudes (Screen et al., 2012; Alexeev 
and Jackson, 2013; Graversen et  al., 2014; Graversen and Burtu, 
2016; Rose and Rencurrel, 2016; Feldl et al., 2017a, 2020; Yoshimori 
et  al.,  2017; Garuba et  al., 2018; Po-Chedley et  al., 2018b; Stuecker 
et al., 2018; Dai et al., 2019), while atmospheric heat transport changes 
are in turn influenced by the latitudinal structure of regional feedbacks, 
radiative forcing, and ocean heat uptake (Hwang et al., 2011; Zelinka 
and Hartmann, 2012; Feldl and Roe, 2013; Huang and Zhang, 2014; 
Merlis, 2014; Rose et al., 2014; Roe et al., 2015; Feldl et al., 2017b; 
Stuecker et al., 2018; Armour et al., 2019). The use of different feedback 
definitions, such as a lapse-rate feedback partitioned into upper and 
lower tropospheric components (Feldl et  al., 2020) or including the 
influence of water vapour at constant relative humidity (Held and Shell, 
2012; Section 7.4.2), would also change the interpretation of which 
feedbacks contribute most to polar amplification.

The energy budget analyses (Figure 7.12) suggest that greater surface 
warming in the Arctic than the Antarctic under greenhouse gas forcing 
arises from two main processes. The first is large surface heat uptake 
in the Southern Ocean (Figure 7.12c) driven by the upwelling of deep 

waters that have not yet felt the effects of the radiative forcing; the 
heat taken up is predominantly transported away from Antarctica 
by northward-flowing surface waters (Section  9.2.1; Marshall 
et  al., 2015; Armour et  al., 2016). Strong surface heat uptake also 
occurs in the subpolar North Atlantic Ocean under global warming 
(Section 9.2.1). However, this heat is partially transported northward 
into the Arctic, which leads to increased heat fluxes into the Arctic 
atmosphere (Figure 7.12b; Rugenstein et al., 2013; Jungclaus et al., 
2014; Koenigk and Brodeau, 2014; Marshall et al., 2015; Nummelin 
et al., 2017; Singh et al., 2017; Oldenburg et al., 2018). The second 
main process contributing to differences in Arctic and Antarctic 
warming is the asymmetry in radiative feedbacks between the poles 
(Yoshimori et al., 2017; Goosse et al., 2018). This primarily reflects the 
weaker lapse-rate and surface-albedo feedbacks and more-negative 
cloud feedbacks in the SH high latitudes (Figure  7.12). However, 
note the SH cloud feedbacks are uncertain due to possible biases in 
the treatment of mixed phase clouds (Hyder et al., 2018). Idealized 
modelling suggests that the asymmetry in the polar lapse-rate 
feedback arises from the height of the Antarctic Ice Sheet precluding 
the formation of deep atmospheric inversions that are necessary 
to produce the stronger positive lapse-rate feedbacks seen in the 
Arctic (Salzmann, 2017; Hahn et al., 2020). ESM projections of the 
equilibrium response to CO2 forcing show polar amplification in both 
hemispheres, but generally with less warming in the Antarctic than 
the Arctic (C. Li et al., 2013; Yoshimori et al., 2017).

Because multiple processes contribute to polar amplification, it is 
a robust feature of the projected long-term response to greenhouse 
gas forcing in both hemispheres. At the same time, contributions 
from multiple processes make projections of the magnitude of polar 
warming inherently more uncertain than global mean warming 
(Holland and Bitz, 2003; Roe et  al., 2015; Bonan et  al., 2018; 
Stuecker et al., 2018). The magnitude of Arctic amplification ranges 
from a  factor of two to four in ESM projections of 21st-century 
warming (Section  4.5.1). While uncertainty in both global and 
tropical warming  under greenhouse gas forcing is dominated by 
cloud feedbacks (Section  7.5.7; Vial et  al., 2013), uncertainty in 
polar warming arises from polar surface-albedo, lapse-rate, and 
cloud feedbacks, changes in atmospheric and oceanic poleward heat 
transport, and ocean heat uptake (Hwang et al., 2011; Mahlstein and 
Knutti, 2011; Pithan and Mauritsen, 2014; Bonan et al., 2018).

The magnitude of polar amplification also depends on the type of 
radiative forcing applied (Section  4.5.1.1; Stjern et  al., 2019), with 
Chapter  6 (Section  6.4.3) discussing changes in sulphate aerosol 
emissions and the deposition of black carbon aerosols on ice and 
snow as potential drivers of amplified Arctic warming. The timing of 

Figure 7.12 (continued): (a) Pattern of near-surface air temperature change. (b–d) Contributions to net Arctic (>60°N), tropical (30°S–30°N), and Antarctic (<60°S) warming 
calculated by dividing regional-average energy inputs by the magnitude of the regional-average Planck response. The contributions from radiative forcing, changes in moist, 
dry-static, and total atmospheric energy transport, ocean heat uptake, and radiative feedbacks (orange bars) all sum to the value of net warming (grey bar). Inset shows regional 
warming contributions associated with individual feedbacks, all summing to the total feedback contribution. Uncertainties (represented by black whiskers) show the interquartile 
range (25th and 75th percentiles) across models. The warming contributions (units of °C) for each process are diagnosed by calculating the energy flux (units of W m–2) that each 
process contributes to the atmosphere over a given region, either at the top-of-atmosphere or surface, then dividing that energy flux by the magnitude of the regional Planck 
response (around 3.2 W m–2 °C–1 but varying with region). By construction, the individual warming contributions sum to the total warming in each region. Radiative kernel methods 
(Section 7.4.1) are used to decompose the net energy input from radiative feedbacks into contributions from changes in atmospheric water vapour, lapse rate, clouds, and surface 
albedo (Zelinka et al. (2020) using the Huang et al. (2017) radiative kernel). The CMIP6 models included are those analysed by Zelinka et al. (2020) and the warming contribution 
analysis is based on that of Goosse et al. (2018). Further details on data sources and processing are available in the chapter data table (Table 7.SM.14).
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the emergence of SH polar amplification remains uncertain due to 
insufficient knowledge of the time scales associated with Southern 
Ocean warming and the response to surface wind and freshwater 
forcing (Bintanja et al., 2013; Kostov et al., 2017, 2018; Pauling et al., 
2017; Purich et  al., 2018). ESM simulations indicate that freshwater 
input from melting ice shelves could reduce Southern Ocean warming 
by up to several tenths of a  °C over the 21st  century by increasing 
stratification of the surface ocean around Antarctica (low confidence 
due to medium agreement but limited evidence) (Sections 7.4.2.6 
and 9.2.1, and Box 9.3; Bronselaer et al., 2018; Golledge et al., 2019; 
Lago and England, 2019). However, even a large reduction in the Atlantic 
Meridional Overturning Circulation (AMOC) and associated northward 
heat transport due, for instance, to greatly increased freshwater runoff 
from Greenland would be insufficient to eliminate Arctic amplification 
(medium confidence based on medium agreement and medium 
evidence) (Liu et al., 2017; Y. Liu et al., 2018; Wen et al., 2018).

Arctic amplification has a distinct seasonality with a peak in early 
winter (November to January) owing to sea ice loss and associated 
increases in heat fluxes from the ocean to the atmosphere resulting 
in strong near-surface warming (Pithan and Mauritsen, 2014; Dai 
et al., 2019). Surface warming may be further amplified by positive 
cloud and lapse-rate feedbacks in autumn and winter (Burt et  al., 
2016; Morrison et al., 2019; Hahn et al., 2020). Arctic amplification 
is weak in summer owing to surface temperatures remaining stable 
as excess energy goes into thinning the summertime sea ice cover, 
which remains at the melting point, or into the ocean mixed layer. 
Arctic amplification can also be interpreted through changes in 
the surface energy budget (Burt et al., 2016; Woods and Caballero, 
2016; Boeke and Taylor, 2018; Kim et  al., 2019), however such 
analyses are complicated by the finding that a  large portion of 
the changes in downward longwave radiation can be attributed to 
the lower troposphere warming along with the surface itself (Vargas 
Zeppetello et al., 2019).

7.4.4.1.2 Polar amplification from proxies and models during 
past climates associated with CO2 change

Paleoclimate proxy data provide observational evidence of large-scale 
patterns of surface warming in response to past forcings, and allow an 
evaluation of the modelled response to these forcings (Sections 3.3.1.1 
and 3.8.2.1). In particular, paleoclimate data provide evidence for 
long-term changes in polar amplification during time periods in which 
the primary forcing was a change in atmospheric CO2, although data 
sparsity means that for some time periods this evidence may be limited 
to a  single hemisphere or ocean basin, or the evidence may come 
primarily from the mid-latitudes as opposed to the polar regions. In 
this context, there has been a modelling and data focus on the Last 
Glacial Maximum (LGM) in the context of PMIP4 (Cleator et al., 2020; 
Tierney et al., 2020b; Kageyama et al., 2021), the mid-Pliocene Warm 
Period (MPWP) in the context of PlioMIP2 (Cross-Chapter Box  2.4; 
Salzmann et  al., 2013; Haywood et  al., 2020; McClymont et  al., 
2020), the Early Eocene Climatic Optimum (EECO) in the context of 
DeepMIP (Hollis et al., 2019; Lunt et al., 2021), and there is growing 
interest in the Miocene (Goldner et al., 2014b; Steinthorsdottir et al., 
2021; for definitions of time periods see Cross-Chapter Box  2.1). 
For all these time periods, in addition to the CO2 forcing there are 

long-term feedbacks associated with ice sheets (Section 7.4.2.6), and 
in particular for the Early Eocene there is a  forcing associated with 
paleogeographic change (Farnsworth et al., 2019). However, because 
these non-CO2 effects can all be included as boundary conditions in 
model simulations, these time periods allow an assessment of the 
patterns of modelled response to known forcing (although uncertainty 
in the forcing increases further back in time). Because these changes 
to boundary conditions can be complex to implement in models, 
and because long simulations (typically longer than 500 years) are 
required to approach equilibrium, these simulations have been carried 
out mostly by pre-CMIP6 models, with relatively few (or none for the 
Early Eocene) fully coupled CMIP6 models in the ensembles.

At the time of AR5, polar amplification was evident in proxy 
reconstructions of paleoclimate sea surface temperature (SST) 
and surface air temperature (SAT) from the LGM, MPWP and the 
Early Eocene, but uncertainties associated with proxy calibrations 
(Waelbroeck et  al., 2009; Dowsett et  al., 2012; Lunt et  al., 2012a) 
and the role of orbital forcing (for the MPWP; Lisiecki and Raymo, 
2005) meant that the degree of polar amplification during these 
time periods was not accurately known. Furthermore, although some 
models (CCSM3; Winguth et al., 2010; Huber and Caballero, 2011) 
at that time were able to reproduce the strong polar amplification 
implied by temperature proxies of the Early Eocene, this was achieved 
at higher CO2 concentrations (>2000 ppm) than those indicated by 
CO2 proxies (<1500 ppm; Beerling and Royer, 2011).

Since AR5 there has been progress in improving the accuracy of proxy 
temperature reconstructions of the LGM (Cleator et al., 2020; Tierney 
et  al., 2020b), the MPWP (McClymont et  al., 2020), and the Early 
Eocene (Hollis et al., 2019) time periods. In addition, reconstructions 
of the MPWP have been focused on a short time slice with an orbit 
similar to modern-day (isotopic stage KM5C; Haywood et al., 2013, 
2016b). Furthermore, there are more robust constraints on CO2 
concentrations from the MPWP (Martínez-Botí et  al., 2015; de la 
Vega et  al., 2020) and the Early Eocene (Anagnostou et  al., 2016, 
2020). As such, polar amplification during the LGM, MPWP, and Early 
Eocene time periods can now be better quantified than at the time 
of AR5, and the ability of climate models to reproduce this pattern 
can be better assessed; model-data comparisons for SAT and SST for 
these three time periods are shown in Figure 7.13.

Since AR5, there has been progress in the simulation of polar 
amplification by paleoclimate models of the Early Eocene. Initial 
work indicated that changes to model parameters associated with 
aerosols and/or clouds could increase simulated polar amplification 
and improve agreement between models and paleoclimate data 
(Kiehl and Shields, 2013; Sagoo et  al., 2013), but such parameter 
changes were not physically based. In support of these initial findings, 
a more recent (CMIP5) climate model, that includes a process-based 
representation of cloud microphysics, exhibits polar amplification 
in better agreement with proxies when compared to the models 
assessed in AR5 (Zhu et al., 2019a). Since then, some other CMIP3 
and CMIP5 models in the DeepMIP multi-model ensemble (Lunt 
et  al., 2021) have obtained polar amplification for the EECO that 
is consistent with proxy indications of both polar amplification and 
CO2. Although there is a  lack of tropical proxy SAT estimates, both 
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Figure 7.13 | Polar amplification in paleo proxies and models of the Early Eocene Climatic Optimum (EECO), the Mid-Pliocene Warm Period (MPWP) 
and the Last Glacial Maximum (LGM). 
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proxies and DeepMIP models show greater terrestrial warming 
in the high latitudes than the mid-latitudes in both hemispheres 
(Figure 7.13a,d). SST proxies also exhibit polar amplification in both 
hemispheres, but the magnitude of this polar amplification is too low 
in the models, in particular in the south-west Pacific (Figure 7.13g,j).

For the MPWP, model simulations are now in better agreement with 
proxies than at the time of AR5 (Haywood et  al., 2020; McClymont 
et  al., 2020). In particular, in the tropics new proxy reconstructions 
of SSTs are warmer and in better agreement with the models, due in 
part to the narrower time window in the proxy reconstructions. There 
is also better agreement at higher latitudes (primarily in the North 
Atlantic), due in part to the absence of some very warm proxy SSTs 
due to the narrower time window (McClymont et  al., 2020), and in 
part to a modified representation of Arctic gateways in the most recent 
Pliocene model simulations (Otto-Bliesner et  al., 2017), which have 
resulted in warmer modelled SSTs in the North Atlantic (Haywood 
et  al., 2020). Furthermore, as for the Eocene, improvements in the 
representation of aerosol–cloud interactions have also led to improved 
model-data consistency at high latitudes (Feng et al., 2019). Although 
all PlioMIP2 models exhibit polar amplification of SAT, due to the 
relatively narrow time window there are insufficient terrestrial proxies 
to assess this (Figure 7.13b,e). However, polar SST amplification in the 
PlioMIP2 ensemble mean is in reasonably good agreement with that 
from SST proxies in the Northern Hemisphere (Figure 7.13h,k).

The Last Glacial Maximum (LGM) also gives an opportunity to 
evaluate model simulation of polar amplification under CO2 forcing, 
albeit under colder conditions than today (Kageyama et al., 2021). 
Terrestrial SAT and marine SST proxies exhibit clear polar amplification 
in the Northern Hemisphere, and the PMIP4 models capture this well 
(Figure  7.13c,f,i,l), particularly for SAT. There is less proxy data in 
the mid- to high latitudes of the Southern Hemisphere, but here the 
models exhibit polar amplification of both SST and SAT. LGM regional 
model-data agreement is also assessed in Chapter 3 (Section 3.8.2).

Overall, the proxy reconstructions give high confidence that there was 
polar amplification in the LGM, MPWP and EECO, and this is further 
supported by model simulations of these time periods (Figure  7.13; 
Zhu et al., 2019a; Haywood et al., 2020; Kageyama et al., 2021; Lunt 
et al., 2021). For both the MPWP and EECO, models are more consistent 
with the temperature and CO2 proxies than at the time of AR5 (high 
confidence). For the LGM Northern Hemisphere, which is the region 

with the most data and the time period with the least uncertainty in 
model boundary conditions, polar amplification in the PMIP4 ensemble 
mean is in good agreement with the proxies, especially for SAT (medium 
confidence). Overall, the confidence in the ability of models to accurately 
simulate polar amplification is higher than at the time of AR5, but 
a more complete model evaluation could be carried out if there were 
more CMIP6 paleoclimate simulations included in the assessment.

7.4.4.1.3 Overall assessment of polar amplification

Based on mature process understanding of the roles of poleward 
latent heat transport and radiative feedbacks in polar warming, 
a  high degree of agreement across a  hierarchy of climate models, 
observational evidence, paleoclimate proxy records of past climates 
associated with CO2 change, and ESM simulations of those past 
climates, there is high confidence that polar amplification is a robust 
feature of the long-term response to greenhouse gas forcing in both 
hemispheres. Stronger warming in the Arctic than the global average 
has already been observed (Section  2.3.1) and its causes are well 
understood. It is very likely that the warming in the Arctic will be 
more pronounced than the global average over the 21st century (high 
confidence) (Section 4.5.1.1). This is supported by models’ improved 
ability to simulate polar amplification during past time periods, 
compared with at the time of AR5 (high confidence); although this is 
based on an assessment of mostly non-CMIP6 models.

Southern Ocean SSTs have been slow to warm over the instrumental 
period, with cooling since about 1980 owing to a  combination of 
upper-ocean freshening from ice-shelf melt, intensification of surface 
westerly winds from ozone depletion, and variability in ocean 
convection (Section 9.2.1). This stands in contrast to the equilibrium 
warming pattern either inferred from the proxy record or simulated 
by ESMs under CO2 forcing. There is high confidence that the SH high 
latitudes will warm more than the tropics on centennial time scales 
as the climate equilibrates with radiative forcing and Southern Ocean 
heat uptake is reduced. However, there is only low confidence that 
this feature will emerge this century.

7.4.4.2 Tropical Pacific Sea Surface Temperature Gradients

Research published since AR5 identifies changes in the tropical 
Pacific Ocean zonal SST gradient over time as a key factor affecting 
how radiative feedbacks may evolve in the future (Section 7.4.4.3). 

Figure 7.13 (continued): Temperature anomalies compared with pre-industrial (equivalent to CMIP6 simulation ‘piControl’) are shown for the high-CO2 EECO and MPWP 
time periods, and for the low-CO2 LGM (expressed as pre-industrial minus LGM). (a), (b) and (c) Modelled near-surface air temperature anomalies for ensemble-mean 
simulations of the (a) EECO (Lunt et al., 2021); (b) MPWP (Haywood et al., 2020; Zhang et al., 2021); and (c) LGM (Kageyama et al., 2021; Zhu et al., 2021). Also shown are proxy 
near-surface air temperature anomalies (coloured circles). (d), (e) and (f) Proxy near-surface air temperature anomalies (grey circles), including published uncertainties (grey 
vertical bars), model ensemble mean zonal mean anomaly (solid red line) for the same model ensembles as in (a–c), light-red lines show the modelled temperature anomaly 
for the individual models that make up each ensemble (LGM, N=9; MPWP, N=17; EECO, N=5). Black dashed lines show the average of the proxy values in each latitude band: 
90°S–30°S, 30°S–30°N, and 30°N–90°N. Red dashed lines show the same banded average in the model ensemble mean, calculated from the same locations as the proxies. 
Black and red dashed lines are only shown if there are five or more proxy points in that band. Mean differences between the 90°S/N to 30°S/N and 30°S to 30°N bands are 
quantified for the models and proxies in each plot. Panels (g), (h) and (i) are like panels (d–f) but for sea surface temperature (SST) instead of near-surface air temperature. 
Panels (j), (k) and (l) are like panels (a–c) but for SST instead of near-surface air temperature. For the EECO maps – (a) and (j) – the anomalies are relative to the zonal mean of 
the pre-industrial, due to the different continental configuration. Proxy datasets are: (a) and (d) Hollis et al. (2019); (b) and (e) Salzmann et al. (2013); Vieira et al. (2018), (c) and 
(f) Cleator et al. (2020) at the sites defined in Bartlein et al. (2011); (g) and (j) Hollis et al. (2019); (h) and (k) McClymont et al. (2020); (i) and (l) Tierney et al. (2020b). Where 
there are multiple proxy estimations at a single site, a mean is taken. Model ensembles are (a), (d), (g) and (j) DeepMIP (only model simulations carried out with a mantle-frame 
paleogeography, and carried out under CO2 concentrations within the range assessed in Table 2.2, are shown); (b), (e), (h) and (k) PlioMIP; and (c), (f), (i) and (l) PMIP4. Further 
details on data sources and processing are available in the chapter data table (Table 7.SM.14).
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There is now a much-improved understanding of the processes that 
govern the tropical Pacific SST gradient (Section 7.4.4.2.1) and the 
paleoclimate record provides evidence for its equilibrium changes 
from time periods associated with changes in CO2 (Section 7.4.4.2.2).

7.4.4.2.1 Critical processes determining changes in tropical 
Pacific sea surface temperature gradients

A weakening of the equatorial Pacific Ocean east–west SST gradient, 
with greater warming in the east than the west, is a common feature 
of the climate response to greenhouse gas forcing as projected by 
ESMs on centennial and longer time scales (e.g., Figure 7.14b; see 
Section 4.5.1). There are thought to be several factors contributing to 
this pattern. In the absence of any changes in atmospheric or oceanic 
circulations, the east–west surface temperature difference is theorized 
to decrease owing to weaker evaporative damping, and thus greater 
warming in response to forcing, where climatological temperatures 
are lower in the eastern Pacific cold tongue (Xie et  al., 2010; Luo 
et  al., 2015). Within atmospheric ESMs coupled to a  mixed-layer 
ocean, this gradient in damping has been linked to the rate of change 
with warming of the saturation specific humidity, which is set by the 
Clausius–Clapeyron relation (Merlis and Schneider, 2011). Gradients 
in low-cloud feedbacks may also favour eastern equatorial Pacific 
warming (DiNezio et al., 2009).

In the coupled climate system, changes in atmospheric and oceanic 
circulations will influence the east-west temperature gradient 
as well. It is expected that as global temperature increases and 
as  the east–west temperature gradient weakens, east–west sea 
level pressure gradients and easterly trade winds (characterizing 
the Walker circulation) will weaken as well (Sections 4.5.3, 8.2.2.2 
and 8.4.2.3, and Figure 7.14b; Vecchi et al., 2006, 2008). This would, 
in turn, weaken the east–west temperature gradient through 
a reduction of equatorial upwelling of cold water in the east Pacific 
and a  reduction in the transport of warmer water to the western 
equatorial Pacific and Indian Ocean (England et al., 2014; Dong and 
McPhaden, 2017; Li et al., 2017; Maher et al., 2018).

Research published since AR5 (Burls and Fedorov, 2014b; Fedorov 
et  al., 2015; Erfani and Burls, 2019) has built on an earlier theory 
(Liu and Huang, 1997; Barreiro and Philander, 2008) linking the 
east–west temperature gradient to the north–south temperature 
gradient. In particular, model simulations suggest that a reduction in the 
equator-to-pole temperature gradient (polar amplification) increases 
the temperature of water subducted in the extra-tropics, which in turn 
is upwelled in the eastern Pacific. Thus, polar amplified warming, with 
greater warming in the mid-latitudes and subtropics than in the deep 
tropics, is expected to contribute to the weakening of the east–west 
equatorial Pacific SST gradient on decadal to centennial time scales.

The transient adjustment of the equatorial Pacific SST gradient is 
influenced by upwelling waters which delay surface warming in the 
east since they have not been at the surface for years-to-decades to 
experience the greenhouse gas forcing. This ‘thermostat mechanism’ 
(Clement et al., 1996; Cane et al., 1997) is not thought to persist to 
equilibrium since it does not account for the eventual increase in 
temperatures of upwelled waters (Liu et al., 2005; Xie et al., 2010; 

Y. Luo  et  al., 2017) which will occur as the subducting waters in 
mid-latitudes warm by more than the tropics on average as polar 
amplification emerges. An individual CMIP5 ESM (GFDL’s ESM2M) 
has been found to exhibit a La Niña-like pattern of Pacific temperature 
change through the 21st  century, similar to the SST trends seen 
over the historical record (Section  9.2.1 and Figure  7.14a), owing 
to a  weakening asymmetry between El Niño and La Niña events 
(Kohyama et al., 2017), but this pattern of warming may not persist 
to equilibrium (Paynter et al., 2018).

Since 1870, observed SSTs in the tropical western Pacific Ocean have 
increased while those in the tropical eastern Pacific Ocean 
have  changed less (Figure  7.14a and Section  9.2.1). Much of the 
resultant strengthening of the equatorial Pacific temperature gradient 
has occurred since about 1980 due to strong warming in the west and 
cooling in the east (Figure 2.11b) concurrent with an intensification 
of the surface equatorial easterly trade winds and Walker circulation 
(Sections 3.3.3.1, 3.7.6, 8.3.2.3 and 9.2, and Figures 3.16f and 3.39f; 
England et  al., 2014). This temperature pattern is also reflected in 
regional ocean heat content trends and sea level changes observed 
from satellite altimetry since 1993 (Bilbao et al., 2015; Richter et al., 
2020). The observed changes may have been influenced by one or 
a combination of temporary factors including sulphate aerosol forcing 
(Smith et al., 2016; Takahashi and Watanabe, 2016; Hua et al., 2018), 
internal variability within the Indo-Pacific Ocean (Luo et al., 2012; Chung 
et al., 2019), teleconnections from multi-decadal tropical Atlantic SST 
trends (Kucharski et  al., 2011, 2014, 2015; McGregor et  al.,  2014; 
Chafik et  al., 2016; X. Li et  al., 2016; Kajtar et  al., 2017; Sun et  al., 
2017), teleconnections from multi-decadal Southern Ocean SST trends 
(Hwang et al., 2017), and coupled ocean–atmosphere dynamics which 
slow warming in the equatorial eastern Pacific (Clement et al., 1996; 
Cane et al., 1997; Seager et al., 2019). CMIP3 and CMIP5 ESMs have 
difficulties replicating the observed trends in the Walker circulation 
and Pacific Ocean SSTs over the historical record (Sohn et al., 2013; 
Zhou et al., 2016; Coats and Karnauskas, 2017), possibly due to model 
deficiencies including insufficient multi-decadal Pacific Ocean SST 
variability (Laepple and Huybers, 2014; Bilbao et  al., 2015; Chung 
et al., 2019), mean state biases affecting the forced response or the 
connection between Atlantic and Pacific basins (Kucharski et al., 2014; 
Kajtar et al., 2018; Luo et al., 2018; McGregor et al., 2018; Seager et al., 
2019), and/or a misrepresentation of radiative forcing (Sections 9.2.1 
and 3.7.6). However, the observed trends in the Pacific Ocean SSTs 
are still within the range of internal variability as simulated by large 
initial condition ensembles of CMIP5 and CMIP6 models (Olonscheck 
et al., 2020; Watanabe et al., 2021). Because the causes of observed 
equatorial Pacific temperature gradient and Walker circulation trends 
are not well understood (Section 3.3.3.1), there is low confidence in 
their attribution to anthropogenic influences (Section 8.3.2.3), while 
there is medium confidence that the observed changes have resulted 
from internal variability (Sections 3.7.6 and 8.2.2.2).

7.4.4.2.2 Tropical Pacific temperature gradients 
in past high-CO2 climates

The AR5 stated that paleoclimate proxies indicate a  reduction in 
the longitudinal SST gradient across the equatorial Pacific during the 
Mid-Pliocene Warm Period (MPWP; Masson-Delmotte et al., 2013; 
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see  Cross-Chapter Box  2.1 and Cross-Chapter Box  2.4 in this 
Report). This assessment was based on SST reconstructions 
between two sites situated very close to the equator in the heart 
of the western Pacific warm pool and eastern Pacific cold tongue, 
respectively. Multiple SST reconstructions based on independent 
paleoclimate proxies generally agreed that during the Pliocene the 
SST gradient between these two sites was reduced compared with 
the modern long-term mean (Wara et al., 2005; Dekens et al., 2008; 
Fedorov et al., 2013).

Since AR5, the generation of new SST records has led to a variety 
of revised gradient estimates, specifically the generation of a new 
record for the warm pool (Zhang et al., 2014), the inclusion of SST 
reconstructions from sites in the South China Sea as warm pool 
estimates (O’Brien et al., 2014; Zhang et al., 2014), and the inclusion 
of several new sites from the eastern Pacific as cold tongue estimates 
(Zhang et al., 2014; Fedorov et al., 2015). Published estimates of the 
reduction in the longitudinal SST difference for the Late Pliocene, 
relative to either Late Quaternary (0–0.5 million years ago) or 
pre-industrial values, include 1°C to 1.5°C (Zhang et al., 2014), 0.1°C 
to 1.9°C (Tierney et al., 2019), and about 3°C (Ravelo et al., 2014; 
Fedorov et al., 2015; Wycech et al., 2020). All of these studies report 
a  further weakening of the longitudinal gradient based on records 
extending into the Early Pliocene. While these revised estimates differ 
in magnitude due to differences in the sites and SST proxies used, 
they all agree that the longitudinal gradient was weaker, and this 
is supported by the probabilistic approach of Tierney et  al. (2019). 
However, given that there are currently relatively few western 
equatorial Pacific records from independent site locations, and due 
to uncertainties associated with the proxy calibrations (Haywood 
et  al., 2016a), there is only medium confidence that the average 
longitudinal gradient in the tropical Pacific was weaker during the 
Pliocene than during the Late Quaternary.

To avoid the influence of local biases, changes in the longitudinal 
temperature difference within Pliocene model simulations are typically 
evaluated using domain-averaged SSTs within chosen east and west 
Pacific regions and as such there is sensitivity to methodology. Unlike 
the reconstructed estimates, longitudinal gradient changes simulated 
by the Pliocene Model Intercomparison Project Phase 1 (PlioMIP1) 
models do not agree on the change in sign and are reported as 
spanning approximately –0.5°C to +0.5°C by Brierley et  al. (2015) 
and approximately –1°C to +1°C by Tierney et  al. (2019). Initial 
PlioMIP  Phase 2 (PlioMIP2) analysis suggests responses similar to 
PlioMIP1 (Feng et al., 2019; Haywood et al., 2020). Models that include 
hypothetical modifications to cloud albedo or ocean mixing are 
required to simulate the substantially weaker longitudinal differences 
seen in reconstructions of the Early Pliocene (Fedorov et  al., 2013; 
Burls and Fedorov, 2014a).

While more western Pacific warm pool temperature reconstructions 
are needed to refine estimates of the longitudinal gradient, several 
Pliocene SST reconstructions from the east Pacific indicate enhanced 
warming in the centre of the eastern equatorial cold tongue 
upwelling region (Liu et  al., 2019). This enhanced warming in the 
east Pacific cold tongue appears to be dynamically consistent with 
reconstruction of enhanced subsurface warming (Ford et al., 2015) 

and enhanced warming in coastal upwelling regions, suggesting 
that the tropical thermocline was deeper and/or less stratified during 
the Pliocene. The Pliocene data therefore suggest that the observed 
cooling trend over the last 60 years in parts of the eastern equatorial 
Pacific (Section 9.2.1.1 and Figure 9.3; Seager et al., 2019), whether 
forced or due to internal variability, involves transient processes 
that are probably distinct from the longer-time scale process (Burls 
and Fedorov, 2014a, b; Luo et  al., 2015; Heede et  al., 2020) that 
maintained warmer eastern Pacific SST during the Pliocene.

7.4.4.2.3 Overall assessment of tropical Pacific sea surface 
temperature gradients under CO2 forcing

The paleoclimate proxy record and ESM simulations of the MPWP, 
process understanding, and ESM projections of climate response to 
CO2 forcing provide medium evidence and a medium agreement and 
thus medium confidence that equilibrium warming in response to 
elevated CO2 will be characterized by a weakening of the east–west 
tropical Pacific SST gradient.

Overall the observed pattern of warming over the instrumental 
period, with a  warming minimum in the eastern tropical Pacific 
Ocean (Figure 7.14a), stands in contrast to the equilibrium warming 
pattern either inferred from the MPWP proxy record or simulated 
by ESMs under CO2 forcing. There is medium confidence that the 
observed strengthening of the east–west SST gradient is temporary 
and will transition to a weakening of the SST gradient on centennial 
time scales. However, there is only low confidence that this transition 
will emerge this century owing to a low degree of agreement across 
studies about the factors driving the observed strengthening of 
the east–west SST gradient and how those factors will evolve in 
the  future. These trends in tropical Pacific SST gradients reflect 
changes in the climatology, rather than changes in ENSO amplitude 
or variability, which are assessed in Chapter 4 (Section 4.3.3).

7.4.4.3 Dependence of Feedbacks on Temperature Patterns

The expected time-evolution of the spatial pattern of surface warming 
in the future has important implications for values of ECS inferred 
from the historical record of observed warming. In particular, changes 
in the global top-of-atmosphere (TOA) radiative energy budget can be 
induced by changes in the regional variations of surface temperature, 
even without a change in the global mean temperature (Zhou et al., 
2016; Ceppi and Gregory, 2019). Consequently, the global radiative 
feedback, characterizing the net TOA radiative response to global 
surface warming, depends on the spatial pattern of that warming. 
Therefore, if the equilibrium warming pattern under CO2 forcing 
(similar to CMIP6 projections in Figure 7.12a) is distinct from that 
observed over the historical record or indicated by paleoclimate 
proxies (Sections 7.4.4.1 and 7.4.4.2), then ECS will be different 
from the effective ECS (Box 7.1) that is inferred from those periods. 
Accounting for the dependence of radiative feedbacks on the spatial 
pattern of warming has helped to reconcile values of ECS inferred 
from the historical record with values of ECS based on other lines of 
evidence and simulated by climate models (Section 7.5.2.1; Armour, 
2017; Proistosescu and Huybers, 2017; Andrews et al., 2018) but has 
not yet been examined in the paleoclimate context.
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This temperature ‘pattern effect’ (Stevens et  al., 2016) can result 
from both internal variability and radiative forcing of the climate 
system. Importantly, it is distinct from potential radiative feedback 
dependencies on the global surface temperature, which are assessed 
in Section 7.4.3. While changes in global radiative feedbacks under 
transient warming have been documented in multiple generations 
of climate models (Williams et al., 2008; Andrews et al., 2015; Ceppi 
and Gregory, 2017; Dong et  al., 2020), research published since 
AR5 has developed a much-improved understanding of the role of 
evolving SST patterns in driving feedback changes (Armour et  al., 
2013; Andrews et  al., 2015, 2018; Gregory and Andrews, 2016; 
Zhou et al., 2016, 2017b; Ceppi and Gregory, 2017; Haugstad et al., 
2017; Proistosescu and Huybers, 2017; Andrews and Webb, 2018; 
Marvel et al., 2018; Silvers et al., 2018; Dong et al., 2019, 2020). This 
section assesses process understanding of the pattern effect, which 
is dominated by the evolution of SSTs. Section 7.5.2.1 describes how 
potential feedback changes associated with the pattern effect are 
important to interpreting ECS estimates based on historical warming.

The radiation changes most sensitive to warming patterns are those 
associated with low-cloud cover (affecting global albedo) and the 
tropospheric temperature profi le (affecting thermal emission to 
space) (Ceppi and Gregory, 2017; Zhou et al., 2017b; Andrews et al., 
2018; Dong et  al., 2019). The mechanisms and radiative effects 
of these changes are illustrated in Figure  7.14a,b. SSTs in regions 
of deep convective ascent (e.g.,  in the western Pacifi c warm pool) 
govern the temperature of the tropical free troposphere and, in turn, 
affect low-clouds through the strength of the inversion that caps the 
boundary layer (i.e., the lower-tropospheric stability) in subsidence 
regions (Wood and Bretherton, 2006; Klein et  al., 2017). Surface 
warming within ascent regions thus warms the free troposphere 
and increases low-cloud cover, causing an increase in emission 
of thermal radiation to space and a  reduction in absorbed solar 
radiation. In contrast, surface warming in regions of overall descent 
preferentially warms the boundary layer and enhances convective 
mixing with the dry free troposphere, decreasing low-cloud cover 
(Bretherton et al., 2013; Qu et al., 2014; Zhou et al., 2015). This leads 
to an increase in absorption of solar radiation but little change in 
thermal emission to space. Consequently, warming in tropical ascent 
regions results in negative lapse-rate and cloud feedbacks while 
warming in tropical descent regions results in positive lapse-rate 
and cloud feedbacks (Figure  7.14; Rose and Rayborn, 2016; Zhou 
et al., 2017b; Andrews and Webb, 2018; Dong et al., 2019). Surface 
warming in mid-to-high latitudes causes a weak radiative response 
owing to compensating changes in thermal emission (Planck and 
lapse-rate feedbacks) and absorbed solar radiation (shortwave cloud 
and surface-albedo feedbacks; Rose and Rayborn, 2016; Dong et al., 
2019), however this compensation may weaken due to less-negative 
shortwave cloud feedbacks at high warming (Frey and Kay, 2018; 
Bjordal et al., 2020; Dong et al., 2020).

The spatial pattern of SST changes since 1870 shows relatively 
little warming in key regions of less-negative radiative feedbacks, 
including the eastern tropical Pacifi c Ocean and Southern Ocean 
(Sections 7.4.4.1 and 7.4.4.2, and Figures 2.11b and 7.14a). Cooling 
in these regions since 1980 has occurred along with an increase in 
the strength of the capping inversion in tropical descent regions, 

resulting in an observed increase in low-cloud cover over the tropical 
eastern Pacifi c (Figure 7.14a; Zhou et al., 2016; Ceppi and Gregory, 
2017; Fueglistaler and Silvers, 2021). Thus, tropical low-cloud cover 
increased over recent decades even as global surface temperature 
increased, resulting in a  negative low-cloud feedback which is 
at odds with the positive low-cloud feedback expected for the 
pattern of equilibrium warming under CO2 forcing (Section 7.4.2.4 
and Figure 7.14b).

(a) Atmospheric response to observed Pacific ocean warming
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Figure  7.14 | Illustration of tropospheric temperature and low-cloud 
response to observed and projected Pacifi c Ocean sea surface temperature 
trends. (a) Atmospheric response to linear sea surface temperature trend observed 
over 1870–2019 (HadISST1 dataset; Rayner et al., 2003). (b) Atmospheric response 
to linear sea-surface temperature trend over 150 years following abrupt4xCO2 
forcing as projected by CMIP6 ESMs (Dong et al., 2020). Relatively large historical 
warming in the western tropical Pacifi c has been communicated aloft (a shift from 
grey to red atmospheric temperature profi le), remotely warming the tropical free 
troposphere and increasing the strength of the inversion in regions of the tropics 
where warming has been slower, such as the eastern equatorial Pacifi c. In turn, an 
increased inversion strength has increased the low-cloud cover (Zhou et al., 2016) 
causing an anomalously negative cloud and lapse-rate feedbacks over the historical 
record (Andrews et al., 2018; Marvel et al., 2018). Relatively large projected warming 
in the eastern tropical Pacifi c is trapped near the surface (shift from grey to red 
atmospheric temperature profi le), decreasing the strength of the inversion locally. 
In turn, a decreased inversion strength combined with surface warming is projected to 
decrease the low-cloud cover, causing the cloud and lapse-rate feedbacks to become 
less negative in the future. Figure adapted from Mauritsen (2016). Further details on 
data sources and processing are available in the chapter data table (Table 7.SM.14).
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Andrews et al. (2018) analysed available CMIP5/6 ESM simulations 
(six in total) comparing effective feedback parameters diagnosed 
within atmosphere-only ESMs using prescribed historical SST and sea 
ice concentration patterns with the equilibrium feedback parameters 
as estimated within coupled ESMs (using identical atmospheres) 
driven by abrupt 4×CO2 forcing. The atmosphere-only ESMs show 
pronounced multi-decadal variations in their effective feedback 
parameters over the last  century, with a  trend towards strongly 
negative values since about 1980 owing primarily to negative 
shortwave cloud feedbacks driven by warming in the western 
equatorial Pacific Ocean and cooling in the eastern equatorial 
Pacific Ocean (Zhou et al., 2016; Andrews et al., 2018; Marvel et al., 
2018; Dong et  al., 2019). Yet, all six models show a  less-negative 
net feedback parameter under abrupt4xCO2 than for the historical 
period (based on regression since 1870 following Andrews et  al., 
2018). The average change in net feedback parameter between 
the historical period and the equilibrium response to CO2 forcing, 
denoted here as α’, for these simulations is α’ = +0.6 W m–2 °C–1 
(+0.3 to +1.0 W m–2 °C–1 range across models; Figure 7.15b). These 
feedback parameter changes imply that the value of ECS may be 
substantially larger than that inferred from the historical record 
(Section  7.5.2.1). These findings can be understood from the fact 
that, due to a  combination of internal variability and transient 
response to forcing (Section 7.4.4.2), historical sea surface warming 
has been relatively large in regions of tropical ascent (Figure 7.14a), 
leading to an anomalously large net negative radiative feedback; 
however, future warming is expected to be largest in tropical 
descent regions, such as the eastern equatorial Pacific, and at high 
latitudes (Sections 7.4.4.1 and 7.4.4.2 and Figure 7.14b), leading to 
a less-negative net radiative feedback and higher ECS.

A similar behaviour is seen within transient simulations of coupled 
ESMs, which project SST warming patterns that are initially 
characterized by relatively large warming rates in the western 
equatorial Pacific Ocean on decadal time scales and relatively large 
warming in the eastern equatorial Pacific and Southern Ocean 
on centennial time scales (Andrews et  al., 2015; Proistosescu 
and Huybers, 2017; Dong et  al., 2020). Recent studies based on 
simulations of 1%  yr –1 CO2 increase (1pctCO2) or abrupt4xCO2 as 
analogues for historical warming suggest characteristic values of 
α’ = +0.05 W m–2 °C–1 (–0.2 to +0.3 W m–2 °C–1 range across models) 
based on CMIP5 and CMIP6 ESMs (Armour 2017, Lewis and Curry 
2018, Dong et al. 2020). Using historical simulations of one CMIP6 ESM 
(HadGEM3-GC3.1-LL), Andrews et al. (2019) find an average feedback 
parameter change of α’ = +0.2 W m–2 °C–1 (–0.2 to +0.6 W m–2 °C–1 

range across four ensemble members). Using historical simulations 
from another CMIP6 ESM (GFDL CM4.0), Winton et al. (2020) find 
an average feedback parameter change of α’ = +1.5 W m–2 °C–1 

(+1.2  to +1.7 W m–2 °C–1 range across three ensemble members). 
This value is larger than the α’ = +0.7 W m–2 °C–1 within GFDL CM4.0 
for historical CO2 forcing only, suggesting that the value of α’ may 
depend on historical non-CO2 forcings such as those associated with 
tropospheric and stratospheric aerosols (Marvel et al., 2016; Gregory 
et al., 2020; Winton et al., 2020).

The magnitude of the net feedback parameter change α’ found 
within coupled CMIP5 and CMIP6 ESMs is generally smaller than 

that found when prescribing observed warming patterns within 
atmosphere-only ESMs (Figure  7.15; Andrews et  al., 2018). This 
arises from the fact that the forced spatial pattern of warming within 
transient simulations of most coupled ESMs are distinct from observed 
warming patterns over the historical record in key regions such as 
the equatorial Pacific Ocean and Southern Ocean (Sections 7.4.4.1 
and 7.4.4.2), while being more similar to the equilibrium pattern 
simulated under abrupt4xCO2. However, historical simulations 
with HadGEM3-GC3.1-LL (Andrews et  al., 2019) and GFDL CM4.0 
(Winton et  al., 2020) show substantial spread in the value of 
α’  across ensemble members, indicating a  potentially important 
role for internal variability in setting the magnitude of the pattern 
effect over the historical period. Using the  100-member historical 
simulation ensemble of MPI-ESM1.1, Dessler et al. (2018) find that 
internal climate variability alone results in a 0.5 W m–2 °C–1 spread in 
the historical effective feedback parameter, and thus also in the value 
of α’. Estimates of α’ using prescribed historical warming patterns 
provide a more realistic representation of the historical pattern effect 
because they account for the net effect of the transient response 
to historical forcing and internal variability in the observed record 
(Andrews et al., 2018).

The magnitude of α’, as quantified by ESMs, depends on the accuracy 
of both the projected patterns of SST and sea ice concentration 
changes in response to CO2 forcing and the radiative response to 
those patterns (Andrews et al., 2018). Model biases that affect the 
long-term warming pattern (e.g.,  SST and relative humidity biases 
in the equatorial Pacific cold tongue as suggested by Seager et al., 
2019) will affect the value of α’. The value of α’ also depends on the 
accuracy of the historical SST and sea ice concentration conditions 
prescribed within atmosphere-only versions of ESMs to quantify 
the historical radiative feedback (Figure 7.15b). Historical SSTs are 
particularly uncertain for the early portion of the historical record 
(Section 2.3.1), and there are few constraints on sea ice concentration 
prior to the satellite era. Using alternative SST datasets, Andrews 
et al. (2018) found little change in the value of α’ within two models 
(HadGEM3 and HadAM3), while Lewis and Mauritsen (2021) found 
a smaller value of α’ within two other models (ECHAM6.3 and CAM5). 
The sensitivity of results to the choice of dataset represents a major 
source of uncertainty in the quantification of the historical pattern 
effect using atmosphere-only ESMs that has yet to be systematically 
explored, but the preliminary findings of Lewis and Mauritsen (2021) 
and Fueglistaler and Silvers (2021) suggest that α’ could be smaller 
than the values reported in Andrews et al. (2018).

While there are not yet direct observational constraints on the 
magnitude of the pattern effect, satellite measurements of variations 
in TOA radiative fluxes show strong co-variation with changing 
patterns of SSTs, with a  strong dependence on SST changes in 
regions of deep convective ascent (e.g., in the western Pacific warm 
pool; Loeb et al., 2018a; Fueglistaler, 2019). Cloud and TOA radiation 
responses to observed warming patterns in atmospheric models have 
been found to compare favourably with those observed by satellite 
(Section 7.2.2.1 and Figure 7.3; Zhou et al., 2016; Loeb et al., 2020). 
This observational and modelling evidence indicates the potential for 
a  strong pattern effect in nature that will only be negligible if the 
observed pattern of warming since pre-industrial levels persists to 
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equilibrium – an improbable scenario given that Earth is in a relatively 
early phase of transient warming and that reaching equilibrium would 
take multiple millennia (C. Li et  al., 2013). Moreover, paleoclimate 
proxies, ESM simulations, and process understanding indicate that 
strong warming in the eastern equatorial Pacific Ocean (with medium 
confidence) and Southern Ocean (with high confidence) will emerge 
on centennial time scales as the response to CO2 forcing dominates 
temperature changes in these regions (Sections 7.4.4.1, 7.4.4.2 
and 9.2.1). However, there is low confidence that these features, which 
have been largely absent over the historical record, will emerge this 
century (Sections 7.4.4.1, 7.4.4.2 and Section 9.2.1). This leads to high 
confidence that radiative feedbacks will become less negative as the 
CO2-forced pattern of surface warming emerges (α’ > 0 W m–2 °C–1), 
but low confidence that these feedback changes will be realized this 
century. There is also substantial uncertainty in the magnitude of the 
net radiative feedback change between the present warming pattern 
and the projected equilibrium warming pattern in response to CO2 
forcing owing to the fact that its quantification currently relies solely 
on ESM results and is subject to uncertainties in historical SST patterns. 
Thus, based on the pattern of warming since 1870, α’ is estimated to 
be in the range 0.0 to 1.0 W m–2 °C–1 but with a  low confidence in 
the upper end of this range. A value of α’ = +0.5 ± 0.5 W m–2 °C –1 
is used to represent this range in Box 7.2 and Section 7.5.2, which 
respectively assess the implications of changing radiative feedbacks 
for Earth’s energy imbalance and estimates of ECS based on the 
instrumental record. The value of α’ is larger if quantified based on 
the observed pattern of warming since 1980 (Figure 2.11b) which is 

more distinct from the equilibrium warming pattern expected under 
CO2 forcing (high confidence) (similar to CMIP6 projections shown in 
Figure 7.12a; Andrews et al., 2018).

7.5 Estimates of ECS and TCR

Equilibrium climate sensitivity (ECS) and transient climate response 
(TCR) are metrics of the global surface air temperature (GSAT) 
response to forcing, as defined in Box  7.1. ECS is the magnitude 
of the long-term GSAT increase in response to a  doubling of 
atmospheric CO2 concentration after the planetary energy budget is 
balanced, though leaving out feedbacks associated with ice sheets; 
whereas the TCR is the magnitude of GSAT increase at year 70 when 
CO2 concentration is doubled in a 1% yr –1 increase scenario. Both 
are idealized quantities, but can be inferred from paleoclimate or 
observational records or estimated directly using climate simulations, 
and are strongly correlated with the climate response in realistic 
future projections (Sections 4.3.4 and 7.5.7; Grose et al., 2018).

TCR is always smaller than ECS because ocean heat uptake acts to 
reduce the rate of surface warming. Yet, TCR is related to ECS across 
CMIP5 and CMIP6 models (Grose et al., 2018; Flynn and Mauritsen, 
2020) as expected since TCR and ECS are inherently measures 
of climate response to forcing; both depend on effective radiative 
forcing (ERF) and the net feedback parameter, α. The relationship 
between TCR and ECS is, however, non-linear and becomes more so 
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Figure 7.15 | Relationship between historical and abrupt4xCO2 net radiative feedbacks in ESMs. (a) Radiative feedbacks in CMIP6 ESMs estimated under 
historical forcing (values for GFDL CM4.0 and HadGEM3-CG3.1-LL from Winton et al. (2020) and Andrews et al. (2019), respectively); horizontal lines show the range across 
ensemble members. The other points show effective feedback values for 29 ESMs estimated using regression over the first 50 years of abrupt4xCO2 simulations as an analogue 
for historical warming (Dong et al., 2020). (b) Historical radiative feedbacks estimated from atmosphere-only ESMs with prescribed observed sea-surface temperature and 
sea-ice concentration changes (Andrews et al., 2018) based on a linear regression of global top-of-atmosphere (TOA) radiation against global near-surface air temperature 
over the period 1870–2010 (pattern of warming similar to Figure 7.14a) and compared with equilibrium feedbacks in abrupt4xCO2 simulations of coupled versions of the 
same ESMs (pattern of warming similar to Figure 7.14b). In all cases, the equilibrium feedback magnitudes are estimated as CO2 ERF divided by ECS where ECS is derived 
from regression over years 1–150 of abrupt4xCO2 simulations (Box 7.1); similar results are found if the equilibrium feedback is estimated directly from the slope of the linear 
regression. Further details on data sources and processing are available in the chapter data table (Table 7.SM.14).
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for higher ECS values (Hansen et al., 1985; Knutti et al., 2005; Millar 
et  al., 2015; Flynn and Mauritsen, 2020; Tsutsui, 2020) owing to 
ocean heat uptake processes and surface temperature pattern effects 
temporarily reducing the rate of surface warming. When α is small 
in magnitude, and correspondingly ECS is large (recall that ECS is 
inversely proportional to α), these temporary effects are increasingly 
important in reducing the ratio of TCR to ECS.

Before AR6, the assessment of ECS relied on either CO2-doubling 
experiments using global atmospheric models coupled with 
mixed-layer ocean or standardized CO2-quadrupling (abrupt4xCO2) 
experiments using fully coupled ocean–atmosphere models or 
Earth system models (ESMs). The TCR has similarly been diagnosed 
from ESMs in which the CO2 concentration is increased at 1% yr –1 
(1pctCO2, an approximately linear increase in ERF over time) and is 
in practice estimated as the average over a 20-year period centred 
at the time of atmospheric CO2 doubling, that is, year 70. In AR6, 
the assessments of ECS and TCR are made based on multiple lines 
of evidence, with ESMs representing only one of several sources 
of information. The constraints on these climate metrics are based 
on radiative forcing and climate feedbacks assessed from process 
understanding (Section  7.5.1), climate change and variability seen 
within the instrumental record (Section 7.5.2), paleoclimate evidence 
(Section 7.5.3), emergent constraints (Section 7.5.4), and a synthesis 
of all lines of evidence (Section 7.5.5). In AR5, these lines of evidence 
were not explicitly combined in the assessment of climate sensitivity, 
but as demonstrated by Sherwood et  al. (2020) their combination 
narrows the uncertainty ranges of ECS compared to that assessed 
in AR5. ECS values found in CMIP6 models, some of which exhibit 
values higher than 5°C (Meehl et al., 2020; Zelinka et al., 2020), are 
discussed in relation to the AR6 assessment in section 7.5.6.

7.5.1 Estimates of ECS and TCR Based 
on Process Understanding

This section assesses the estimates of ECS and TCR based on process 
understanding of the ERF due to a  doubling of CO2 concentration 
and the net climate feedback (Sections 7.3.2 and 7.4.2). This 
process-based assessment is made in Section 7.5.1.1 and applied to 
TCR in Section 7.5.1.2.

7.5.1.1 ECS Estimated Using Process-based 
Assessments of Forcing and Feedbacks

The process-based assessment is based on the global energy budget 
equation (Box 7.1, Equation 7.1), where the ERF (ΔF) is set equal to 
the effective radiative forcing due to a doubling of CO2 concentration 
(denoted as ΔF2×CO2) and the climate state reaches a new equilibrium, 
that is, Earth’s energy imbalance averages to zero (ΔN = 0). ECS is 
calculated as the ratio between the ERF and the net feedback 
parameter: ECS = –ΔF2×CO2/α. Estimates of ΔF2×CO2 and α are obtained 
separately based on understanding of the key processes that 
determine each of these quantities. Specifically, ΔF2×CO2 is estimated 
based on instantaneous radiative forcing that can be accurately 
obtained using line-by-line calculations, to which uncertainty due 
to adjustments are added (Section 7.3.2). The range of α is derived 

by aggregating estimates of individual climate feedbacks based not 
only on ESMs but also on theory, observations, and high-resolution 
process modelling (Section 7.4.2).

The effective radiative forcing of CO2 doubling is assessed to be 
ΔF2×CO2 = 3.93 ± 0.47 W m–2 (Section 7.3.2.1), while the net feedback 
parameter is assessed to be α = –1.16 ± 0.40 W m–2 °C–1 (Table 7.10), 
where the ranges indicate one standard deviation. These values are 
slightly different from those directly calculated from ESMs because 
more information is used to assess them, as explained above. Assuming 
ΔF2×CO2 and α each follow an independent normal distribution, the 
uncertainty range of ECS can be obtained by substituting the respective 
probability density function into the expression of ECS (red curved bar 
in Figure 7.16). Since α is in the denominator, the normal distribution 
leads to a long tail in ECS towards high values, indicating the large 
effect of uncertainty in α in estimating the likelihood of a high ECS 
(Roe and Baker, 2007; Knutti and Hegerl, 2008).

The wide range of the process-based ECS estimate is not due 
solely to uncertainty in the estimates of ΔF2×CO2 and α, but is partly 
explained by the assumption that ΔF2×CO2 and α are independent in 
this approach. In CMIP5 and CMIP6 ensembles, ΔF2×CO2 and α are 
negatively correlated when they are calculated using linear regression 
in abrupt4xCO2 simulations (r2 = 0.34; Andrews et al., 2012; Webb 
et al., 2013; Zelinka et al., 2020). The negative correlation leads to 
compensation between the inter-model spreads of these quantities, 
thereby reducing the ECS range estimated directly from the models. 
If the process-based ECS distribution is reconstructed from probability 
distributions of ΔF2×CO2 and α assuming that they are correlated as in 
CMIP model ensembles, the range of ECS will be narrower by 14% 
(pink curved bar in Figure 7.16). If, however, the covariance between 
ΔF2×CO2 and α is not adopted, there is no change in the mean, but the 
wide range still applies.

A significant correlation between ΔF2×CO2 and α also occurs when 
the two parameters are estimated separately from atmospheric ESM 
fixed-SST experiments (Section  7.3.1) or fixed CO2 concentration 
experiments (Section  7.4.1; Ringer et  al., 2014; Chung and Soden, 
2018). Hence the relationship is not expected to be an artefact of 
calculating the parameters using linear regression in abrupt4xCO2 
simulations. A  possible physical cause of the correlation may be 
a  compensation between the cloud adjustment and the cloud 
feedback over the tropical ocean (Ringer et  al., 2014; Chung and 
Soden, 2018). It has been shown that the change in the hydrological 
cycle is a controlling factor for the low-cloud adjustment (Dinh and 
Fueglistaler, 2019) and for the low-cloud feedback (Watanabe et al., 
2018), and therefore the responses of these clouds to the direct CO2 
radiative forcing and to the surface warming may not be independent. 
However, robust physical mechanisms are not yet established, 
and furthermore, the process-based assessment of the tropical 
low-cloud feedback is only indirectly based on ESMs given that 
physical processes which control the low-clouds are not sufficiently 
well-simulated in models (Section  7.4.2.4). For these reasons, the 
co-dependency between ΔF2×CO2 and α is assessed to have low 
confidence and, therefore, the more conservative assumption that 
they are independent for the process-based assessment of ECS 
is retained.
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In summary, the ECS based on the assessed values of ΔF2×CO2 and α is 
assessed to have a median value of 3.4°C with a likely range of 2.5 to 
5.1 °C and very likely range of 2.1 to 7.7 °C. To this assessed range of 
ECS, the contribution of uncertainty in α is approximately three times 
as large as the contribution of uncertainty in ΔF2×CO2.

7.5.1.2 Emulating Process-based ECS to TCR

ECS estimated using the ERF due to a doubling of CO2 concentration 
and the net feedback parameter (ECS = –ΔF2×CO2/α) can be translated 
into the TCR so that both climate sensitivity metrics provide consistent 
information about the climate response to forcing. Here a two-layer 
energy budget emulator is used to transfer the process-based 
assessment of forcing, feedback, efficacy and heat uptake to TCR 
(Supplementary Material 7.SM.2.1 and Cross-Chapter Box 7.1). The 
emulator can reproduce the transient surface temperature evolution in 
ESMs under 1pctCO2 simulations and other climate change scenarios, 
despite the very low number of degrees of freedom (Held et al., 2010; 
Geoffroy et al., 2012, 2013a; Palmer et al., 2018). Using this model 
with parameters given from assessments in Sections 7.2, 7.3, and 7.4, 
TCR is assessed based on the process-based understanding.

In the two-layer energy balance emulator, additional parameters are 
introduced: heat capacities of the upper and deep ocean, heat uptake 
efficiency (γ), and the so-called efficacy parameter (ε) that represents the 

dependence of radiative feedbacks and heat uptake on the evolving SST 
pattern under CO2 forcing alone (Section 7.4.4). In the real world, natural 
internal variability and aerosol radiative forcing also affect the efficacy 
parameter, but these effects are excluded for the current discussion.

The analytical solution of the energy balance emulator reveals 
that the global surface temperature change to abrupt increase of 
the atmospheric CO2 concentration is expressed by a  combination 
of a  fast adjustment of the surface components of the climate 
system and a  slow response of the deep ocean, with time scales 
of several years and several centuries, respectively (grey curve in 
Figure 7.17b). The equilibrium response of upper ocean temperature, 
approximating SST and the surface air temperature response, 
depends, by definition, only on the radiative forcing and the net 
feedback parameter. Uncertainty in α dominates (80–90%) the 
corresponding uncertainty range for ECS in CMIP5 models (Vial et al., 
2013), and also an increase of ECS in CMIP6 models (Section 7.5.5) 
is attributed by about 60–80% to a  change in α (Zelinka et  al., 
2020). For the range of TCR, the contribution from uncertainty in α is 
reduced to 50–60% while uncertainty in ΔF2×CO2 becomes relatively 
more important (Geoffroy et al., 2012; Lutsko and Popp, 2019). TCR 
reflects the fast response occurring approximately during the first 
20 years in the abrupt4xCO2 simulation (Held et al., 2010), but the 
fast response is not independent of the slow response because there 
is a non-linear co-dependence between them (Andrews et al., 2015). 
The non-linear  relationship between ECS and TCR indicates that 
the probability of high TCR is not very sensitive to changes in the 
probability of high ECS (Meehl et al., 2020).

Considering an idealized time evolution of ERF (1% increase per year 
until CO2 doubling and held fixed afterwards, see Figure  7.17a), 
the TCR defined by the surface temperature response at year 70 is 
derived by substituting the process-based ECS into the analytical 
solution of the emulator (Figure  7.17b, see also Supplementary 
Material 7.SM.2.1). When additional parameters in the emulator 
are prescribed by using CMIP6 multi-model mean values of those 
estimates (Smith et al., 2020b), this calculation translates the range of 
ECS in Section 7.5.2.1 to the range of TCR. The transient temperature 
response, in reality, varies with different estimates of the ocean 
heat uptake efficiency (γ) and efficacy (ε). When the emulator was 
calibrated to the transient responses in CMIP5 models, it shows that 
uncertainty in heat capacities is negligible and differences in γ and 
ε explain 10–20% of the inter-model spread of TCR among GCMs 
(Geoffroy et al., 2012). Specifically, their product, κ = γε, appearing 
in a simplified form of the solution, that is, TCR ≅ –ΔF2×CO2/(α – κ), 
gives a  single parameter quantifying the damping effects of heat 
uptake (Jiménez-de-la-Cuesta and Mauritsen, 2019). This parameter 
is positive and acts to slow down the temperature response in 
a similar manner to the ‘pattern effect’ (Sections 7.4.4.3 and 7.5.2.1). 
The ocean heat uptake in nature is controlled by multiple processes 
associated with advection and mixing (Exarchou et al., 2014; Kostov 
et al., 2014; Kuhlbrodt et al., 2015) but is simplified to be represented 
by a  single term of heat exchange between the upper and deep 
ocean in the emulator. Therefore, it is challenging to constrain 
γ and ε from process-based understanding (Section 7.5.2). Because 
the estimated values are only weakly correlated across models, 
the mean value and one standard deviation of κ are calculated as 

Figure  7.16 | Probability distributions of ERF to CO2 doubling (ΔF2×CO2; 
top) and the net climate feedback (α; right), derived from process-
based assessments in Sections 7.3.2 and 7.4.2. Central panel shows the joint 
probability density function calculated on a two-dimensional plane of ΔF2×CO2 and 
α (red), on which the 90% range shown by an ellipse is imposed to the background 
theoretical values of ECS (colour shading). The white dot, and thick and thin curves 
inside the ellipse represent the mean, likely and very likely ranges of ECS. An alternative 
estimation of the ECS range (pink) is calculated by assuming that ΔF2×CO2 and α have 
a  covariance. The assumption about the co-dependence between ΔF2×CO2 and α 
does not alter the mean estimate of ECS but affects its uncertainty. Further details on 
data sources and processing are available in the chapter data table (Table 7.SM.14).
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κ = 0.84 ± 0.38 W m–2 °C–1 (one standard deviation) by ignoring their 
covariance (the mean value is very similar to that used for Box 4.1, 
Figure  1; see Supplementary Material 7.SM.2.1). By incorporating 
this inter-model spread in κ, the range of TCR is widened by about 
10% (blue bar in Figure 7.17b). Yet, the dominant contribution to the 
uncertainty range of TCR arises from the net feedback parameter α, 
consistent with analyses of CMIP6 models (Williams et  al., 2020), 
and this assessment remains unchanged from AR5 stating that 
uncertainty in ocean heat uptake is of secondary importance.

In summary, the process-based estimate of TCR is assessed to have 
the central value of 2.0°C with the likely range from 1.6 to 2.7 °C and 
the very likely range from 1.3 to 3.1 °C (high confi dence). The upper 
bound of the assessed range was slightly reduced from AR5 but can 
be further constrained using multiple lines of evidence (Section 7.5.5).

7.5.2 Estimates of ECS and TCR Based 
on the Instrumental Record

This section assesses the estimates of ECS and TCR based on the 
instrumental record of climate change and variability with an 
emphasis on new evidence since AR5. Several lines of evidence 
are assessed including the global energy budget (Section  7.5.2.1), 
the use of simple climate models evaluated against the historical 

temperature record (Section 7.5.2.2), and internal variability in global 
temperature and TOA radiation (Section  7.5.2.3). Section  7.5.2.4 
provides an overall assessment of TCR and ECS based on these lines 
of evidence from the instrumental record.

7.5.2.1 Estimates of ECS and TCR Based 
on the Global Energy Budget

The GSAT change from 1850–1900 to 2006–2019 is estimated to be 
1.03 [0.86 to 1.18] °C (Cross-chapter Box 2.3). Together with estimates 
of Earth’s energy imbalance (Section 7.2.2) and the global ERF that 
has driven the observed warming (Section  7.3), the instrumental 
temperature record enables global energy budget estimates of ECS 
and TCR. While energy budget estimates use instrumental data, they 
are not based purely on observations. A conceptual model typically 
based on the global mean forcing and response energy budget 
framework (Box 7.1) is needed to relate ECS and TCR to the estimates 
of global warming, ERF and Earth’s energy imbalance (Forster, 2016; 
Knutti et al., 2017). Moreover, ESM simulations partly inform estimates 
of the historical ERF (Section 7.3) as well as Earth’s energy imbalance 
in the 1850–1900 climate (the period against which changes are 
measured; Forster, 2016; Lewis and Curry, 2018). ESMs are also used 
to estimate uncertainty due the internal climate variability that may 
have contributed to observed changes in temperature and energy 
imbalance (e.g., Palmer and McNeall, 2014; Sherwood et al., 2020). 
Research since AR5 has shown that global energy budget estimates 
of ECS may be biased low when they do not take into account how 
radiative feedbacks depend on the spatial pattern of surface warming 
(Section 7.4.4.3) or when they do not incorporate improvements in 
the estimation of global surface temperature trends which take better 
account of data-sparse regions and are more consistent in their 
treatment of surface temperature data (Section 2.3.1). Together with 
updated estimates of global ERF and Earth’s energy imbalance, these 
advances since AR5 have helped to reconcile energy budget estimates 
of ECS with estimates of ECS from other lines of evidence.

The traditional global mean forcing and response energy budget 
framework (Section 7.4.1 and Box 7.1; Gregory et al., 2002) relates 
the difference between the ERF (ΔF) and the radiative response to 
observed global warming (αΔT) to the Earth’s energy imbalance (ΔN): 
ΔN = αΔT + ΔF. Given the relationship ECS = –ΔF2×CO2/α, where ΔF2×CO2

is the ERF from CO2 doubling, ECS can be estimated from historical 
estimates of ΔT, ΔF, ΔN and ΔF2×CO2: ECS = ΔF2×CO2ΔT/(ΔF – ΔN). 
Since TCR is defi ned as the temperature change at the time of 
CO2 doubling under an idealized 1% yr –1 CO2 increase, it can be 
inferred from the historical record as: TCR  =  ΔF2×CO2 ΔT/ΔF, under 
the assumption that radiative forcing increases quickly compared to 
the adjustment time scales of the deep ocean, but slowly enough 
and over a suffi ciently long time that the upper ocean is adjusted, 
so that ΔT and ΔN increases approximately in proportion to ΔF. 
Because ΔN is positive, TCR is always smaller than ECS, refl ecting 
weaker transient warming than equilibrium warming. TCR is better 
constrained than ECS owing to the fact that the denominator of TCR, 
without the quantity ΔN, is more certain and further from zero than 
is the denominator of ECS. The upper bounds of both TCR and ECS 
estimated from historical warming are inherently less certain than 
their lower bounds because ΔF is uncertain and in the denominator.
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Figure  7.17 | (a) Time evolution of the effective radiative forcing (ERF) 
to the CO2 concentration increased by 1% per year until year 70 (equal 
to the time of doubling) and kept fi xed afterwards (white line). The likely
and very likely ranges of ERF indicated by light and dark orange have been assessed 
in Section 7.3.2.1. (b) Surface temperature response to the CO2 forcing calculated 
using the emulator with a given value of ECS, considering uncertainty in ΔF2×CO2, α, 
and κ associated with the ocean heat uptake and effi cacy (white line). The likely and 
very likely ranges are indicated by cyan and blue, respectively. For comparison, the 
temperature response to abrupt doubling of the CO2 concentration is displayed by 
a grey curve. The mean, likely and very likely ranges of ECS and TCR are shown at the 
right (the values of TCR also presented in the panel). Further details on data sources 
and processing are available in the chapter data table (Table 7.SM.14).
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The traditional energy budget framework lacks a  representation of 
how radiative feedbacks depend on the spatial pattern of warming. 
Thus, studies employing this framework (Otto et  al., 2013; Lewis 
and Curry, 2015, 2018; Forster, 2016) implicitly assume that the net 
radiative feedback has a constant magnitude, producing an estimate 
of the effective ECS (defined as the value of ECS that would occur 
if α does not change from its current value) rather than of the true 
ECS. As summarized in Section  7.4.4.3, there are now multiple 
lines of evidence providing high confidence that the net radiative 
feedback will become less negative as the warming pattern evolves 
in the future (the pattern effect). This arises because historical 
warming has been relatively larger in key negative feedback regions 
(e.g.,  western tropical Pacific Ocean) and relatively smaller in key 
positive feedback regions (e.g.,  eastern tropical Pacific Ocean and 
Southern Ocean) than is projected in the near-equilibrium response 
to CO2 forcing (Section 7.4.4.3; Held et al., 2010; Proistosescu and 
Huybers, 2017; Dong et  al., 2019), implying that the true ECS will 
be larger than the effective ECS inferred from historical warming. 
This section first assesses energy budget constraints on TCR and the 
effective ECS based on updated estimates of historical warming, ERF, 
and Earth’s energy imbalance. It then assesses what these energy 
budget constraints imply for values of ECS once the pattern effect is 
accounted for.

Energy budget estimates of TCR and ECS have evolved in the 
literature over recent decades. Prior to AR4, the global energy 
budget provided relatively weak constraints, primarily due to large 
uncertainty in the tropospheric aerosol forcing, giving ranges of the 
effective ECS that typically included values above 10°C (Forster, 2016; 
Knutti et  al., 2017). Revised estimates of aerosol forcing together 
with a  larger greenhouse gas forcing by the time of AR5 led to an 
estimate of ΔF that was more positive and with reduced uncertainty 
relative to AR4. Using energy budget estimates and radiative forcing 
estimates updated to 2009, Otto et  al. (2013) estimated that TCR 
was 1.3 [0.9 to 2.0] °C, and that the effective ECS was 2.0 [1.2 to 
3.9]  °C. This AR5-based energy budget estimate of ECS was lower 
than estimates based on other lines of evidence, leading AR5 to 
expand the assessed likely range of ECS to include lower values 
relative to AR4. Studies since AR5 using similar global energy budget 
methods have produced similar or slightly narrower ranges for TCR 
and effective ECS (Forster, 2016; Knutti et al., 2017).

Energy budget estimates of TCR and ECS assessed here are based 
on improved observations and understanding of global surface 
temperature trends extended to the year 2020 (Section  2.3.1), 
revised estimates of Earth’s energy imbalance (Section  7.2), and 
revised estimates of ERF (Section  7.3). Accurate, in situ-based 
estimates of Earth’s energy imbalance can be made from around 
2006 based on near-global ocean temperature observations 
from the ARGO array of autonomous profiling floats (Sections 2.3 
and 7.2). Over the period 2006–2018 the Earth’s energy imbalance 
is estimated to be 0.79 ± 0.27 W m–2 (Section 7.2) and it is assumed 
that this value is also representative for the period 2006–2019. 
Anomalies are taken with respect to the baseline period 1850–1900, 
although other baselines could be chosen to avoid major volcanic 
activity (Otto et al., 2013; Lewis and Curry, 2018). Several lines of 
evidence, including ESM simulations (Lewis and Curry, 2015), energy 

balance modelling (Armour, 2017), inferred ocean warming given 
observed SSTs using ocean models (Gebbie and Huybers, 2019; 
Zanna et  al., 2019), and ocean warming reconstructed from noble 
gas thermometry (Baggenstos et  al., 2019) suggest a  1850–1900 
Earth energy imbalance of 0.2 ± 0.2 W m–2. Combined with estimates 
of internal variability in Earth’s energy imbalance, calculated using 
periods of equivalent lengths of years as used in unforced ESM 
simulations (Palmer and McNeall, 2014; Sherwood et al., 2020), the 
anomalous energy imbalance between 1850–1900 and 2006–2019 
is estimated to be ΔN = 0.59 ± 0.35 W m–2. GSAT change between 
1850–1900 and 2006–2019 is estimated to be ΔT = 1.03°C ± 0.20 °C 
(Cross-Chapter Box  2.3 and Box  7.2) after accounting for internal 
temperature variability derived from unforced ESM simulations 
(Sherwood et al., 2020). The ERF change between 1850–1900 and 
2006–2019 is estimated to be ΔF  =  2.20 [1.53 to 2.91] W  m–2 
(Section 7.3.5) and the ERF for a doubling of CO2 is estimated to be 
ΔF2×CO2 = 3.93 ± 0.47 W m–2 (Section 7.3.2). Employing these values 
within the traditional global energy balance framework described 
above (following the methods of Otto et al. (2013) and accounting 
for correlated uncertainties between ΔF and ΔF2×CO2) produces a TCR 
of 1.9 [1.3  to 2.7] °C and an effective ECS of 2.5 [1.6 to 4.8] °C. 
These TCR and effective ECS values are higher than those in the 
recent literature (Otto et al., 2013; Lewis and Curry, 2015, 2018) but 
are comparable to those of Sherwood et al. (2020) who also used 
updated estimates of observed warming, Earth’s energy imbalance, 
and ERF.

The trend estimation method applied to global surface temperature 
affects derived values of ECS and TCR from the historical record. 
In this Report, the effective ECS is inferred from estimates that 
use global coverage of GSAT to estimate the surface temperature 
trends. The GSAT trend is assessed to have the same best estimate 
as the observed global mean surface temperature (GMST), 
although the  GSAT trend is assessed to have larger uncertainty 
(see Cross-Chapter Box 2.3). Many previous studies have relied on 
HadCRUT4 GMST estimates that used the blended observations 
and did not interpolate over regions of incomplete observational 
coverage such as the Arctic. As a  result, the ECS and TCR derived 
from these studies has smaller ECS and TCR values than those 
derived from model-inferred estimates (M. Richardson et al., 2016, 
2018). The energy budget studies assessing ECS in AR5 employed 
HadCRUT4 or similar measures of GMST trends. As other lines of 
evidence in that report used GSAT trends, this could partly explain 
why AR5-based energy budget estimates of ECS were lower than 
those estimated from other lines of evidence, adding to the overall 
disparity in M. Collins et al. (2013). In this report, GSAT is chosen 
as the standard measure of global surface temperature to aid 
comparison with previous model- and process-based estimates of 
ECS, TCR and climate feedbacks (see Cross-Chapter Box 2.3).

The traditional energy budget framework has been evaluated within 
ESM simulations by comparing the effective ECS estimated under 
historical forcing with the ECS estimated using regression methods 
(Box 7.1) under abrupt4xCO2 (Andrews et al., 2019; Winton et al., 
2020). For one CMIP6 model (GFDL-CM4.0), the value of effective 
ECS derived from historical energy budget constraints is 1.8°C while 
ECS is estimated to be 5.0°C (Winton et al., 2020). For another model 
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(HadGEM3-GC3.1-LL) the effective ECS derived from historical energy 
budget constraints is 4.1°C (average of four ensemble members) while 
ECS is estimated to be 5.5°C (Andrews et al., 2019). These modelling 
results suggest that the effective ECS under historical forcing could be 
lower than the true ECS owing to differences in radiative feedbacks 
induced by the distinct patterns of historical and equilibrium warming 
(Section 7.4.4.3). Using GFDL-CM4, Winton et al. (2020) also find that 
the value of TCR estimated from energy budget constraints within 
a  historical simulation (1.3°C) is substantially lower than the true 
value of TCR (2.1°C) diagnosed within a 1pctCO2 simulation owing to 
a combination of the pattern effect and differences in the efficiency 
of ocean heat uptake between historical and 1pctCO2 forcing. This 
section next considers how the true ECS can be estimated from 
the historical energy budget by accounting for the pattern effect. 
However, owing to limited evidence this section does not attempt to 
account for these effects in estimates of TCR.

Research since AR5 has introduced extensions to the traditional 
energy budget framework that account for the feedback dependence 
on temperature patterns by allowing for multiple radiative 
feedbacks operating on different time scales (Armour et al., 2013; 
Geoffroy et  al., 2013a; Armour, 2017; Proistosescu and Huybers, 
2017; Goodwin, 2018; Rohrschneider et  al., 2019), by allowing 
feedbacks to vary with the spatial pattern or magnitude of ocean 
heat uptake (Winton et al., 2010; Rose et al., 2014; Rugenstein et al., 
2016a), or by allowing feedbacks to vary with the type of radiative 
forcing agent (Kummer and Dessler, 2014; Shindell, 2014; Marvel 
et al., 2016; Winton et al., 2020). A direct way to account for the 
pattern effect is to use the relationship ECS = –ΔF2×CO2/(α  +  α’), 
where α = (ΔN  – ΔF)/ΔT is the effective feedback parameter 
(Box 7.1) estimated from historical global energy budget changes 
and α’ represents the change in the feedback parameter between 
the historical period and the equilibrium response to CO2 forcing, 
which can be estimated using ESMs (Section 7.4.4.3; Armour, 2017; 
Andrews et  al., 2018, 2019; Lewis and Curry, 2018; Dong et  al., 
2020; Winton et al., 2020).

The net radiative feedback change between the historical warming 
pattern and the projected equilibrium warming pattern in response to 
CO2 forcing (α’) is estimated to be in the range 0.0 to 1.0 W m–2 °C–1 

(Figure  7.15). Using the value α’ = +0.5 ± 0.5 W  m–2 °C  –1 to 
represent this range illustrates the effect of changing radiative 
feedbacks on estimates of ECS. While the effective ECS inferred from 
historical warming is 2.5 [1.6 to 4.8] °C, ECS = –ΔF2×CO2/(α + α’) 
is 3.5 [1.7  to 13.8] °C. For comparison, values of α’ derived from 
the response to historical and idealized CO2 forcing within coupled 
climate models (Armour, 2017; Lewis and Curry, 2018; Andrews et al., 
2019; Dong et al., 2020; Winton et al., 2020) can be approximated 
as α’ = +0.1 ± 0.3 W m–2 °C–1 (Section 7.4.4.3), corresponding to 
a value of ECS of 2.7 [1.7 to 5.9] °C. In both cases, the low end of 
the ECS range is similar to that of the effective ECS inferred using the 
traditional energy balance model framework that assumes α’ = 0, 
reflecting a weak dependence on the value of α’ when ECS is small 
(Armour, 2017; Andrews et al., 2018); the low end of the ECS range 
is robust even in the hypothetical case that α’ is slightly negative. 
However, the high end of the ECS range is substantially larger than 
that of the effective ECS and strongly dependent on the value of α’.

The values of ECS obtained from the techniques outlined above 
are all higher than those estimated from both AR5 and recently 
published estimates (M. Collins et al., 2013; Otto et al., 2013; Lewis 
and Curry, 2015, 2018; Forster, 2016). Four revisions made in this 
Report are responsible for this increase: (i) an upwards revision of 
historic global surface temperature trends from newly published 
trend estimates (Section  2.3.1); (ii) an 8% increase in the ERF for 
ΔF2×CO2 (Section  7.3.2); (iii) a  more negative central estimate of 
aerosol ERF, which acts to reduce estimates of historical ERF trends; 
and (iv) accounting for the pattern effect in ECS estimates. Values of 
ECS provided here are similar to those based on the historical energy 
budget found in Sherwood et al. (2020), with small differences owing 
to methodological differences and the use of different estimates of 
observed warming, Earth’s energy imbalance, and ERF.

Overall, there is high confidence that the true ECS is higher than the 
effective ECS as inferred from the historical global energy budget, 
but there is substantial uncertainty in how much higher because of 
limited evidence regarding how radiative feedbacks may change in 
the future. While several lines of evidence indicate that α’ > 0, the 
quantitative accuracy of feedback changes is not known at this time 
(Section 7.4.4.3). Global energy budget constraints thus provide high 
confidence in the lower bound of ECS which is not sensitive to the 
value of α’: ECS is extremely unlikely to be less than 1.6°C. Estimates 
of α’ that are informed by idealized CO2 forcing simulations of 
coupled ESMs (Armour, 2017; Lewis and Curry, 2018; Andrews et al., 
2019; Dong et al., 2020; Winton et al., 2020) indicate a median value 
of ECS of around 2.7°C while estimates of α’ that are informed by 
observed historical sea surface temperature patterns (Andrews et al., 
2018) indicate a  median value of ECS of around 3.5°C. Owing to 
large uncertainties in future feedback changes, the historical energy 
budget currently provides little information about the upper end of 
the ECS range.

7.5.2.2 Estimates of ECS and TCR Based 
on Climate Model Emulators

Energy budget emulators are far less complex than comprehensive 
ESMs (Section  1.5.3 and Cross-Chapter Box  7.1). For example, an 
emulator could represent the atmosphere, ocean, and land using 
a small number of connected boxes (e.g., Goodwin, 2016), or it could 
represent the global mean climate using two connected ocean layers 
(e.g., Cross-Chapter Box 7.1 and Supplementary Material 7.SM.2). The 
numerical efficiency of emulators means that they can be empirically 
constrained by observations: a  large number of possible parameter 
values (e.g., feedback parameter, aerosol radiative forcing, and ocean 
diffusivity) are randomly drawn from prior distributions; forward 
integrations of the model are performed with these parameters and 
weighted against observations of surface or ocean warming, producing 
posterior estimates of quantities of interest such as TCR, ECS and 
aerosol forcing (Section  7.3). Owing to their reduced complexity, 
emulators lack full representations of the spatial patterns of sea surface 
temperature and radiative responses to changes in those patterns 
(discussed in Section  7.4.4.3) and many represent the net feedback 
parameter using a  constant value. The ranges of ECS reported by 
studies using emulators are thus interpreted here as representative of 
the effective ECS over the historical record rather than of the true ECS.
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Improved estimates of ocean heat uptake over the past two decades 
(Section 7.2) have diminished the role of ocean diffusivity in driving 
uncertainty in ECS estimates, leaving the main trade-off between 
posterior ranges in ECS and aerosol radiative forcing (Forest, 2002; 
Knutti et al., 2002; Frame et al., 2005). The AR5 (Bindoff et al., 2013) 
assessed a variety of estimates of ECS based on emulators and found 
that they were sensitive to the choice of prior parameter distributions 
and temperature datasets used, particularly for the upper end of the 
ECS range, though priors can be chosen to minimize the effect on 
results (e.g.,  Lewis, 2013). Emulators generally produced estimates 
of effective ECS between 1°C and 5°C and ranges of TCR between 
0.9°C and 2.6°C. Padilla et  al. (2011) use a  simple global-average 
emulator with two time scales (Section  7.5.1.2; Supplementary 
Material 7.SM.2) to estimate a TCR of 1.6 [1.3 to 2.6] °C. Using the 
same model, Schwartz (2012) finds TCR in the range 0.9°C–1.9°C 
while Schwartz (2018) finds that an effective ECS of 1.7°C provides 
the best fit to the historical global surface temperature record 
while also finding a  median aerosol forcing that is smaller than 
that assessed in Section  7.3. Using an eight-box representation 
of the atmosphere–ocean–terrestrial system constrained by 
historical warming, Goodwin (2016) found an effective ECS of 
2.4  [1.4 to 4.4] °C while Goodwin (2018) found effective ECS 
to be in the range 2°C–4.3°C when using a prior for ECS based on 
paleoclimate constraints.

Using an emulator comprised of Northern and Southern hemispheres 
and an upwelling-diffusive ocean (Aldrin et al., 2012), with surface 
temperature and ocean heat content datasets updated to 2014, 
Skeie et al. (2018) estimate a TCR of 1.4 [0.9 to 2.0] °C and a median 
effective ECS of 1.9 [1.2 to 3.1] °C. Using a  similar emulator 
comprised of land and ocean regions and an upwelling-diffusive 
ocean, with global surface temperature and ocean heat content 
datasets up to 2011, Johansson et al. (2015) find an effective ECS of 
2.5 [2.0 to 3.2] °C. The estimate is found to be sensitive to the choice 
of dataset endpoint and the representation of internal variability 
meant to capture the El  Niño–Southern Oscillation and Pacific 
Decadal Variability. Differences between these two studies arise, 
in part, from their different global surface temperature and ocean 
heat content datasets, different radiative forcing uncertainty ranges, 
different priors for model parameters, and different representations 
of internal variability. This leads to different estimates of effective 
ECS, with the median estimate of Skeie et  al. (2018) lying below 
the 5–95% range of effective ECS from Johansson et  al. (2015). 
Moreover, while the Skeie et al. (2018) emulator has a constant value 
of the net feedback parameter, the Johansson et al. (2015) emulator 
allows distinct radiative feedbacks for land and ocean, contributing 
to the different results.

The median estimates of TCR and effective ECS inferred from emulator 
studies generally lie within the 5–95% ranges of those inferred from 
historical global energy budget constraints (1.3 to 2.7 °C for TCR and 
1.6 to 4.8 °C for effective ECS). Their estimates would be consistent 
with still-higher values of ECS when accounting for changes in 
radiative feedbacks as the spatial pattern of global warming evolves 
in the future (Section 7.5.2.1). Cross-Chapter Box 7.1 and references 
therein show that four very different physically based emulators can 
be calibrated to match the assessed ranges of historical GSAT change, 

ERF, ECS and TCR from across the report. Therefore, the fact that the 
emulator effective ECS values estimated from previous studies tend to 
lie at the lower end of the range inferred from historical global energy 
budget constraints may reflect that the energy budget constraints in 
Section 7.5.2.1 use updated estimates of Earth’s energy imbalance, 
GSAT trends and ERF, rather than any methodological differences 
between the lines of evidence. The ‘emergent constraints’ on ECS 
based on observations of climate variability used in conjunction with 
comprehensive ESMs are assessed in Section 7.5.4.1.

7.5.2.3 Estimates of ECS Based on Variability in Earth’s 
Top-of-atmosphere Radiation Budget

While continuous satellite measurements of top-of-atmosphere 
(TOA) radiative fluxes (Figure  7.3) do not have sufficient accuracy 
to determine the absolute magnitude of Earth’s energy imbalance 
(Section 7.2.1), they provide accurate estimates of its variations and 
trends since the year 2002 that agree well with estimates based on 
observed changes in global ocean heat content (Loeb et al., 2012; 
Johnson et  al., 2016; Palmer, 2017). When combined with global 
surface temperature observations and simple models of global energy 
balance, satellite measurements of TOA radiation afford estimates 
of the net feedback parameter associated with recent climate 
variability (Tsushima and Manabe, 2013; Donohoe et  al., 2014; 
Dessler and Forster, 2018). These feedback estimates, derived from 
the regression of TOA radiation on surface temperature variability, 
imply values of ECS that are broadly consistent with those from 
other lines of evidence (Forster, 2016; Knutti et al., 2017). A history of 
regression-based feedbacks and their uncertainties is summarized in 
Bindoff et al. (2013), Forster (2016), and Knutti et al. (2017).

Research since AR5 has noted that regression-based feedback 
estimates depend on whether annual- or monthly-mean data are used 
and on the choice of lag employed in the regression, complicating 
their interpretation (Forster, 2016). The observed lead–lag relationship 
between global TOA radiation and global surface temperature, and 
its dependence on sampling period, is well replicated within unforced 
simulations of ESMs (Dessler, 2011; Proistosescu et al., 2018). These 
features arise because the regression between global TOA radiation 
and global surface temperature reflects a blend of different radiative 
feedback processes associated with several distinct modes of 
variability acting on different time scales (Annex IV), such as monthly 
atmospheric variability and interannual El Niño–Southern Oscillation 
(ENSO) variability (Lutsko and Takahashi, 2018; Proistosescu et  al., 
2018). Regression-based feedbacks thus provide estimates of 
the radiative feedbacks that are associated with internal climate 
variability (e.g.,  Brown et  al., 2014), and do not provide a  direct 
estimate of ECS (high confidence). Moreover, variations in global 
surface temperature that do not directly affect TOA radiation may 
lead to a positive bias in regression-based feedback, although this 
bias appears to be small, particularly when annual-mean data are 
used (Murphy and Forster, 2010; Spencer and Braswell, 2010, 2011; 
Proistosescu et al., 2018). When tested within ESMs, regression-based 
feedbacks have been found to be only weakly correlated with values 
of ECS (Chung et al., 2010), although cloudy-sky TOA radiation fluxes 
have been found to be moderately correlated with ECS at ENSO time 
scales within CMIP5 models (Lutsko and Takahashi, 2018).
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Finding such correlations within models requires simulations that 
span multiple centuries, suggesting that the satellite record may 
not be of sufficient length to produce robust feedback estimates. 
However, correlations between regression-based feedbacks and 
long-term feedbacks have been found to be higher when focused on 
specific processes or regions, such as for the cloud- or water-vapour 
feedbacks (Section 7.4.2; Dessler, 2013; Zhou et al., 2015). Assessing 
the global radiative feedback in terms of the more stable relationship 
between tropospheric temperature and TOA radiation offers another 
potential avenue for constraining ECS. The ‘emergent constraints’ 
on ECS based on variability in the TOA energy budget are assessed 
in Section 7.5.4.1.

7.5.2.4 Estimates of ECS Based on the Climate 
Response to Volcanic Eruptions

A number of studies consider the observed climate response to volcanic 
eruptions over the 20th  century (Section  3.3.1 and Cross-Chapter 
Box 4.1; Knutti et al., 2017). However, the direct constraint on ECS 
is weak, particularly at the high end, because the temperature 
response to short-term forcing depends only weakly on radiative 
feedbacks and because it can take decades of a  sustained forcing 
before the magnitude of temperature changes reflects differences in 
ECS across models (Geoffroy et al., 2013b; Merlis et al., 2014). It is 
also a challenge to separate the response to volcanic eruptions from 
internal climate variability in the years that follow them (Wigley et al., 
2005). Based on ESM simulations, radiative feedbacks governing 
the global surface temperature response to volcanic eruptions can 
be substantially different than those governing long-term global 
warming (Merlis et al., 2014; Marvel et al., 2016; Ceppi and Gregory, 
2019). Estimates based on the response to volcanic eruptions agree 
with other lines of evidence (Knutti et  al., 2017), but they do not 
constitute a direct estimate of ECS (high confidence). The ‘emergent 
constraints’ on ECS based on climate variability, including volcanic 
eruptions, are summarized in Section 7.5.4.1.

7.5.2.5 Assessment of ECS and TCR Based 
on the Instrumental Record

Evidence from the instrumental temperature record, including 
estimates using global energy budget changes (Section  7.5.2.1), 
climate emulators (Section 7.5.2.2), variability in the TOA radiation 
budget (Section  7.5.2.3), and the climate response to volcanic 
eruptions (Section 7.5.2.4) produce median ECS estimates that range 
between 2.5°C and 3.5°C, but a best estimate value cannot be given 
owing to a strong dependence on assumptions about how radiative 
feedbacks will change in the future. However, there is robust 
evidence and high agreement across the lines of evidence that ECS is 
extremely likely greater than 1.6°C (high confidence). There is robust 
evidence and medium agreement across the lines of evidence that 
ECS is very likely greater than 1.8°C and likely greater than 2.2°C 
(high confidence). These ranges of ECS correspond to estimates 
based on historical global energy budget constraints (Section 7.5.2.1) 
under the assumption of no feedback dependence on evolving SST 
patterns (i.e., α’ = 0) and thus represent an underestimate of the 
true ECS ranges that can be inferred from this line of evidence (high 
confidence). Historical global energy budget changes do not provide 

constraints on the upper bound of ECS, while the studies assessed in 
Section 7.5.2.3 based on climate variability provide low confidence 
in its value owing to limited evidence.

Global energy budget constraints indicate a central estimate (median) 
TCR value of 1.9°C and that TCR is likely in the range 1.5 to 2.3 °C and 
very likely in the range 1.3 to 2.7 °C (high confidence). Studies that 
constrain TCR based on the instrumental temperature record used in 
conjunction with ESM simulations are summarized in Section 7.5.4.3.

7.5.3 Estimates of ECS Based on Paleoclimate Data

Estimates of ECS based on paleoclimate data are complementary 
to, and largely independent from, estimates based on process-based 
studies (Section  7.5.1) and the instrumental record (Section  7.5.2). 
The  strengths of using paleoclimate data to estimate ECS include: 
(i) the estimates are based on observations of a real-world Earth system 
response to a  forcing, in contrast to using estimates from process-
based modelling studies or directly from models; (ii) the forcings 
are often relatively large (similar in magnitude to a CO2 doubling or 
more), in contrast to data from the instrumental record; (iii) the forcing 
often changes relatively slowly so the system is close to equilibrium; 
as such, all individual feedback parameters, αx, are included, and 
complications associated with accounting for ocean heat uptake are 
reduced or eliminated, in contrast to the instrumental record. However, 
there can be relatively large uncertainties on estimates of both the 
paleo forcing and paleo global surface temperature response, and 
care must be taken to account for long-term feedbacks associated 
with ice sheets (Section 7.4.2.6), which often play an important role 
in the paleoclimate response to forcing, but which are not included in 
the definition of ECS. Furthermore, the state-dependence of feedbacks 
(Section 7.4.3) means that climate sensitivity during Earth’s past may 
not be the same as it is today, which should be accounted for when 
interpreting paleoclimate estimates of ECS.

AR5 stated that data and modelling of the Last Glacial Maximum 
(LGM; Cross-Chapter Box 2.1) indicated that it was very unlikely that 
ECS lay outside the range 1°C–6°C (Masson-Delmotte et al., 2013). 
Furthermore, AR5 reported that climate records of the last 65 million 
years indicated an ECS 95% confidence interval of 1.1 to 7.0 °C.

Compared with AR5, there are now improved constraints on estimates 
of ECS from paleoclimate evidence. The strengthened understanding 
and improved lines of evidence come in part from the use of 
high-resolution paleoclimate data across multiple glacial–interglacial 
cycles, taking into account state-dependence (Section  7.4.3; von 
der Heydt et  al., 2014; Köhler et  al., 2015, 2017, 2018; Friedrich 
et al., 2016; Snyder, 2019; Stap et al., 2019) and better constrained 
pre-ice-core estimates of atmospheric CO2 concentrations (Martínez-
Botí et al., 2015; Anagnostou et al., 2016, 2020; de la Vega et al., 
2020) and surface temperature (Hollis et al., 2019; Inglis et al., 2020; 
McClymont et al., 2020).

Overall, the paleoclimate lines of evidence regarding climate sensitivity 
can be broadly categorized into two types: estimates of radiative 
forcing and temperature response from paleo proxy measurements, 
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and emergent constraints on paleoclimate model simulations. This 
section focuses on the first type only; the second type (emergent 
constraints) are discussed in Section 7.5.4.

In order to provide estimates of ECS, evidence from the paleoclimate 
record can be used to estimate forcing (ΔF) and global surface 
temperature response (ΔT) in Equation 7.1, Box  7.1, under the 
assumption that the system is in equilibrium (i.e., ΔN = 0). However, 
there are complicating factors when using the paleoclimate record 
in this way, and these challenges and uncertainties are somewhat 
specific to the time period being considered.

7.5.3.1 Estimates of ECS from the Last Glacial Maximum

The LGM (Cross-Chapter Box 2.1) has been used to provide estimates 
of ECS (see Table 7.11 for estimates since AR5; Sherwood et al., 2020; 
Tierney et al., 2020b). The major forcings and feedback processes that 
led to the cold climate at that time (e.g., CO2, non-CO2 greenhouse 
gases, and ice sheets) are relatively well-known (Section  5.1), 
orbital forcing relative to pre-industrial was negligible, and there 
are relatively high spatial resolution and well-dated paleoclimate 
temperature data available for this time period (Section  2.3.1). 
Uncertainties in deriving global surface temperature from the LGM 
proxy data arise partly from uncertainties in the calibration from the 
paleoclimate data to local annual mean surface temperature, and 
partly from uncertainties in the conversion of the local temperatures to 
an annual mean global surface temperature. Overall, the global mean 
LGM cooling relative to pre-industrial is assessed to be very likely 
from 5 to 7 °C (Section 2.3.1). The LGM climate is often assumed to 
be in full equilibrium with the forcing, such that ΔN in Equation 7.1, 
Box 7.1, is zero. A calculation of sensitivity using solely CO2 forcing, 
and assuming that the LGM ice sheets were in equilibrium with that 
forcing, would give an Earth System Sensitivity (ESS) rather than an 
ECS (see Box 7.1). In order to calculate an ECS, which is defined here 
to include all feedback processes except ice sheets, the approach 
of Rohling et  al. (2012) can be used. This approach introduces an 
additional forcing term in Equation 7.1, Box 7.1, that quantifies the 
resulting forcing associated with the ice-sheet feedback (primarily 
an estimate of the radiative forcing associated with the change in 
surface albedo). However, differences between studies as to which 
processes are considered as forcings (for example, some studies 
also include vegetation and/or aerosols, such as dust, as forcings), 
means that published estimates are not always directly comparable. 
Additional uncertainty arises from the magnitude of the ice-sheet 
forcing itself (Stap et  al., 2019; Zhu and Poulsen, 2021), which is 
often estimated using ESMs. Furthermore, the ECS at the LGM may 
differ from that of today due to state-dependence (Section  7.4.3). 
Here, only studies that report values of ECS that have accounted for 
the long-term feedbacks associated with ice sheets, and therefore 
most closely estimate ECS as defined in this chapter, are assessed 
here (Table 7.11).

7.5.3.2 Estimates of ECS from Glacial–Interglacial Cycles

Since AR5, several studies have extended the Rohling et  al. 
(2012) approach (described above for the LGM) to the glacial–
interglacial cycles of the last approximately 1 to 2 million years 

(von  der  Heydt  et  al., 2014; Köhler et  al., 2015, 2017, 2018; 
Friedrich  et  al., 2016; Royer, 2016; Snyder, 2019; Stap et  al., 2019; 
Friedrich and Timmermann, 2020; see Table  7.11). Compared to 
the LGM, uncertainties in the derived ECS from these periods are 
in general greater, due to greater uncertainty in global surface 
temperature (due to fewer individual sites with proxy temperature 
records), ice-sheet forcing (due to a  lack of detailed ice-sheet 
reconstructions), and CO2 forcing (for those studies that include 
the pre-ice-core period, where CO2 reconstructions are substantially 
more uncertain). Furthermore, accounting for varying orbital forcing 
in the traditional global mean forcing and response energy budget 
framework (Box 7.1) is challenging (Schmidt et al., 2017b), due to 
seasonal and latitudinal components of the forcing that, despite 
a close-to-zero orbital forcing in the global annual mean, can directly 
result in responses in annual mean global surface temperature 
(Liu et al., 2014), ice volume (Abe-Ouchi et al., 2013), and feedback 
processes such as those associated with methane (Singarayer et al., 
2011). In addition, for time periods in which the forcing relative to 
the modern era is small (interglacials), the inferred ECS has relatively 
large uncertainties because the forcing and temperature response 
(ΔF and ΔT in Equation 7.1, Box 7.1) are both close to zero.

7.5.3.3 Estimates of ECS from Warm Periods 
of the Pre-Quaternary

In the pre-Quaternary (prior to about 2.5 million years ago), 
the forcings and response are generally of the same sign and 
similar magnitude as future projections of climate change (Burke 
et  al., 2018; Tierney et  al., 2020a). Similar uncertainties as for 
the LGM apply, but in this case a major uncertainty relates to the 
forcing, because prior to the ice-core record there are only indirect 
estimates of CO2 concentration. However, advances in pre-ice-core 
CO2 reconstruction (e.g.,  Foster and Rae, 2016; Super et  al., 2018; 
Witkowski et al., 2018) mean that the estimates of pre-Quaternary 
CO2 have less uncertainty than at the time of AR5, and these time 
periods can now contribute to an assessment of climate sensitivity 
(Table 7.11). The mid-Pliocene Warm Period (MPWP; Cross-Chapter 
Box 2.1 and Cross-Chapter Box 2.4) has been targeted for constraints 
on ECS (Martínez-Botí et al., 2015; Sherwood et al., 2020), due to 
the fact that CO2 concentrations were relatively high at this time 
(350–425  ppm) and because the MPWP is sufficiently recent that 
topography and continental configuration are similar to modern-day. 
As such, a comparison of the MPWP with the pre-industrial climate 
provides probably the closest natural geological analogue for the 
modern day that is useful for assessing constraints on ECS, despite 
the effects of different geographies not being negligible (global 
surface temperature patterns; ocean circulation). Furthermore, 
the global surface temperature of the MPWP was such that non-
linearities in feedbacks (Section 7.4.3) were relatively modest. Within 
the MPWP, the KM5c interglacial has been identified as a particularly 
useful time period for assessing ECS (Haywood et al., 2013, 2016b) 
because Earth’s orbit during that time was very similar to that of the 
modern day.

Further back in time, in the Early Eocene (Cross-Chapter Box 2.1), 
uncertainties in forcing and temperature change become larger, but 
the signals are generally larger too (Anagnostou et al., 2016, 2020; 
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Shaffer et al., 2016; Inglis et al., 2020). Caution must be applied when 
estimating ECS from these time periods, due to differing continental 
position and topography/bathymetry (Farnsworth et  al., 2019), 
and due to temperature-dependence of feedbacks (Section  7.4.3). 
On even longer time scales of the last 500 million years (Royer, 2016) 
the temperature and CO2 measurements are generally asynchronous, 
presenting challenges in using this information for assessments 
of ECS.

7.5.3.4 Synthesis of ECS Based on Paleo Radiative 
Forcing and Temperature

The lines of evidence directly constraining ECS from paleoclimates 
are summarized in Table  7.11. Although some of the estimates 
in Table  7.11 are not independent because they use similar proxy 
records to each other (e.g., von der Heydt et al., 2014; Köhler et al., 
2015, 2017; Stap et al., 2019), there are still multiple independent 

lines of paleoclimate evidence regarding ECS, from differing past 
time periods: LGM (Sherwood et  al., 2020; Tierney et  al., 2020b); 
glacial–interglacial (Royer, 2016; Köhler et  al., 2017; Snyder, 
2019; Friedrich and Timmermann, 2020); Pliocene (Martínez-Botí 
et  al., 2015; Sherwood et  al., 2020); and the Eocene (Anagnostou 
et  al.,  2016, 2020; Shaffer et  al., 2016; Inglis et  al., 2020), with 
differing proxies for estimating forcing (e.g.,  CO2 from ice cores 
or boron isotopes) and response (e.g.,  global surface temperature 
from δ18O, Mg/Ca or Antarctic δD). Furthermore, although different 
studies have uncertainty estimates that account for differing sources 
of uncertainty, some studies (Snyder, 2019; Inglis et  al., 2020; 
Sherwood et al., 2020; Tierney et al., 2020b) do consider many of the 
uncertainties discussed in Sections 7.5.3.1–7.5.3.3. All the studies 
based on glacial–interglacial cycles account for some aspects of the 
state-dependence of climate sensitivity (Section 7.4.3) by considering 
only the warm phases of the Pleistocene, although what constitutes 
a warm phase is defined differently across the studies.

Table 7.11 | Estimates of equilibrium climate sensitivity (ECS) derived from paleoclimates; from AR5 (above double lines) and from post-AR5 studies 
(below double lines). Many studies provide an estimate of ECS that includes only CO2 and the ice-sheet feedback as forcings, providing an estimate of S[CO2, LI] using the 
notation of Rohling et al. (2012), which is equivalent to our definition of ECS (Box 7.1). However, some studies provide estimates of other types of sensitivity (column 4). Different 
studies (column 1) focus on different time periods (column 2) and use a variety of different paleoclimate proxies and models (column 3) to give a best estimate (column 5) and/or 
a range (column 5). The published ranges given account for varying sources of uncertainty (column 6). See Cross-Chapter Box 2.1 for definition of time periods. All temperature 
values in column 5 are shown to a precision of 1 decimal place.

(1) Study 

(2) Time Period 
(kyr = thousand years; 
Myr = million years; 

Ma = million years ago)

(3) Proxies/Models Used for 
CO2, Temperature (T) and 

Global Scaling (GS)

(4) Climate 
Sensitivity 

Classification 
According to 

Rohling et al. (2012)

(5) Published Best 
Estimate of ECS  
[and/or Range] 

(6) Range 
Accounts For:

AR5 (Masson-Delmotte 
et al., 2013)

LGM (Last Glacial Maximum)
Assessment of multiple lines 
of evidence

Sa = ECS
a [very likely >1.0;  

very unlikely >6.0°C]
Multiple sources 
of uncertainty

AR5 (Masson-Delmotte 
et al., 2013)

Cenozoic (last 65 Myr)
Assessment of multiple lines 
of evidence

S[CO2,LI] [95% range: 1.1°C to 7.0°C]
Multiple sources 
of uncertainty

Tierney et al. (2020b) LGM
CO2: ice core
T: multi-proxy

S[CO2,LI,CH4, N2O]
3.8°C
[68% range: 3.3°C to 4.3°C]

Multiple sources 
of uncertainty

Sherwood et al. (2020) LGM
CO2: ice core
T: multiple lines of evidence

S[CO2, LI, CH4, N2O, dust, VG]

maximum likelihood 
[likelihood of 1.0]: 2.6°C 
[likely range depends on 
chosen prior; likelihood of 
0.6: 1.6°C to 4.4°C]

Multiple sources 
of uncertainty

von der Heydt et al. 
(2014)

Warm states of glacial–
interglacial cycles of last 800 kyr

CO2: ice core 
T: ice core δD, benthic δ18O
GS: Schneider von Deimling et al. (2006); 
Annan and Hargreaves (2013)

S[CO2,LI]
3.5°C 
[range: 3.1°C to 5.4°C]b

Varying LGM global 
mean temperatures 
used for scaling

Köhler et al. (2015)
Warm states of glacial–
interglacial cycles of last 2 Myr

CO2: ice core alkenones and 
boron isotopes
T: benthic δ18O
GS: PMIP LGM and PlioMIP MPWP

S[CO2,LI]
5.7°C
[68% range: 3.7°C to 8.1°C]b

Temporal variability 
in records

Köhler et al. (2017)
Warm states of glacial–
interglacial cycles of last 2 Myr

CO2: boron isotopes
T: benthic δ18O
GS: PMIP LGM and PlioMIP MPWP 

S[CO2,LI]

5.6°C
[16th to 84th percentile: 
3.6°C to 8.1°C]b

Temporal variability 
in records

Köhler et al. (2018)

Warm states of glacial–
interglacial cycles of last 
800 kyr, excluding those for 
which CO2 and T diverge

CO2: ice cores
T: benthic δ18O, alkenone, Mg/Ca, 
MAT, and faunal SST
GS: PMIP3 LGM

S[CO2, LI] [range: 3.0°C to 5.9°C]b

Varying 
temperature 
reconstructions

Stap et al. (2019)

States of glacial–interglacial 
cycles of last 800 kyr for which 
forcing is zero compared with 
modern, excluding those for 
which CO2 and T diverge

CO2: ice cores
T: benthic δ18O
GS: PMIP LGM and PlioMIP MPWP

S[CO2, LI] [range: 6.1°C to 11.0°C]b
Varying efficacies 
of ice-sheet forcing 

https://doi.org/10.1017/9781009157896.009
Downloaded from https://www.cambridge.org/core. IP address: 176.165.113.174, on 19 Oct 2024 at 05:27:05, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://doi.org/10.1017/9781009157896.009
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


1002

Chapter 7 The Earth’s Energy Budget, Climate Feedbacks and Climate Sensitivity

7

None of the post-AR5 studies in Table 7.11 have an estimated lower 
range for ECS below 1.6°C. As such, based solely on the paleoclimate 
record, it is assessed to be very likely that ECS is greater than 1.5°C 
(high confidence).

In general, it is the studies based on the warm periods of the 
glacial–interglacial cycles (Section 7.5.3.2) that give the largest values 
of ECS. Given the large uncertainties associated with estimating 
the magnitude of the ice-sheet forcing during these intervals (Stap 
et  al., 2019), and other uncertainties discussed in Section  7.5.3.2, 
in particular the direct effect of orbital forcing on estimates of ECS, 
there is only low confidence in estimates from the studies based on 
glacial–interglacial periods. This low confidence also results from the 
temperature-dependence of the net feedback parameter, α, resulting 
from several of these studies (Figure 7.10), that is hard to reconcile 
with the other lines of evidence for α, including proxy estimates 

from warmer paleoclimates (Section  7.4.3.2). A  central estimate 
of  ECS, derived from the LGM (Section  7.5.3.1) and warm periods 
of the pre-Quaternary (Section  7.5.3.3), that takes into account 
some of the interdependencies between the different studies, can be 
obtained by averaging across studies within each of these two time 
periods, and then averaging across the two time periods; this results 
in a central estimate of 3.4°C. This approach of focussing on the LGM 
and warm climates was also taken by Sherwood et al. (2020) in their 
assessment of ECS from paleoclimates. An alternative method is to 
average across all studies, from all periods, that have considered 
multiple sources of uncertainty (Table  7.11); this approach leads 
to a  similar central estimate of 3.3°C. Overall, we assess medium 
confidence for a central estimate of 3.3°C to 3.4°C.

There is more variation in the upper bounds of ECS than in the lower 
bounds. Estimates of ECS from pre-Quaternary warm periods have an 

(1) Study 

(2) Time Period 
(kyr = thousand years; 
Myr = million years; 

Ma = million years ago)

(3) Proxies/Models Used for 
CO2, Temperature (T) and 

Global Scaling (GS)

(4) Climate 
Sensitivity 

Classification 
According to 

Rohling et al. (2012)

(5) Published Best 
Estimate of ECS  
[and/or Range] 

(6) Range 
Accounts For:

Friedrich et al. (2016)
Warm states of glacial–
interglacial cycles of last 780 kyr

CO2: ice cores
T: alkenone, Mg/Ca, MAT, and 
faunal SST
GS: PMIP3 LGM

S[GHG,LI,AE]
4.9°C
[Likely range: 4.3°C to 5.4°C]b

Varying LGM global 
mean temperatures, 
aerosol forcing 

Friedrich and 
Timmermann (2020)

Last glacial–interglacial cycle 
CO2: ice cores
T: alkenone, Mg/Ca, MAT

S[GHG,LI,AE]
4.2°C
[range: 3.4°C to 6.2°C]b

Varying aerosol 
forcings

Snyder (2019)
Interglacial periods and 
intermediateglacial climates 
of last 800 kyr

CO2: ice cores
T: alkenone, Mg/Ca, species 
assemblages
GS: PMIP models 

S[GHG,LI,AE,VG]
3.1°C
[67% range: 2.6°C to 3.7°C]b

Multiple sources 
of uncertainty

Royer (2016)
Glacial–interglacial cycles of 
the Pliocene (3.4 to 2.9 Ma)

CO2: boron isotopes
T: benthic δ18O

S[CO2,LI]
10.2°C 
[68% range: 8.1°C to 12.3°C]

Temporal variability 
in records

Martínez-Botí et al. 
(2015)

Pliocene
CO2: boron isotopes
T: benthic δ18O

S[CO2,LI]
3.7°C
[68% range: 3.0°C to 4.4°C]b

Pliocene sea level, 
temporal variability 
in records

Sherwood et al. (2020) Pliocene
CO2: boron isotopes
T: multiple lines of evidence

S[CO2, LI,N2O,CH4,VG]

maximum likelihood 
[likelihood of 1.0]: 3.2°C 
[likely range depends on 
chosen prior; likelihood 
of 0.6: 1.8°C to 5.2°C]

Multiple sources 
of uncertainty

Anagnostou et al. 
(2016)

Early Eocene
CO2: boron isotopes
T: various terrestrial MAT, Mg/Ca, 
TEX, δ18O SST

S[CO2,LI]
3.6°C
[66% range: 2.1°C to 4.6°C]

Varying calibrations 
for temperature 
and CO2

Anagnostou et al. 
(2020)

Late Eocene (41.2 to 33.9 Ma)
CO2: boron isotopes
T: one SST record
GS: CESM1

S[CO2,LI]
3.0°C
[68% range: 1.9°C to 4.1°C]

Temporal variability 
in records

Shaffer et al. (2016)
Pre-PETM (  Paleocene–Eocene 
Thermal Maximum)

CO2: mineralogical, carbon cycling, 
and isotope constraints 
T: various terrestrial MAT, Mg/Ca, 
TEX, δ18O SST

S[GHG,AE,VG,LI] [range: 3.3°C to 5.6°C]
Varying calibration 
of temperature 
and CO2

Inglis et al. (2020)
Mean of EECO (Early Eocene 
Climatic Optimum), PETM, 
and latest Paleocene

CO2: boron isotopes
T: multiproxy SST and SAT
GS: EoMIP models 

S[CO2,LI, VG,AE]
3.7°C  
[likely range: 2.2°C to 5.3°C]

Multiple sources 
of uncertainty

a Sa in this table denotes a classification of climate sensitivity following Rohling et al. (2012). 
b Although our assessed value of ERF due to CO2 doubling is 3.93 W m–2 (Section 7.3.2.1), for these studies the best estimate and range of temperature is calculated from the 
published estimate of sensitivity in units of °C (W m–2)–1 using an ERF of 3.7 W m–2, for consistency with the typical value used in the studies to estimate the paleo CO2 forcing.
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average upper range of 4.9°C, and from the LGM of 4.4°C; taking 
into account the independence of the estimates from these two time 
periods, and accounting for state-dependence (Section  7.4.3) and 
other uncertainties discussed in Section 7.5.3, the paleoclimate record 
on its own indicates that ECS is likely less than 4.5°C. Given the higher 
values from many glacial–interglacial studies, this value has only 
medium confidence. Despite the large variation in individual studies 
at the extreme upper end, all except two studies (both of which are 
from glacial–interglacial time periods associated with low confidence) 
have central estimates that are below 6°C; overall we assess that it is 
extremely likely that ECS is below 8°C (high confidence).

7.5.4 Estimates of ECS and TCR Based 
on Emergent Constraints

ESMs exhibit substantial spread in ECS and TCR (Section  7.5.7). 
Numerous studies have leveraged this spread in order to narrow 
estimates of Earth’s climate sensitivity by employing methods known 
as ‘emergent constraints’ (Section  1.5.4). These methods establish 
a relationship between an observable and either ECS or TCR based 
on an ensemble of models, and combine this information with 
observations to constrain the probability distribution of ECS or TCR. 
Most studies of this kind have clearly benefitted from the international 
efforts to coordinate the CMIP and other multi-model ensembles.

A number of considerations must be taken into account when 
assessing the diverse literature on ECS and TCR emergent constraints. 
For instance, it is important to have physical and theoretical bases 
for the connection between the observable and modelled ECS or 
TCR since in model ensembles thousands of relationships that pass 
statistical significance can be found simply by chance (Caldwell 
et al., 2014). It is also important that the underlying model ensemble 
does not exhibit a shared bias that influences the simulation of the 
observable quantity on which the emergent constraint is based. 
Also, correctly accounting for uncertainties in both the observable 
(including measurement uncertainty and natural variability) and 
the emergent constraint statistical relationship can be challenging, 
in particular in cases where the latter is not expected to be linear 
(Annan et  al., 2020). A  number of proposed emergent constraints 
leverage variations in modelled ECS arising from tropical low-clouds, 
which was the dominant source of inter-model spread in the CMIP5 
ensemble used in most emergent constraint studies. Since ECS is 
dependent on the sum of individual feedbacks (Section 7.5.1) these 
studies implicitly assume that all other feedback processes in models 
are unbiased and should therefore rather be thought of as constraints 
on tropical low-cloud feedback (Klein and Hall, 2015; Qu et al., 2018; 
Schlund et al., 2020). The following sections go through a range of 
emergent constraints and assess their strengths and limitations.

7.5.4.1 Emergent Constraints Using Global or Near-global 
Surface Temperature Change

Perhaps the simplest class of emergent constraints regress past 
equilibrium paleoclimate temperature change against modelled ECS 
to obtain a relationship that can be used to translate a past climate 
change to ECS. The advantage is that these are constraints on 

the sum of all feedbacks, and furthermore unlike constraints on the 
instrumental record they are based on climate states that are at, or 
close to, equilibrium. So far, these emergent constraints have been 
limited to the Last Glacial Maximum (LGM; Cross-Chapter Box 2.1) 
cooling (Hargreaves et al., 2012; Schmidt et al., 2014; Renoult et al., 
2020) and warming in the mid-Pliocene Warm Period (MPWP; 
Cross-Chapter Box 2.1 and Cross-Chapter Box 2.4; Hargreaves and 
Annan, 2016; Renoult et al., 2020) due to the availability of sufficiently 
large multi-model ensembles for these two cases. The paleoclimate 
emergent constraints are limited by structural uncertainties in the 
proxy-based global surface temperature and forcing reconstructions 
(Section  7.5.3), possible differences in equilibrium sea surface 
temperature patterns between models and the real world, and 
a small number of model simulations participating, which has led to 
divergent results. For example, Hopcroft and Valdes (2015) repeated 
the study based on the LGM by Hargreaves et  al. (2012) using 
another model ensemble and found that the emergent constraint 
was not robust, whereas studies using multiple available ensembles 
retain useful constraints (Schmidt et al., 2014; Renoult et al., 2020). 
Also, the results are somewhat dependent on the applied statistical 
methods (Hargreaves and Annan, 2016). However, Renoult et  al. 
(2020) explored this and found 95th percentiles of ECS below 6°C for 
LGM and Pliocene individually, regardless of statistical approach, and 
by combining the two estimates the 95th percentile dropped to 4.0°C. 
The consistency between the cold LGM and warm MPWP emergent 
constraint estimates increases confidence in these estimates, and 
further suggests that the dependence of feedback on climate mean 
state (Section 7.4.3) as represented in PMIP models used in these 
studies is reasonable.

Various emergent constraint approaches using global warming over 
the instrumental record have been proposed. These benefit from more 
accurate data compared with paleoclimates, but suffer from the fact 
that the climate is not in equilibrium, thereby assuming that ESMs 
on average accurately depict the ratio of short-term to long-term 
global warming. Global warming in climate models over 1850 to the 
present day exhibits no correlation with ECS, which is partly due to 
a  substantial number of models exhibiting compensation between 
a high climate sensitivity with strong historical aerosol cooling (Kiehl, 
2007; Forster et al., 2013; Nijsse et al., 2020). However, the aerosol 
cooling increased up until the 1970s, when air quality regulations 
reduced the emissions from Europe and North America whereas 
other regions saw increases resulting in a subsequently reduced pace 
of global mean aerosol ERF increase (Section 2.2.8 and Figure 2.10). 
Energy balance considerations over the 1970–2010 period gave 
a  best estimate ECS of 2.0°C (Bengtsson and Schwartz, 2013), 
however this estimate did not account for pattern effects. To address 
this limitation an emergent constraint on 1970–2005 global warming 
was demonstrated to yield a  best estimate ECS of 2.83 [1.72 to 
4.12] °C (Jiménez-de-la-Cuesta and Mauritsen, 2019). The study 
was followed up using CMIP6 models yielding a best estimate ECS 
of 2.6 [1.5 to 4.0] °C based on 1975–2019 global warming (Nijsse 
et  al., 2020), thereby confirming the emergent constraint. Internal 
variability and forced or unforced pattern effects may influence the 
results (Jiménez-de-la-Cuesta and Mauritsen, 2019; Nijsse et  al., 
2020). For instance the Atlantic Multi-decadal Oscillation changed 
from negative to positive anomaly, while the Indo-Pacific Oscillation 
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changed less over the 1970–2005 period, potentially leading to 
high-biased results (Jiménez-de-la-Cuesta and Mauritsen, 2019), 
whereas during the later period 1975–2019 these anomalies roughly 
cancel (Nijsse et al., 2020). Pattern effects may have been substantial 
over these periods (Andrews et  al., 2018), however the extent to 
which TOA radiation anomalies influenced surface temperature may 
have been dampened by the deep ocean (Hedemann et  al., 2017; 
Newsom et al., 2020). It is therefore deemed more likely than not that 
these estimates based on post-1970s global warming are biased low 
by internal variability.

A study that developed an emergent constraint based on the response 
to the Mount Pinatubo 1991 eruption yielded a  best estimate of 
2.4 [likely range 1.7 to 4.1] °C (Bender et al., 2010). When accounting 
for ENSO variations they found a somewhat higher best estimate of 
2.7°C, which is in line with results of later studies that suggest ECS 
inferred from periods with substantial volcanic activity are low-biased 
due to strong pattern effects (Gregory et  al., 2020) and that the 
short-term nature of volcanic forcing could exacerbate possible 
underestimates of modelled pattern effects.

Lagged correlations present in short-term variations in the global surface 
temperature can be linked to ECS through the fluctuation–dissipation 
theorem, which is derived from a single heat-reservoir model (Einstein, 
1905; Hasselmann, 1976; Schwartz, 2007; Cox et al., 2018a). From this 
it follows that the memory carried by the heat capacity of the ocean 
results in low-frequency global temperature variability (red noise) 
arising from high-frequency (white noise) fluctuations in the radiation 
balance, for example, caused by weather. Initial attempts to apply the 
theorem to observations yielded a fairly low median ECS estimate of 
1.1°C (Schwartz, 2007), a result that was disputed (Foster et al., 2008; 
Knutti et al., 2008). Recently it was proposed by Cox et al. (2018a) to use 
variations in the historical experiments of the CMIP5 climate models as 
an emergent constraint giving a median ECS estimate of 2.8 [1.6 to 
4.0] °C. A  particular challenge associated with these approaches is 
to separate short-term from long-term variability, and slightly arbitrary 
choices regarding the methodology of separating these in the global 
surface temperature from long-term signals in the historical record, 
omission of the more strongly forced period after 1962, as well as input 
data choices, can lead to median ECS estimates ranging from 2.5°C to 
3.5°C (Brown et al., 2018; Po-Chedley et al., 2018a; Rypdal et al., 2018). 
Calibrating the emergent constraint using CMIP5 modelled internal 
variability as measured in historical control simulations (Po-Chedley 
et  al., 2018a) will inevitably lead to an overestimated ECS due to 
externally forced short-term variability present in the historical record 
(Cox et  al., 2018b). Contrary to constraints based on paleoclimates 
or global warming since the 1970s, when based on CMIP6 models 
a  higher, yet still well-bounded ECS estimate of 3.7 [2.6 to 4.8] °C 
is obtained (Schlund et al., 2020). A more problematic issue is raised 
by Annan et  al. (2020) who showed that the upper bound on ECS 
estimated this way is less certain when considering deep-ocean heat 
uptake. In conclusion, even if not inconsistent, these limitations prevent 
us from directly using this type of constraint in the assessment.

Short-term variations in the TOA energy budget, observable from 
satellites, arising from variations in the tropical tropospheric 
temperature have been linked to ECS through models, either as 

a  range of models consistent with observations (those with ECS 
values between 2.0°C and 3.9°C; Dessler et al., 2018) or as a formal 
emergent constraint by deriving further model-based relationships 
to yield a median of 3.3 [2.4 to 4.5] °C (Dessler and Forster, 2018). 
There are major challenges associated with short-term variability 
in the energy budget, in particular how it relates to the long-term 
forced response of clouds (Colman and Hanson, 2017; Lutsko and 
Takahashi, 2018). Variations in the surface temperature that are not 
directly affecting the radiation balance lead to an overestimated 
ECS when using linear regression techniques where it appears as 
noise in the independent variable (Proistosescu et al., 2018; Gregory 
et  al., 2020). The latter issue is largely overcome when using the 
tropospheric mean or mid-tropospheric temperature (Trenberth et al., 
2015; Dessler et al., 2018).

7.5.4.2 Emergent Constraints Focused on Cloud 
Feedbacks and Present-day Climate

A substantial number of emergent constraint studies focus on 
observables that are related to tropical low-cloud feedback processes 
(Volodin, 2008; Sherwood et al., 2014; Zhai et al., 2015; Brient and 
Schneider, 2016; Brient et al., 2016). These studies yield median ECS 
estimates of 3.5°C–4°C and in many cases indicate low likelihoods 
of values below 3°C. The approach has attracted attention since 
most of the spread in climate sensitivity seen in CMIP5, and earlier 
climate model ensembles, arises from uncertainty in low-cloud 
feedbacks (Bony and Dufresne, 2005; Wyant et  al., 2006; Randall 
et al., 2007; Vial et al., 2013). Nevertheless, this approach assumes 
that all other feedback processes are unbiased (Klein and Hall, 2015; 
Qu et al., 2018; Schlund et al., 2020), for instance the possibly missing 
negative anvil area feedback or the possibly exaggerated mixed-
phase cloud feedback (Section 7.4.2.4). Thus, the subset of emergent 
constraints that focus on low-level tropical clouds are not necessarily 
inconsistent with other emergent constraints of ECS. Related 
emergent constraints that focus on aspects of the tropical circulation 
and ECS have led to conflicting results (Su et al., 2014; Tian, 2015; 
Lipat et  al., 2017; Webb and Lock, 2020), possibly because these 
processes are not the dominant factors in causing the inter-model 
spread (Caldwell et al., 2018).

The fidelity of models in reproducing aspects of temperature variability 
or the radiation budget has also been proposed as emergent constraints 
on ECS (Covey et al., 2000; Knutti et al., 2006; Huber et al., 2010; Bender 
et al., 2012; Brown and Caldeira, 2017; Siler et al., 2018a). Here indices 
based on spatial or seasonal variability are linked to modelled ECS, 
and overall the group of emergent constraints yields best estimates 
of 3.3°C–3.7°C. Nevertheless, the physical relevance of present-day 
biases to the sum of long-term climate change feedbacks is unclear 
and therefore these constraints on ECS are not considered reliable.

7.5.4.3 Assessed ECS and TCR Based on Emergent Constraints

The available emergent constraint studies have been divided into 
two classes: (i) those that are based on global or near-global indices, 
such as global surface temperature and the TOA energy budget; 
and (ii) those that are more focussed on physical processes, such as 
the fidelity of phenomena related to low-level cloud feedbacks or 
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present-day climate biases. The former class is arguably superior in 
representing ECS, since it is a global surface temperature or energy 
budget change, whereas the latter class is perhaps best thought of as 
providing constraints on individual climate feedbacks, for example, the 
determination that low-level cloud feedbacks are positive. The latter 
result is consistent with and confirms process-based estimates of 
low-cloud feedbacks (Section 7.4.2.4), but are potentially biased as 
a group by missing or biased feedbacks in ESMs and is accordingly 
not taken into account here. A  limiting case here is Dessler and 
Forster (2018) which is focused on monthly co-variability in the 
global TOA energy budget with mid-tropospheric temperature, at 
which time scale the surface-albedo feedback is unlikely to operate, 
thus implicitly assuming it is unbiased in the model ensemble.

In the first group of emergent constraints there is broad agreement 
on the best estimate of ECS ranging from 2.4°C–3.3°C. At the lower 
end, nearly all studies find lower bounds (5th percentiles) around 
1.5°C, whereas several studies indicate 95th percentiles as low 
as 4°C. Considering both classes of studies, none of them yield 
upper very likely bounds above 5°C. Since several of the emergent 
constraints can be considered nearly independent one could assume 
that emergent constraints provide very strong evidence on ECS by 
combining them. Nevertheless, this is not done here because there 
are sufficient cross-dependencies, as for instance models are re-used 
in many of the derived emergent constraints, and furthermore the 
methodology has not yet reached a sufficient level of maturity since 
systematic biases may not have been accounted for. Uncertainty is 
therefore conservatively added to reflect these potential issues. This 
leads to the assessment that ECS inferred from emergent constraints 
is very likely 1.5 to 5 °C with medium confidence.

Emergent constraints on TCR with a  focus on the instrumental 
temperature record, though less abundant, have also been proposed. 
These can be influenced by internal variability and pattern effects, as 
discussed in Section 7.5.4.1, although the influence is smaller because 
uncertainty in forced pattern effects correlates between transient 
historical warming and TCR. In the simplest form Gillett et al. (2012) 
regressed the response of one model to individual historical forcing 
components to obtain a tight range of 1.3°C–1.8°C, but later when an 
ensemble of models was used the range was widened to 0.9°C–2.3°C 

(Gillett et al., 2013), and updated by Schurer et al. (2018). A related 
data-assimilation-based approach that accounted also for uncertainty 
in response patterns gave 1.33°C–2.36°C (Ribes et al., 2021), but is 
dependent on the choice of prior ensemble distribution (CMIP5 or 
CMIP6). Another study used the response to the Pinatubo volcanic 
eruption to obtain a  range of 0.8°C–2.3°C (Bender et  al., 2010). 
A tighter range, notably at the lower end, was found in an emergent 
constraint focusing on the post-1970s warming exploiting the lower 
spread in aerosol forcing change over this period (Jiménez-de-la-
Cuesta and Mauritsen, 2019). Their estimate was 1.67  [1.17 to 
2.16] °C. Two studies tested this idea: Tokarska et al. (2020) estimates 
TCR was 1.60 [0.90 to 2.27] °C based on CMIP6 models, whereas 
Nijsse et al. (2020) found 1.68 [1.0 to 2.3] °C. In both cases there was 
a small sensitivity to choice of ensemble, with CMIP6 models yielding 
slightly lower values and ranges. Combining these studies gives a best 
estimate of 1.7°C and a very likely range of TCR of 1.1 to 2.3 °C with 
high confidence.

7.5.5 Combined Assessment of ECS and TCR

Substantial quantitative progress has been made in interpreting 
evidence of Earth’s climate sensitivity since AR5, through innovation, 
scrutiny, theoretical advances and a rapidly evolving data base from 
current, recent and paleo climates. It should be noted that, unlike AR5 
and earlier reports, our assessment of ECS is not directly informed by 
ESM simulations (Section 7.5.6). The assessments of ECS and TCR are 
focussed on the following lines of evidence: process-understanding; 
the instrumental record of warming; paleoclimate evidence; and 
emergent constraints. ESMs remain essential tools for establishing 
these lines of evidence, for instance, in estimating part of the feedback 
parameters and radiative forcings, and emergent constraints rely on 
substantial model spread in ECS and TCR (Section 7.5.6).

A key advance over the AR5 assessment is the broad agreement across 
multiple lines of evidence. These support a  central estimate of ECS 
close to, or at least not inconsistent with, 3°C. This advance is foremost 
following improvements in the understanding and quantification of 
Earth’s energy imbalance, the instrumental record of global temperature 
change, and the strength of anthropogenic radiative forcing. Further 

Table 7.12 | Emergent constraint studies used in the assessment of equilibrium climate sensitivity (ECS). These are studies that rely on global or near-global 
temperature change as the observable.

Study Emergent Constraint Description
Published Best Estimate 

and Uncertainty (°C)
Uncertainty 

Estimate

Bender et al. (2010)
Pinatubo integrated forcing normalized by CMIP3 models’ own forcing versus 
temperature change regressed against ECS

2.4 [1.7 to 4.1] 5–95%

Dessler and Forster (2018)
Emergent constraint on TOA radiation variations linked to mid-tropospheric 
temperature in CMIP5 models

3.3 [2.4 to 4.5] 17–83%

Hargreaves et al. (2012) Last Glacial Maximum tropical SSTs in PMIP2 models 2.5 [1.3 to 4.2] 5–95%

Hargreaves and Annan (2016) Pliocene tropical SSTs in PlioMIP models [1.9 to 3.7] 5–95%

Jiménez-de-la-Cuesta and Mauritsen (2019) Post-1970s global warming, 1995–2005 relative to 1970–1989, CMIP5 models 2.83 [1.72 to 4.12] 5–95%

Nijsse et al. (2020) Post-1970s global warming, 2009–2019 relative to 1975–1985, CMIP6 models 2.6 [1.5 to 4.0] 5–95%

Renoult et al. (2020)
Combined Last Glacial Maximum and Pliocene tropical SSTs in PMIP2, PMIP3, 
PMIP4, PlioMIP and PlioMIP2 models

2.5 [0.8 to 4.0] 5–95%
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advances include increased understanding of how the pattern effect 
infl uences ECS inferred from historical global warming (Sections 7.4.4 
and 7.5.3), improved quantifi cation of paleo climatechange from proxy 
evidence and a deepened understanding of how feedback mechanisms 
increase ECS in warmer climate states (Sections 7.4.3, 7.4.4 and 7.5.4), 
and also an improved quantifi cation of individual cloud feedbacks 
(Sections 7.4.2 and 7.5.4.2). The assessment fi ndings for ECS and TCR 
are summarized in Table 7.13 and Table 7.14, respectively, and also 
visualized in Figure 7.18.

The AR5 assessed ECS to have a  likely range from 1.5 to 4.5 °C 
(M. Collins et al., 2013) based on the majority of studies and evidence 
available at the time. The broader evidence base presented in this 
Report and the general agreement among different lines of evidence 
means that they can be combined to yield a narrower range of ECS 
values. This can be done formally using Bayesian statistics, though 
such a  process is complex and involves formulating likelihoods 
and priors (Annan and Hargreaves, 2006; Stevens et  al., 2016; 
Sherwood et al., 2020). However, it can be understood that if two 
lines of independent evidence each give a  low probability of an 
outcome being true, for example, that ECS is less than 2.0°C, then 
the combined probability that ECS is less than 2.0°C is lower than 
that of either line of evidence. On the contrary, if one line of evidence 
is unable to rule out an outcome, but another is able to assign a low 
probability, then there is a low probability that the outcome is true 
(Stevens et al., 2016). This general principle applies even when there 
is some dependency between the lines of evidence (Sherwood et al., 
2020), for instance between historical energy budget constraints 
(Section  7.5.2.1) and those emergent constraints that use the 
historically observed global warming (Section 7.5.4.1). Even in this 
case the combined constraint will be closer to the narrowest range 
associated with the individual lines of evidence.

In the process of providing a  combined and self-consistent ECS 
assessment across all lines of evidence, the above principles were all 

considered. As in earlier reports, a 0.5°C precision is used. Starting 
with the very likely lower bound, there is broad support for a value of 
2.0°C, including process understanding and the instrumental record 
(Table 7.13). For the very likely upper bound, emergent constraints 
give a  value of 5.0°C whereas the three other lines of evidence 
are individually less tightly constrained. Nevertheless, emergent 
constraints are a relatively recent fi eld of research, in part taken into 
account by adding uncertainty to the upper bound (Section 7.5.4.3), 
and the underlying studies use, to a varying extent, information that 
is also used in the other three lines of evidence, causing statistical 
dependencies. However, omitting emergent constraints and 
statistically combining the remaining lines of evidence likewise yields 
95th percentiles close to 5.0°C (Sherwood et al., 2020). Information 
for the likely range is partly missing or one-sided, however it must 
necessarily reside inside the very likely range and is therefore 
supported by evidence pertaining to both the likely and very likely
ranges. Hence, the upper likely bound is assessed to be about halfway 
between the best estimate and the upper very likely bound while 
the lower likely bound is assessed to be about halfway between the 
best estimate and the lower very likely bound. In summary, based on 
multiple lines of evidence the best estimate of ECS is 3°C, it is likely
within the range 2.5 to 4 °C and very likely within the range 2 to 5 °C. 
It is virtually certain that ECS is larger than 1.5°C. Whereas there is 
high confi dence based on mounting evidence that supports the best 
estimate, likely range and very likely lower end, a higher ECS than 
5°C cannot be ruled out, hence there is medium confi dence in the 
upper end of the very likely range. Note that the best estimate of ECS 
made here corresponds to a feedback parameter of –1.3 W m–2 °C–1

which is slightly more negative than the feedback parameter from 
process-based evidence alone that is assessed in Section 7.4.2.7.

There has long been a consensus (Charney et al., 1979) supporting an 
ECS estimate of 1.5°C–4.5°C. In this regard it is worth remembering 
the many debates challenging an ECS of this magnitude. These started 
as early as Ångström (1900) criticizing the results of Arrhenius (1896) 

(a) Equilibrium climate sensitivity  estimates (ºC) (b) Transient climate response estimates (ºC) 
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Instrumental record
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Emergent constraints
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CMIP6 ESMs
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Fi gure 7.18 | Summary of the equilibrium climate sensitivity (ECS panel (a)) and transient climate response (TCR panel (b)) assessments using different 
lines of evidence. Assessed ranges are taken from Tables 7.13 and 7.14 for ECS and TCR respectively. Note that for the ECS assessment based on both the instrumental record 
and paleoclimates, limits (i.e., one-sided distributions) are given, which have twice the probability of being outside the maximum/minimum value at a given end, compared to 
ranges (i.e., two-tailed distributions) which are given for the other lines of evidence. For example, the extremely likely limit of greater than 95% probability corresponds to one 
side of the very likely (5–95%) range. Best estimates are given as either a single number or by a range represented by a grey box. CMIP6 model values are not directly used 
as a line of evidence but presented on the Figure for comparison. ECS values are taken from Schlund et al. (2020) and TCR values from Meehl et al. (2020); see Supplementary 
Material 7.SM.4. Further details on data sources and processing are available in the chapter data table (Table 7.SM.14).
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arguing that the atmosphere was already saturated in infrared 
absorption such that adding more CO2 would not lead to warming. 
The assertion of Ångström was understood half a century later to be 
incorrect. History has seen a multitude of studies (e.g., Svensmark, 
1998; Lindzen et  al., 2001; Schwartz, 2007) mostly implying lower 
ECS than the range assessed as very likely here. However, there are 
also examples of the opposite, such as very large ECS estimates based 
on the Pleistocene records (Snyder, 2016), which have been shown to 
be overestimated due to a lack of accounting for orbital forcing and 
long-term ice-sheet feedbacks (Schmidt et al., 2017b), or suggestions 
that global climate instabilities may occur in the future (Steffen et al., 
2018; Schneider et  al., 2019). There is, however, no evidence for 
unforced instabilities of such magnitude occurring in the paleo-record 
temperatures of the past 65 million years (Westerhold et al., 2020), 
possibly short of the Paleocene–Eocene Thermal Maximum (PETM) 
excursion (Section 5.3.1.1) that occurred at more than 10°C above 
present-day levels (Anagnostou et  al., 2020). Looking back, the 
resulting debates have led to a deeper understanding, strengthened 
the consensus, and have been scientifically valuable.

In the climate sciences, there are often good reasons to consider 
representing deep uncertainty, or what are sometimes referred to as 
‘unknown unknowns’. This is natural in a field that considers a system 
that is both complex and at the same time challenging to observe. 
For instance, since emergent constraints represent a  relatively new 
line of evidence, important feedback mechanisms may be biased 
in process-level understanding; pattern effects and aerosol cooling 
may be large; and paleo evidence inherently builds on indirect and 
incomplete evidence of past climate states, there certainly can be 
valid reasons to add uncertainty to the ranges assessed on individual 
lines of evidence. This has indeed been addressed throughout 
Sections  7.5.1–7.5.4. Since it is neither probable that all lines of 
evidence assessed here are collectively biased nor is the assessment 
sensitive to single lines of evidence, deep uncertainty is not considered 
as necessary to frame the combined assessment of ECS.

The evidence for TCR is less abundant than for ECS, and focuses 
on the instrumental temperature record (Sections 7.5.2 and 7.5.6), 
emergent constraints (Section  7.5.4.3) and process understanding 
(Section  7.5.1). The AR5 assessed a  likely range for TCR of 1.0  to 
2.5  °C. TCR and ECS are related, though, and in any case TCR is 

less than ECS (see the introduction to Section  7.5). Furthermore, 
estimates of TCR from the historical record are not as strongly 
influenced by externally forced surface temperature pattern effects 
as estimates of ECS are since both historical transient warming and 
TCR are affected by this phenomenon (Section  7.4.4). A  slightly 
higher weight is given to instrumental record warming and emergent 
constraints since these are based on observed transient warming, 
whereas the process-understanding estimate relies on pattern 
effects and ocean heat uptake efficiency from ESMs to represent 
the transient dampening effects of the ocean. If these effects are 
underestimated by ESMs then the resulting TCR would be lower. 
Given the interdependencies of the other two lines of evidence, 
a  conservative approach to combining them as reflected in the 
assessment is adopted. Since uncertainty is substantially lower than 
in AR5 a 0.1°C precision is therefore used here. Otherwise the same 
methodology for combining the lines of evidence as applied to ECS 
is used for TCR. Based on process understanding, warming over the 
instrumental record and emergent constraints, the best estimate TCR 
is 1.8°C, it is likely 1.4 to 2.2 °C and very likely 1.2 to 2.4 °C. The 
assessed ranges are all assigned high confidence due to the high 
level of agreement among the lines of evidence.

7.5.6 Considerations on the ECS and TCR in Global 
Climate Models and Their Role in the Assessment

Coupled climate models, such as those participating in CMIP, have 
long played a central role in assessments of ECS and TCR. In reports 
up to and including the IPCC Third Assessment Report (TAR), climate 
sensitivities derived directly from ESMs were the primary line of 
evidence. However, since AR4, historical warming and paleoclimate 
information provided useful additional evidence and it was noted 
that assessments based on models alone were problematic (Knutti, 
2010). As new lines of evidence have evolved, in AR6 various 
numerical models are used where they are considered accurate, or 
in some cases the only available source of information, and thereby 
support all four lines of evidence (Sections 7.5.1–7.5.4). However, 
AR6 differs from previous IPCC reports in excluding direct estimates 
of ECS and TCR from ESMs in the assessed ranges (Section 7.5.5), 
following several recent studies (Annan and Hargreaves, 2006; 
Stevens et  al., 2016; Sherwood et  al., 2020). The purpose of this 
section is to explain why this approach has been taken and to 
provide a perspective on the interpretation of the climate sensitivities 
exhibited in CMIP6 models.

Table 7.14 | Summary of TCR assessment.

Transient Climate 
Response (TCR)

Central 
Value

Likely Range
Very likely 

Range

Process understanding 
(Section 7.5.1)

2.0°C 1.6°C to 2.7°C 1.3°C to 3.1°C

Warming over instrumental record 
(Section 7.5.2)

1.9°C 1.5°C to 2.3°C 1.3°C to 2.7°C

Emergent constraints 
(Section 7.5.4)

1.7°C – 1.1°C to 2.3°C

Combined assessment 1.8°C 1.4°C to 2.2°C 1.2°C to 2.4°C

Table 7.13 | Summary of equilibrium climate sensitivity (ECS) assessment.

Equilibrium Climate 
Sensitivity (ECS)

Central 
Value

Likely 
Very 
likely 

Extremely 
likely

Process understanding 
(Section 7.5.1)

3.4°C
2.5°C to 

5.1°C
2.1°C to 

7.7°C
–

Warming over instrumental 
record (Section 7.5.2)

2.5°C to 
3.5°C

>2.2°C >1.8°C >1.6°C

Paleoclimates 
(Section 7.5.3)

3.3°C to 
3.4°C

<4.5°C >1.5°C <8°C

Emergent constraints 
(Section 7.5.4)

2.4°C to 
3.3°C

–
1.5°C to 

5.0°C
–

Combined assessment 3°C
2.5°C to 

4.0°C
2.0°C to 

5.0°C
–
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The primary consideration that led to excluding ECS and TCR 
directly derived from ESMs is that information from these models 
is incorporated in the lines of evidence used in the assessment: 
ESMs are partly used to estimate historical and paleoclimate ERFs 
(Sections 7.5.2 and 7.5.3); to convert from local to global mean paleo 
temperatures (Section 7.5.3); to estimate how feedbacks change with 
SST patterns (Section 7.4.4.3); and to establish emergent constraints 
on ECS (Section 7.5.4). They are also used as important evidence in the 
process understanding estimates of the temperature, water vapour, 
albedo, biogeophysical, and non-CO2 biogeochemical feedbacks, 
whereas other evidence is primarily used for cloud feedbacks where 
the climate model evidence is weak (Section 7.4.2). One perspective 
on this is that the process understanding line of evidence builds on 
and replaces ESM estimates.

The ECS of a model is the net result of the model’s effective radiative 
forcing from a doubling of CO2 and the sum of the individual feedbacks 
and their interactions. It is well known that most of the model spread 
in ECS arises from cloud feedbacks, and particularly the response of 
low-level clouds (Bony and Dufresne, 2005; Zelinka et al., 2020). Since 
these clouds are small-scale and shallow, their representation in climate 
models is mostly determined by sub-grid-scale parametrizations. 
It is sometimes assumed that parametrization improvements will 
eventually lead to convergence in model response and therefore 
a decrease in the model spread of ECS. However, despite decades of 
model development, increases in model resolution and advances in 
parametrization schemes, there has been no systematic convergence 
in model estimates of ECS. In fact, the overall inter-model spread 
in ECS for CMIP6 is larger than for CMIP5; ECS and TCR values are 
given for CMIP6 models in Supplementary Material 7.SM.4 based 
on Schlund et al. (2020) for ECS and Meehl et al. (2020) for TCR (see 
also Figure  7.18 and FAQ 7.3). The upward shift does not apply to 
all models traceable to specific modelling centres, but a  substantial 
subset of models have seen an increase in ECS between the two model 
generations. The increased ECS values, as discussed in Section 7.4.2.8, 
are partly due to shortwave cloud feedbacks (Flynn and Mauritsen, 
2020) and it appears that in some models extra-tropical clouds with 
mixed ice and liquid phases are central to the behaviour (Zelinka et al., 
2020), probably borne out of a recent focus on biases in these types of 
clouds (McCoy et al., 2016; Tan et al., 2016). These biases have recently 
been reduced in many ESMs, guided by process understanding from 
laboratory experiments, field measurements and satellite observations 
(Lohmann and Neubauer, 2018; Bodas-Salcedo et al., 2019; Gettelman 
et  al., 2019). However, this and other known model biases are 
already factored into the process-level assessment of cloud feedback 
(Section 7.4.2.4), and furthermore the emergent constraints used here 
focus on global surface temperature change and are therefore less 
susceptible to shared model biases in individual feedback parameters 
than emergent constraints that focus on specific physical processes 
(Section 7.5.4). The high values of ECS and TCR in some CMIP6 models 
lead to higher levels of surface warming than CMIP5 simulations and 
also the AR6 projections based on the assessed ranges of ECS, TCR 
and ERF (Box 4.1 and FAQ 7.3; Forster et al., 2020).

It is generally difficult to determine which information enters the 
formulation and development of parametrizations used in ESMs. 
Climate models frequently share code components, and in some 

cases entire sub-model systems are shared and slightly modified. 
Therefore, models cannot be considered independent developments, 
but rather families of models with interdependencies (Knutti et al., 
2013). It is therefore difficult to interpret the collection of models 
(Knutti, 2010), and it cannot be ruled out that there are common 
limitations and therefore systematic biases to model ensembles 
that are reflected in the distribution of ECS as derived from them. 
Although ESMs are typically well-documented, in ways that 
increasingly include information on critical decisions regarding tuning 
(Mauritsen et al., 2012; Hourdin et al., 2017; Schmidt et al., 2017a; 
Mauritsen  and Roeckner, 2020), the full history of development 
decisions could involve both process-understanding and sometimes 
also other information such as historical warming. As outlying or 
poorly performing models emerge from the development process, 
they can become re-tuned, reconfigured or discarded and so might 
not see publication (Hourdin et al., 2017; Mauritsen and Roeckner, 
2020). In the process of addressing such issues, modelling groups 
may, whether intentionally or not, modify the modelled ECS.

It is problematic and not obviously constructive to provide weights 
for, or rule out, individual CMIP6 model ensemble members based 
solely on their ECS and TCR values. Rather these models must be 
tested in a like-with-like way against observational evidence. Based 
on the currently published CMIP6 models we provide such an analysis, 
marking models with ECS above and below the assessed very likely 
range (Figure 7.19). In the long-term historical warming (Figure 7.19a) 
both low- and high-ECS models are able to match the observed 
warming, presumably in part as a  result of compensating aerosol 
cooling (Kiehl, 2007; Forster et al., 2013; Wang et al., 2021). In several 
cases of high ECS models that apply strong aerosol cooling it is found 
to result in surface warming and ocean heat uptake evolutions that 
are inconsistent with observations (Golaz et al., 2019; Andrews et al., 
2020; Winton et  al., 2020). Modelled warming since the 1970s is 
less influenced by compensation between climate sensitivity and 
aerosol cooling (Jiménez-de-la-Cuesta and Mauritsen, 2019; Nijsse 
et  al., 2020) resulting in the high-ECS models in general warming 
more than observed, whereas low-sensitivity models mostly perform 
better (Figure 7.19b); a result that may also have been influenced by 
temporary pattern effects (Sections 7.4.4 and 7.5.4). Paleoclimates 
are not influenced by such transient pattern effects, but are limited by 
structural uncertainties in the proxy-based temperature and forcing 
reconstructions as well as possible differences in equilibrium sea 
surface temperature patterns between models and the real world 
(Section 7.5.4). Across the LGM, MPWP and EECO (Figure 7.19c–e), 
the few high-ECS models that simulated these cases were outside the 
observed very likely ranges (see also Feng et al., 2020; Renoult et al., 
2020; Zhu et al., 2020). Also the low-ECS model is either outside or 
on the edge of the observed very likely ranges.

As a  result of the above considerations, in this Report projections 
of global surface temperature are produced using climate model 
emulators that are constrained by the assessments of ECS, TCR and 
ERF. In reports up to and including AR5, ESM values of ECS did not fully 
encompass the assessed very likely range of ECS, raising the possibility 
that past multi-model ensembles underestimated the  uncertainty in 
climate change projections that existed at the times of those reports 
(e.g., Knutti, 2010). However, due to an increase in the modelled ECS 
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spread and a decrease in the assessed ECS spread based on improved 
knowledge in multiple lines of evidence, the CMIP6 ensemble 
encompasses the very likely range of ECS [2 to 5]  °C assessed in 
Section 7.5.5. Models outside of this range are useful for establishing 
emergent constraints on ECS and TCR and provide useful examples of 
‘tail risk’ (Sutton, 2018), producing dynamically consistent realizations 
of future climate change to inform impact studies and risk assessments.

In summary, the distribution of CMIP6 models have higher average 
ECS and TCR values than the CMIP5 generation of models and 
the assessed values of ECS and TCR in Section  7.5.5. The high 
ECS and TCR values can in some CMIP6 models be traced to 
improved representation of extratropical cloud feedbacks (medium 
confidence). The ranges of ECS and TCR from the CMIP6 models are 
not considered  robust samples of possible values and the models 
are not considered a  separate line of evidence for ECS and TCR. 
Solely based on its ECS or TCR values an individual ESM cannot be 
ruled out as implausible, though some models with high (greater 
than 5°C) and low (less than 2°C) ECS are less consistent with past 
climate change (high confidence). High climate sensitivity in models 
leads to generally higher projected warming in CMIP6 compared to 

both CMIP5 and that assessed based on multiple lines of evidence 
(Sections 4.3.1 and 4.3.4, and FAQ 7.3).

7.5.7 Processes Underlying Uncertainty in the 
Global Temperature Response to Forcing

While the magnitude of global warming by the end of the 21st century 
is dominated by future GHG emissions, the uncertainty in warming for 
a given ERF change is dominated by the uncertainty in ECS and TCR 
(Section  4.3.4). The proportion of variation explained by ECS and 
TCR varies with scenario and the time period considered, but within 
CMIP5 models around 60–90% of the globally averaged projected 
surface warming range in 2100 can be explained by the model range 
of these metrics (Grose et  al., 2018). Uncertainty in the long-term 
global surface temperature change can further be understood in 
terms of the processes affecting the global TOA energy budget, 
namely the ERF, the radiative feedbacks which govern the efficiency of 
radiative energy loss to space with surface warming, and the increase 
in the global energy inventory (dominated by ocean heat uptake) 
which reduces the transient surface warming. A  variety of studies 
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Figure 7.19 | Global mean temperature anomaly in models and observations from five time periods. (a) Historical (CMIP6 models); (b) post-1975 (CMIP6 
models); (c) Last Glacial Maximum (LGM; Cross-Chapter Box 2.1; PMIP4 models; Kageyama et al., 2021; Zhu et al., 2021); (d) mid-Pliocene Warm Period (MPWP; Cross-Chapter 
Box 2.4; PlioMIP models; Haywood et al., 2020; Zhang et al., 2021); (e) Early Eocene Climatic Optimum (EECO; Cross-Chapter Box 2.1; DeepMIP models; Zhu et al., 2020; Lunt 
et al., 2021). Grey circles show models with ECS in the assessed very likely range; models in red have an ECS greater than the assessed very likely range (>5°C); models in blue 
have an ECS lower than the assessed very likely range (<2°C). Black ranges show the assessed temperature anomaly derived from observations (Section 2.3). The historical 
anomaly in models and observations is calculated as the difference between 2005–2014 and 1850–1900, and the post-1975 anomaly is calculated as the difference between 
2005–2014 and 1975–1984. For the LGM, MPWP and EECO, temperature anomalies are compared with pre-industrial (equivalent to CMIP6 simulation ‘piControl’). All model 
simulations of the MPWP and LGM were carried out with atmospheric CO2 concentrations of 400 and 190 ppm respectively. However, CO2 during the EECO is relatively more 
uncertain, and model simulations were carried out at either 1120ppm or 1680 ppm (except for the one high-ECS EECO simulation which was carried out at 840 ppm; Zhu et al., 
2020). The one low-ECS EECO simulation was carried out at 1680 ppm. Further details on data sources and processing are available in the chapter data table (Table 7.SM.14).
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evaluate the effect of each of these processes on surface changes 
within coupled ESM simulations by diagnosing so-called ‘warming 
contributions’ (Dufresne and Bony, 2008; Crook et  al., 2011; Feldl 
and Roe, 2013; Vial et al., 2013; Pithan and Mauritsen, 2014; Goosse 
et  al., 2018). By construction, the individual warming contributions 
sum to the total global surface warming (Figure 7.20b). For long-term 
warming in response to CO2 forcing in CMIP5 models, the energy 
added to the climate system by radiative feedbacks is larger than the 
ERF of CO2 (Figure 7.20a), implying that feedbacks more than double 
the magnitude of global warming (Figure  7.20b). Radiative kernel 
methods (see Section 7.4.1) can be used to decompose the net energy 
input from radiative feedbacks into its components. The water-vapour, 
cloud and surface-albedo feedbacks enhance global warming, while 
the lapse-rate feedback reduces global warming. Ocean heat uptake 
reduces the rate of global surface warming by sequestering heat 

at depth away from the ocean surface.  Section  7.4.4.1 shows the 
warming contributions from these factors at the regional scale.

Differences in projected transient global warming across ESMs are 
dominated by differences in their radiative feedbacks, while differences 
in ocean heat uptake and radiative forcing play secondary roles 
(Figure 7.20b; Vial et al., 2013). The uncertainty in projected global 
surface temperature change associated with inter-model differences 
in cloud feedbacks is the largest source of uncertainty in CMIP5 and 
CMIP6 models (Figure  7.20b), just as they were for CMIP3 models 
(Dufresne and Bony, 2008). Extending this energy budget analysis to 
equilibrium surface warming suggests that about 70% of the inter-
model differences in ECS arises from uncertainty in cloud feedbacks, 
with the largest contribution to that spread coming from shortwave 
low-cloud feedbacks (Vial et al., 2013; Zelinka et al., 2020).
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Figure 7.20 | Contributions of effective radiative forcing, ocean heat uptake and radiative feedbacks to global atmospheric energy input and near-surface 
air temperature change at year 100 of abrupt4xCO2 simulations of CMIP6 models. (a) The energy fl ux to the global atmosphere associated with the effective CO2

forcing, global ocean heat uptake, Planck response, and radiative feedbacks, which together sum to zero. The inset shows energy input from individual feedbacks, summing 
to the total feedback energy input. (b) Contributions to net global warming are calculated by dividing the energy inputs by the magnitude of the global Planck response 
(3.2 W m–2 °C–1), with the contributions from radiative forcing, ocean heat uptake, and radiative feedbacks (orange bars) summing to the value of net warming (grey bar). The 
inset shows warming contributions associated with individual feedbacks, summing to the total feedback contribution. Uncertainties show the interquartile range (25th and 
75th percentiles) across models. Radiative kernel methods (see Section 7.4.1) were used to decompose the net energy input from radiative feedbacks into contributions from 
changes in atmospheric water vapour, lapse rate, clouds, and surface albedo (Zelinka et al. (2020) using the Huang et al. (2017) radiative kernel). The CMIP6 models included 
are those analysed by Zelinka et al. (2020) and the warming contribution analysis is based on that of Goosse et al. (2018). Further details on data sources and processing are 
available in the chapter data table (Table 7.SM.14).
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Interactions between different feedbacks within the coupled 
climate system pose a challenge to our ability to understand global 
warming and its uncertainty based on energy budget diagnostics 
(Section 7.4.2). For example, water-vapour and lapse-rate feedbacks 
are correlated (Held and Soden, 2006) owing to their joint dependence 
on the spatial pattern of warming (Po-Chedley et  al., 2018b). 
Moreover, feedbacks are not independent of ocean heat uptake 
because the uptake and transport of heat by the ocean influences 
the SST pattern on which global feedbacks depend (Section 7.4.4.3). 
However, alternative decompositions of warming contributions that 
better account for correlations between feedbacks produce similar 
results (Caldwell et al., 2016). The key role of radiative feedbacks in 
governing the magnitude of global warming is also supported by the 
high correlation between radiative feedbacks (or ECS) and transient 
21st-century warming within ESMs (Grose et al., 2018).

Another approach to evaluating the roles of forcing, feedbacks and 
ocean heat uptake in projected warming employs idealized energy 
balance models that emulate the response of ESMs, and which 
preserve the interactions between system components. One such 
emulator, used in Section  7.5.1.2, resolves the heat capacity of 
both the surface components of the climate system and the deep 
ocean (Held et  al., 2010; Geoffroy et  al., 2013a, b; Kostov et  al., 
2014; Armour, 2017). Using this emulator, Geoffroy et al. (2012) find 
that: under an idealized 1% per year increase in atmospheric CO2, 
radiative feedbacks constitute the greatest source of uncertainty 
(about 60% of variance) in transient warming beyond several 
decades; ERF uncertainty plays a  secondary but important role in 
warming uncertainty (about 20% of variance) that diminishes beyond 
several decades; and ocean heat uptake processes play a minor role 
in warming uncertainty (less than 10% of variance) at all time scales.

More computationally intensive approaches evaluate how the 
climate response depends on perturbations to key parameter  or 
structural choices within ESMs. Large ‘perturbed parameter 
ensembles’, wherein a  range of parameter settings associated with 
cloud physics are explored within atmospheric ESMs, produce a wide 
range of ECS due to changes in cloud feedbacks, but often produce 
unrealistic climate states (Joshi et al., 2010). Rowlands et al. (2012) 
generated an ESM perturbed-physics ensemble of several thousand 
members by perturbing model parameters associated with radiative 
forcing, cloud feedbacks and ocean vertical diffusivity (an important 
parameter for ocean heat uptake). After constraining the ensemble to 
have a reasonable climatology and to match the observed historical 
surface warming, they found a wide range of projected warming by 
the year 2050 under the SRES A1B scenario (1.4°C–3°C relative to 
the 1961–1990 average) that is dominated by differences in cloud 
feedbacks. The finding that cloud feedbacks are the largest source 
of spread in the net radiative feedback has since been confirmed in 
perturbed parameter ensemble studies using several different ESMs 
(Gettelman et al., 2012; Tomassini et al., 2015; Kamae et al., 2016b; 
Rostron et al., 2020; Tsushima et al., 2020). By swapping out different 
versions of the atmospheric or oceanic components in a  coupled 
ESM, Winton et al. (2013) found that TCR and ECS depend on which 
atmospheric component was used (using two versions with different 
atmospheric physics), but that only TCR is sensitive to which oceanic 
component of the model was used (using two versions with different 

vertical coordinate systems, among other differences); TCR and ECS 
changed by 0.4°C and 1.4°C, respectively, when the atmospheric 
model component was changed, while TCR and ECS changed by 
0.3°C and less than 0.05°C, respectively, when the oceanic model 
component was changed. By perturbing ocean vertical diffusivities 
over a wide range, Watanabe et al. (2020) found that TCR changed by 
0.16°C within the model MIROC5.2 while Krasting et al. (2018) found 
that ECS changed by about 0.6°C within the model GFDL-ESM2G, 
with this difference linked to different radiative feedbacks associated 
with different spatial patterns of sea surface warming (Section 7.4.4.3). 
By comparing simulations of CMIP6 models with and without the 
effects of CO2 on vegetation, Zarakas et al. (2020) find a physiological 
contribution to TCR of 0.12°C (range 0.02°C–0.29°C across models) 
owing to physiological adjustments to the CO2 ERF (Section 7.3.2.1).

There is robust evidence and high agreement across a  diverse 
range of modelling approaches and thus high confidence that 
radiative feedbacks are the largest source of uncertainty in projected 
global warming out to 2100 under increasing or stable emissions 
scenarios, and that cloud feedbacks in particular are the dominant 
source of that uncertainty. Uncertainty in radiative forcing plays an 
important but generally secondary role. Uncertainty in global ocean 
heat uptake plays a  lesser role in global warming uncertainty, but 
ocean circulation could play an important role through its effect on 
sea surface warming patterns which in turn project onto radiative 
feedbacks through the pattern effect (Section 7.4.4.3).

The spread in historical surface warming across CMIP5 ESMs 
shows a weak correlation with inter-model differences in radiative 
feedback or ocean heat uptake processes but a high correlation with 
inter-model differences in radiative forcing owing to large variations 
in aerosol forcing across models (Forster et al., 2013). Likewise, the 
spread in projected 21st-century warming across ESMs depends 
strongly on which emissions scenario is employed (Section  4.3.1; 
Hawkins and Sutton, 2012). Strong emissions reductions would 
remove aerosol forcing (Section 6.7.2) and this could dominate the 
uncertainty in near-term warming projections (Armour and Roe, 2011; 
Mauritsen and Pincus, 2017; Schwartz, 2018; Smith et al., 2019). On 
post-2100 time scales carbon cycle uncertainty such as that related to 
permafrost thawing could become increasingly important, especially 
under high-emissions scenarios (Figure 5.30).

In summary, there is high confidence that cloud feedbacks are the 
dominant source of uncertainty for late 21st-century projections 
of transient global warming under increasing or stable emissions 
scenarios, whereas uncertainty is dominated by aerosol ERF in strong 
mitigation scenarios. Global ocean heat uptake is a smaller source of 
uncertainty in long-term surface warming (high confidence).

7.6 Metrics to Evaluate Emissions

Emissions metrics are used to compare the relative effect of emissions 
of different gases over time in terms of radiative forcing, global surface 
temperature or other climate effects. They are introduced in Chapter 1 
(Box 1.3). Chapter 8 of AR5 (Myhre et al., 2013b) comprehensively 
discussed different emissions metrics so this section focuses on 
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updates since that report. Section  7.6.1 updates the physical 
assessment. Section 7.6.2 assesses developments in the comparison 
of emissions of short- and long-lived gases. Box 7.3 assesses physical 
aspects of emissions metric use within climate policy.

7.6.1 Physical Description of Metrics

This section discusses metrics that relate emissions to physical 
changes in the climate system. Other metrics, for instance relating 
to economic costs or ‘damage’ are discussed in WGIII, Chapter  2. 
The same Chapter also assesses literature examining the extent 
to which different physical metrics are linked to cost–benefit and 
cost-effectiveness metrics. One metric, the 100-year global warming 
potentials (GWP-100), has extensively been employed in climate 
policy to report emissions of different GHGs on the same scale. Other 
physical metrics exist, and these are discussed in this section.

Emissions metrics can be quantified as the magnitude of the effect 
a unit mass of emission of a species has on a key measure of climate 
change. This section focuses on physical measures such as the radiative 
forcing, GSAT change, global average precipitation change, and global 
mean sea level rise (Myhre et al., 2013b; Sterner et al., 2014; Shine 
et al., 2015). When used to represent a climate effect, the metrics are 
referred to as absolute metrics and expressed in units of ‘effect per kg’ 
(e.g., absolute global warming potentials, AGWP or absolute global 
temperature-change potentials, AGTP). More commonly, these are 
compared with a reference species (almost always CO2 in kg (CO2)), to 
give a dimensionless factor (written as e.g., global warming potentials 
(GWP) or global temperature-change potential (GTP)). The unit mass 
is usually taken as a 1 kg instantaneous ‘pulse’ (Myhre et al., 2013b), 
but can also refer to a ‘step’ in emissions rate of 1 kg yr –1.

There is a cause–effect chain that links human activity to emissions, 
then from emissions to radiative forcing, climate response and climate 
impacts (Fuglestvedt et  al., 2003). Each step in the causal  chain 
requires an inference or modelling framework that maps causes to 
effects. Emissions metrics map from emissions of some compound 
to somewhere further down the cause-and-effect chain, radiative 
forcing (e.g., GWP) or temperature (e.g., GTP) or other effects (such 
as sea level rise or socio-economic impacts). While variables later 
in the chain have greater policy or societal relevance, they are also 
subject to greater uncertainty because each step in the chain includes 
more modelling systems, each of which brings its own uncertainty 
(Figure 1.15; Balcombe et al., 2018).

Since AR5, understanding of the radiative effects of emitted 
compounds has continued to evolve and these changes are assessed 
in Section 7.6.1.1. Metrics relating to precipitation and sea level have 
also been quantified (Section 7.6.1.2). Understanding of how emissions 
metrics are affected by the carbon cycle response to temperature has 
improved. This allows the carbon cycle response to temperature 
to be more fully included in the emissions metrics presented here 
(Section 7.6.1.3). There have also been developments in approaches 
for comparing short-lived GHGs to CO2 in the context of mitigation and 
global surface temperature change (Section 7.6.1.4). Emissions metrics 
for selected key compounds are presented in Section 7.6.1.5.

7.6.1.1 Radiative Properties and Lifetimes

The radiative properties and lifetimes of compounds are the 
fundamental component of all emissions metrics. Since AR5, there 
have been advances in the understanding of the radiative properties 
of various compounds (see Sections 7.3.1, 7.3.2 and 7.3.3), and 
hence their effective radiative efficiencies (ERFs per unit change 
in concentration). For CO2, CH4 and N2O, better accounting of the 
spectral properties of these gases has led to re-evaluation of  their 
stratospheric-temperature-adjusted radiative forcing (SARF) 
radiative efficiencies and their dependence on the background 
gas concentrations (Section  7.3.2). For CO2, CH4, N2O, CFC-11 and 
CFC-12 the tropospheric adjustments (Sections 7.3.1 and 7.3.2) are 
assessed to make a non-zero contribution to ERF. There is insufficient 
evidence to include tropospheric adjustments for other halogenated 
compounds. The re-evaluated effective radiative efficiency for CO2 
will affect all emissions metrics relative to CO2.

The effective radiative efficiencies (including adjustments from 
Section 7.3.2) for 2019 background concentrations for CO2, CH4 and N2O 
are assessed to be 1.33×10–5, 3.89×10–4 and 3.19×10–3 W m–2 ppb–1 
respectively (see Table  7.15 for uncertainties), compared to AR5 
assessments of 1.37×10–5, 3.63×10–4 and 3.00×10–3 W  m–2 ppb–1. 
For CO2, increases due to the adjustments do not quite balance the 
decreases due to the increasing background concentration. For CH4, 
increases due to the re-evaluated radiative properties more than offset 
the decreases due to the increasing background concentration. For 
N2O the addition of tropospheric adjustments increases the effective 
radiative efficiency. Radiative efficiencies of halogenated species have 
been revised slightly (Section 7.3.2.4) and for CFCs include tropospheric 
adjustments.

The perturbation lifetimes of CH4 (Section 6.3.1). and N2O (Section 5.2.3.1) 
have been slightly revised since AR5 to be 11.8  ±  1.8  years and 
109 ± 10 years, respectively (Table 7.15). The lifetimes of halogenated 
compounds have also been slightly revised (Hodnebrog et al., 2020a).

Although there has been greater understanding since AR5 of the 
carbon cycle responses to CO2 emissions (Sections 5.4 and 5.5), there 
has been no new quantification of the response of the carbon cycle 
to an instantaneous pulse of CO2 emission since Joos et al. (2013).

7.6.1.2 Physical Indicators

The basis of all the emissions metrics is the time profile of effective 
radiative forcing (ERF) following the emission of a  particular 
compound. The emissions metrics are then built up by relating the 
forcing to the desired physical indicators. These forcing–response 
relationships can either be generated from emulators (Cross-Chapter 
Box 7.1; Tanaka et al., 2013; Gasser et al., 2017b), or from analytical 
expressions based on parametric equations (response functions) 
derived from more complex models (Myhre et al., 2013b).

To illustrate the analytical approach, the ERF time evolution following 
a  pulse of emission can be considered an absolute global forcing 
potential (AGFP; similar to the ‘Instantaneous Climate Impact’ of 
Edwards and Trancik, 2014). This can be transformed into an absolute 
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global temperature-change potential (AGTP) by combining the 
radiative forcing with a global surface temperature response function. 
This temperature response is typically derived from a two-layer energy 
balance emulator (Supplementary Material 7.SM.5; Myhre et  al., 
2013b). For further physical indicators further response functions are 
needed based on the radiative forcing or temperature, for instance. 
Sterner et  al. (2014) used an upwelling-diffusiveenergy balance 
model to derive the thermosteric component of sea level rise as 
response functions to radiative forcing or global surface temperature. 
A metric for precipitation combines both the radiative forcing (AGFP) 
and temperature (AGTP) responses to derive an absolute global 
precipitation potential (AGPP; Shine et  al., 2015). The equations 
relating these metrics are given in Supplementary Material 7.SM.5.

The physical emissions metrics described above are functions of time 
since typically the physical effects reach a peak and then decrease in 
the period after a pulse emission as the concentrations of the emitted 
compound decay. The value of the metrics can therefore be strongly 
dependent on the time horizon of interest. All relative metrics (GWP, 
GTP etc.) are also affected by the time dependence of the CO2 metrics 
in the denominator. Instantaneous or endpoint metrics quantify the 
change (e.g., in radiative forcing, global surface temperature, global 
mean sea level) at a particular time after the emission. These can be 
appropriate when the goal is to not exceed a  fixed target such as 
a temperature or global mean sea level rise at a specific time. Emissions 
metrics can also be integrated from the time of emission. The most 
common of these is the absolute global warming potential (AGWP), 
which is the integral of the AGFP. The physical effect is then in units 
of forcing-years, degree-years or metre-years for forcing, temperature, 
or sea level rise, respectively. These can be appropriate for trying to 
reduce the overall damage potential when the effect depends on 
how long the change occurs for, not just how large the change is. 
The  integrated metrics still depend on the time horizon, though for 
the shorter-lived compounds this dependence is somewhat smoothed 
by the integration. The integrated version of a metric is often denoted 
as iAGxx, although the integral of the forcing-based metric (iAGFP) 
is known as the AGWP. Both the endpoint and integrated absolute 
metrics for non-CO2 species can be divided by the equivalent for CO2 
to give relative emissions metrics (e.g., GWP (=iGFP), GTP, iGTP).

Each step from radiative forcing to global surface temperature to 
sea level rise introduces longer time scales and therefore prolongs 
further the contributions to climate change of short-lived GHGs 
(Myhre et al., 2013b). Thus, short-lived GHGs become more important 
(relative to CO2) for sea level rise than for temperature or radiative 
forcing (Zickfeld et al., 2017). Integrated metrics include the effects 
of a pulse emission from the time of emission up to the time horizon, 
whereas endpoint metrics only include the effects that persist out 
to the time horizon. Because the largest effects of short-lived GHGs 
occur shortly after their emission and decline towards the end of 
the time period, short-lived GHGs have relatively higher integrated 
metrics than their corresponding endpoint metrics (Peters et  al., 
2011; Levasseur et al., 2016).

For species perturbations that lead to a strong regional variation in 
forcing pattern, the regional temperature response can be different 
to that for CO2. Regional equivalents to the global metrics can be 

derived by replacing the global surface temperature response 
function with a  regional response matrix relating forcing changes 
in one region to temperature changes in another (W.J. Collins et al., 
2013; Aamaas et al., 2017; Lund et al., 2017).

For the research discussed above, metrics for several physical 
variables can be constructed that are linear functions of radiative 
forcing. Similar metrics could be devised for other climate variables 
provided they can be related by response functions to radiative 
forcing or global surface temperature change. The radiative forcing 
does not increase linearly with emissions for any species, but the 
non-linearities (for instance changes in CO2 radiative efficiency) are 
small compared to other uncertainties.

7.6.1.3 Carbon Cycle Responses and Other 
Indirect Contributions

The effect of a  compound on climate is not limited to its direct 
radiative forcing. Compounds can perturb the carbon cycle affecting 
atmospheric CO2 concentrations. Chemical reactions from emitted 
compounds can produce or destroy other GHGs or aerosols.

Any agent that warms the surface perturbs the terrestrial and oceanic 
carbon fluxes (Sections 5.4.3 and 5.4.4), typically causing a net flux 
of CO2 into the atmosphere and hence further warming. This aspect is 
already included in the carbon cycle models that are used to generate 
the radiative effects of a  pulse of CO2 (Joos et  al., 2013), but was 
neglected for non-CO2 compounds in the conventional metrics so 
this introduces an inconsistency and bias in the metric values (Gillett 
and Matthews, 2010; MacDougall et al., 2015; Tokarska et al., 2018). 
A  simplistic account of the carbon cycle response was tentatively 
included in AR5 based on a  single study (W.J. Collins et  al., 2013). 
Since AR5 this understanding has been revised (Gasser et al., 2017b; 
Sterner and Johansson, 2017) using simple parametrized carbon cycle 
models to derive the change in CO2 surface flux for a unit temperature 
pulse as an impulse response function to temperature. In W.J. Collins 
et al. (2013) this response function was assumed to be simply a delta 
function, whereas the newer studies include a  more complete 
functional form accounting for subsequent re-uptake of CO2 after the 
removal of the temperature increase. Accounting for re-uptake has 
the effect of reducing the carbon-cycle responses associated with 
the metrics compared to AR5, particularly at large time horizons. The 
increase in any metric due to the carbon cycle response can be derived 
from the convolution of the global surface temperature response with 
the CO2 flux response to temperature and the equivalent metric for 
CO2 (Equation 7.SM.5.5 in the Supplementary Material). Including 
this response also increases the duration of the effect of short-lived 
GHGs on climate (Fu et al., 2020). An alternative way of accounting for 
the carbon cycle temperature response would be to incorporate it into 
the temperature response function (the response functions used here 
and given in Supplementary Material 7.SM.5.2 do not explicitly do 
this). If this were done, the correction could be excluded from both the 
CO2 and non-CO2 forcing responses as, in Hodnebrog et al. (2020a).

Including the carbon cycle response for non-CO2 treats CO2 and 
non-CO2 compounds consistently and therefore we assess that its 
inclusion more accurately represents the climate effects of non-CO2 
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species. There is high confidence in the methodology of using carbon 
cycle models for calculating the carbon cycle response. The magnitude 
of the carbon cycle response contributions to the emissions metrics 
varies by a factor of two between Sterner and Johansson (2017) and 
Gasser et al. (2017b). The central values are taken from Gasser et al. 
(2017b) as the OSCAR 2.2 model used is based on parameters derived 
from CMIP5 models, and the climate–carbon feedback magnitude is 
therefore similar to the CMIP5 multi-model mean (Arora et al., 2013; 
Lade et al., 2018). As values have only been calculated in two simple 
parametrized carbon cycle models the uncertainty is assessed to be 
±100%. Due to there being few studies and a factor of two difference 
between them, there is low confidence that the magnitude of the 
carbon cycle response is within the higher end of this uncertainty 
range, but high confidence that the sign is positive. Carbon cycle 
responses are included in all the metrics presented in Table 7.15 and 
Supplementary Table 7.SM.7. The carbon cycle contribution is lower 
than in AR5, but there is high confidence in the need for its inclusion 
and the method by which it is quantified.

Emissions of non-CO2 species can affect the carbon cycle in other 
ways: emissions of ozone precursors can reduce the carbon uptake 
by plants (W.J. Collins et  al., 2013); emissions of reactive nitrogen 
species can fertilize plants and hence increase the carbon uptake 
(Zaehle et al., 2015); and emissions of aerosols or their precursors can 
affect the utilisation of light by plants (Cohan et al., 2002; Mercado 
et  al., 2009; Mahowald et  al., 2017; see Section  6.4.4 for further 
discussion). There is robust evidence that these processes occur and 
are important, but insufficient evidence to determine the magnitude 
of their contributions to emissions metrics. Ideally, emissions metrics 
should include all indirect effects to be consistent, but limits to our 
knowledge restrict how much can be included in practice.

Indirect contributions from chemical production or destruction of 
other GHGs are quantified in Chapter 6 (Section 6.4). For methane 
(CH4), AR5 (Myhre et al., 2013b) assessed that the contributions from 
effects on ozone and stratospheric water vapour add 50% ± 30% 
and 15% ± 11% to the emissions-based ERF, which were equivalent 
to 1.8 ± 0.7 ×10–4 and 0.5 ± 0.4 ×10–4 W m–2 ppb (CH4)–1. In AR6 
the radiative efficiency formulation is preferred as it is independent 
of the assumed radiative efficiency for methane. The assessed 
contributions to the radiative efficiency for methane due to ozone 
are 1.4 ± 0.7 ×10–4 W m–2 ppb (CH4)–1, based on 0.14 W  m–2 
forcing from a  1023 ppb (1850–2014) methane change (Thornhill 
et  al., 2021b). The contribution from stratospheric water vapour is 
0.4 ± 0.4 ×10–4 W m–2 ppb (CH4)–1, based on 0.05 W m–2 forcing from 
a 1137 ppb (1750–2019) methane change (Section 7.3.2.6). Nitrous 
oxide (N2O) depletes upper stratospheric ozone (a positive forcing) 
and reduces the methane lifetime. In AR5 the methane lifetime effect 
was assessed to reduce methane concentrations by 0.36 ppb per ppb 
increase in N2O, with no assessment of the effective radiative forcing 
from ozone. This is now increased to –1.7 ppb methane per ppb N2O 
(based on a methane lifetime decrease of 4% ± 4% for a 55 ppb 
increase in N2O (Thornhill et al., 2021b) and a radiative efficiency of 
5.5 ± 0.4 ×10–4 W m–2 ppb (N2O)–1 through ozone (Thornhill et al., 
2021b)). In summary, GWPs and GTPs for methane and nitrous oxide 
are slightly lower than in AR5 (medium confidence) due to revisions 
in their lifetimes and updates to their indirect chemical effects.

Methane can also affect the oxidation pathways of aerosol formation 
(Shindell et  al., 2009) but the available literature is insufficient to 
make a  robust assessment of this. Hydrocarbon and molecular 
hydrogen oxidation also leads to tropospheric ozone production 
and change in methane lifetime (Collins et  al., 2002; Hodnebrog 
et al., 2018). For reactive species the emissions metrics can depend 
on where the emissions occur, and the season of emission (Aamaas 
et al., 2016; Lund et al., 2017; Persad and Caldeira, 2018). The AR5 
included a contribution to the emissions metrics for ozone-depleting 
substances (ODSs) from the loss of stratospheric ozone. The 
assessment of ERFs from ODSs in Chapter 6 (Section 6.4.2) suggests 
the quantification of these terms may be more uncertain than the 
formulation in AR5 so these are not included here.

Oxidation of methane leads ultimately to the net production of 
atmospheric CO2 (Boucher et al., 2009). This yield is less than 100% 
(on a molar basis) due to uptake by soils and some of the reaction 
products (mainly formaldehyde) being directly removed from the 
atmosphere before being completely oxidized. Estimates of the yield 
are 61% (Boucher et al., 2009) and 88% (Shindell et al., 2017), so 
the assessed range is 50–100% with a  central value of 75% (low 
confidence). For methane and hydrocarbons from fossil sources, 
this will lead to additional fossil CO2 in the atmosphere whereas 
for biogenic sources of methane or hydrocarbons, this replaces CO2 
that has been recently removed from the atmosphere. Since the ratio 
of molar masses is 2.75, 1 kg of methane generates 2.1 ± 0.7 kgCO2 
for a 75% yield. For biogenic methane the soil uptake and removal of 
partially oxidized products is equivalent to a sink of atmospheric CO2 

of 0.7 ± 0.7 kg per kg methane. The contributions of this oxidation 
effect to the methane metric values allow for the time delay in the 
oxidation of methane. Methane from fossil fuel sources has therefore 
slightly higher emissions metric values than those from biogenic 
sources (high confidence). The CO2 can already be included in carbon 
emissions totals (Muñoz and Schmidt, 2016) so care needs to be 
taken when applying the fossil correction to avoid double counting.

7.6.1.4 Comparing Long-lived with Short-lived 
Greenhouse Gases

Since AR5 there have been developments in how to account for 
the different behaviours of short-lived and long-lived compounds. 
Pulse-based emissions metrics for short-lived GHGs with lifetimes 
less than 20 years are very sensitive to the choice of time horizon 
(e.g.,  Pierrehumbert, 2014). Global surface temperature changes 
following a  pulse of CO2 emission are roughly constant in time 
(the principle behind TCRE; Section 5.5.1 and Figure 7.21b) whereas 
the temperature change following a  pulse of short-lived GHG 
emission declines with time. In contrast to a  one-off pulse, a  step 
change in short-lived GHG emissions that is maintained indefinitely 
causes a  concentration increase that eventually equilibrates to 
a steady state in a way that is more comparable to a pulse of CO2. 
Similarly the resulting change in global surface temperature from 
a step change in short-lived GHGs (Figure 7.21a) after a few decades 
increases only slowly (due to accumulation of heat in the deep ocean) 
and hence its effects are more similar to a pulse of CO2 (Smith et al., 
2012; Lauder et  al., 2013; Allen et  al., 2016, 2018b). The different 
time dependence of short-lived and long-lived compounds can be 
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accounted for exactly with the CO2 forcing equivalent metric (Wigley, 
1998; Allen et al., 2018b; Jenkins et al., 2018) that produces a CO2 
emissions time profile such that the radiative forcing matches the 
time evolution of that from the non-CO2 emissions. But other metric 
approaches can approximate this exact approach.

The similarity in behaviour of step changes in short-lived GHG 
emissions and pulses of CO2 emissions has recently been used to 
formulate new emissions metric concepts (Collins et al., 2020). For 
short-lived GHGs, these new concepts use a step change in the rate 
of emissions, in contrast to an instantaneous pulse in a given year 
that is typically used (e.g.,  Myhre et  al., 2013b). Metrics for step 
emissions changes are denoted here by a superscript ‘S’ (e.g., AGTP S

X 
is the absolute global surface temperature-change potential from 
a  unit step change in emissions of species “X”). These can be 
derived by integrating the more standard pulse emission  changes 
up to the time horizon. The response to a step emissions change is 
therefore equivalent to the integrated response to a pulse emission 
(AGTP S

X  =  iAGTPX); and the radiative forcing response to a  step 
emissions change AGFP S

X is equivalent to the integrated forcing 
response iAGFPX which is the AGWP. The step metric for short-lived 
GHGs can then be compared with the pulse metric for CO2 in 

a  ratio AGTP S
X /AGTPCO2 (Collins et al., 2020). This is referred to as 

a  combined GTP (CGTP) in Collins et  al.  (2020), and has units of 
years (the standard GTP is dimensionless). This CGTP shows less 
variation with time than the standard GTP (comparing Figure 7.21c 
with Figure 7.21d) and provides a scaling for comparing a change 
in emissions rate (in kg yr –1) of short-lived GHGs with a  pulse 
emission or change in cumulative CO2 emissions (in kg). Cumulative 
CO2 equivalent emissions are given by CGTP × emissions rate of 
short-lived GHGs. The CGTP can be calculated for any species, but 
it is least dependent on the chosen time horizon for species with 
lifetimes less than half the time horizon of the metric (Collins 
et al., 2020). Pulse-step metrics can therefore be useful where time 
dependence of pulse metrics, like GWP or GTP, complicates their use 
(see Box 7.3).

For a  stable global warming from non-CO2 climate agents (gas or 
aerosol) their effective radiative forcing needs to gradually decrease 
(Tanaka and O’Neill, 2018). Cain et al. (2019) find this decrease to 
be around 0.3% yr –1 for the climate response function in AR5 
(Myhre et  al., 2013b). To account for this, a  quantity referred to 
as GWP* has been defined that combines emissions (pulse) and 
changes in emissions levels (step) approaches (Cain et  al., 2019; 

Figure 7.21 | Emissions metrics for two short-lived greenhouse gases: HFC-32 and methane (CH4; lifetimes of 5.4 and 11.8 years). The temperature response 
function comes from Supplementary Material 7.SM.5.2. Values for non-CO2 species include the carbon cycle response (Section 7.6.1.3). Results for HFC-32 have been divided 
by 100 to show on the same scale. (a) Temperature response to a step change in short-lived greenhouse gas emissions. (b) Temperature response to a pulse CO2 emission. 
(c) Conventional GTP metrics (pulse vs pulse). (d) Combined GTP metric (step versus pulse). Further details on data sources and processing are available in the chapter data 
table (Table 7.SM.14).
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Smith  et  al.,  2021).2 The emissions component accounts for the 
need for emissions to decrease to deliver a stable warming. The step 
(sometimes referred to as flow or rate) term in GWP* accounts for 
the change in global surface temperature that arises from a change 
in short-lived GHG emissions rate, as in CGTP, but here approximated 
by the change in emissions over the previous 20 years.

Cumulative CO2 emissions and GWP*-based cumulative CO2 
equivalent GHG emissions multiplied by TCRE closely approximate 
the global warming associated with emissions time series (of CO2 and 
GHG, respectively) from the start of the time series (Lynch et al., 2020). 
Both the CGTP and GWP* convert short-lived GHG emissions rate 
changes into cumulative CO2 equivalent emissions, hence scaling 
these by TCRE gives a  direct conversion from short-lived GHG 
emissions to global surface temperature change. By comparison 
expressing methane emissions as CO2 equivalent emissions using 
GWP-100 overstates the effect of constant methane emissions on 
global surface temperature by a  factor of 3–4 (Lynch et  al., 2020, 
their Figure 5), while understating the effect of any new methane 
emission source by a factor of 4–5 over the 20 years following the 
introduction of the new source (Lynch et al., 2020, their Figure 4).

Figure  7.22 explores how cumulative CO2 equivalent emissions 
estimated for methane vary under different emissions metric choices 
and how estimates of the global surface air temperature (GSAT) 
change deduced from these cumulative emissions compare to the 

2 To calculate CO2 equivalent emissions under GWP*, the short-lived greenhouse gas emissions are multiplied by GWP-100 × 0.28 and added to the net emissions increase or decrease over the 
previous 20 years multiplied by GWP-100 × 4.24 (Smith et al., 2021).

actual temperature response computed with the two-layer emulator. 
Note that GWP and GTP metrics were not designed for use under 
a cumulative carbon dioxide equivalent emissions framework (Shine 
et al., 1990, 2005), even if they sometimes are (e.g., Cui et al., 2017; 
Howard et al., 2018) and analysing them in this way can give useful 
insights into their physical properties. Using these standard metrics 
under such frameworks, the cumulative CO2 equivalent emissions 
associated with methane emissions would continue to rise if methane 
emissions were substantially reduced but remained above zero. 
In reality, a decline in methane emissions to a smaller but still positive 
value could cause a declining warming. GSAT changes estimated with 
cumulative CO2 equivalent emissions computed with GWP-20 matches 
the warming trend for a few decades but quickly overestimates the 
response. Cumulative emissions using GWP-100 perform well when 
emissions are increasing but not when they are stable or decreasing. 
Cumulative emissions using GTP-100 consistently underestimate 
the warming. Cumulative emissions using either CGTP or GWP* 
approaches can more closely match the GSAT evolution (Allen et al., 
2018b; Cain et al., 2019; Collins et al., 2020; Lynch et al., 2020).

In summary, new emissions metric approaches such as GWP* and 
CGTP are designed to relate emissions changes in short-lived GHGs 
to emissions of CO2 as they better account for the different physical 
behaviours of short- and long-lived gases. Through scaling the 
corresponding cumulative CO2 equivalent emissions by the TCRE, 
the GSAT response from emissions over time of an aggregated set of 

Figure 7.22 | Explores how cumulative carbon dioxide equivalent emissions estimated for methane vary under different emissions metric choices and 
how estimates of the global surface air temperature (GSAT) change deduced from these cumulative emissions compare to the actual temperature 
response computed with the two-layer emulator (solid black lines). Panels (a) and (b) show the SSP4-6.0 and SSP1-2.6 scenarios respectively. The panels show 
annual methane emissions as the dotted lines (left axis) from 1750 to 2100. The solid lines can be read as either estimates of GSAT change or estimates of the cumulative 
carbon dioxide equivalent emissions. This is because they are related by a constant factor, the TCRE. Thus, values can be read using either of the right-hand axes. Emissions metric 
values are taken from Table 7.15. The GWP* calculation is given in Section 7.6.1.4. The two-layer emulator has been calibrated to the central values of the Report’s assessment 
(see Supplementary Material 7.SM.5.2). Further details on data sources and processing are available in the chapter data table (Table 7.SM.14).
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Box 7.3 | Physical Considerations in Emissions Metric Choice

Following AR5, this Report does not recommend an emissions metric because the appropriateness of the choice depends on the 
purposes for which gases or forcing agents are being compared. Emissions metrics can facilitate the comparison of effects of emissions 
in support of policy goals. They do not define policy goals or targets but can support the evaluation and implementation of choices within 
multi-component policies (e.g., they can help prioritize which emissions to abate). The choice of metric will depend on which aspects of 
climate change are most important to a particular application or stakeholder and over which time horizons. Different international and 
national climate policy goals may lead to different conclusions about what is the most suitable emissions metric (Myhre et al., 2013b).

Global warming potentials (GWP) and global temperature-change potentials (GTP) give the relative effect of pulse emissions, that is, how 
much more energy is trapped (GWP) or how much warmer (GTP) the climate would be when unit emissions of different compounds are 
compared (Section 7.6.1.2). Consequently, these metrics provide information on how much energy accumulation (GWP) or how much 
global warming (GTP) could be avoided (over a given time period, or at a given future point in time) by avoiding the emission of a unit of 
a short-lived greenhouse gas compared to avoiding a unit of CO2. By contrast, the new metric approaches of combined GTP (CGTP) and 
GWP* closely approximate the additional effect on climate from a time series of short-lived GHG emissions, and can be used to compare 
this to the effect on temperature from the emission or removal of a unit of CO2 (Section 7.6.1.4; Allen et al., 2018b; Collins et al., 2020).

gases can be estimated. Using either these new approaches, or treating 
short- and long-lived GHG emissions pathways separately, can improve 
the quantification of the contribution of emissions to global warming 
within a  cumulative emissions framework, compared to approaches 
that aggregate emissions of GHGs using standard CO2 equivalent 
emissions metrics. As discussed in Box 7.3, there is high confidence 
that multi-gas emissions pathways with the same time-dependence 
of aggregated CO2 equivalent emissions estimated from standard 
approaches, such as weighting emissions by their GWP-100 values, 
rarely lead to the same estimated temperature outcomes.

7.6.1.5 Emissions Metrics by Compounds

Emissions metrics for selected compounds are presented in Table 7.15, 
with further compounds presented in the Supplementary Material, 
Table 7.SM.7. The evolution of the CO2 concentrations in response to 
a pulse emission is as in AR5 (Joos et al., 2013; Myhre et al., 2013b), 
the perturbation lifetimes for CH4 and N2O are from Section 7.6.1.1. 

The lifetimes and radiative efficiencies for halogenated compounds 
are taken from Hodnebrog et al. (2020a). Combined metrics (CGTPs) 
are presented for compounds with lifetimes less than 20 years. Note 
that CGTP has units of years and is applied to a change in emissions rate 
rather than a change in emissions amount. Changes since AR5 are due 
to changes in radiative properties and lifetimes (Section 7.6.1.1), and 
indirect contributions (Section 7.6.1.3). Table 7.15 also gives overall 
emissions uncertainties in the emissions metrics due to uncertainties 
in radiative efficiencies, lifetimes and the climate response function 
(Supplementary Material, Tables 7.SM.8 to 7.SM.13).

Following their introduction in AR5 the assessed metrics now routinely 
include the carbon cycle response for non-CO2 gases (Section 7.6.1.3). 
As assessed in this earlier section, the carbon cycle contribution is 
lower than in AR5. Contributions to CO2 formation are included for 
methane depending on whether or not the source originates from 
fossil carbon, thus methane from fossil fuel sources has slightly higher 
emissions metric values than that from non-fossil sources.

Table 7.15 | Emissions metrics for selected species: global warming potential (GWP), global temperature-change potential (GTP). All values include carbon 
cycle responses as described in Section 7.6.1.3. Combined GTPs (CGTPs) are shown only for species with a lifetime less than 20 years (Section 7.6.1.4). Note CGTP has units of 
years and is applied to a change in emissions rate rather than a change in emissions amount. The radiative efficiencies are as described in Section 7.3.2 and include tropospheric 
adjustments where assessed to be non-zero in Section 7.6.1.1. The climate response function is from Supplementary Material 7.SM.5.2. Uncertainty calculations are presented 
in Supplementary Tables 7.SM.8 to 7.SM.13. Chemical effects of CH4 and N2O are included (Section 7.6.1.3). Contributions from stratospheric ozone depletion to halogenated 
species metrics are not included. Supplementary Table 7.SM.7 presents the full table.

Species
Lifetime
(Years)

Radiative 
Efficiency 

(W m–2 ppb–1)
GWP-20 GWP-100 GWP-500 GTP-50 GTP-100

CGTP-50 
(years)

CGTP-100 
(years)

CO2 Multiple 1.33 ± 0.16 ×10–5 1. 1.000 1.000 1.000 1.000

CH4-fossil 11.8 ± 1.8 5.7 ± 1.4 ×10–4 82.5 ± 25.8 29.8 ± 11 10.0 ± 3.8 13.2 ± 6.1 7.5 ± 2.9 2823 ± 1060 3531 ± 1385

CH4-non fossil 11.8 ± 1.8 5.7 ± 1.4 ×10–4 79.7 ± 25.8 27.0 ± 11 7.2 ± 3.8 10.4 ± 6.1 4.7 ± 2.9 2675 ± 1057 3228 ± 1364

N2O 109 ± 10 2.8 ± 1.1 ×10–3 273 ± 118 273 ± 130 130 ± 64 290 ± 140 233 ± 110

HFC-32 5.4 ± 1.1 1.1 ± 0.2 ×10–1 2693 ± 842 771 ± 292 220 ± 87 181 ± 83 142 ± 51 78,175 ± 29,402 92,888 ± 36,534

HFC-134a 14.0 ± 2.8 1.67 ± 0.32 ×10–1 4144 ± 1160 1526 ± 577 436 ± 173 733 ± 410 306 ± 119 146,670 ± 53,318 181,408 ± 71,365

CFC-11 52.0 ± 10.4 2.91 ± 0.65 ×10–1 8321 ± 2419 6226 ± 2297 2093 ± 865 6351 ± 2342 3536 ± 1511

PFC-14 50,000 9.89 ± 0.19 ×10–2 5301 ± 1395 7380 ± 2430 10,587 ± 3692 7660 ± 2464 9055 ± 3128
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7.6.2 Applications of Emissions Metrics

One prominent use of emissions metrics is for comparison of efforts 
measured against climate change goals or targets. One of the most 
commonly discussed goals is in Article 2 of the Paris Agreement 
which aims to limit the risks and impacts of climate change by setting 
temperature goals. In addition, the Paris Agreement has important 
provisions which relate to how the goals are to be achieved, including 
making emissions reductions in a  manner that does not threaten 
food production (Article 2), an early emissions peaking target, and 
the aim to ‘achieve a balance between anthropogenic emissions by 
sources and removals by sinks of greenhouse gases in the second half 
of this century’ (Article 4). Article 4 also contains important context 
regarding international equity, sustainable development, and poverty 
reduction. Furthermore, the United Nations Framework Convention 
on Climate Change (UNFCCC) sets out as its ultimate objective, the 
‘stabilization of greenhouse gas concentrations in the atmosphere 
at a level that would prevent dangerous anthropogenic interference 
with the climate system.’

How the interpretation of the Paris Agreement and the meaning of 
‘net zero’ emissions, reflects on the appropriate choice of  metric 

is an active area of research (Schleussner et  al., 2016, 2019; 
Fuglestvedt et al., 2018; Collins et al., 2020). Several possible scientific 
interpretations of the Article 2 and 4 goals can be devised, and these, 
along with emissions metric choice, have implications both for when 
a balance in GHG emissions, net zero CO2 emissions or net zero GHG 
emissions are achieved, and for their meaning in terms of temperature 
outcome (Fuglestvedt et al., 2018; Rogelj et al., 2018; Wigley, 2018). 
In AR6 net zero GHG emissions is defined as the condition in which 
metric-weighted anthropogenic GHG emissions are balanced by 
metric-weighted anthropogenic GHG removals over a specified period 
(see Box  1.4 and Appendix VII: Glossary). The quantification of net 
zero GHG emissions depends on the GHG emissions metric chosen 
to compare emissions and removals of different gases, as well as the 
time horizon chosen for that metric. As the choice of emissions metric 
affects the quantification of net zero GHG emissions, it therefore 
affects the resulting temperature outcome after net zero emissions 
are achieved (Lauder et  al., 2013; Rogelj et  al., 2015; Fuglestvedt 
et al., 2018; Schleussner et al., 2019). Schleussner et al. (2019) note 
that declining temperatures may be a desirable outcome of net zero. 
Rogelj and Schleussner (2019) also point out that the use of physical 
metrics raises questions of equity and fairness between developed and 
developing countries.

Box 7.3 (continued)

If global surface temperature stabilization goals are considered, cumulative CO2 equivalent emissions computed with the GWP-100 
emissions metric would continue to rise when short-lived GHG emissions are reduced but remain above zero (Figure 7.22b). Such 
a  rise would not match the expected global surface temperature stabilization or potential decline in warming that comes from 
a reduction in emissions of short-lived greenhouse gases (Pierrehumbert, 2014; Allen et al., 2018b; Cain et al., 2019; Collins et al., 
2020; Lynch et al., 2020, 2021). This is relevant to net zero GHG emissions goals (Section 7.6.2 and Box 1.4).

When individual gases are treated separately in climate model emulators (Cross-Chapter Box  7.1), or weighted and aggregated 
using an emissions metric approach (such as CGTP or GWP*) which translate the distinct behaviour from cumulative emissions of 
short-lived gases, ambiguity in the future warming trajectory of a given emissions scenario can be substantially reduced (Cain et al., 
2019; Denison et al., 2019; Collins et al., 2020; Lynch et al., 2021). The degree of ambiguity varies with the emissions scenario. For 
mitigation pathways that limit warming to 2°C with an even chance, the ambiguity arising from using GWP-100 as sole constraint 
on emissions of a mix of greenhouse gases (without considering their economic implications or feasibility) could be as much as 
0.17°C, which represents about one-fifth of the remaining global warming in those pathways (Denison et al., 2019). If the evolution 
of the individual GHGs is not known, this can make it difficult to evaluate how a given global multi-gas emissions pathway specified 
only in CO2 equivalent emissions would achieve (or not) global surface temperature goals. This is potentially an issue as Nationally 
Determined Contributions frequently make commitments in terms of GWP-100-based CO2 equivalent emissions at 2030 without 
specifying individual gases (Denison et al., 2019). Clear and transparent representation of the global warming implications of future 
emissions pathways including Nationally Determined Contributions could be achieved either by their detailing pathways for multiple 
gases or by detailing a pathway of cumulative carbon dioxide equivalent emissions approach aggregated across GHGs evaluated 
by either GWP* or CGTP metric approaches (Cain et  al., 2019; Collins et  al., 2020; Lynch et  al., 2021). It should be noted that 
although the Paris Agreement Rulebook asks countries to report emissions of individual GHGs separately for the global stocktake 
(Decision 18/CMA.1, annex, paragraph 38), which can allow the current effects of their emissions on global surface temperature to 
be accurately estimated, estimates of future warming are potentially ambiguous where emissions are aggregated using GWP-100 or 
other pulse metrics.

Although there is significant history of using single-basket approaches, supported by emissions metrics such as GWP-100, in climate 
policies such as the Kyoto Protocol, multi-basket approaches also have many precedents in environmental management, including the 
Montreal Protocol (Daniel et al., 2012). Further assessment of the performance of physical and economics-based metrics in the context 
of climate change mitigation is provided in the contribution of Working Group III to AR6.
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Based on SR1.5 (Allen et al., 2018a), there is high confidence that 
achieving net zero CO2 emissions and declining non-CO2 radiative 
forcing would halt human-induced warming. Based on (Bowerman 
et  al., 2013; Pierrehumbert, 2014; Fuglestvedt et  al., 2018; Tanaka 
and O’Neill, 2018; Schleussner et  al., 2019) there is also high 
confidence that reaching net zero GHG emissions as quantified by 
GWP-100 typically leads to reductions from peak global surface 
temperature after net zero GHGs emissions are achieved, depending 
on the relative sequencing of mitigation of short-lived and long-lived 
species. If both short- and long-lived species are mitigated together, 
then temperatures peak and decline. If mitigation of short-lived 
species occurs much earlier than that of long-lived species, then 
temperatures stabilize very near peak values, rather than decline. 
Temperature targets can be met even with positive net GHG emissions 
based on GWP-100 (Tanaka and O’Neill, 2018). As demonstrated 
by Allen et al. (2018b), Cain et al. (2019), Schleussner et al. (2019) 
and Collins et  al. (2020) reaching net zero GHG emissions when 
quantified using the new emissions metric approaches such as 
CGTP or GWP* would lead to an approximately similar temperature 
evolution as achieving net zero CO2. Hence, net zero CO2 and net zero 
GHG, quantified using these new approaches, would both lead to 
approximately stable contributions to temperature change after net 
zero emissions are achieved (high confidence).

Comparisons with emissions or global surface temperature 
stabilization goals are not the only role for emissions metrics. 
Other important roles include those in pricing approaches where 
policymakers choose to compare short-lived and long-lived climate 
forcers (e.g.,  Manne and Richels, 2001), and in life cycle analyses 
(e.g., Hellweg and Milà i Canals, 2014). Several papers have reviewed 
the issue of metric choice for life cycle analyses, noting that analysts 
should be aware of the challenges and value judgements inherent in 
attempting to aggregate the effects of forcing agents with different 
time scales onto a common scale (e.g., Mallapragada and Mignone, 
2017) and recommend aligning metric choice with policy goals as 
well as testing sensitivities of results to metric choice (Cherubini et al., 
2016). Furthermore, life cycle analyses approaches which are sensitive 
to choice of emissions metric benefit from careful communication of 
the reasons for the sensitivity (Levasseur et al., 2016).
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Frequently Asked Questions

FAQ 7.1 | What Is the Earth’s Energy Budget, and What Does It Tell Us About Climate Change?

The Earth’s energy budget describes the flow of energy within the climate system. Since at least 1970 there 
has been a  persistent imbalance in the energy flows that has led to excess energy being absorbed by the 
climate system. By measuring and understanding these energy flows and the role that human activities play in 
changing them, we are better able to understand the causes of climate change and project future climate change 
more accurately.

Our planet receives vast amounts of energy every day in the form of sunlight. Around a third of the sunlight is 
reflected back to space by clouds, by tiny particles called aerosols, and by bright surfaces such as snow and ice. 
The rest is absorbed by the ocean, land, ice and atmosphere. The planet then emits energy back out to space in 
the form of thermal radiation. In a world that was not warming or cooling, these energy flows would balance. 
Human activity has caused an imbalance in these energy flows.

We measure the influence of various human and natural factors on the energy flows at the top of our atmosphere 
in terms of radiative forcings, where a positive radiative forcing has a warming effect and a negative radiative 
forcing has a cooling effect. In response to these forcings, the Earth system will either warm or cool, so as to 
restore balance through changes in the amount of outgoing thermal radiation (the warmer the Earth, the more 
radiation it emits). Changes in Earth’s temperature in turn lead to additional changes in the climate system 
(known as climate feedbacks) that either amplify or dampen the original effect. For example, Arctic sea ice has 
been melting as the Earth warms, reducing the amount of reflected sunlight and adding to the initial warming 
(an amplifying feedback). The most uncertain of those climate feedbacks are clouds, as they respond to warming in 
complex ways that affect both the emission of thermal radiation and the reflection of sunlight. However, we are 
now more confident that cloud changes, taken together, will amplify climate warming (see FAQ 7.2).

Human activities have unbalanced these energy flows in two main ways. First, increases in greenhouse gas levels 
have led to more of the emitted thermal radiation being absorbed by the atmosphere, instead of being released to 
space. Second, increases in pollutants have increased the amount of aerosols such as sulphates in the atmosphere 
(see FAQ 6.1). This has led to more incoming sunlight being reflected away, by the aerosols themselves and 
through the formation of more cloud drops, which increases the reflectivity of clouds (see FAQ 7.2).

Altogether, the global energy flow imbalance since the 1970s has been just over half a watt per square metre 
of the Earth’s surface. This sounds small, but because the imbalance is persistent and because Earth’s surface is 
large, this adds up to about 25 times the total amount of primary energy consumed by human society, compared 
over 1971 to 2018. Compared to the IPCC Fifth Assessment Report (AR5), we are now better able to quantify 
and track these energy flows from multiple lines of evidence, including satellite data, direct measurements of 
ocean temperatures, and a wide variety of other Earth system observations (see FAQ 1.1). We also have a better 
understanding of the processes contributing to this imbalance, including the complex interactions between 
aerosols, clouds and radiation.

Research has shown that the excess energy since the 1970s has mainly gone into warming the ocean (91%), 
followed by the warming of land (5%) and the melting of ice sheets and glaciers (3%). The atmosphere has 
warmed substantially since 1970, but because it is comprised of thin gases it has absorbed only 1% of the excess 
energy (FAQ 7.1, Figure 1). As the ocean has absorbed the vast majority of the excess energy, especially within 
its top two kilometres, the deep ocean is expected to continue to warm and expand for centuries to millennia, 
leading to long-term sea level rise – even if atmospheric greenhouse gas levels were to decline (see FAQ 5.3). 
This is in addition to the sea level rise expected from melting ice sheets and glaciers.

Understanding the Earth’s energy budget  al.o helps to narrow uncertainty in future projections of climate. 
By testing climate models against what we know about the Earth’s energy budget, we can make more confident 
projections of surface temperature changes we might expect this century and beyond.
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FAQ 7.1 (continued)

FAQ 7.1:  The Earth’s energy budget and climate change
Since at least 1970, there has been a persistent imbalance in the energy flows that has 
led to excess energy being absorbed by different components of the climate system.

Ice

Ocean
Land

3%

91%

Outgoing 
energy

Excess energy accumulating

Less outgoing 
energy due to 

greenhouse gases

Incoming
solar energy

Incoming
solar energy

Stable climate: in balance Today: imbalanced

Atmosphere 1%

5%

FAQ 7.1, Figure 1 | The Earth’s energ y budget compares the fl ows of incoming and outgoing energy that are relevant for the climate 
system. Since at least the 1970s, less energy is fl owing out than is fl owing in, which leads to excess energy being absorbed by the ocean, land, ice and 
atmosphere, with the ocean absorbing 91%.
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Frequently Asked Questions

FAQ 7.2 | What Is the Role of Clouds in a Warming Climate?

One of the biggest challenges in climate science has been to predict how clouds will change in a warming world 
and whether those changes will amplify or partially offset the warming caused by increasing concentrations of 
greenhouse gases and other human activities. Scientists have made significant progress over the past decade and 
are now more confident that changes in clouds will amplify, rather than offset, global warming in the future.

Clouds cover roughly two-thirds of the Earth’s surface. They consist of small droplets and/or ice crystals, which 
form when water vapour condenses or deposits around tiny particles called aerosols (such as salt, dust, or smoke). 
Clouds play a critical role in the Earth’s energy budget at the top of our atmosphere and therefore influence 
Earth’s surface temperature (see FAQ 7.1). The interactions between clouds and the climate are complex and 
varied. Clouds at low altitudes tend to reflect incoming solar energy back to space, creating a cooling effect by 
preventing this energy from reaching and warming the Earth. On the other hand, higher clouds tend to trap 
(i.e., absorb and then emit at a lower temperature) some of the energy leaving the Earth, leading to a warming 
effect. On average, clouds reflect back more incoming energy than the amount of outgoing energy they trap, 
resulting in an overall net cooling effect on the present climate. Human activities since the pre-industrial era 
have altered this climate effect of clouds in two different ways: by changing the abundance of the aerosol 
particles in the atmosphere and by warming the Earth’s surface, primarily as a result of increases in greenhouse 
gas emissions.

The concentration of aerosols in the atmosphere has markedly increased since the pre-industrial era, and this 
has had two important effects on clouds. First, clouds now reflect more incoming energy because cloud droplets 
have become more numerous and smaller. Second, smaller droplets may delay rain formation, thereby making 
the clouds last longer, although this effect remains uncertain. Hence, aerosols released by human activities have 
had a cooling effect, counteracting a considerable portion of the warming caused by increases in greenhouse 
gases over the last century (see FAQ 3.1). Nevertheless, this cooling effect is expected to diminish in the future, as 
air pollution policies progress worldwide, reducing the amount of aerosols released into the atmosphere.

Since the pre-industrial period, the Earth’s surface and atmosphere have warmed, altering the properties of 
clouds, such as their altitude, amount and composition (water or ice), thereby affecting the Earth’s energy budget 
and, in turn, changing temperature. This cascading effect of clouds, known as the cloud feedback, could either 
amplify or offset some of the future warming and has long been the biggest source of uncertainty in climate 
projections. The problem stems from the fact that clouds can change in many ways and that their processes occur 
on much smaller scales than global climate models can explicitly represent. As a result, global climate models 
have disagreed on how clouds, particularly over the subtropical ocean, will change in the future and whether the 
change will amplify or suppress the global warming.

Since the last IPCC Report in 2013 (the Fifth Assessment Report, or AR5), understanding of cloud processes has 
advanced with better observations, new analysis approaches and explicit high-resolution numerical simulation of 
clouds. Also, current global climate models simulate cloud behaviour better than previous models, due both to 
advances in computational capabilities and process understanding. Altogether, this has helped to build a more 
complete picture of how clouds will change as the climate warms (FAQ 7.2, Figure 1). For example, the amount 
of low-clouds will reduce over the subtropical ocean, leading to less reflection of incoming solar energy, and 
the altitude of high-clouds will rise, making them more prone to trapping outgoing energy; both processes 
have a warming effect. In contrast, clouds in high latitudes will be increasingly made of water droplets rather 
than ice crystals. This shift from fewer, larger ice crystals to smaller but more numerous water droplets will 
result in more of the incoming solar energy being reflected back to space and produce a cooling effect. Better 
understanding of how clouds respond to warming has led to more confidence than before that future changes 
in clouds will, overall, cause additional warming (i.e., by weakening the current cooling effect of clouds). This is 
called a positive net cloud feedback.

In summary, clouds will amplify rather than suppress the warming of the climate system in the future, as more 
greenhouse gases and fewer aerosols are released to the atmosphere by human activities.
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FAQ 7.2 (continued)

Altitude (Warming) Amount (Warming) Composition (Cooling)

Fewer (low level) cloudsHigher clouds More water droplets

Incoming 
solar 
energy

Incoming 
solar 
energy

Outgoing
energy

Less incoming energy 
reflected back to space

More incoming energy 
reflected back to space

FAQ 7.2: What is the role of clouds in a warming climate?
Clouds affect and are affected by climate change. Overall, scientists expect clouds to amplify future warming.

Future climatePresent climate Future climatePresent climate Future climatePresent climate

Surface

More outgoing energy 
trapped by clouds

FAQ 7.2, Figure 1 | Interactions between clou ds and the climate, today and in a warmer future. Global warming is expected to alter the altitude 
(left) and the amount (centre) of clouds, which will amplify warming. On the other hand, cloud composition will change (right), offsetting some of the 
warming. Overall, clouds are expected to amplify future warming.
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Frequently Asked Questions

FAQ 7.3 | What Is Equilibrium Climate Sensitivity and How Does It Relate to Future Warming?

For a given future scenario, climate models project a range of changes in global surface temperature. This range 
is closely related to equilibrium climate sensitivity, or ECS, which measures how climate models respond to 
a doubling of carbon dioxide in the atmosphere. Models with high climate sensitivity project stronger future 
warming. Some climate models of the new generation are more sensitive than the range assessed in the IPCC 
Sixth Assessment Report. This leads to end-of-century global warming in some simulations of up to 2°C–3°C 
above the current IPCC best estimate. Although these higher warming levels are not expected to occur, high-ECS 
models are useful for exploring low-likelihood, high-impact futures.

The equilibrium climate sensitivity (ECS) is defined as the long-term global warming caused by a doubling of 
carbon dioxide above its pre-industrial concentration. For a given emissions scenario, much of the uncertainty in 
projections of future warming can be explained by the uncertainty in ECS (FAQ 7.3, Figure 1). The significance 
of equilibrium climate sensitivity has long been recognized, and the first estimate was presented by Swedish 
scientist Svante Arrhenius in 1896.

This Sixth Assessment Report concludes that there is a 90% or more chance (very likely) that the ECS is between 
2°C and 5°C. This represents a  significant reduction in uncertainty compared to the Fifth Assessment Report, 
which gave a 66% chance (likely) of ECS being between 1.5°C and 4.5°C. This reduction in uncertainty has been 
possible not through a single breakthrough or discovery but instead by combining evidence from many different 
sources and by better understanding their strengths and weaknesses.

There are four main lines of evidence for ECS.

• The self-reinforcing processes, called feedback loops, that amplify or dampen the warming in response to 
increasing carbon dioxide are now better understood. For example, warming in the Arctic melts sea ice, 
resulting in more open ocean area, which is darker and therefore absorbs more sunlight, further intensifying 
the initial warming. It remains challenging to represent realistically all the processes involved in these 
feedback loops, particularly those related to clouds (see FAQ 7.2). Such identified model errors are now taken 
into account, and other known, but generally weak, feedback loops that are typically not included in models 
are now included in the assessment of ECS.

• Historical warming since early industrialisation provides strong evidence that climate sensitivity is not small. 
Since 1850, the concentrations of carbon dioxide and other greenhouse gases have increased, and as a result 
the Earth has warmed by about 1.1°C. However, relying on this industrial-era warming to estimate ECS is 
challenging, partly because some of the warming from greenhouse gases was offset by cooling from aerosol 
particles and partly because the ocean is still responding to past increases in carbon dioxide.

• Evidence from ancient climates that had reached equilibrium with greenhouse gas concentrations, such as the 
coldest period of the last ice age around 20,000 years ago, or warmer periods further back in time, provide 
useful data on the ECS of the climate system (see FAQ 1.3).

• Statistical approaches linking model ECS values with observed changes, such as global warming since the 
1970s, provide complementary evidence.

All four lines of evidence rely, to some extent, on climate models, and interpreting the evidence often benefits 
from model diversity and spread in modelled climate sensitivity. Furthermore, high-sensitivity models can provide 
important insights into futures that have a low likelihood of occurring but that could result in large impacts. 
But, unlike in previous assessments, climate models are not considered a line of evidence in their own right in the 
IPCC Sixth Assessment Report.

The ECS of the latest climate models is, on average, higher than that of the previous generation of models 
and also higher than this Report’s best estimate of 3.0°C. Furthermore, the ECS values in some of the new 
models are both above and below the 2°C to 5°C very likely range, and although such models cannot be ruled 
out as implausible solely based on their ECS, some simulations display climate change that is inconsistent with 
the observed changes when tested with ancient climates. A slight mismatch between models and this Report’s 
assessment is only natural because this Report’s assessment is largely based on observations and an improved 
understanding of the climate system.
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FAQ 7.3 (continued)
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FAQ 7.3: Equilibrium climate sensitivity and future warming
Equilibrium climate sensitivity measures how climate models respond to a doubling of carbon dioxide in the atmosphere. 

Climate sensitivity of models

CMIP5 CMIP6 AR6 CMIP5 CMIP6 AR6

Future projections
Climate models from the new generation (  )
are on average more sensitive to carbon dioxide 
than those of the last generation (  )

But projections in 
this assessment
do not solely 
rely on models 

IPCC best 
estimate

(and range)

IPCC best 
estimate

(and range)

1

2

3

3

321 More sensitive 
models
project stronger 
warming

7

6

5

4

3

2

7

6

5

4

3

2

FAQ 7.3, Figure 1 | Equilibrium climate sensitivity and future warming. (left) Equilibrium climate sensitivities for the current generation (Coupled 
Model Intercomparison Project Phase 6, CMIP6) climate models, and the previous (CMIP5) generation. The assessed range in this Report (AR6) is also shown. 
(right) Climate projections of CMIP5, CMIP6 and AR6 for the very high-emissions scenarios RCP8.5, and SSP5-8.5, respectively. The thick horizontal lines 
represent the multi-model average and the thin horizontal lines represent the results of individual models. The boxes represent the model ranges for CMIP5 
and CMIP6 and the range assessed in AR6.
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