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CONFORMALLY INVARIANT BOUNDARY ARCS IN DOUBLE DIMERS

MARCIN LIS, LUCAS REY AND KIERAN RYAN
(with an appendix by Avelio Sepúlveda)

Abstract. We consider two different versions of the double dimer model on a planar do-
main, where we either fold a single dimer cover on a symmetric domain onto itself across the
line of symmetry, or we superimpose two independent dimer covers on two, almost identical,
domains that differ only on a certain portion of the boundary. This results in a collection
of loops and doubled edges that, unlike in the classical double dimer case of Kenyon, are
accompanied by arcs emanating from the line of symmetry or the chosen portion of the
boundary. We argue that these arcs together with the associated height function satisfy a
discrete version of the coupling of Qian and Werner between the Arc loop ensemble (ALE)
and two different variants of the Gaussian free field (with Dirichlet and Neumann boundary
conditions). We also show that certain statistics of the arcs (when the loops are disregarded
from the picture) converge to conformally invariant quantities in the small-mesh scaling
limit, and moreover the limits are the same for the two versions of the model, and equal
to the corresponding statistics of the arc loop ensemble (ALE). This gives evidence to the
conjecture of [7] (that concerns one of these models).

1. Introduction

Motivation. We consider two different but closely related versions of the double dimer
model defined on planar graphs, that give rise not only to a collection of loops and doubled
edges as in the original work of Kenyon [17] but also to a collection of arcs emanating from
and ending at a chosen piece of the boundary (see Figure 1). These arcs are a new feature
of the model that does not appear in the original double dimers, and our main goal is to
study their statistics (when the loops are disregarded from the picture). One of these two
constructions was described in [7], where a conjecture about the scaling limit of the arcs
was stated claiming that the full collection of arcs should converge to the so-called arc loop
ensemble (ALE) introduced by Aru, Sepúlveda and Werner in [4]. Here we develop the
methods of [17] to fit this setup and use them to give (partial) evidence for this conjecture.
To be precise, we compute the scaling limits of certain observables of the arcs themselves, and
they turn out to be conformally invariant and agree with the analogous quantities defined
directly for the ALE.

Our motivation (outside of the dimer model) comes from the theory of the continuum
Gaussian free field (GFF) and its level sets. The GFF with Dirichlet boundary conditions
in a domain D is a Gaussian field whose covariance kernel is given by the Green’s function
g(x, y) of Brownian motion in the domain with Dirichlet boundary condition. In this article
we assume that the Green’s function is normalised so that g(x, y) ∼ (−2π)−1 log |x − y|
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as x → y in the interior of the domain. We are guided by the construction of Qian and
Werner [19] who coupled two different versions of the GFF, with Dirichlet and Neumann
(free) boundary conditions (we refer the reader to [19] for a definition of the latter), through
a common set of level lines that form an ALE.

Even though the GFF is not a function, but only a generalised function (a Schwartz
distribution acting on test functions), a beautiful theory of its level sets has been developed
in recent years [4, 3, 2]. An important notion in this geometric representation of the GFF is

that of the two-valued sets A−a,b, where a, b > 0, a + b ≥ 2λ, and where λ =
√
π/8 is the

constant appearing in the height-gap phenomenon of Schramm and Sheffield [21]. Formally
they are thin local sets in the sense of [4] whose associated harmonic function takes only two
values −a and b. Heuristically they are random sets naturally coupled with the GFF that
could be seen as sets of those points in D that are connected to ∂D by a path on which the
values of the field (which is not defined pointwise) lie between −a and b. The ALE is then
the set of arcs given by the (restriction to D of the) connected components of A−λ,λ. In [19]
a surprising coupling between the ALE and two different types of the GFF was given. In this
construction, the Dirichlet GFF (with zero boundary conditions) changes its value by ±2λ
across the arcs of the ALE in a deterministic and alternating fashion, whereas the Neumann
(free boundary condition) GFF changes its value by ±2λ in an i.i.d. fashion.

Discrete models and couplings. In this article we consider a set of discrete arcs in two
different but related versions of double dimers that satisfy an analogous coupling when consid-
ered together with the associated height function (that is known to converge to the Gaussian
free field in a variety of settings [16, 20, 6, 14]). To be precise, recall that the dimer model
is a random perfect matching (which in the setting of this work is chosen uniformly at ran-
dom) of a finite graph. We will assume that the graph is a finite connected subgraph of the
rescaled square lattice ϵZ2 that is symmetric across the real line, and whose restriction to
the upper half-plane approximates a simply connected continuum domain U . We will denote
such graphs by Gr

ε .

In the first setup, referred to as folded dimers, that corresponds to the Neumann GFF
in the coupling of [19], we consider the dimer model on Gr

ε , and fold the resulting perfect
matching along the real line as in Fig. 1. This results in a collection of loops, doubled edges,
and arcs starting and ending on the real line. The associated height function on the faces of
the folded graph can be defined (up to a global additive constant) by assigning orientations
to each dimer in the folded dimer cover: each dimer coming from the top half of Gr

ε is oriented
from a black to a white vertex (in a fixed bipartite colouring of the lattice), and each dimer
coming from the bottom half is oriented from a white vertex to a black vertex. This results
in a consistent orientation of each loop and arc, and finally one declares that the increment of
the height function from a face u to a neighbouring face is +1 (resp. −1) if there is a loop or
an arc separating the two faces such that u lies on the left-hand (resp. right-hand) side of the
oriented dimer in the loop or arc. Note each loop and arc can be oriented in the two possible
ways with equal probability and independently of other loops and arcs. This corresponds to
the increment of the height function being ±1, and is analogous to the coupling of Qian and
Werner between the ALE and the GFF with mixed Neuman/Dirichlet boundary conditions.

One can see that the height function in this setting does indeed converge to the continuum
GFF with mixed Neuman/Dirichlet boundary conditions. Indeed, it is known from the orig-
inal work of Kenyon [16] (and more recent generalisations [20, 6]) that if the dimer model on
Gr
ε has Temperleyan boundary conditions (which we assume to be the case in our arguments
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U U

Figure 1. Left: a (partial) dimer cover of Gr
ε is represented in red, and

the lower part is folded on the upper part in dotted red. A folded dimer
configuration appears on the upper part: loops and arcs alternate between
full red and dotted red. The graph Gr

ε has Temperleyan boundary conditions:
all its corners are black squares, and one of the black squares on the boundary
(in this case on the right-hand side of the intersection with the real line) is
removed. Right: (partial) dimer covers of Gr

ε ∩ R × R≥0 and Gr
ε ∩ R × R<0

are represented in solid red. The lower part is superimposed on the upper
part in dotted red. A superimposed configuration appears on the upper part:
loops and arcs alternate between full red and dotted red. The upper part
has again Temperleyan boundary conditions, and the lower part has piecewise
Temperleyan boundary conditions with two white bullet corners.
The sets of vertices W0 and B0 are represented by white and black bullets,
W1 and B1 are represented by white and black squares.

as is shown in Fig. 1 and Fig. 11), then the centered height function of the dimer model on
Gr
ε , multiplied by 2λ to match the height gap across the continuum level lines, converges as
ε → 0 to 1/

√
2 times the Dirichlet GFF in the symmetric domain U r whose restriction to

the upper half plane is U (i.e. U r = U ∪ Ū ∪ (∂U ∩ {0} × R)). We note that here we take
into account the fact that the height function of a single dimer model defined in [16] is 4
times the height function we are using in this article. From this definition it is clear that
the expectation of the height function on Gr

ε is antisymmetric across the real line, and that
the height function at a face u in the folded dimer model is by definition equal to the sum
of the height functions at u and at its reflection ū in the single dimer model on Gr

ε . Since
the continuum GFF in U with Neumann boundary conditions on the real line and Dirichlet
boundary conditions on the rest of ∂U can be obtained in the same way from 1/

√
2 times

the Dirichlet GFF in U r (as e.g. described in [19, 7]), we can conclude that 2λ times the
height function defined by the discrete loops and arcs converges to exactly the same GFF
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with mixed boundary conditions as in the coupling of [19].

In the second setup, we first remove the row of vertical edges of Gr
ε just below the real

line (see Fig. 1) and then repeat the folding procedure as in the first setup. This results in
a number of differences compared to the previous case. The first one is that now the arcs
emanating from the real line cannot have arbitrary orientations. Indeed, one quickly realises
that due to parity reasons the arcs must deterministically alternate in orientation – just as
in the part of the coupling in [19] concerning the Dirichlet GFF. Moreover, after the removal
of edges the graph splits into two connected components Gr

ε ∩ R × R≥0 and Gr
ε ∩ R × R<0.

One can check that the the upper component has again Temperleyan boundary conditions,
whereas the lower one has piecewise Temperleyan boundary conditions (see Fig. 1) intro-
duced by Russkikh [20], who proved convergence of 2λ times the centered height function
to 1/

√
2 times the Dirichlet GFF. Later Berestycki and Liu showed [8, Theorem 5.1] that

the mean of 2λ times the height function converges to a harmonic function with piecewise
constant boundary conditions with alternating jumps of size ±λ located at the points of the
Temperleyan corners (in our case these are the two extremities of ∂U ∩ {0}×R) plus a term
that involves the winding of the boundary of U . Since U and Ū have opposite windings of
the boundary, they cancel out when the two height functions are added, and we can conclude
that the mean of 2λ times the height function of the superimposed configuration converges to
the harmonic function in U with λ boundary conditions on ∂U ∩{0}×R and zero elsewhere.
Since the sum of two independent fields that are both 1/

√
2 times the Dirichlet GFF (coming

from the upper and lower domains) is (1 times) the Dirichlet GFF, we can conclude that 2λ
times the height function of our model converges to the corresponding field described in [19],
i.e. a GFF in U with boundary conditions equal to λ on ∂U ∩ {0} × R and zero on the rest
of ∂U .

We conjecture (on top of the conjecture of [7] that concerns the first model) that the
arcs in both models converge to the ALE in U (emanating from ∂U ∩ {0} × R as in [19]).
This is strongly evidenced by the discussion above. However, convergence of the height
function is known not to be enough to conclude convergence of interfaces in the double dimer
model [17, 13, 5]. Finally let us mention that the two models yield different measures in
the discrete setting, when one forgets the orientation of loops and arcs. Indeed, in the first
model each nontrivial arc (that is not a single edge) comes with a combinatorial factor of
two corresponding to the two different orientations, and it comes with a factor of one in the
second model. The number of nontrivial arcs is not constant (unlike the number of all arcs)
and hence the measures are different. Nonetheless we conjecture that the two collections of
arcs have the same scaling limit.

Main results. The main observables of interest in both models will be nε(z) – the number
of arcs that surround a point z, i.e. arcs that separate z from the part of the boundary with
no arcs ∂U \ {0}×R, and oε(z) – the parity of nε(z). Our main result can be summarised as
follows.

Theorem 1.1. In both models, as ε→ 0 the laws of nε(z) and oε(z) converge in distribution
to random variables n(z) and o(z) whose laws are independent of the model and moreover
are conformally invariant.

We refer to Theorem 3.4 and Corollary 3.5 for the general statements, and to Example 3.7
for a particular example of the infinite strip U r = [−∞,+∞]× [−π/2, π/2].
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Moreover we give integral representations of the moments of nε(z), and compute its mean
explicitly. In particular, on the infinite strip we show that, as ε→ 0,

Eε[nε(z)] →
1

4
− y2

π2
− 2

π2
ln(sin(y)),

which agrees with the mean of the same random variable defined directly for the ALE (as
computed by Avelio Sepúlveda in Appendix A). We note that our methods could be extended
to analyse the distribution of the number of arcs separating two chosen points in the domain.

One of the main conceptual difficulties in approaching the problem of studying the arcs
themselves is the issue of separating the loops from the arcs in the counting arguments. This is
achieved by developing a novel Kenyon’s formula for double dimers with arcs, and afterwards
choosing the right weights (or more precisely SL(2) connections) in this formula. Afterwards
an involved analysis of the scaling limit of the formula by means of discrete complex analysis
techniques is required.

We note that the works [17, 13, 5] study multi-point functions of topological observables in
the double dimer model. Basok and Chelak [5] showed that these observables contain enough
information to identify the law of the loops. In our case, the fact that we want to disregard all
the loops from the picture restricts greatly the number of useful topological observables, and
we can only treat the one-point (or two-point) function. However, it will be very interesting
to develop the methods of [17, 13, 5] to study the full collection of both arcs and loops, that
(based on the conjecture of Kenyon [17]) and our conjectures should converge to the ALE
with an independent CLE4 in its complement.

Organisation of the article.

• In Sect. 2 we give a new combinatorial interpretation and also generalise Kenyon’s
formula for double dimers from [17] to the setting that includes arcs. We note that
such formulas can also be obtained from the independent work of Douglas, Kenyon
and Shi [12] who studied n-multiwebs on planar graphs.

• In Sect. 3 we define the two versions of the model described above, and state the main
result (Theorem 3.4) for both of them.

• In Sect. 4 we prove the main theorem in the folded dimers model.
• In Sect. 5 we prove the main theorem in the shifted dimers model (we elaborate on
the differences with the proof in Sect. 5).

• In Sect. 6, we consider a case of a symmetric domain with two pieces of the boundary
from which the arcs emanate, and we compute explicitly the distribution of the arcs
that connect the two boundary pieces together.

• In App. A (due to Avelio Sepúlveda) a continuum computation of the expected num-
ber of arcs in ALE surrounding a point is presented.

• In App. B, we recall the asymptotic estimates of the inverse Kasteleyn matrix for the
dimer model in Temperleyan domains obtained by Kenyon in [15]. We detail some
arguments concerning the behaviour near the boundary.

• In App. C, we recall the extension of the results of App. B to piecewise Temperleyan
domains obtained by Russkikh in [20]. We also explain how to write the limit in
terms of the conformal invariant quantities that are useful to us in folded domains.

Acknowledgements. The authors extend their warm thanks to Avelio Sepúlveda for his
contribution of Appendix A. ML and LR thank Misha Basok for useful discussions during the
program Geometry, Statistical Mechanics, and Integrability at IPAM, UCLA. ML and KR
were supported by the FWF Standalone grant Spins, Loops and Fields P 36298 and the SFB
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2. Kenyon’s formula

2.1. Setup and formula. We begin with some definitions. Let G = (V,E) be a finite, con-
nected, bipartite, planar graph. Its vertices V are partitioned into white and black vertices.
Let ∂ be a strict subset of the vertices incident to the external face of G, which contains
the same number of black and white vertices. We form a graph G× which can be described
as taking two copies of G, identifying the vertices in the two copies on ∂, and then adding
“diagonal” edges which join a vertex u in one copy of G to a vertex v in the other copy,
whenever u and v form an edge in G. One can think of the two copies of G being “folded”
together along ∂.

Formally, we write G× = (V ×, E×) for the graph with vertex set V × := ∂∪((V \∂)×{1, 2}),
and edge set E× given by edges:

• {(u, i), (v, j)} for all i, j = 1, 2 and u, v ∈ V \ ∂ such that {u, v} ∈ E;
• {(u, i), w} for all i = 1, 2 and u ∈ V \ ∂, w ∈ ∂ such that {u,w} ∈ E;
• {w,w′} for all w,w′ ∈ ∂ and {w,w′} ∈ E.

This graph is also bipartite, and we define the colour (white or black) of (u, i) as the colour
of u. We denote by p the projection from G× onto G: for all u ∈ V × ∩ ∂, p(u) = u, for all
(u, i) ∈ V ×, p(u, i) = u ∈ V and for all {x, y} ∈ E×, p({x, y}) = {p(x), p(y)} ∈ E.

A dimer configuration on G× is a set of edges m ⊂ E× such that every vertex in V × is
incident to exactly one edge in m. The projection of a dimer configuration m is the set of
edges p(m) ⊂ E obtained by projecting all edges of m. In the case ∂ = ∅, the projection of a
dimer configuration on G× is a configuration of disjoint closed loops and double edges on G:
it is a double dimer configuration. In the case ∂ ̸= ∅, the projection of a dimer configuration
on G× is a configuration of disjoint closed loops, double edges, and also paths from ∂ to ∂,
which we call arcs (the arcs can be of length 1). Let Ω denote the set of such configurations
of loops, double edges, and arcs on G.

Let Φ be some SL2(C) connection on the bulk of G. That is, Φ assigns each directed edge
uv (u, v ∈ V \∂) a matrix ϕu,v ∈ SL2(C), such that ϕv,u = ϕ−1

u,v. For a loop C = {e1, . . . , e2n}
in G, define the monodromy of Φ around C, ϕC to be the product ϕe1 ◦ · · · ◦ ϕe2n . Note this
depends on the choice of e1 and the orientation or the loop; tr(ϕC), however, does not. For
an edge {u,w} with w ∈ ∂ and u ∈ V \ ∂, let ψ{u,w} ∈ C2. Fix some basis of each copy of C2

so that each ϕv,u can be written as a matrix, and each ψ{u,w} as a column vector.
We say a set of Kasteleyn phases on the edges of a bipartite, planar graph G is a function

ξ : E → C with |ξe| = 1 for all e ∈ E, such that for every simple loop of edges e1 . . . e2n in G,
one has

ξe1ξe3 · · · ξe2n−1

ξe2ξe4 · · · ξe2n
= (−1)n+1. (1)

It is well known that such phases exist (see for example Theorem 4.1 of [10]) and in fact can
be taken to be real i.e. signs ±1 on the edges. One can show that (1) holds for all loops
surrounding an even number of vertices. Moreover if one replaces ξx,y by ε(x)ε(y)ξx,y for
some function ε : V → {±1}, the new phases are also a set of Kasteleyn phases: this is called
a gauge transform. Let ∂̄ be a connected, strict subset of the boundary vertices, with ∂ ⊂ ∂̄.
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By using a guage transform, one can assume that the phases on the boundary edges (incident
to the external face) alternate between +1 and −1 in ∂̄. We fix such real phases ξ for the
rest of this section.

We assign weights ν(e) to the (undirected) edges of G× as follows. If {(u, i), (v, j)} is some
edge in the bulk of G×, with u white and v black, let ν{(u,i),(v,j)} := (ϕu,v)i,j , (the i, j entry
of ϕu,v. If w ∈ ∂ and (u, i) is adjacent to w but not in ∂, we set ν{(u,i),w} = (ψ{u,w})i. If
w,w′ ∈ ∂ then let ν{w,w′} = 1. Let K be an antisymmetric matrix whose rows and columns

are indexed by vertices of G×, defined as follows. For x, y ∈ V × with x white and y black,
let

Kx,y = ξp(x),p(y)νx,y,

and let Ky,x = −Kx,y, where ξ are the Kasteleyn phases.

We assign an ordering to V × which will be used in the Pfaffian of Proposition 2.1. Let
the ordering be: first the boundary vertices, ordered as they appear clockwise in ∂, then the
white vertices in some order such that each (u, 1) is directly followed by (u, 2), and then the
black vertices, again in some order such that (v, 1) is directly followed by (v, 2). We can write

our assumption that the Kasteleyn phases alternate on the boundary as ξw,b = (−1)1{w>b}

for all edges linking two vertices of ∂.
A set of Kasteleyn phases satisfying this hypothesis is depicted in Figure 2, where ∂ = ∂̄

is the set of edges on the x-axis.

Proposition 2.1. [Kenyon’s formula] We have that

PfK =
∑
ω∈Ω

∏
loops C

tr(ϕC)
∏

arcs A

ψ⊺
wA
ϕAψbA , (2)

where ϕC is the monodromy of the connection Φ around the loop C, bA (resp. wA) is the black
(resp. white) endpoint of the arc A (note that the two endpoints of each arc have different
colours), and if e1, . . . , ek are the bulk edges of A ordered towards bA, ϕA = ϕe1 · · ·ϕek . When
an arc is a single edge e, we interpret the factor corresponding to it as νe = 1.

Remark 2.2. We note an independent work of Douglas, Kenyon and Shi [11, Theorem
4.1] considers similar interpretations of double dimers as in our proof of this result.

Remark 2.3. A version of the proposition above also holds for other Kasteleyn phases ζ
(in particular complex ones) if they can be obtained from the real weighting ξ above by a
gauge transformation ζu,v = ε(u)ε(v)ξu,v, for some ε : V → C. This corresponds, for each
u ∈ V , to multiplying the row and column of K corresponding to (u, 1) and (u, 2) (or just u
if u ∈ ∂) by ε(u), which multiplies the Pfaffian by ε(u)2 (or ε(u) if u ∈ ∂). One then obtains
the right hand side of the proposition, multiplied by the scalar

∏
u∈V \∂ ε

2(u)
∏

u∈∂ ε(u).

Recall that the usual complex Kasteleyn phases adapted to discrete holomorphy for Z2 are
given by

ζb,w = b− w (3)

(thinking of b, w ∈ C), that is, at each white vertex, the weights of the four adjacent edges
starting at the right-going edge and proceeding anticlockwise are 1, i,−1,−i respectively.
Using the gauge function ε(u) = (−i)1{u has odd vertical coordinate}(−1)1{u is white}, and the real
Kasteleyn phases ξ depicted in Figure 2, ζu,v := ε(u)ε(v)ξu,v are the Kasteleyn phases of
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-1-1 -1 -1

-1 -1 -1 -1

-1-1 -1 -1

-1-1

-1

-1-1

-1-1

-1

-1-1

-1 -1 -1 -1

-1 -1 -1 -1

-1 -1 -1 -1

(0, 0)

-1 -1 -1 -1

Figure 2. An example of a graph G, where we take ∂ = ∂ to be the edges
on the x-axis, and real Kasteleyn weights ξ which alternate in sign along ∂
as ξw,b = (−1)1{w>b}, where the ordering on ∂ increases clockwise. (We only
write the −1 phases in the diagram for clarity; the rest are 1).

discrete holomorphy of Equation (3). Remark 2.3 gives us the corollary of Proposition 2.1
which we will use in the following sections.

Corollary 2.4. Let G have the conditions from the above, and be a simply connected
subgraph of the upper half of Z2. Then (2) holds with K defined using the Kasteleyn phases
ζ (up to a global gauge factor of modulus 1).

2.2. Proof of Kenyon’s formula. We use the following formula for a Pfaffian. Place the
vertices of G× clockwise around the edge of a disc D, in the ordering given above. For a
pairing π of the vertices, draw curves in D connecting each of the pairs, producing a set of
intersecting curves Dπ. Define k(π) to be the number of crossings of these curves. The value

of k(π) depends on how one draws the curves, but (−1)k(π) does not. Then

PfK :=
∑
π

(−1)k(π)
∏
xy∈π
x<y

Kx,y, (4)

where the sum is over all pairings of indices (in our case, the indices are vertices of G×).

In particular, if the pairing π is given by a dimer configuration m on G×, (−1)k(m) is well
defined.

Recall that p projects from G× to G. By extension, p projects a dimer configuration on G×

to a configuration p(m) := ω on G of disjoint loops (which can be of length 2) and arcs from
∂ to ∂ (which can be of length 1). We write Ω for the set of all possible such configurations
ω. A dimer configuration m is then specified by ω = p(m), along with a certain list of indices
coming from the two copies for each loop, double edge and arc in ω. The first part of the
proof, Lemma 2.5, writes (−1)k(m) in terms of these loops, arcs, and indices.
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Let us make this precise. A configuration ω is a set of disjoint loops C and arcs A. Take
a loop of length 2 (a doubled edge) in ω, located on some edge e = {u, v} with u white
and v black. Take an index ie ∈ {1, 2}. One then has (part of) the corresponding dimer
configuration, given by the edges {(u, 1), (v, 1)} and {(u, 2), (v, 2)} if ie = 2 and {(u, 1), (v, 2)}
and {(u, 2), (v, 1)} if ie = 1.

For a loop C in ω of length larger than 2, label its vertices u1, v1, . . . , uk, vk in counter-
clockwise order round the loop, where vi are all black, ui all white (See Figure 3). Let
i1, j1, . . . , ik, jk ∈ {1, 2}. The dimer configuration corresponding to this list of indices is: for
each pair ul, vl, let the edge {(ul, il), (vl, jl)} be in the configuration, and for each pair vl, ul+1,
let the edge {((vl, 3− jl), (ul+1, 3− il+1)} be in the configuration. See Figure 4. In the figure,
the vertices on the upper row are (u1, 2), (v1, 2), (u2, 2), etc. The vertices below those are
the same but with second coordinate equal to 1. The two dashed edges are the same edge.

(u1, 1)

(u1, 2)

(v1, 1)

(v1, 2)

(u2, 1)

(u2, 2)

(v2, 1)

(v2, 2)

(u3, 1)

(u3, 2)

(v3, 1)

(v3, 2)

Figure 3. The vertices of G× in a loop, with all the edges of G× joining
them.

(u1, i1)

(v1, j1) (u2, i2) (v2, j2)

(u3, i3)

(v3, j3)

Figure 4. The vertices and edges of G× in a loop.

For an arc A in ω, label its vertices along the arc bA, u1, v1, . . . , uk, vk, wA, where ui and
wA are all white, vi and bA all black (see Figure 5. Then let r1, s1, . . . , rk, sk ∈ {1, 2}. The
dimer configuration corresponding to this list of indices is defined as in a loop, plus the two
edges {bA, (u1, 3 − r1)} and {(vk, 3 − sk), wA}. See Figure 6. An arc of length 1 needs no
indices, as there is just one (boundary) edge in G× that can produce it.

(u1, 1)

(u1, 2)

(v1, 1)

(v1, 2)

(u2, 1)

(u2, 2)

(v2, 1)

(v2, 2)

(u3, 1)

(u3, 2)

(v3, 1)

(v3, 2)

bA wA

Figure 5. The vertices in G× in an arc, with all the edges of G× joining
them.

Using this notation for a dimer configuration, we have the following lemma.
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(u1, r1)

(v1, s1) (u2, r2)

(v2, s2) (u3, r3)

(v3, s3)

bA wA

Figure 6. The vertices and edges in G× in an arc.

Lemma 2.5. Let m be a dimer configuration on G×, written as ω = p(m) and a list of
indices as above for each loop, doubled edge and non-trivial arc. Then

(−1)k(m) =
∏

doubled edges e

(−1)ie
∏

cycles C

(−1)1+i1+j1+···+ik+jk

×
∏

non trivial arcs A

(−1)r1+s1+···+rk+sk(−1)1{bA>wA},

where the inequality in the final exponent is the order on the vertices of G×.

Proof. Let m be a dimer configuration on G×, and let Dm be the intersecting curves given by
m as described above. The vertices of G× are arranged clockwise on the boundary of a disc
D according to the order <, and each pair of vertices in an edge of m are joined by a curve
in Dm. Recall k(m) is the number of crossings of these curves. One can permute the pairs

of bulk vertices (v, 1), (v, 2) with each other in Dm and preserve (−1)k(m). For example, if
the vertices (v, 1), (v, 2), (u, 1), (u, 2) appear consecutively on the boundary of Dm, permuting

them so they appear in the order (u, 1), (u, 2), (v, 1), (v, 2) preserves (−1)k(m). We will use
this property several times in the rest of the proof. The curves connecting these vertices now
only cross each other and no other curve in Dm, as the vertices are consecutive.

Let e = (u, v) a doubled edge in ω = p(m) with u white and b black. Using the per-
muting operation described above, one can permute the vertices of Dm so that the vertices
of p−1(e) appear consecutively, in the order (u, 1), (u, 2), (v, 1), (v, 2). Now the two curves
in Dm corresponding to the two edges in m projecting on e do not cross the other curves,
and they cross each other once if and only if ie = 1, hence the contribution to (−1)km is (−1)ie .

Let C = (u1, v1, . . . , uk, vk) be a loop in ω = p(m). Using the permuting operation de-
scribed above, one can permute the vertices of Dm so that the vertices of p−1(C) appear
consecutively, in the order: (u1, 1), (u1, 2), (u2, 1), (u2, 2), . . . , (uk, 1), (uk, 2), (vk, 1), (vk, 2),
(vk−1, 1), (vk−1, 2), . . . , (v1, 1), (v1, 2). See Figure 8, in which the ordering starts at (u1, 1)
and proceeds clockwise. The curves connecting these vertices now only cross each other in
Dm, and not other curves, as the vertices are consecutive. Write km,C for the number of
these crossings. We claim that

(−1)km,C = (−1)1+i1+j1+···+ik+jk . (5)

Let m0 be a dimer configuration such that on the loop C, it takes the values il = jl = 2
for all l = 1, . . . , k. This configuration has no diagonal edges in C; see Figure 7.

One sees that (−1)1+i1+j1+···+ik+jk = −1 in this case. Meanwhile, the portion of Dm0

corresponding to C can be drawn as:
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(u1, i1) (v2, j2) (uk, ik)(v1, j1) (u2, i2) (vk, jk)

· · ·

· · ·

Figure 7. The dimer configuration m0.

(u1, 1) (u2, 2) (uk, 1)(u1, 2) (u2, 1) (uk, 2)

· · ·

· · ·

(v1, 2) (v2, 2) (vk, 1)(v1, 1) (v2, 1) (vk, 2)

Figure 8. The vertices and edges of m0 arranged in some part of Dm0 ; the
ordering of the vertices here is given by <.

and one can see that there are exactly 2k − 1 crossings, hence km0,C = −1, and (5) holds.
Note that in Figure 8 the vertices are ordered in Dm0 according to <, whereas in Figure 7
they are arranged as in G×.

Now let m be some dimer configuration with some loop C in p(m), and let v be some
vertex in C. Let m′ be the same as m, with the edges incident to (v, 1), (v, 2) swapped - that
is, the edges {x, (v, 1)}, {(v, 2), y} changed to {x, (v, 2)}, {(v, 1), y)}. This changes the sum
i1+ j1+ · · ·+ ik + jk by exactly 1. Meanwhile, the swapping changes the number of crossings
km,C by exactly 1. Hence the equation (5) holds for m′ if it holds for m. Inductively, (5)
holds for all dimer configurations m and all loops C of m.

Let us turn now to arcs. Let m be a dimer configuration, and A an arc of ω = p(m). As
with loops, we can permute the bulk (non-boundary) vertices of p−1(A) in the graph Dm so
that they are consecutive, and in the same order as described above with a loop, without
changing (−1)k(m). The curves between these bulk vertices in Dm can now only cross each
other. The curves in Dm incident with bA and wA (the boundary vertices of A) may still
cross the bulk curves of A (and the curves of other arcs). Assume that A is non trivial and
let km,A be the number of crossings in Dm between curves connecting vertices of p−1(A). We
will show that km,A satisfies

(−1)km,A = (−1)r1+s1+···+rk+sk(−1)1{bA>wA}. (6)

Recall that the ordering of the boundary vertices in Dm is the order they appear on the
boundary of G. Taking m0 analogously to above, with rl = sl = 2 for all l = 1, . . . , k, we can
draw the portion of Dm0 corresponding to A as:

The case drawn is the case where wA < bA, and there are 2k − 1 crossings. In the case
wA > bA, the positions of wA and bA are exchanged, and there is exactly one more crossing.
Hence (6) holds. By the same inductive argument as used for loops above, (6) holds for all
dimer configurations m and all arcs A in ω = p(m).
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(u1, 1) (u2, 2) (uk, 1)(u1, 2) (u2, 1) (uk, 2)

· · ·

· · ·

(v1, 2) (v2, 2) (vk, 1)(v1, 1) (v2, 1) (vk, 2)

bA

wA

Figure 9

It remains to count the crossings between curves corresponding to different arcs (including
trivial arcs). We claim that this number is always even. Indeed, in G, arcs are planar and
non-crossing. The curves for each arc in Dm can be seen as a deformation of the actual arcs
in G, obtained by identifying the bulk vertices of each arc A (using the fact that we can
permute these vertices out of the way as above), and then deforming. Deforming the arcs

in this way does not change (−1)k(m), so the number of crossings produced must be even.
Taking this result, (5) and (6) together, one obtains the lemma.

□

Proof of Proposition 2.1. We have that

PfK =
∑
m

(−1)k(m)
∏

xy∈m
x<y

Kx,y

=
∑
ω∈Ω

∑
m∈p−1(ω)

(−1)k(m)
∏

doubled edges e

∏
xy∈e
x<y

Kx,y

∏
loops C

∏
xy∈C
x<y

Kx,y

∏
arcs A

∏
xy∈A
x<y

Kx,y

=
∑
ω∈Ω

∑
indices

∏
doubled edge e

(−1)ie
∏
xy∈e
x<y

Kx,y

∏
loops C

(−1)1+i1+···+jk
∏
xy∈C
x<y

Kx,y

∏
trivial arcs A

∏
xy∈A
x<y

Kx,y

∏
non−trivial

arcs A

(−1)r1+s1+···+rk+sk+1{bA>wA}
∏
xy∈A
x<y

Kx,y,

(7)

where the sum over “indices” is the sum over choices of indices i for doubled edges, i1, j1, . . . , ik, jk
for loops and r1, s1, . . . , rk, sk for arcs, respectively, and the second equality uses Lemma 2.5.
First of all, for a doubled edge e = {u, v},∑

ie=1,2

(−1)ie
∏
xy∈e
x<y

Kx,y = K(u,1),(v,1)K(u,2),(v,2) −K(u,1),(v,2)K(u,2),(v,1) = det(ϕe) = 1.

For a trivial arc A = wAbA,∏
xy∈A
x<y

Kx,y = (−1)1{wA>bA}ξwA,bAνwA,bA = νwA,bA = 1,

by the assumption on the Kasteleyn phases.
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Now, for a loop C, we show that∑
i1,j1,...,ik,jk

(−1)1+i1+···+jk
∏
xy∈C
x<y

Kx,y = (−1)
|C|
2 tr(ϕC), (8)

where, recall, ϕC is the monodromy of the connection Φ around the loop C, and by |C| we
mean the number of edges in C. Recalling that in the ordering of vertices, all white vertices
are before all black vertices, the product on the left hand side is∏
xy∈C
x<y

Kx,y = K(u1,i1),(v1,j1)K(u2,3−i2),(v1,3−j1)K(u2,i2),(v2,j2) · · ·K(uk,ik),(vk,jk)K(u1,3−i1),(vk,3−jk)

=

 ∏
xy∈C
x<y

ξx,y

 (ϕu1,v1)i1,j1(ϕu2,v1)3−i2,3−j1 · · · (ϕuk,vk)ik,jk(ϕu1,vk)3−i1,3−jk .

We now use that for matrices ϕ ∈ SL2(C), ϕ3−i,3−j = (−1)i+jϕ−1
j,i , which one can verify

by hand. We replace each factor (ϕul+1,vl)3−il+1,3−jl with (−1)jl+il+1(ϕvl,ul+1
)jl,il+1

, and the
above becomes: ∏

xy∈C
x<y

ξx,y

((−1)i1+···+jk
)
(ϕu1,v1)i1,j1(ϕv1,u2)j1,i2 · · · (ϕuk,vk)ik,jk(ϕvk,u1)jk,i1 .

Now the factor (−1)i1+···+jk in the above cancels with the same factor on the left hand side
of (8), and the sum over all i1, j1, . . . , ik, jk produces the trace. The product of factors ξe

around a loop C is (−1)
|C|
2 +1 by the Kasteleyn phases; the +1 in this exponent cancels with

the remaining factor −1 in the left hand side of (8). Hence (8) holds.

It remains to prove the analogous formula for arcs:∑
r1,s1,...,rk,sk

(−1)r1+s1+···+rk+sk+1{bA>wA}
∏
xy∈A
x<y

Kx,y = (−1)
1
2 (|A|−1)ψ⊺

wA
ϕAψbA , (9)

where by |A| we mean the number of edges in A, and where, recall, ϕA is the product of the
connection along the bulk edges of A, directed towards bA. The proof is very similar to the
loop case. We obtain:

∏
xy∈A
x<y

Kx,y =

 ∏
xy∈A
x<y

ξx,y

 (ψbA,u1)3−r1(ϕu1,v1)r1,s1(ϕu2,v1)3−r2,3−s1

· · · (ϕuk,vk−1
)3−rk,3−sk−1

(ϕuk,vk)rk,sk(ψwA,vk)3−sk

=

 ∏
xy∈A
x<y

ξx,y

 (−1)r1+s1+···+rk+sk(ψwA,vk)3−sk(ϕvk,uk
)3−sk,3−rk(ϕuk,vk−1

)3−rk,3−sk−1

· · · (ϕu2,v1)3−r2,3−s1(ϕv1,u1)3−s1,3−r1(ψbA,u1)3−r1
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(where in the last line we also reorder the factors for notational convenience). Similarly to the
loop case, the second equality is obtained by using the formula ϕul,vl(rl, sl) = (−1)rl+slϕvl,ul

(3−
sl, 3− rl) for each l = k, . . . , 2. Now the factor (−1)r1+s1+···+rk+sk cancels with the same ap-
pearing on the left hand side of (9), and the sum over all indices r1, s1, . . . , rk, sk produces
the product ψ⊺

wAϕAψbA , where ϕA = ϕvk,uk
ϕuk,vk−1

· · ·ϕu2,v1ϕv1,u1 .

One then only needs that
∏

xy∈A
x<y

ξx,y = (−1)1{bA>wA}(−1)
1
2 (|A|−1). Recall that we con-

structed ξ to be a set of Kasteleyn phases such that ξw,b = (−1)1{w>b} on boundary edges
{w, b} (apart perhaps from some edge e0). Let CA be the loop in Gmade up of an arc from wA

to bA, and then the boundary edges from wA to bA (not in the direction including e0), which we

denote ∂CA. One can show from the above that
∏

xy∈∂CA
x<y

ξx,y = (−1)1{bA>wA}(−1)
1
2 (|∂CA|+1).

Then ∏
xy∈A
x<y

ξx,y =
∏

xy∈CA
x<y

ξx,y
∏

xy∈∂CA
x<y

ξx,y

= (−1)
1
2 |CA|+1(−1)1{bA>wA}(−1)

1
2 (|∂CA|+1)

= (−1)1{bA>wA}(−1)
1
2 (|A|−1).

We now have both (8) and (9), which, upon substituting into 7, produces the right hand

side of the Proposition 2.1, multiplied by the factor
∏

C(−1)
1
2 |C|∏

A(−1)
1
2 (|A|−1). This final

factor disappears on seeing that 1
2(
∑

C |C| +
∑

A(|A| − 1)) is half the number of vertices of
V \ ∂, which we assumed to be even.

□

3. Folded and shifted dimers

3.1. Introduction of the models.

3.1.1. Temperleyan and piecewise Temperleyan approximations. We will use as much as pos-
sible the notation of [17]. Let U ⊂ C be a simply connected (bounded) set with a smooth
boundary. We say that (Uε)ε>0 is a sequence of graphs approximating U if the following
holds:

Definition 3.1 (Approximating sequence). For every ε > 0, Uε is a graph with vertex set
V (Uε) ⊂ Ū ∩ εZ2 and edges connecting points at distance ϵ: if u, v ∈ V (Uε), u ∼ v in Uε if
and only if u ∼ v in εZ2. For every ε > 0, Uε is simply connected: if we cover every vertex of
Uε by a square of side ε centered at the vertex, we obtain a simply connected set. The vertex
boundary of Uε (i.e. the vertices of Uε which are connected in εZ2 to at least one vertex not
in Uε) is within O(ε) of ∂U .

An example is drawn on Figure 1: the vertices of the graph Uε are the black squares
enclosed by U . Its edges are not drawn, they link nearest neighbours.

From now on, let U r be a simply connected open set with smooth boundary which is
symmetric by reflection along the horizontal axis. For such symmetric sets U r, we denote by
U = U ∩R×R>0 the restriction of U r to the strict upper half plane. Let z ∈ U be fixed. For
technical reasons, we assume that there exists z∂ ∈ ∂U r and δ > 0 such that the boundary
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of U r is horizontal in the neighbourhood B(z∂ , δ). We also assume that U r is contained in
the half-plane below this flat horizontal boundary.

Remark 3.2. This technical hypothesis is necessary for the results of Appendices B and
C to hold. It could be lightened a bit by using the comments after Lemma B.3: δ could go
to zero with ε (but we must have ε = o(δ)).

Consider an approximating sequence (U r
ε )ε>0 of U r which is symmetric by reflection along

the horizontal axis and such that for every ε > 0 the vertex boundary of U r
ε is horizontal in

the neighbourhood B(z∂ , δ).

Symmetric Temperleyan approximation of U r. We define the bipartite Temperleyan
domain Gr

ε associated with U r
ε which has two types of black vertices: B1(Gr

ε ) corresponds to
the vertices of U r

ε from which we remove the rightmost vertex on the horizontal axis b0, and
B0(Gr

ε ) corresponds to the inner faces of U r
ε . The graph Gr

ε has two types of white vertices
W0(Gr

ε ) corresponding to the vertical edges of U r
ε andW1(Gr

ε ) corresponding to the horizontal
edges of U r

ε . There are no edges between vertices of the same colour (Gr
ε is bipartite), and

there is an edge between b ∈ B(Gr
ε ) = B0(Gr

ε ) ∪ B1(Gr
ε ) and w ∈ W (Gr

ε ) = W0(Gr
ε ) ∪W1(Gr

ε )
if and only if the edge w is incident to the face or vertex b in U r

ε (see Figure 1). We also
denote by B0, B1 the vertices and faces of εZ2 and by W0,W1 the vertical and horizontal
edges of εZ2, so we can write for example B0(Gr

ε ) ⊂ B0. By Temperley’s bijection [23, 18],
perfect matchings of Gr

ε are in bijection with spanning trees of U r
ε rooted at b0 (see Kenyon).

The sequence (Gr
ε )ε>0 is a symmetric Temperleyan approximation of the open set U r. Dimer

configurations of Gr
ε are in bijection with spanning trees of U r

ε rooted at b0.

Temperleyan approximation of U . For every ε > 0, let Uε be the graphs obtained by
removing from U r

ε the vertices in the strict lower half plane and the edges incident to them.
The sequence (Gε)ε>0 = (G1

ε )ε>0 obtained by restricting Gr
ε to the upper half plane (removing

all vertices of Gr
ε in R×R<0, and the edges incident to them) is a Temperleyan approximation

of the open set U . Dimer configurations of Gε = G1
ε are in bijection with spanning trees of

Uε rooted at b0.

Piecewise Temperleyan approximation of U . The sequence (G2
ε )ε>0 obtained by re-

stricting Gr
ε to the strict upper half plane (i.e. removing all vertices of Gr

ε in R×R≤0 and the
edges incident to them) is a piecewise Temperleyan approximation of the open set U . Indeed,
it has exactly two convex white corner, v∗l and v∗r respectively on the left and right of the
horizontal axis, see the definition in Section 5.1 of [20].

3.1.2. Loops and arcs on a Temperleyan approximation. We say that a subset of edges ω ⊂
E(Gε) is a loops and arcs configuration if it is made of non-intersecting loops in the bulk, arcs
connecting points on the horizontal axis and doubled edges, such that every vertex of E(Gε)
lies on a loop, arc or doubled edge. We denote by Ω(Gε) the set of loops and arcs configurations
on Gε. There are two natural ways to obtain a random loops and arcs configurations:

• Folding a random uniform dimer configuration on Gr
ε along the horizontal axis

• Superimposing a random uniform dimer configuration on G1
ε with an independent

random uniform dimer configuration on G2
ε

In both cases, we obtain a random loops and arcs configuration ω ⊂ E(Gε) of Gε (see Figure
1) which we call a folded or shifted dimer configuration. We denote by µ1ε, µ

2
ε their respective

probability laws on Ω(Gε) and by E1
ε,E

2
ε the expectation with respect to these laws.
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Given ω ∈ Ω(Gε), we say that an arc A of ω encloses a point z ∈ U if any continuous
path in U from z to z∂ crosses the arc A. For every ε > 0, define two integer-valued random
variables: nε(z) is the number of arcs enclosing the fixed point z ∈ U , and oε(z) is the
indicator that there is an odd number of arcs enclosing the point z (that is the parity of
nε(z)). Our main result describes the joint law of nε(z) and oε(z) in the scaling limit for the
folded and shifted models.

3.1.3. Discrete and continuous Green’s function. In this paragraph, we recall the notation
and results of [17] on continuous Green’s functions. Let g : u, v ∈ U r → g(u, v) ∈ R be the
continuous Green’s function with Dirichlet boundary conditions on U r. Let g̃ : u, v ∈ U r →
g(u, v) ∈ C be the analytic function of v whose real part is the Dirichlet Green’s function.
Define its Wirtinger derivatives

∀u, v ∈ U r,

{
F−(u, v) = ∂g̃(u,v)

∂u

F+(u, v) = ∂g̃(u,v)
∂u

. (10)

The holomorphic derivative F+ is an an analytic function of (u, v) while the anti-holomorphic
derivative F− is an analytic function of (u, v). Lemma B.3 (which adapts Theorems 13 and
14 of [15] to our setting) of the appendix gives the asymptotic of the inverse Kasteleyn matrix
on Gr

ε in terms of F+ and F−, while Lemma C.1 (which adapts Theorem 6.1 of [20] to our
setting) of the appendix gives the asymptotic of the inverse Kasteleyn matrix on G1

ε and G2
ε

in terms of F+ and F−

Remark 3.3. Recall that the boundary of U r is horizontal in the ball B(z∂ , δ/2) and
that U r is contained in the half-plane below this horizontal boundary. Denote by s the
reflection along this horizontal boundary. Since the Green’s function g has Dirichlet boundary
conditions, i.e. it is 0 on the boundary of U r, the Schwarz reflection principle (see for example
Section 6.5 of [1]) implies that ig̃(u, v) as a function of v extends to an analytic (except at u
and s(u)) function on U r ∪ s(U r). Hence F+ and F− also extend analytically (as functions
of v) to this domain, in particular they are well-defined at z∂ and they remain bounded near
z∂ (and so do their derivatives). In the proof of Lemma B.3, we will detail a discrete version
of this argument developed by Kenyon in the proof of Theorem 14 of [15].

Let γ be a path from z to z∂ , γ ⊂ U except for the endpoint. Our main theorem expresses
n-th moments of random variables in terms of n-fold integrals along γ of F+ and F−. In
particular, note that F− is an analytic function of (u, v), F+ is an analytic function of (u, v),
F− is an analytic function of (u, v) and F+ is an analytic function of (u, v). Hence, to have
n-fold integrals of analytic functions along γ, for σ ∈ {±1}n, we will be looking at terms of
the form ∫

· · ·
∫
γ

n−1∏
i=0

F
(σi)
−σiσi+1

(zi+1, zi)

n−1∏
i=0

dz
(σi)
i , (11)

where dz
(1)
ki

= dzki and dz
(−1)
ki

= dzki , and similar for F+ and F−, and where the subscript
−σiσi+1 should be read as ± when −σiσi+1 = ±1, respectively. This is well defined since the
integral of an analytic function does not depend on the path.

3.2. Main result and examples. For all n ∈ N, let

cn(z, z∂) = 2in
∑

σ∈{±1}n

∫
· · ·
∫
γ

n−1∏
i=0

σiF
(σi)
−σiσi+1

(zi+1, zi)
n−1∏
i=0

dz
(σi)
i .
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For example, c1(z, z∂) = −4ℑ
{∫

γ F−(z, z)dz
}

c2(z, z∂) = 4ℜ
{∫ ∫

γ F+(z1, z0)F+(z0, z1)dz0dz1 −
∫ ∫

γ F−(z1, z0)F−(z0, z1)dz0dz1

}
(12)

Note that cn(z, z∂) is always real, since the terms in the sum corresponding to σ and −σ are
complex conjugates. Moreover, since F+ and F− are analytic on U and remain bounded near
z∂ , the cn(z, z∂) grow at most exponentially: there exists an absolute constant C (depending
only on γ and U) such that

∀n ∈ Z≥0, cn(z, z∂) ≤ Cn. (13)

To state our main result, we need to introduce the complete Bell polynomials, defined by

Bn(X1, . . . , Xn) = n!
∑

j1+2j2+···+njn=n

n∏
k=1

Xjk
k

(k!)jk(jk)!
.

For example B0 = 1, B1 = X1, B2 = X2
1 +X2.

Recall that nε(z) and oε(z) are respectively the number of arcs enclosing z, and the parity
of the number of arcs enclosing z.

Theorem 3.4. Let ω ∈ Ω(Gε) be a folded or shifted dimer configuration, with law µε = µ1ε
or µε = µ2ε, and expectation with respect to this law denoted by Eε. For all n ∈ Z≥0, for all
σ ∈ {0, 1},

Eε

[(nε(z)−oε(z)
2

n

)
oε(z)

σ

]
ε→0−→ (−1)n+σ

(2n+ σ)!
B2n+σ

((
(−2)k−1(k − 1)!ck(z, z∂)

)
1≤k≤2n+σ

)
.

The proof of this theorem given in Section 4. The theorem gives the following corollary:

Corollary 3.5. The asymptotics of all joint moments of (nε(z), oε(z)) can be computed
explicitly: more precisely, for all n ∈ Z≥0 and σ ∈ {0, 1}, Eε[nε(z)

noε(z)
σ] converges towards

a polynomial in the (ck(z, z∂))1≤k≤2n+σ. For example,
Eε[oε(z)]

ε→0−→ −c1(z, z∂)
Eε[nε(z)]

ε→0−→ 2c2(z, z∂)− c1(z, z∂)
2 − c1(z, z∂)

var[nε(z)]
ε→0−→ −2

3c
4
1 − 4

3c
3
1 − 3c21 − c1 +

32
3 c1c3 − 4c22 + 4c2 +

16
3 c3 − 16c4,

(14)

where in the last line we write ci = ci(z, z∂) for brevity. The parity of the number of arcs
enclosing a given point oε(z) and the number of arcs surrounding a given point nε(z) converge
in law towards random variables o(z), n(z) which are conformally invariant.

We explain how Theorem 3.4 implies Corollary 3.5.

Proof. We first observe that since oε(z) ∈ {0, 1}, oε(z)k = oε(z) for all k ≥ 1, it is enough
to compute Eε[nε(z)

k] and Eε[nε(z)
koε(z)] for all k ∈ Z≥0. Theorem 3.4 applied with n =

0, σ = 1 gives

Eε[oε(z)]
ε→0−→ −B1(c1(z, z∂)) = −c1(z, z∂).

Theorem 3.4 applied with n = 1, σ = 0 gives

Eε[nε(z)−oε(z)] = −B2(c1(z, z∂),−2c2(z, z∂))+oε→0(1) = −c1(z, z∂)2+2c2(z, z∂)+oε→0(1).
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By induction, it is possible to obtain all joints moments of (nε(z), oε(z)) in the same way.
Assume that for some n, for all 0 ≤ k ≤ n and σ ∈ {0, 1}, Eε[nε(z)

koε(z)
σ] is a polynomial

in the ci(z, z∂) for 1 ≤ i ≤ 2k + σ. Developing the binomial coefficient, we can write

Eε

[(nε(z)−oε(z)
2

n+ 1

)]
=

1

2n+1(n+ 1)!

Eε[nε(z)
n+1] +

∑
0≤k≤n
σ∈{0,1}

akσEε[nε(z)
koε(z)

σ]


where the akσ are explicit coefficients. By induction, the Eε[nε(z)

koε(z)
σ] are explicit poly-

nomials in the (ck+σ(z, z∂))1≤2k+σ≤2n+1 (up to oε→0(1), and by Theorem 3.4 applied at
n + 1, σ = 0, the left-hand side is an explicit polynomial in the (ck+σ(z, z∂))1≤2n+2 (up
to oε→0(1)), so Eε[nε(z)

n+1] is also an explicit polynomial in the (ck+σ(z, z∂))1≤2n+2 up to
oε→0(1).

Similarly, Theorem 3.4 with n+ 1, σ = 1 enables to express Eε[nε(z)
n+1oε(z)] in terms of

the (ck(z, z∂))1≤k≤2n+3, which concludes the induction step.

We obtained that the moments of nε(z) converge: for all n, Eε[nε(z)
n]

ε→0−→ mn. To deduce
the convergence in law of the random variable nε(z), we only have to check the conditions of
the moment problem, that is find a bound on mn. Bounding crudely the binomial coefficient
from below, we find that

Eε

[(nε(z)−oε(z)
2

n

)]
≥ Eε

[(nε(z)−1
2

n

)]
≥ Eε

[
1nε(z)≥2n

(nε(z)− 2n)n

2nn!

]
≥ Eε

[
1nε(z)≥4n

nε(z)
n

4nn!

]
≥ 1

4nn!
(Eε[nε(z)

n]− (4n)n).

and taking the limit in Theorem 3.4 with n, σ = 0 gives

mn ≤ (4n)n + 4nn!

∣∣∣B2n

((
(−2)k−1(k − 1)!ck(z, z∂)

)
1≤k≤2n

)∣∣∣
(2n)!

.

Since the ck(z, z∂) grow at most exponentially by Equation (13), using the explicit expression
of the Bell polynomial, we obtain∣∣∣B2n

((
(−2)k−1(k − 1)!ck(z, z∂)

)
1≤k≤2n

)∣∣∣
(2n)!

≤
∑

j1+2j2+···+2nj2n=2n

2n∏
i=1

((2C)kk!)jk

(k!)jk(jk)!

= (2C)2n
∑

j1+2j2+···+2nj2n=2n

1

(jk)!

≤ (2C)2n |{(j1, . . . , j2n) ; j1 + 2j2 + · · ·+ 2nj2n = 2n}|

≤ (2C)2n
(2n)2n

(2n)!
,

since there are at most n choices for j1, n/2 choices for j2 etc. Using Stierling’s formula, we
conclude that mn ≤ Cnnn for another absolute constant C, hence Carleman’s condition is
verified and nε(z) converges towards a random variable n(z) which is uniquely determined
by its moments mn. Since this moments are conformally invariant (they are expressed as
integrals of conformal quantities), the law of n(z) is also conformally invariant. □
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In the particular case U r = [−∞,+∞] × [−π/2, π/2] where the Green’s function has a
simple explicit expression, the computations turn out to be particularly simple.

Remark 3.6. The infinite strip does not fill the technical hypothesis of our theorem since
it is not a bounded open set, although it fills the other conditions: it is symmetric and has
a horizontal boundary. Nonetheless, since the formula for the moments depends only on
conformally invariant quantities, the moments can be computed in any simply connected
open set, and the computations transfered to any other domain by a Riemann map. Besides,
if we take U r

ε = εZ2 ∩ [−1/ε, 1/ε]× [−π/2, π/2], the proof of Theorem 3.4 still holds, at least
for the folded dimer model: the only part of the proof that has to be modified is Lemma
B.3 of the Appendix. The proof of this lemma still works because, to show that K−1(b, w) is
close to the partial derivative of the Green’s function g, we only need that gR2 (the full-plane
Green’s function) or gH (the half-plane Green’s function) and g are O(ε) on the boundary of
Gr
ε to apply the Harnack lemma. This is also true here.

Example 3.7 (The infinite strip). Let U r = [−∞,+∞] × [−π/2, π/2]. We give a par-
ticularly simple expression for Eε[oε(z)] and Eε[nε(z)]. To apply Corollary 3.5, we need to
identify F− and F+. The conformal map from this strip to the half plane is

ϕ : U r → H, u→ exp(u+ iπ/2) = i exp(u).

On the half plane, g̃H(u, v) = − 1
2π log u−v

ū−v with log denoting the principal value of the complex

logarithm (see the footnote in Section 6.3 of [17]). Hence, on the strip

g̃(u, v) = g̃H(ϕ(u), ϕ(v)) = − 1

2π
log

(
−e

u − ev

eū + ev

)
.

By definition, for u, v ∈ U r,

F+(u, v) = − 1

2π

eu

eu − ev
, F−(u, v) =

1

2π

eū

eū + ev
.

Let z = x+ iy (with x ∈ (0, π/2)), z∂ = x+ iπ/2. For γ, we choose the vertical straight line
from z to z∂ . We first compute the probability that there is an odd number of arcs enclosing
z: for all z ∈ U r, F−(z̄, z) =

1
4π so

c1(z, z∂) = −4ℑ

{∫ x+iπ/2

x+iy

1

4π
dz

}
= −1

2
+
y

π

and by Corollary 3.5,

Eε[oε(z)]
ε→0−→ −c1(z, z∂) =

1

2
− y

π
.

To obtain the expected number of arcs in the limit, we first need to compute

c2(z, z∂) = 4ℜ
{∫ ∫

γ
F+(z1, z0)F+(z0, z1)dz0dz1 −

∫ ∫
γ
F−(z1, z0)F−(z0, z1)dz0dz1

}
.

For all z0 = x+ iy0, z1 = x+ iy1,{
F−(z̄1, z0) = 1

2π
ez1

ez1+ez0 = 1
2π

eiy1
eiy1+eiy0

= 1
4π

(
1 + i tan

(y1−y0
2

))
F+(z̄1, z0) = − 1

2π
ez̄1

ez̄1−ez0
= − 1

2π
e−iy1

e−y1−eiy0
= − 1

4π

(
1 + i cot

(y1+y0
2

))
.

After some algebra, we get

c2(z, z∂) = − 1

π2
ln(sin(y)),
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U

δ

z

z∂

Figure 10. A path γ from z tp z∂ drawn as a dotted line. The associated
zipper Eε(γ) is drawn in red (arrows indicate directed edges).

so Corollary 3.5 implies

Eε[nε(z)]
ε→0−→ − 2

π2
ln(sin(y)) +

(
1

4
− y2

π2

)
. (15)

Remark 3.8. This is coherent with what we expect of the continuous model: when z
approaches the real axis, the number of arcs enclosing z explodes and it is odd or even with
probability 1/2. When z approaches the boundary of the strip, the probability that there
is at least one arc enclosing z goes to 0, and so does the probability that there is an odd
number of arcs. Besides, the number of arcs above a point is always positive and explodes
when this point approaches the real axis.

4. Proof of the main theorem: the folded case.

In this section, we prove Theorem 3.4 when µε = µ1ε, that is in the case of folded dimers.
In the spirit of [17], the proof consists of choosing a connection on the graph Gε and analysing
its properties.

Proof. Let γ be a path in U from z to z∂ . The associated zipper Eε(γ) is the set of oriented
edges of Gε crossing the path γ from left to right. An example of a zipper as a specific
polygonal path is drawn in Figure 10.

Let ε > 0 be fixed. As in the preceding section, for every α > 0 we can define a connection

on Gε associated to the zipper by setting, for any directed edge e ∈ Eε(γ), ϕe =

(
1 α
0 1

)
and ϕe−1 = ϕ−1

e , and ϕe = I2 on all other bulk edges. We also define ψe =

(
1
1

)
for all

edges e linking a boundary point with a bulk point. Denote by Kα the Kasteleyn matrix
associated with this connection and the usual Kasteleyn phases ζ of discrete holomorphy
given by Equation (3). We drop the dependency in ε of the Kasteleyn matrix to lighten
the notation. The Kasteleyn matrix associated with the trivial connection is K = K0. By
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Corollary 2.4,

PfKα =
∑
ω∈Ω

∏
loops C

tr(ϕC)
∏

arcs A

ψ⊺
bA
ϕAψwA . (16)

From here, the proof follows three main steps:

• Show that the right-hand side of Equation (16) can be expressed as a power series in
α involving the moments of nε(z) and oε(z).

• Show that the left hand side can be expanded as a power series in α with coefficients
tr((K−1S)n) where K−1 is a discrete holomorphy matrix (see Appendix B for more
details on the discrete holomorphy theory on the square lattice), and S is a matrix
encoding the zipper.

• Use the asymptotic expression of K−1 in terms of the continuous Green’s function
obtained by Kenyon in [15] (see Appendix B) to show that tr((K−1S)n) converges to
an n-fold holomorphic integral.

First step: the right-hand side of Equation (16). Let α > 0. Given ω ∈ Ω(Gε), we
denote by cε its total number of loops and nε its total number of arcs (which is constant and
equal to the number of white boundary vertices). We can write:

PfK =
∑
ω∈Ω

2cε2nε ,

which is the partition function of the loops and arcs model. Now let α ≥ 0. The possible

monodromies for loops are I2,

(
1 α
0 1

)
and its inverse

(
1 −α
0 1

)
, which all have trace 2.

Hence each loop contributes a factor 2 to the right-hand side of the Kasteleyn formula. For
an arc A with endpoints wA and bA, we say that the arc is clockwise if wA is left of bA. By
definition of the zipper E(γ), there are three possibilities for the monodromy along an arc. If
A does not enclose z, then ϕA = I2 and ψ

⊺
bA
ϕAψwA = 2. If A is clockwise and encloses z, since

ϕA is computed by orienting the edges towards wA, ϕA =

(
1 α
0 1

)
and ψ⊺

bA
ϕAψwA = 2 + α.

If A is counterclockwise and encloses z, we get ψ⊺
bA
ϕAψwA = 2 − α. Given ω ∈ Ω(Gε), we

denote by rε(z) (resp lε(z)) its number of clockwise (resp counterclockwise) arcs enclosing z.
These quantities are random variables whose laws depends on ε. For fixed ε,

PfK2α =
∑
ω∈Ω

2cε2nε−rε(z)−lε(z)(2 + 2α)rε(z)(2− 2α)lε(z)

=
∑
ω∈Ω

2cε+nε(1 + α)rε(z)(1− α)lε(z).
(17)

Recall the definition of nε(z) and oε(z). We claim that

∀ε ≥ 0,

{
nε(z) = lε(z) + rε(z)
oε(z) = lε(z)− rε(z)

.

The first equality is clear: an arc is either oriented clockwise or counterclockwise. We explain
why the second one holds. For ω ∈ Ω(Gε), the arcs enclosing z are alternating in orientation.
To see this, assume that two arcs A1 and A2 both enclosing z have the same orientation, say
clockwise wA1 < wA2 < bA2 < bA1 , and that there is no other arc enclosing z between them.
This cannot happen because there is an odd number of boundary vertices between wA1 and
wA2 so they cannot be matched together. For the same reason, since the leftmost corner on
the boundary is black while the rightmost is white by definition of the Temperleyan domain,
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there is always 0 or 1 more counterclockwise than clockwise arc which encloses z. Hence,
oε(z) := lε(z)− rε(z) = 1{nε(z) is odd} ∈ {0, 1}, and

PfK2α =
∑
ω∈Ω

2cε+nε(1− α2)rε(z)(1− α)oε(z) =
∑
ω∈Ω

2cε+nε(1− α2)rε(z)(1− oε(z)α).

Dividing by PfK, we get

PfK2α

PfK
= Eε[(1− α2)rε(z)(1− oε(z)α)] = Eε

[ ∞∑
k=0

(−1)k
(
rε(z)

k

)
α2k(1− oε(z)α)

]

=
∞∑
k=0

(−1)kα2k
Eε

[(
rε(z)

k

)]
−

∞∑
k=0

(−1)kα2k+1
Eε

[(
rε(z)

k

)
oε(z)

]

=
∞∑
k=0

(−1)kα2k
Eε

[(nε(z)−oε(z)
2

k

)]
−

∞∑
k=0

(−1)kα2k+1
Eε

[(nε(z)−oε(z)
2

k

)
oε(z)

]
.

(18)

For every fixed ε > 0 and every α > 0 small enough, the sums converge because the number
of (counterclockwise) arcs surrounding any given point is bounded.

Second step: the left-hand side of Equation (16). To lighten the notation, we write
Eε := Eε(γ). By definition, the zipper is a set of directed edges: we also say that an
undirected edge wb ∈ E(Gε) belongs to the zipper and we write wb ∈ Eε if (w, b) ∈ Eε or
(b, w) ∈ Eε. We also say that a (white or black) vertex x ∈ Gε belongs to the zipper and we
write x ∈ Eε if there exists y ∈ Gε such that xy ∈ Eε. If wb is an undirected edge in Gε, we
define its sign by sgn(Eε)w,b = 1{(w, b) ∈ Eε} − 1{(b, w) ∈ Eε}. We write the vertices of
Gr
ε as (x, i) with x ∈ Gε, i ∈ {1, 2} where i indicates whether x is in the upper or lower half

plane. We use the convention that i = 1 for the vertices on the horizontal axis. We note that
K2α is skew-symmetric, (K2α)(w,i),(w′,j) = (K2α)(b,i),(b′,j) = 0 for any (w, i), (w′, j) ∈ W (Gr

ε )
and (b, i), (b′, j) ∈ Gr

ε , and that for two vertices (w, i) ∈W (Gr
ε ), (b, j) ∈ B(Gr

ε ),

(K2α)(w,i),(b,j) = ζw,b1{w ∼ b}(1{i = j}+ 2α1{i = 2, j = 1}sgn(Eε)w,b)

= K(w,i),(b,j) + 2αS(w,i),(b,j),

where

S(w,i),(b,j) = 1{w ∼ b, i = 2, j = 1}ζw,bsgn(Eε)w,b

is defined by the previous equation (and S is also skew-symmetric, zero on W (Gr
ε )×W (Gr

ε )
and on B(Gr

ε )×B(Gr
ε )). The key observation is to interpret K2α = K+2αS as a perturbation

of the usual discrete holomorphy matrix K if we “unfold” the graph Gr
ε i.e. if we identify

(x, 2) ∈ Gr
ε with x̄ ∈ εZ2. This is almost true, but when the graph is unfolded the vertical

edges on the lower half plane have the opposite orientation, see Figure 11. This is fixed by
performing a gauge equivalence (on the weights this time, and not on the Kasteleyn phases
as in Remark 2.3): we multiply all columns and rows by

ε(x,i) =

{
−1 if i = 2 and x ∈W0 ∪B0

1 otherwise.
(19)

Hence for all (w, i), (b, j),

ζ̃(w,i),(b,j) = ε(w,i)ε(b,j)ζw,b , (K̃2α)(w,i),(b,j) = ε(w,i)ε(b,j)(K2α)(w,i),(b,j).
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-1 1 -1 1

1 -1 1 -1

-1 1 -1 1

1 -1 1 -1

-1 1 -1 1

i -i i -i i

-i i -i i -i
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i -i i -i i

(b,1)
=(b,2)

(w, 1)

(w, 2)
-1 1 -1 1

1 -1 1 -1

-1 1 -1 1

1 -1 1 -1

-1 1 -1 1

i -i i -i i

-i i -i i -i

-i i -i i -i

i -i i -i i

(b,1)
=(b,2)

(w, 1)

(w, 2)

Figure 11. The phases ζ associated to K (on the left) and ζ̃ associated to K̃
(on the right). The orientations differ only for vertical edges in the lower half
part of the pictures. We marked a point b on the reflection axis and a point
(w, 1) and its reflection (w, 2) identified with the complex conjugate. The
vertex crossed in red is b0 removed by the Temperleyan boundary conditions.

The matrix K̃ is the usual discrete holomorphy operator on the Temperleyan graph Gr
ε , see

Figure 11. In particular, it satisfies the asymptotic estimates of Appendix B. This depends
crucially on our definition of ψ on the boundary. We have

(K̃2α)(w,i),(b,j) = K̃(w,i),(b,j) + 2αS̃(w,i),(b,j) (20)

with

S̃(w,i),(b,j) = 1{i = 2, j = 1, w ∼ b}ζw,bsgn(Eε)w,b(−1)w∈W0 . (21)

By multi-linearity of the determinant,

det(K̃α) =

( ∏
(x,i)∈Gr

ε

ε(x, i)

)2

det(K̃) = det(K̃).

Since the discrete holomorphy matrix K̃ is invertible (see Appendix B), Equation (20) implies(
PfK2α

PfK

)2

=

(
PfK̃2α

PfK̃

)2

= det(I + 2αS̃K̃−1). (22)

By using the identity (which holds for any finite matrix M and α < ρ(M)−1 the inverse
spectral radius)

log
(
det(I + αM)

)
=

∞∑
k=1

(−1)k−1

k
αktr(Mk)

and taking the logarithm and square root in Equation (22) (using that the Pfaffians are
positive for α < 1 due to Equation (17)), we get that

∀α ∈ (0, ρ(S̃K̃−1)−1),
PfK2α

PfK
= exp

(
1

2

∞∑
k=1

(−1)k−1

k
(2α)ktr

(
(S̃K̃−1)k

))
. (23)
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Combining this with Equation (18), we obtain for all α ∈ (0, ρ(S̃K̃−1)−1),

∞∑
k=0

(−1)kα2k
Eε

[(nε(z)−oε(z)
2

k

)]
−

∞∑
k=0

(−1)kα2k+1
Eε

[(nε(z)−oε(z)
2

k

)
oε(z)

]

= exp

(
1

2

∞∑
k=1

(−1)k−1

k
(2α)ktr

(
(S̃K̃−1)k

))
.

(24)

This concludes the second step of the proof: we can see from this equation that the moments
of nε(z) and oε(z) can be computed in terms of the tr

(
(S̃K̃−1)k

)
by algebraic manipulations

(this will be detailed at the end of the proof).

Third step: the asymptotic of the trace terms. The next step of the proof is to
compute tr

(
(S̃K̃−1)n

)
for all n. Our asymptotic will imply in particular that the spectral

radius ρ(S̃K̃−1) is uniformly bounded. Let n ≥ 1 be fixed. Using the convention that
(wn, in) = (w0, i0), we can write

tr
(
(S̃K̃−1)n

)
= 2

∑
(w0,i0),...,(wn−1,in−1)

n−1∏
k=0

(S̃K̃−1)(wk,ik),(wk+1,ik+1) (25)

since S̃K̃−1 is symmetric (explaining the factor 2, coming from the black vertices) and zero
from black to white and white to black. The factors in the product are computed as follows:
for all u, v ∈W (Gr

ε ), for all i, j ∈ {1, 2}, using Equation (21),

(S̃K̃−1)(u,i),(v,j) =
∑

(b,k)∈B(Gr
ε )

S̃(u,i),(b,k)K̃
−1
(b,k),(v,j)

= 1{i = 2}
∑

b:{ub}∈Eε

ζu,bsgn(Eε)u,b(−1)1{u∈W0}K̃−1
(b,1),(v,j).

Developing the product in Equation (38) yields

tr
(
(S̃K̃−1)n

)
= 2

∑
w0,...,wn−1

∑
b0,...,bn−1:
{wkbk}∈Eε

n−1∏
k=0

ζwk,bksgn(Eε)wk,bk(−1)1{wk∈W0}K̃−1
(bk,1),(wk+1,2)

= 2
∑

e0,...,en−1∈Eε
ek={wkbk}

n−1∏
k=0

ζwk,bksgn(Eε)wk,bk(−1)1{wk∈W0}K̃−1
(bk,1),(wk+1,2)

.

(26)

From here, the rest of the proof consists of replacing K̃−1 by its asymptotic expression
from Lemma B.3 and identifying an n-fold Riemann sum that converges towards an n-fold
holomorphic integral. Since the asymptotic expression of K̃−1

(bk,1),(wk+1,2)
varies according to

the type of wk+1 (W0 or W1) and the type of bk (B0 or B1), we must split the computations
into many pieces.

We choose a specific path γ in U (except for its endpoint z∂ ∈ ∂U) for which the com-
putations are tractable. More precisely, we choose γ from z to z∂ polygonal with slope ±1
consisting of a finite number of line segments, and we denote by Eε = Eε(γ) the associated
zipper. For each line segment of γ in one of the directions NE, NW, SW, SE, the correspond-
ing portion of the zipper Eε(γ) consists of a zig-zag path of edges, alternately horizontal and
vertical. Starting from here, C = C(U, γ) > 0 is a positive constant depending only on γ and
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dz = ε(1 + i) dz = ε(−1 + i) dz = ε(1− i) dz = ε(−1− i)

1
−i

1
−i −i

−1

−i −1

1

i
1

i i

−1
i

−1

w0
k

w0
k+1

w0
k

w0
k+1

w0
k+1

w0
k

w0
k+1

w0
k

Figure 12. The four possible directions for a zig-zag portion of the zipper
Eε(k). The Kasteleyn phases of the (undirected) edges are indicated in black.

the open set U that is allowed to change from line to line. The number of edges in the zipper
is |Eε(γ)| = |γ|ε−1 +O(1) ≤ Cε−1.

The edges of the zipper can be grouped in Nε = |γ|ε−1 + O(1) ≤ Cε−1 packets of four
edges (except the edges near the changes of direction of γ, of which there are ≤ C). We have

Eε =

( ⊔
1≤k≤Nε

Eε(k)

)
⊔ Fε,

where for 1 ≤ k ≤ Nε, the k
th packet Eε(k) is a zig-zag path between vertices (w0

k, b
0
k, w

1
k, b

1
k, w

k+1
0 )

with w0
k ∈W0, w

1
k ∈W1, b

0
k ∈ B0, b

1
k ∈ B1 as in Figure 12, and where |Fε| ≤ C. More precisely,

Eε(k) = {w0
kb

0
k, b

0
kw

1
k, w

k
1b

1
k, b

1
kw

0
k+1}.

If we write for all 0 ≤ k ≤ Nε, zk = w0
k and dzk = dxk + idyk ∈ {ε(±1± i)} the displacement

of the corresponding portion of the zipper (NE,NW,SE or SW), b0k = w0
k + (dxk/2, 0), w

1
k =

b0k+(0, dyk/2), b
1
k = w1

k+(dxk/2),w
0
k+1 = b1k+(0, dyk/2). Observe that zk+1 = w0

k+1 = z0k+dzk
except for at most C(γ) values of k (corresponding to the last w0

k before each change of
direction of γ; recall that γ is made of a finite number of straight segments) for which we still
have |zk+1 − zk| ≤ 2

√
2ε.

We check the technical hypothesis of Lemma B.3. Recall that by assumption, the boundary
∂U is flat in a δ-neighbourhood of the endpoint z∂ of γ, and that except for its endpoint γ is
a path in the open set U . This implies that there exists δ′ = δ′(γ) ≤ δ such that for all w, b
belonging to some edges of Eε, |b − w| ≥ δ′/2 and both b and w are either in B(z∂ , δ

′/2) or
at distance at least δ′/2 of the boundary of U r.

On the one hand, by Lemma B.3 and in particular the weaker consequence Equation (48),
there exists C = C(γ) > 0 such that

∀b, w ∈ Eε, |K̃−1
(b,1),(w,2)| ≤ Cε. (27)

On the other hand, upon increasing C we have |Fε| ≤ C and |Eε| ≤ Cε−1, so we can neglect
the edges of Fε in Equation (26) and group the remaining edges by packets:

tr
(
(S̃K̃−1)n

)
≈ 2

∑
e0,...,en−1∈Eε\Fε

ek={wkbk}

n−1∏
k=0

ζwk,bksgn(Eε)wk,bk(−1)1{wk∈W0}K̃−1
(bk,1),(wk+1,2)

≈ 2
∑

1≤k1,...,kn≤Nε

∑
ei={wibi}∈Eε(ki)

∀1≤i≤n

n−1∏
i=0

ζwi,bisgn(Eε)wi,bi(−1)1{wi∈W0}K̃−1
(bi,1),(wi+1,2)

,

(28)
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where the ≈ really means∣∣∣∣∣∣∣∣tr
(
(S̃K̃−1)n

)
− 2

∑
1≤k1,...,kn≤Nε

∑
ei=wibi∈Eε(ki)

∀1≤i≤n

n−1∏
i=0

ζwi,bisgn(Eε)wi,bi(−1)1{wi∈W0}K̃−1
(bi,1),(wi+1,2)

∣∣∣∣∣∣∣∣
≤ C2nε.

(29)
From now on, we fix 1 ≤ k1, · · · , kn ≤ Nε and take the corresponding term sk1,··· ,kn in the

sum on the right-hand side of Equation (28)

sk1,...,kn =
∑

ei=wibi∈Eε(ki)
∀1≤i≤n

n−1∏
i=0

ζwi,bisgn(Eε)wi,bi(−1)1{wi∈W0}K̃−1
(bi,1),(wi+1,2)

,

and show that it is equal (up to an error of order o(ε)) to

s̃k1,...,kn =
∑

σ∈{±1}n

n−1∏
i=0

iσiF
(σi)
−σiσi+1

(zki+1
, zki)dz

(σi)
ki

.

Write ri = 1 if wi ∈ W0, and ri = −1 if wi ∈ W1, and si similar for bi. Then we have,
firstly: (−1)1{wi∈W0} = −ri; secondly K̃−1

(bi,1),(wi+1,2)
≤ Cε by Equation (27); thirdly Lemma

B.3 gives us that there exists ϕδ(ε)
ε→0−→ 0 such that∣∣∣K̃−1

(bi,1),(wi+1,2)
− ε12

[
F+ + ri+1F− + siF− + ri+1siF+

]∣∣∣ ≤ εϕδ(ε)

(where we omit the argument (zki+1, zki) for each of the functions F+, F−, F−, F+). Actually,
we could take ϕδ(ε) = C(δ)ε due to Lemma B.3, but we stay at a higher level of generality
for further reference. Finally one can verify that

ζwi,bisgn(Eε)wi,bi = ε−1(−i)[12(1− risi)dxki +
1
2(1 + risi)idyki ],

indeed, use that 1
2(1 − risi) = 1{ri ̸= si} and 1

2(1 + risi) = 1{ri = si}, and the values of
ζwi,bisgn(Eε)wi,bi in Figure 12. It follows that

ζwi,bisgn(Eε)wi,bi(−1)1{wi∈W0} = ε−1 1
2 i[ridzki − sidzki ],

and so we have, up to an error 4nCn−1εnϕδ(ε),

sk1,...,kn =
∑

r,s∈{±1}n

n−1∏
i=0

1
4 i[ridzki − sidzki ]

[
F+ + ri+1F− + siF− + ri+1siF+

]
.

We multiply out this product. Recall that dz
(1)
ki

= dzki and dz
(−1)
ki

= dzki , and similar for F+

and F−. The above is equal to∑
r,s∈{±1}n

∑
κ,θ∈{0,1}n

∑
τ∈{±1}n

n−1∏
i=0

1
4 i
[
r1−θi
i (−si)θidz((−1)θi )

ki

] [
r
1
2 (1−τi)+κi

i+1 sκi
i F

((−1)κi )
τi

]

=
∑

r,s,τ∈{±1}n
κ,θ∈{0,1}n

n−1∏
i=0

1
4 i(−1)θir1−θi

i r
1
2 (1−τi)+κi

i+1 sθi+κi
i F ((−1)κi )

τi dz
((−1)κi )
ki

.
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If for some i = 0, . . . , n − 1, we have κi + θi = 1, then summing over si = ±1 gives zero.
So the only terms that remain have θi = κi for all i = 0, . . . , n − 1, and then the product is
independent of s, so the above is∑

r,τ∈{±1}n
κ∈{0,1}n

n−1∏
i=0

1
2 i(−1)κir1−κi

i r
1
2 (1−τi)+κi

i+1 F ((−1)κi )
τi dz

((−1)κi )
ki

=
∑

r,τ∈{±1}n
κ∈{0,1}n

n−1∏
i=0

1
2 i(−1)κir

1−κi+1+κi+
1
2(1−τi)

i F ((−1)κi )
τi dz

((−1)κi )
ki

,

after reindexing ri+1 = ri. Now similarly to the above, if for some i = 0, . . . , n− 1, we have
that 1− κi+1 + κi +

1
2(1− τi) is odd, then the sum over ri = ±1 gives zero. Hence the only

terms that remain have, for all i = 0, . . . , n− 1, that 1− κi+1 + κi +
1
2(1− τi) is even, which

is the same as 1{κi ̸= κi+1} = 1{τ = 1}, which is the same as τi = −(−1)κi(−1)κi+1 . The
sum is then independent of r, and we obtain

sk1,...,kn =
∑

κ∈{0,1}n

n−1∏
i=0

i(−1)κidz
((−1)κi )
ki

F
((−1)κi )
−(−1)κi (−1)κi+1 .

Finally, reparameterizing as σi = (−1)κi gives∑
σ∈{±1}n

n−1∏
i=0

iσiF
(σi)
−σiσi+1

(zki+1
, zki)dz

(σi)
ki

,

as desired. Hence, Equation (28) becomes∣∣∣∣∣∣tr((S̃K̃−1)n)− 2
∑

1≤k1,··· ,kn≤Nε

∑
σ∈{±1}n

n−1∏
i=0

iσiF
(σi)
−σiσi+1

(zki+1
, zki)dz

(σi)
ki

∣∣∣∣∣∣ ≤ Cnϕδ(ε). (30)

for some new constant C > 0. Recall that for all 1 ≤ k ≤ Nε, zk = w0
k, |dzk| =

√
2ε and

zk+1 = zk+dzk (except for at most C values of k for which we still have |zk+1− zk| ≤ 2
√
2ε).

We obtain the sum of 2n (one for each σ ∈ {±1}n) n-fold Riemann sums approximating n-
fold integrals along the path γ of an analytic function when ε→ 0. For each of these terms,
the error can be bounded in terms of bounds on the derivatives of F+ and F− around γ (by
Remark 3.3, these bounds also work near z∂): we can find a constant C depending only on
F+, F− and their derivatives (i.e. depending only on U and γ) such that∣∣∣∣∣∣2

∑
1≤k1,··· ,kn≤Nε

sk1,··· ,kn − cn(z, z∂)

∣∣∣∣∣∣ ≤ 2nCnε.

Upon increasing C, the triangle inequality gives∣∣∣tr((S̃K̃−1)n)− cn(z, z∂)
∣∣∣ ≤ Cnϕδ(ε). (31)

for some new constant C > 0. We are ready to conclude: since the ck(z, z∂) grow at most
exponentially in k (see Equation (13)), the power series

Sε(α) =
1

2

∞∑
k=1

(−1)k−1

k
(2α)ktr((S̃K̃−1)k)
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has radius of convergence at least C−1 for some absolute constant, and Equation (31) implies
that for all k,

tr((S̃K̃−1)k) = ck(z, z∂) + o(ε). (32)

Since this power series has no constant coefficient, its exponential exp(Sε(α)) is also a power
series with radius of convergence at least C−1. The complete Bell polynomials enable us to
express the coefficients of the exponential of a power series: for all k ≥ 0, for all power series
with no constant term,

exp

( ∞∑
k=1

ak
Xk

k!

)
=

∞∑
n=0

Bn(a1, . . . , an)
Xn

n!
.

Using Equation (32), we obtain that the n-th coefficient of the power series exp(Sε(α)) is

[exp(Sε(α))](n) =
1

n!
Bn

((
(−2)k−1k!

k
tr((S̃K̃−1)k)

)
1≤k≤n

)

=
1

n!
Bn

((
(−2)k−1(k − 1)!ck(z, z∂)

)
1≤k≤n

)
+ oε→0(1).

This concludes by uniqueness of the coefficients in Equation (24). □

5. Loops and arcs on shifted domains

In this section, we prove Theorem 3.4 when µε = µ2ε, that is in the shifted case. The proof
is very similar in spirit to the proof of the last section, but we have to use the estimates
of the inverse Kasteleyn matrix in piecewise Temperleyan domains obtained by Russkikh in
[20] (see Lemma C.3 of the Appendix) instead of those of Lemma B.3 which only work for
Temperleyan domains. We follow the same steps and indicate the main changes.

Proof. As in the preceding section, let γ be a path in U from z to z∂ and Eε = Eε(γ) be the
associated zipper, see Figure 10. Let ε > 0 be fixed. For every α ≥ 0, we define a connection

on Gε by setting for any directed edge e ∈ Eε(γ), ϕe =

(
1 + α/2 −α/2
α/2 1− α/2

)
, ϕe−1 = ϕ−1

e ,

and ϕe = I2 on all other bulk edges. We also define ψe =

(
1
0

)
for all edges e linking a

boundary point with a bulk point. We denote by Kα the Kasteleyn matrix associated with
this connection and the Kasteleyn phases of discrete holomorphy given by Equation (3), and
by K = K0. Corollary 2.4 writes.

PfKα =
∑
ω∈Ω

∏
loops C

tr(ϕC)
∏

arcs A

ψ⊺
bA
ϕAψwA . (33)

The proof now follows the same three steps as the preceding section.

First step: the right-hand side of Equation (33). Loops get a weight 2, arcs enclosing
z get a weight 1±α/2 according to their orientation, so we obtain, using the same notations
as in the preceding proof,

PfK2α =
∑
ω∈Ω

2cε(1− α2)rε(z)(1− oε(z)); PfK =
∑
ω∈Ω

2cε
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and dividing by PfK we obtain

PfK2α

PfK
=

∞∑
k=0

(−1)kα2k
Eε

[(nε(z)−oε(z)
2

k

)]
−

∞∑
k=0

(−1)kα2k+1
Eε

[(nε(z)−oε(z)
2

k

)
oε(z)

]
(34)

which is exactly Equation (18), and concludes the first step of the proof.

Second step: the left-hand side of Equation (33). We use the same notations as in the
preceding proof: Eε for the zipper, sgn(Eε)w,b for the direction of an edge of the zipper. For
i ∈ {1, 2}, we write the vertices of Gi

ε as (x, i) with x ∈ Gε if i = 1, x ∈ Gε \ R× {0} if i = 2.

Contrary to the last section, the matrix K is a block matrix since ψ =

(
1
0

)
: K(w,i),(b,j) = 0

as soon as i ̸= j. On the i = j = 1 block, it is the Kasteleyn matrix on the Temperleyan
domain G1

ε : it has Dirichlet boundary conditions everywhere. We write K(w,1),(b,1) = K1
w,b.

On the i = j = 2 block, it is the Kasteleyn matrix on the piecewise Temperleyan domain
G2
ε : it has Dirichlet boundary conditions everywhere, except on the horizontal axis where

it has Neumann boundary conditions (see [20] for a general discussion of mixed boundary
conditions for Kasteleyn matrices). We write K(w,2),(b,2) = K2

w,b. The asymptotic of (K1)−1

and (K2)−1 when ε → 0 were obtained in [20] and are recalled in Lemma C.3. Note that
contrary to the last section, the vertical orientation is correct for K1 and K2, hence we do
not need any gauge change. We can write

(K2α)(w,i),(b,j) = K(w,i),(b,j) + αS(w,i),(b,j)

with

S(w,i),(b,j) = 1{w ∼ b}ζw,bsgn(Eε)w,b(−1)i−1. (35)

In other words, K2α = K + αS and as in the preceding section Equation (34) becomes, for
all α ∈ (0, ρ(SK−1)−1),

∞∑
k=0

(−1)kα2k
Eε

[(nε(z)−oε(z)
2

k

)]
−

∞∑
k=0

(−1)kα2k+1
Eε

[(nε(z)−oε(z)
2

k

)
oε(z)

]

= exp

(
1

2

∞∑
k=1

(−1)k−1

k
αktr

(
(SK−1)k

))
,

(36)

which concludes the second step.

Third step: the asymptotic of the trace term. We only need to prove, as in the
preceding section (up to a factor 2n) that∣∣∣∣∣∣tr((SK−1)n)− 2n+1

∑
1≤k1,··· ,kn≤Nε

∑
σ∈{±1}n

n−1∏
i=0

iσiF
(σi)
−σiσi+1

(zki+1
, zki)dz

(σi)
ki

∣∣∣∣∣∣ ≤ Cnϕδ(ε). (37)

for some C = C(γ) > 0, ϕδ(ε)
ε→0−→. Indeed, if this holds, the proof of the last section carries

through. We prove it using the same general strategy as in the third step of the last section.
Let n ≥ 1 be fixed. Using the convention that (wn, jn) = (w0, j0), we can write

tr
(
(SK−1)n

)
= 2

∑
(w0,j0),...,(wn−1,jn−1)

n−1∏
k=0

(SK−1)(wk,jk),(wk+1,jk+1). (38)
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The factors in the product are computed as follows: for all u, v ∈W (Gr
ε ), for all i, j ∈ {1, 2},

using Equation (35), and the fact that K−1
(w,i),(b,j) vanishes when i ̸= j,

(SK−1)(u,i),(v,j) =
∑

(b,k)∈B(Gr
ε )

S(u,i),(b,k)K
−1
(b,k),(v,j) = (−1)i−1

∑
b:{ub}∈Eε

ζu,bsgn(Eε)u,b(K
j)−1

b,v .

Developing the product in Equation (38) yields

tr
(
(SK−1)n

)
= 2

∑
j0,...,jn−1∈{1,2}

∑
e0,...,en−1∈Eε

ek={wkbk}

n−1∏
k=0

ζwk,bksgn(Eε)wk,bk(−1)jk(Kjk+1)−1
bk,wk+1

(39)

(note that we also reindexed jk+1 = jk). We choose the same path γ in U as in the preceding
section and we group the edges by packets as before, see Figure 12 and the corresponding
paragraph. We use the same notation:

Eε =

( ⊔
1≤k≤Nε

Eε(k)

)
⊔ Fε.

Here we need to be more careful than in the last section when neglecting the edges in Fε,
since the terms are no more O(ε) when wk+1 and bk are getting close. By Lemma C.3 and
in particular the weaker consequence Equation (51),

|(Kjk+1)−1
bk,wk+1

−∆(wk+1, bk)| ≤ Cε

for some constant C = C(δ). In Equation (39), the error ∆(wk+1, bk) cancels between the
terms jk = ±1, so we can rewrite it as

2
∑

j0,...,jn−1∈{1,2}

∑
e0,...,en−1∈Eε

ek={wkbk}

n−1∏
k=0

ζwk,bksgn(Eε)wk,bk(−1)jk
(
(Kjk+1)−1

bk,wk+1
−∆(wk+1, bk)

)
.

Now, we can neglect the edges in Fε: since |Fε| ≤ C (upon increasing C), it holds that up to
Cnε (upon increasing C again),

tr
(
(SK−1)n

)
= 2

∑
1≤k1,...,kn≤Nε

∑
ji∈{1,2}
∀1≤i≤n

∑
ei=wibi∈Eε(ki)

∀1≤i≤n

n−1∏
i=0

{
ζwi,bisgn(Eε)wi,bi(−1)ji−1

×
(
(Kji+1)−1

bi,wi+1
−∆(wi+1, bi)

)}
.

(40)

From now on, we fix 1 ≤ k1, · · · , kn ≤ Nε and take the corresponding term sk1,··· ,kn in the
sum on the right-hand side of Equation (40):

sk1,...,kn =
∑

ji∈{1,2}

∑
ei=wibi∈Eε(ki)

n−1∏
i=0

ζwi,bisgn(Eε)wi,bi(−1)ji−1
(
(Kji+1)−1

bi,wi+1
−∆(wi+1, bi)

)
.

Recall that wi, bi are within distance 2
√
2ε of zki . We show that (up to an error of order

o(ε))

sk1,...,kn = 2n
∑

σ∈{±1}n

n−1∏
i=0

iσiF
(σi)
−σiσi+1

(zki+1
, zki)dz

(σi)
ki

.
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Note that in this expression, F± are the functions defined in Equation (47) and appearing in

Lemma B.3, and F
(σ)
± for σ = ±1 denotes complex conjugation (in particular F

(σ)
± is not the

F j
±, j ∈ {1, 2} appearing in Lemma C.3, though they are related as we will see).
Let ri, si ∈ {±1} be such that wi ∈W 1−ri

2

, bi ∈ B 1−si
2

. By Lemma C.3,

(Kji+1)−1
bi,wi+1

−∆(wi+1, bi) =
ε
2

[
F

ji+1
+ (zki+1

, zki) + ri+1F
ji+1
− (zki+1

, zki)

+siF
ji+1
− (zki+1

, zki) + ri+1siF
ji+1
+ (zki+1

, zki)
]
+ εϕδ(ε).

where ϕδ(ε)
ε→0−→ 0. We will omit the argument (zki+1

, zki) and the dependence in ji+1 for

each of the functions F+, F−, F−, F+. Recall that this implies (see Equation (51)) that

|(Kji+1)−1
bi,wi+1

−∆(wi+1, bi)| ≤ C(δ)ε.

Moreover, one can verify that

ζwi,bisgn(Eε)wi,bi = −ri ε
−1

2 i[ridzki − sidzki ],

and so we have, up to an error Cnεϕδ(ε) (upon increasing C),

sk1,...,kn =
∑

r,s∈{±1}n,ji∈{1,2}

n−1∏
i=0

ri(−1)ji

4 i[ridzki − sidzki ]
[
F+ + ri+1F− + siF− + ri+1siF+

]
.

We multiply out this product. Recall that dz
(1)
ki

= dzki and dz
(−1)
ki

= dzki , and similar for F+

and F−. The above is equal to∑
ji∈{1,2}

∑
r,s,τ∈{±1}n
κ,θ∈{0,1}n

n−1∏
i=0

(−1)jiri
4 i(−1)θir1−θi

i r
1
2 (1−τi)+κi

i+1 sθi+κi
i F ((−1)κi )

τi dz
((−1)θi )
ki

.

If for some i = 0, . . . , n − 1, we have κi + θi = 1, then summing over si = ±1 gives zero.
So the only terms that remain have θi = κi for all i = 0, . . . , n − 1, and then the product is
independent of s, so the above is∑

ji∈{1,2}

∑
r,τ∈{±1}n
κ∈{0,1}n

n−1∏
i=0

(−1)jiri
2 i(−1)κir

1−κi+1+κi+
1
2(1−τi)

i F ((−1)κi )
τi dz

((−1)κi )
ki

,

after reindexing ri+1 = ri. Now similarly to the above, if for some i = 0, . . . , n − 1, we
have that 1− κi+1 + κi +

1
2(1− τi) is even (contrary to the last section), then the sum over

ri = ±1 gives zero. Hence the only terms that remain have for all i = 0, . . . , n − 1 that
1− κi+1 + κi +

1
2(1− τi) is odd, which is the same as 1{κi ̸= κi+1} ≠ 1{τ = 1}, which is the

same as τi = (−1)κi(−1)κi+1 . The sum is then independent of r, and we obtain

sk1,...,kn =
∑

ji∈{1,2}

∑
κ∈{0,1}n

n−1∏
i=0

(−1)jii(−1)κidz
((−1)κi )
ki

F
((−1)κi )
(−1)κi (−1)κi+1 .

Finally, reparameterizing as σi = (−1)κi gives∑
ji∈{1,2}

∑
σ∈{±1}n

n−1∏
i=0

(−1)jiiσiF
(σi)
σiσi+1

dz
(σi)
ki

,
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The last step of the argument is specific to the shifted case. It is time to recall the dependence
of the i-th term in ji+1, zki , zki+1

which was hidden in the notation for a while. For j ∈ {1, 2},
σ ∈ {±1}, (F j

±)
(σ) is (F 1

±)
(σ) if j = 1, (F 2

±)
(σ) if j = 2 (recall that the exponent (σ) denotes

complex conjugation). Using the explicit expression for F 1
± and F 2

± (defined on U) in terms
of F± (defined on U r), see Equation (52) of Appendix C, sk1,...,kn can be written as∑

ji∈{1,2},σ∈{±1}n

n−1∏
i=0

(−1)jiiσi

[
F (σi)
σiσi+1

(z1, z2) + (−1)ji+1F
(σi)
−σiσi+1

(z1, z2)
]
dz

(σi)
ki

.

Developing the product yields∑
ji∈{1,2},σ∈{±1}n,κ∈{±1}n

n−1∏
i=0

(−1)jiiσi(−1)
κi−1

2
ji+1F (σi)

κiσiσi+1
(z1, z

(κi)
2 )dz

(σi)
ki

.

If for some i = 0, . . . , n− 1 we have κi = 1, then summing over ji+1 = ±1 gives zero, so the
only terms remaining have κi = −1 for all i and then the product is independent of κ, so the
above is ∑

ji∈{1,2},σ∈{±1}n

n−1∏
i=0

iσiF
(σi)
−σiσi+1

(z1, z2)dz
(σi)
ki

= 2n
∑

σ∈{±1}n

n−1∏
i=0

iσiF
(σi)
−σiσi+1

(z1, z2)dz
(σi)
ki

which concludes the proof. □

6. The case of a rectangle: computing the number of arcs crossing in the
vertical direction

In this section, we consider a slightly different setting (strongly inspired by section 9 of
[17]) and show that in some cases we can compute new interesting quantities by diagonalizing
the Kasteleyn matrix. Let G be the subgraph of Z2 with vertex set [0, n]× [1,m]. We define
its boundary to be ∂ = {0, n} × [1,m]. We define a graph Gr by taking two copies of G with
vertices labeled as (x, y, 1) and (x, y, 2) for (x, y) ∈ G and by identifying (x, y, 1) = (x, y, 2) for
(x, y) ∈ ∂G. In other words, Gr is the cylinder Z/(2nZ)× [1,m] if we identify (x, y, 1) = (x, y)
and (x, y, 2) = (−x, y), with the slight abuse of notation that we identify x ∈ Z with its
projection x̄ ∈ Z/(2nZ) so that in particular, for all y, (n, y, 1) = (n, y) = (−n, y) = (n, y, 2).
A uniformly random dimer configuration on Gr gives a random configuration of disjoint loops,
doubled edges and arcs, obtained by superimposing the two layers. Arcs link two boundary
vertices that can be on the same side or on opposite sides of the cylinder.

Remark 6.1. Note that it is an example where ∂ has two connected components. It
complements the strip Example 3.7 where it has one connected component.

The arcs always have one black and one white endpoint since the vertices along the bound-
ary (blue bullets and circles on Figure 13) are alternating in colour. We define the random
variable Nn,m to be the number of arcs traversing from one vertical boundary to the other.

Theorem 6.2. Let τ > 0 be fixed, q = e−πτ . When n,m → ∞ with their ratio n
m → τ ,

the characteristic function of Nm,n converges to an explicit limit∑
k

P[Nm,n = k]Y k n→∞−→
∞∏
j=1
j odd

1 + q2j − 2qj + 4Y 2qj

1 + q2j + 2qj
.
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(0, 1)

(0,m)

(n,1)
=(−n,1)

(1, 1)

(−1, 1)

Figure 13. The graph Gr on the left, with (x, y, 1) in black, (x, y, 2) in red
and the boundary vertices in blue. On the right, a loops and arc configuration,
with some of the arcs drawn in red (the loops are not drawn) and with Nn,m =
2.

Proof. We choose complex Kasteleyn phases ζ by putting ζ = 1 on all horizontal edges and
ζ = i on all vertical edges. These complex Kasteleyn phases can be obtained by a gauge
transform from the ones of Figure 2, so Proposition 2 holds with the complex phases ζ by
Remark 2.3. Then, for any choice of connection ϕ on G, if Kϕ is the Kasteleyn matrix
associated to the connection ϕ and the phases ζ, Proposition 2.1 holds. We now turn to
the choice of the connection. Let ρ ∈ C be fixed and a ∈ C such that an = ρ. We can
define a connection on the bulk by setting, for any horizontal bulk edge e (pointing right),

ϕe =

(
a 0
0 1

a

)
and ϕ−e = ϕ−1

e . For any vertical bulk edge, we define ϕe = I2. We also

define ψe =

(
a
1
a

)
for all (horizontal) edges e pointing right linking a boundary point with

a bulk point and ψe =

(
1
a
a

)
for all (horizontal) edges e linking a boundary point with a

bulk point pointing left. Denote by Ka the Kasteleyn matrix associated with this choice of
connection and orientation as in the preceding section and K = K1 the Kasteleyn matrix
associated with the trivial connection. We can now analyse the formula of Proposition 2.1.
The loops have monodromy I2 so they get a weight 2, and the arcs that come back to the
same boundary also get a weight 2, while the arcs that go from one side to the other get a
weight ψ⊺

bA
ϕAψwA = an + a−n = ρ+ ρ−1. Hence,

PfKa =
∑
ω∈Ω

2#loops2#arcs

(
ρ+ ρ−1

2

)#arcs traversing

,
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so
PfKa

PfK
=
∑
k∈N

P[Nm,n = k]

(
ρ+ ρ−1

2

)k

. (41)

We are left with computing the left-hand side, or rather its square det(Ka)
detK . We define the

matrix K̄a by K̄a(w, b) = Ka(w, b) for all b black and w white in Gr: it is the symmetric
version of Ka (which is by definition antisymmetric). Using the block structure of Ka and
K̄a, we get det(K̄a) = −det(Ka) so the ratio of determinants is left unchanged. We now
observe that the matrix K̄a that we have constructed is exactly that of Kenyon. Writing
λ = ρ2 (which satisfies a2n = λ, X = ρ2 + 1

ρ2
), and since K corresponds to a = 1 and X = 2,

if m is even, the results of Section 9 of Kenyon (conformal invariance of domino tiling) imply

det(Ka)

det(K)
=

det(K̄a)

det(K̄)

n→∞−→
n
m
→τ

∞∏
j=1
j odd

(1 + q2j +Xqj)2

(1 + qj + q2j)2
.

Combining this with Equation 41 gives(∑
k

P[Nm,n = k]

(
ρ+ ρ−1

2

)k
)2

n→∞−→
n
m
→τ

∞∏
j=1
j odd

(1 + q2j +Xqj)2

(1 + qj + q2j)2
.

For ρ ∈ C, such that Y =
ρ+ 1

ρ

2 > 0, Y 2 = X+2
4 so X > −2 and all (squared) factors on both

sides are non-negative so we can take the square root:∑
k

P[Nm,n = k]Y k n→∞−→
n
m
→τ

∞∏
j=1
j odd

1 + q2j +Xqj

1 + qj + q2j
=

∞∏
j=1
j odd

1− 2qj + q2j + 4Y 2qj

1 + qj + q2j
.

□

Appendix A. Computation in the continuum (by Avelio Sepúlveda)

The objective of this section is to compute the expected values of the random variables
n(z) and o(z) for the ALE. These random variables are clearly conformally invariant, as the
ALE itself is. More precisely we plan to show the following.

Proposition A.1. Let A be an ALE in the strip R× [0, π/2], n(z) the amount of arcs of
A that separate the upper boundary from z and O(z) = (−1)n(z). We have that

E [n(z)] =
1

4
− (ℑ(z))2

π2
− 2

π2
log(sin(ℑ(z)))

P [O(z) = −1] = 1/2−ℑ(z)/π.

Note importantly that these moments exactly coincide with Example 3.7.
Before showing the proposition, let us define the strips S+ = R × [0, π/2] and Š = R ×

[−π/2, π/2]. Note that the conformal radius of these strips is given by

CR(z, Š) = 2 cos(ℑ(z)),
CR(z, S+) = sin(2ℑ(z)) = 2 sin(ℑ(z)) cos(ℑ(z)).

In what follows λ =
√
π/8. Let D ⊆ H be a domain with ∂D = ∂1 ∪ ∂2, ∂1 ∩ ∂2 = ∅ and

∂2 an interval of R. We also define Ď to be the domain obtained by reflecting D on H. We
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take Φ to be a GFF in a domain D with boundary condition λ on ∂1 and 0 on ∂2, and Φ̌
be a GFF in D with boundary condition 0 on ∂1 and free on ∂2. We couple Φ and Φ̌ such
that A−λ,λ of Φ coincides with A – the ALE of Φ̌ as in [19] (See Figure 14). Furthermore,
we denote by u(z) the harmonic function in D with boundary values λ1∂1 so that Φ − u(z)
is a GFF with 0 boundary conditions in D.

ΦA−λ,λ
(z) = λ Φ̌A(z) = 0

ΦA−λ,λ
(z) = −λ

Φ̌A(z) = 2λ

ΦA−λ,λ
(z) = −λ

Φ̌A(z) = −2λ
Φ̌A(z) = 0 Φ̌A(z) = 2λ

ΦA−λ,λ
(z) = −λ

ΦA−λ,λ
(z) = −λ

Φ̌A(z) = 4λ
ΦA−λ,λ(z) = λ

π/2

0

S+

Figure 14. Representation of A−λ,λ and A in S+. The harmonic function

associated to ΦA−λ,λ
takes alternating values in ±2λ, on the other hand Φ̌A

starts with value 0 on top and each time it crosses an curve changes values of
±2λ independently in each connected component.

Proof of Proposition A.1. Let Φϵ and Φ̌ϵ denote the ϵ-circle average of Φ and Φ̌ respectively.
A straightforward computation yields that (see for example Theorem 1.23 of [9])

E
[
(Φϵ(z)− u(z))2

]
− 1

2π
log(1/ϵ) → 1

2π
log(CR(z;D)) as ϵ→ 0. (42)

Furthermore, as Γ = 1√
2
(Φ− u+ Φ̌) has the law of a GFF with 0 boundary conditions on Ď

restricted to D, we have that

E
[
(Φ̌ϵ(z))

2
]
− 1

2π
log(1/ϵ) → 1

π
log(CR(z; Ď))− 1

2π
log(CR(z;D)) as ϵ→ 0.

Now, note that the strong Markov property of the GFF implies that

Φ = ΦA−λ,λ
+ΦA−λ,λ and Φ̌ = Φ̌A + Φ̌A,

where ΦA−λ,λ
and Φ̌A can be represented by harmonic functions thanks to [22], and condi-

tionally on A, ΦA−λ,λ and Φ̌A are 0 boundary GFF on D\A (conditionally) independent of
(ΦA−λ,λ

, Φ̌A). Furthermore, it is possible to check that

ΦA−λ,λ
(z) = λO(z) and Φ̌A =

n(z)∑
k=1

ξk,

where (ξk)
∞
k=1 are Rademacher random variables independent of A.

We compute now the expected value of O(z). To do this, we use the strong Markov
property of the GFF Φ with respecto to A−λ,λ to see that

u(z) = E
[
ΦA−λ,λ

(z)
]
.

From the above we obtain that

E [O(z)] = u(z)/λ and when D = S, P [O(z) = −1] = 1/2−ℑ(z)/π.
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We now need to compute the expected value of n(z). To do this, we study the square of
both Γ and Γ̌. For the first one the Markov property implies that

u2(z) = E
[
(Φϵ(z))

2
]
= E

[
((ΦA−λ,λ

)Dϵ (z))
2
]
+ E

[
((ΦA−λ,λ)ϵ(z))

2
]
.

Thus

u2(z) = E
[
((ΦA−λ,λ

)ϵ(z))
2
]
+ E

[
((ΦA−λ,λ)ϵ(z))

2 − (Φϵ(z)− u(z))2
]

→ λ2 +
1

2π
E
[
log

(
CR(z;D\A−2λ,2λ)

CR(z;D)

)]
as ϵ→ 0. (43)

On the other hand, using A instead of A−λ,λ and Φ̌ instead of Φ we have that

E[(Φ̌ϵ(z))
2] = E

[
((Φ̌A)ϵ(z))

2
]
+ E

[
((Φ̌A)ϵ(z))

2
]
. (44)

From here we obtain that

0 = E
[
((Φ̌A)ϵ(z))

2
]
+ E

[
((Φ̌A)ϵ(z))

2 − (Φ̌ϵ(z))
2
]

→ E

u(z) + 2λ

n(z)∑
k=1

ξk

2+
1

2π
E
[
−2 log(CR(z; Ď)) + log(CR(z;D)) + log (CR(z;D\A))

]
= u(z) + 4λ2E [n(z)] +

1

2π
E
[
−2 log(CR(z; Ď)) + log(CR(z;D)) + log (CR(z;D\A))

]
.

As A = A−λ,λ, we have as a consequence

E [n(z)] =
1

4
− u2(z)

π2
− 2

π2
(log(CR(z;D))− log(CR(z; Ď))).

In particular, this means that when D = S+ we have that

E [n(z)] =
1

4
− (ℑ(z))2

π2
− 2

π2
log(sin(ℑ(z))).

□

Appendix B. Inverse Kasteleyn matrix in Temperleyan domains

In this section, the inverse Kasteleyn matrix on Temperleyan domains will often be called
the coupling function as in the original work of [15]. We detail why it also works near the
boundary. We use the notation and setting of Section 3. We start by recalling some well-
known facts on the coupling function and discrete holomorphic functions. The acquainted
reader can jump directly to the statements of Lemma B.2 and Lemma B.3.

Let U be an open set, Uε an approximating sequence as in Definition 3.1 and Gε the
associated Temperleyan approximation with a boundary vertex b0 removed as in Section 3.
Note that these results are applied to U = U r in Section 4. To simplify notations, we will
write B = B(Gε), B0 = B0(Gε) etc. We use the usual Kasteleyn phases of discrete holomorphy

described in Equation (3) and denote by K̃ the associated Kasteleyn matrix as in the proof
of Theorem 3.4. It can be checked that

K̃∗K̃ = ∆,

where the Laplacian has Dirichlet boundary conditions on B0 and Neumann boundary condi-
tions on B1 except at b0 where it has Dirichlet boundary conditions. The determinant of the
right hand side counts tiling of a Temperleyan domain which are in bijection with spanning
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trees of B1 rooted at b0, hence it is positive, so det K̃ is also positive and K̃ is invertible: we
call its inverse K̃−1 the coupling function.

In this section only, we use the operator notation K(w, b) instead of the matrix notation
Kw,b to align with the notation of Kenyon. Let us fix w ∈ W0 (the same holds for w ∈ W1).
We first recall how the coupling function b→ K−1(b, w) can be seen as a discrete meromorphic
function: we call the real part the restriction to b ∈ B0 and the imaginary part the restriction
to b ∈ B1. This is justified by the following:

K̃−1(b, w) = (GK̃∗)(b, w)

= G
(
b, w +

ε

2

)
−G

(
b, w − ε

2

)
+ i

[
G

(
b, w − iε

2

)
−G

(
b, w +

iε

2

)]
,

where G = ∆−1 is the Green’s function. The function G takes real values because the
Laplacian ∆ takes real values. Further, since the Laplacian has a block structure (it is non
zero only from B0 to B0 and B1 to B1), G has the same block structure. Hence, since w ∈W0,

w± ε
2 ∈ B0 while w± iε

2 ∈ B1, so K̃
−1(b, w) is real for b ∈ B0 and pure imaginary for b ∈ B1

(justifying the terminology “real” and “imaginary” part).
Let us define ∂outB0 (the full red and blue circles on Figure 15) to be the vertices in

B0(εZ2) \B0 (where B0(εZ2) are the vertex of the dual graph of εZ2 i.e. the faces of εZ2) at
distance ε from a vertex of B0 (see Kenyon, section 4.1) and ∂outB1 = {b0} (full red square
on Figure 15). Define B0 = B0 ∪ ∂outB0, B1 = B1 ∪ ∂outB1 and B = B0 ∪ B1. If we extend

b ∈ B0 → K̃−1(b, w) by 0 on the vertices of ∂outB0, it is a harmonic function on B0 except

at two points: ∆K̃−1(·, w)|B0
= δw+ε/2 − δw−ε/2. Indeed, for b ∈ B0,

∆K̃−1(b, w) = K̃∗K̃K̃−1(b, w) = K̃∗(b, w) = K̃(w, b) = δb=w+ε/2 − δb=w−ε/2 (45)

as a function of b ∈ B0. Observe that this already fully characterizes the real part: there is
a unique function which satisfies (45) and is 0 on ∂outB0 (by the maximum principle). If we

extend the imaginary part b ∈ B1 → K̃−1(b, w) by 0 on b0, the imaginary and real part are

harmonically conjugated : K̃K̃−1 = I implies that for w′ ̸= w,

K̃−1
(
w′ +

ε

2
, w
)
−K̃−1

(
w′ − ε

2
, w
)
+i

[
K̃−1

(
w′ +

iε

2
, w

)
− K̃−1

(
w′ − iε

2
, w

)]
= 0 (46)

(which also holds when w′ is on the boundary due to the choice of boundary conditions).

This is the discrete Cauchy Riemann equation for K̃−1(·, w) around the point w′.
In our case (and unlike Kenyon who considers multiply connected domains), the imaginary

part is fully defined by saying that it is the harmonic conjugate of the real part and it is 0
at the removed vertex b0: by discrete integration along paths which avoid the singularity at
w, the values of K̃−1(·, w) on B1 can be uniquely recovered from the values on B0 and the
boundary conditions at b0. We summarize all this in a lemma:

Lemma B.1. The inverse Kasteleyn matrix K̃−1 is uniquely defined, and for w ∈W0 fixed,
it is characterized by the following:

• its real part is the (unique) harmonic function on B0 which is 0 on ∂outB0 (Dirichlet
boundary conditions) and satisfies

(∆K̃−1)(·, w) = δw+ε/2 − δw−ε/2

• its imaginary part is 0 at b0
• its real and imaginary part satisfy the discrete Cauchy Riemann equation (46) at all
points w′ ∈W \ {w}.
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We are now ready to give estimates of the coupling function. Let g̃(u, v) be the analytic
function of v whose real part is the Dirichlet Green’s function g(u, v) on U . Also define, as
in Section 6.3 of [17],

F+(u, v) =
∂g̃(u, v)

∂u
; F−(u, v) =

∂g̃(u, v)

∂ū
. (47)

Then, the following lemma holds:

Lemma B.2. [[15], Theorem 13] Let η > 0 be fixed. If u ∈ V (Gε) is at distance at least η
from the boundary and v ∈ V (Gε) is at distance at least η from u, and if b and w are within
O(ε) of u and v respectively, then

K̃−1(b, w) =


εRe(F+(u, v) + F−(u, v)) +O(ε2) if w ∈W0, b ∈ B0

εiIm(F+(u, v) + F−(u, v)) +O(ε2) if w ∈W0, b ∈ B1

εRe(F+(u, v)− F−(u, v)) +O(ε2) if w ∈W1, b ∈ B1

εiIm(F+(u, v)− F−(u, v)) +O(ε2) if w ∈W1, b ∈ B0

or for short, if r, s ∈ {±1} are such that w ∈W 1−r
2
, b ∈W 1−s

2
,

K̃−1(b, w) =
1

2

(
F+(u, v) + rF−(u, v) + sF−(u, v) + rsF+(u, v)

)
+O(ε2)

where the O(ε2) is uniform once η is fixed.

We only need the simplest part of the proof since the points u, v we consider are at distance
of order 1 (and not ε) from each other and the domain is simply connected so the harmonic
conjugate is single-valued. Actually, this lemma also works for points near the boundary:
this is mostly Theorem 14 of [17], but we make some arguments more precise.

Lemma B.3. Assume (as in Section 3) that there exists z∂ ∈ ∂U and δ > 0 such that the
boundary of U is horizontal in the neighbourhood B(z∂ , δ) and that U is contained in the
half plane below this flat horizontal boundary. Assume that Uε also has a flat and horizontal
boundary in B(z∂ , δ). Then for all r, s ∈ {±1}, w ∈W 1−r

2
(Gε), b ∈ B 1−s

2
(Gε) each at distance

at most δ/2 of z∂ or at distance at least δ/2 from the boundary of U , if |b− w| ≥ δ/2 and if
w and b are within O(ε) of u, v ∈ U respectively, then

K̃−1(b, w) =
1

2

(
F+(u, v) + rF−(u, v) + sF−(u, v) + rsF+(u, v)

)
+O(ε2)

where the O(ε2) is uniform once δ is fixed.

In particular, with the notation of the lemma,

|K̃−1(b, w)| ≤ C(δ)ε (48)

for some constant C depending only on δ.

Remark B.4. These two lemmas could actually be proved in a slightly more general setting

when δ = δ(ε)
ε→0−→ 0.

The proof consists in detailing some arguments in the proof of Theorem 14 of [15] (more
precisely we use the argument of Corollary 19) but our statement applies to all points at
distance at most δ/2 from z∂ , unlike the statement of Kenyon which applies only to the
points within O(ε) of the boundary.



CONFORMALLY INVARIANT BOUNDARY ARCS IN DOUBLE DIMERS 39

U

z∂

bl br

b0

Figure 15. The graph Gε near the point z∂ and the flat boundary is drawn
in black. The boundary points on the flat boundary ∂flatB0 are represented
as full blue circles. The rest of the boundary ∂outB0 is represented by full
red circles. These are the point with Dirichlet boundary condition for the
coupling function. The reflection axis is drawn as a blue line and the reflected
vertices are drawn in grey for the bulk vertices and light red for the boundary
vertices.

Proof. We have to deal with the fact that w might be close to the boundary so Lemma B.2
would not apply. Let ∂flatB0 be the set of the uppermost points of ∂outB0 (full blue circles
in Figure 15). They are all situated on the same horizontal line (full blue line in Figure 15).
We call s the reflection along this line. We also define ∂flatW0 (the empty blue circles in
Figure 15) to be the vertices in W0(Z2) (the horizontal edges of εZ2) which are at distance
ε/2 from a point in ∂flatB0, and we define W0 =W0 ∪ ∂flatW0, W =W0 ∪W1. We consider
a new graph Gs

ε which has vertex set B ∪W ∪ ∂flatB0 ∪ s(B) ∪ s(W ) ∪ {s(b0)} (the grey,
black and blue points in Figure 15) where we identify the points of ∂flatB0 and ∂flatW0 and
their image (they are fixed by the reflection). The edges of Gs

ε link points at distance ε/2.
The boundary of Gs

ε is ∂outB0 ∪ s(∂outB0)∪ {b0, bl, br} \ ∂flatB0 (the red, light red and green
points in Figure 15) where bl, br are two added points (in green on Figure 15): bl at distance
ε to the left of the leftmost point in ∂flatB0 and br at distance ε to the right of the rightmost
point in ∂flatB0. We will write Bs for the black vertices of Gs

ε , Gs
ε for the union of Gs

ε and its
boundary, etc.

We can extend the discrete meromorphic function K̃−1(·, w) on Bs by a discrete analogue
of the Schwarz reflection principle for holomorphic functions. We define, for b ∈ B,

K̃−1
s (s(b), w) =

{
−K̃−1(w, b) if b ∈ B0

K̃−1(w, b) if b ∈ B1
(49)

and set K̃−1(bl, w) = K̃−1(br, w) = 0. This extended function is well defined (the only prob-

lem could be for b ∈ ∂flatB0 for which s(b) = b, but in this case K̃−1(w, b) = K̃−1(w, s(b)) =
0). It is discrete meromorphic on Gs: harmonicity of the real and imaginary parts (except at
w and s(w)) is preserved on and near the reflection axis (Definition (49) is designed to match

the Dirichlet and Neumann boundary conditions). Besides, b ∈ Bs
1 → K̃−1

s (b, w) remains
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harmonically conjugated to b ∈ Bs
0 → K̃−1

s (b, w) except at w and s(w): using the definition

of the extension K̃−1 and the discrete Cauchy Riemann equation (46), if w′ ∈ W0 \ {w},
s(w) ∈W s

0 and if we let

∂xK̃
−1(s(w′), w) = K̃−1

(
s(w′) +

ε

2
, w
)
− K̃−1

(
s(w′)− ε

2
, w
)

then

∂xK̃
−1(s(w′), w) = K̃−1

(
s
(
w′ +

ε

2

)
, w
)
− K̃−1

(
s
(
w′ − ε

2

)
, w
)

= −
[
K̃−1

(
w′ +

ε

2
, w
)
− K̃−1

(
w′ − ε

2
, w
)]

= i

[
K̃−1

(
w′ +

iε

2
, w

)
− K̃−1

(
w′ − iε

2
, w

)]
= i

[
K̃−1

(
s

(
w′ +

iε

2

)
, w

)
− K̃−1

(
s

(
w′ − iε

2

)
, w

)]
= i

[
K̃−1

(
s(w′)− iε

2
, w

)
− K̃−1

(
s(w′) +

iε

2
, w

)]
= −i

[
K̃−1

(
s(w′) +

iε

2
, w

)
− K̃−1

(
s(w′)− iε

2
, w

)]
which is exactly the discrete Cauchy Riemann equation (46) at s(w′) (note how the reflection
changes the signs only for vertical differences). This also holds for w ∈ W1 (but there is an
additional minus sign in the first line and no sign in the last line, which compensate).

We now show that the extended coupling function b ∈ Bs → K̃−1
s (b, w) coincides with

the difference of two coupling functions on Bs. Since Gs
ε is a Temperleyan approximation of

U ∪ s(U) if we remove the vertex b0, by Lemma B.1 for fixed w ∈ W0 ∪ s(W0), the coupling
function b ∈ Bs → Hs(b, w) is uniquely defined: its real part has 0 boundary conditions on
∂outB0 ∪ s(∂outB0) ∪ {bl, br} \ ∂flatB0 and satisfies ∆Hs(·, w) = δw+ε/2 − δw−ε/2 at all inner
points b ∈ Bs

0. Its imaginary part is 0 on b0 and is harmonically conjugated with the real
part except at w. We claim that for all b ∈ Bs

0,

K̃−1
s (b, w) = Hs(b, w)−Hs(b, s(w)). (50)

Indeed, the two sides of the equation have the same Laplacian δw+ε/2 − δw−ε/2 − δs(w)+ε/2 +
δs(w)−ε/2 and both have zero boundary conditions on Bs

0, so the real parts coincide. Hence,
the difference b ∈ Bs

1 → Hs(b, w)−Hs(b, s(w)) is harmonically conjugated (except at w and

s(w)) with b ∈ Bs
0 → K̃−1

s (b, w) = Hs(b, w)−Hs(b, s(w)) and it is zero at b0, so it coincides

with b ∈ Bs
1 → K̃−1

s (b, w) by integration along any path from b0 to b avoiding w and s(w).
Finally, Equation 50 also holds for b ∈ Bs

1.

Remark B.5. Observe that we did not impose any condition at s(b0) for Hs(b, w) −
Hs(b, s(w)), but since equality (50) holds it must be 0 a posteriori. This can be checked
using symmetry arguments.

Bs
1 is an approximating sequence for U ∪ s(U) so we can apply Lemma B.2 to conclude,

because (and this is the key point of the proof) if w is as in the statement of the Lemma,
then both w and s(w) are at distance at least δ/2 from the boundary of Bs: the points
near the flat part of the boundary around z∂ have become inner points of the graph Bs. In
particular, the points in B at distance at most δ/2 from z∂ are at distance at least δ/2 from
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the boundary of Bs, so we can apply Lemma B.2 with η = δ/2 to Hs(·, w) and Hs(·, s(w))
since they are the coupling function for the Temperleyan approximation of U ∪ s(U) with a
black vertex removed at the same location as before.

If we denote by g̃s(u, v) the analytic function of v whose real part is the Dirichlet Green’s
function gs(u, v) on U ∪ s(U), we define F s

+ and F s
− similarly to the definition before Lemma

B.2. If w is at distance O(ε) from u and b is at distance O(ε) from v,

K̃−1(b, w) =


εRe

[
F s
+(u, v) + F s

−(u, v)− F s
+(s(u), v)− F s

−(s(u), v)
]

+O(ε2)
if b ∈ B0,

εiIm
[
F+(u, v) + F−(u, v)− F s

+(s(u), v)− F s
−(s(u), v)

]
+O(ε2)
if b ∈ B1.

where the O(ε2) is uniform once δ is fixed. Observe now (this is the continuous equivalent of
what we have just done, i.e. Schwarz reflection principle in the continuum) that g̃s(u, v) −
g̃s(s(u), v) = g̃(u, v) when u, v ∈ U , because the left-hand side is analytic in v on U , its
real part gs(u, v) − gs(s(u), v) has the same pole as g(u, v) in v (by definition as a Green’s
function) and it is 0 on the boundary of U . On the flat portion, it is true by symmetry: if v
is on the reflection axis, gs(u, v) = gs(s(u), s(v)) = gs(s(u), v). On the rest of the boundary
both terms of the difference vanish since v is also on the boundary of U ∪ s(U). Hence,
F s
+(u, v) − F s

+(s(u), v) = F+(u, v) and F s
−(u, v) − F s

−(u, v) = F−(u, v) which concludes the
proof in the case w ∈W0; Lemma B.2 holds up to the boundary.

To deal with the case w ∈ W1, the same argument works but now K̃−1(·, w)|B0
is the

unique function on B0 which is 0 on ∂outB0 and whose Laplacian is −iδb=w+iε/2 + iδw−iε/2

by equation (45) applied when w ∈ W1 instead of W ∈ W0. The remaining changes are
straightforward. □

Appendix C. Coupling function in piecewise Temperleyan domains.

We use the setting of Section 3: U r is a simply connected open set symmetric with respect
to the horizontal axis, U = U r ∩ R × R>0. The boundary of U can be partitioned in two
connected arcs: ∂U = D⊔N where N = ∂U ∩R×{0} is the intersection with the horizontal
axis. Recall that we defined two graphs approximating U : the Temperleyan approximation G1

ε

with Dirichlet boundary conditions (and a vertex b0 removed) and the piecewise Temperleyan
approximation G2

ε with two convex white corners v∗1, v
∗
2. In both cases, we use the usual

Kasteleyn phases of discrete holomorphy described in Equation (3), and denote by K1,K2

the corresponding Kasteleyn matrices on G1
ε ,G2

ε . Both G1
ε and G2

ε have at least one dimer
configuration (for example because from any loops and arcs configuration ω ∈ Ω(Gε) we can
obtain two dimer covers of G1

ε and G2
ε ), hence K

1 and K2 are invertible by [20]. Moreover,
the asymptotics of (Kj)−1 on piecewise Temperleyan domains are computed and expressed in

terms of f ji (u, v) for i ∈ {0, 1}, j ∈ {1, 2}. These are the unique functions which are analytic
in u for fixed v, have a simple pole of residue 1/π at u = v with no other pole on Ū , are
bounded near v∗1, v

∗
2 (for the j = 2 case), and have the following boundary conditions:

• ℜ(f10 (·, v) = 0 on D ⊔N
• ℑ(f11 (·, v) = 0 on D ⊔N
• ℜ(f20 (·, v) = 0 on D and ℑ(f10 (·, v) = 0 on N
• ℑ(f21 (·, v) = 0 on D and ℜ(f11 (·, v) = 0 on N .

For τ = ±1, i ∈ {1, 2}, let

F j
τ =

1

2
(f j0 + τf j1 ).
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Then, Theorem 6.1 of [20] has the following corollary:

Lemma C.1. Let η > 0 be fixed. If u, v ∈ V (Gε) are at distance at least η from the
boundary, and if w and b are within O(ε) of u and v respectively, for j ∈ {1, 2}, r, s ∈ {±1},
w ∈W 1−r

2
, b ∈ B 1−s

2
,

(Kj)−1
b,w = ε

(
F j
+(u, v) + rF j

−(u, v) + sF j
−(u, v) + rsF j

+(u, v)
)
+∆(w, b) + o(ε)

where the o is uniform once η is fixed and ∆ is an error term depending only on ε, w ∈
W0⊔W1, b ∈ B0⊔B1 (in particular ∆ does not depend on U or its Temperleyan discretization
Gε).

Remark C.2. In the original statement of [20],

∆(w, b) =
2ε

λ
F ε
C,w(b)−

ε

u− v

where λ = ei
π
4 and F ε

C,w is the unique discrete holomorphic function on εZ2 tending to 0 at

infinity and with a pole λ at w, which is known to be asymptotically equal to λ
2π(b−w) when

ε → 0 and |b − w| ≥ η for some η > 0 independent of ε. See Section 5 of [20] for details.
The error term ∆ is also present in the original statement of Lemmas B.2 and B.3, but we
included it in the o(ε) since we never use these lemmas for close points and for all η > 0, for
all b, w such that |b− w| ≥ η,

|∆(w, b)| = oε→0(ε).

uniformly once η is fixed. Since we need to apply Lemma C.1 also for points b, w at distance
O(ε), we must include the error term.

As in Lemma B.3, when U has some specific boundary conditions, the asymptotic estimates
holds up to the boundary.

Lemma C.3. Assume (as in Section 3) that there exists z∂ ∈ D and δ > 0 such that the
boundary of U is horizontal in the neighbourhood B(z∂ , δ) and that U is contained in the
half plane below this flat horizontal boundary. Assume that Uε also has a flat and horizontal
boundary in B(z∂ , δ). If u, v ∈ V (Gε) are each at distance at most δ/2 of z∂ or at least
δ/2 from the ∂U , and if w and b are within O(ε) of u and v respectively, for j ∈ {1, 2},
r, s ∈ {±1}, w ∈W 1−r

2
, b ∈ B 1−s

2
,

(Kj)−1
b,w = ε

(
F j
+(u, v) + rF j

−(u, v) + sF j
−(u, v) + rsF j

+(u, v)
)
+∆(w, b) + o(ε)

where the o is uniform once δ is fixed and ∆ is the error term from Lemma C.1.

In particular, it holds that for all b, w at distance at most δ/2 of z∂ or at least ≥ δ/2 from
the ∂U , for all j ∈ {1, 2},

|(Kj)−1
w,b −∆(w, b)| ≤ C(δ)ε (51)

for some constant C(δ) depending only on δ.

Proof. The same argument as in the proof of Lemma B.3 can be applied: we skip most of

the details. For fixed w ∈ W (Gj
ε), for j ∈ {1, 2}, the coupling function (Kj)−1(·, w) can

be extended into a discrete meromorphic function (Kj
s)−1(·, w) on the graph (Gj

ε)s obtained

by gluing together Gj
ε and s(Gj

ε) (the reflection of Gj
ε along the flat part of ∂U). Then,
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(Kj
s)−1(·, w) is a discrete meromorphic function on B((Gj

ε)s), with mixed Dirichlet/Neumann
boundary conditions and two poles of respective residues 1/π and −1/π at w and s(w), hence
it coincides with the difference of the two coupling functions Hs(·, w) −Hs(·, s(w) with the
same mixed boundary conditions. Indeed, the difference

(Kj
s)

−1(·, w)− (Hs(·, w)−Hs(·, s(w))

is in the kernel of the (invertible) matrix Kj , hence it must vanish. We conclude by applying
Lemma C.1 to Hs(·, w) and Hs(·, s(w)). □

We finally explain how F j
τ , τ = ±1 can be expressed in terms of the functions Fτ , τ = ±1

defined in the preceding section (see Equation 47). Recall that U r denotes the reflected
domain, and denote by f0(u, v), f1(u, v) the unique analytic functions of u ∈ U r having
a simple pole of residue 1/π at u = v and boundary conditions ℜ(f r0 (·, v) = 0 on ∂U r,
ℑ(f r1 (·, v) = 0 on ∂U r. They satisfy

F+(u, v) = f0(u, v) + f1(u, v) ; F−(u, v) = f0(u, v)− f1(u, v).

Since U r is invariant by reflection along the horizontal axis,

∀i ∈ {1, 2}, ∀u, v ∈ U r, f ri (u, v) = f ri (u, v).

Checking the boundary conditions in each case, it holds that:

• f10 (u, v) = f0(u, v)− f0(u, v)
• f11 (u, v) = f1(u, v) + f1(u, v)
• f20 (u, v) = f0(u, v) + f0(u, v)
• f21 (u, v) = f1(u, v)− f1(u, v)

Or, to put it shortly, for i ∈ {0, 1}, j ∈ {1, 2},

f ji (u, v) = fi(u, v) + (−1)i+jfi(u, v)

which implies that for τ ∈ {±1}, u, v ∈ U ,

F j
τ = Fτ (u, v) + (−1)jF−τ (u, v). (52)
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[4] J. Aru, A. Sepúlveda, and W. Werner. On bounded-type thin local sets of the two-dimensional gaussian

free field. Journal of the Institute of Mathematics of Jussieu, 18(3):591–618, 2019.
[5] Mikhail Basok and Dmitry Chelkak. Tau-functions à la dubédat and probabilities of cylindrical events
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[6] Nathanaël Berestycki, Benoit Laslier, and Gourab Ray. Dimers and imaginary geometry. The Annals of

Probability, 48(1):1–52, 2020.
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