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A B S T R A C T

The interdependence between water and energy (water-energy nexus) has been identified as one of the major
challenges at European level, with roadmaps calling for the development of integrated approaches in this sector.
The increase in river temperature is at the heart of this nexus, with anthropogenic thermal pollution adding to
the effect of global warming. River Water Heat Pumps can play a major role by decarbonising district heating
network (DHN) while actively cooling the aquatic resource. Hence, the objective of this short communication is
to identify the scientific challenges to be met and the progress to be achieved considering the current state of the
art. To illustrate the point, a rapid evaluation of the potential is performed for the city of Lyon in France resulting
in an achievable cooling of ~1.5 K which is above the minimum threshold to see an effect on aquatic ecosystem
while the CO2 savings are significant for the DHN (~ divided by a factor of 10). Because of its holistic nature, the
impact assessment of such a system implies considering a wide diversity of indicators: energy, environmental,
economics and sociological that need to be appropriately defined and quantified. In each field, progress beyond
the state of the art to be performed has been identified, e.g. 4E analysis, cold water plume dispersion, integration
of biodiversity in LCA.

1. Introduction

The interdependence between water and energy (water-energy
nexus) has been identified as one of the major challenges at European
level, with roadmaps calling for the development of integrated ap-
proaches in this sector [1]. The increase in river temperature is at the
heart of this nexus, with anthropogenic thermal pollution adding to the
impact of global warming, the effect of which on river temperature
profiles has been highlighted by [2] for example. These temperature
changes - particularly increases - have a strong impact on biodiversity
and on the functioning of aquatic ecosystems [3]. The search for engi-
neering solutions to ameliorate changing conditions by reducing river
temperatures to support persistence of biodiversity is a major challenge,
since conservation or restoration to the previous state are difficult to
achieve [4].

Among these engineering solutions, the development of urban heat
networks using heat pumps (HP) connected to an aquatic resource
(river, groundwater, reservoir) is a novel solution contributing to the
resilience of ecosystems, firstly by limiting the impacts (carbon and
pollutant emissions), but also actively by cooling the aquatic resource
(Fig. 1). The idea is effectively to release water, from which heat has
been recovered, into the riverine ecosystem, thus reducing the thermal
stress linked to global warming or other anthropogenic activities [5].
However, the sustainability of this solution depends on the associated
environmental impacts beyond the simple climate change indicator [6],
and the consequences on urban sociology. For example, this last aspect
was extensively discussed by Correljé et al. [7] in their recent paper.
They stressed out the transition towards sustainable urban energy sys-
tems demands more than mere technological innovation, pointing out
the multiple needed research activities in institutions and governance,
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values and social acceptance or citizen involvment.
Hence, characterising a District Heating Network (DHN) inter-

connected to river water taking into account technical-economic, envi-
ronmental and sociological criteria implies to:

1. Quantify the energy efficiency and environmental impacts of
replacing traditional heat generators (mainly gas and biomass
boilers, incinerators) with a river water heat pump solution,

2. Characterise the possibilities of cooling river water, especially in
relation to the discharge strategy (geometry, position, flow rate) of
the cooled water,

3. Quantify the positive effect of an artificially controlled temperature
decrease on the functioning of aquatic ecosystems, for instance by
using bioindicators as aquatic plant communities,

4. Study the sociological consequences on a city scale of the deploy-
ment of these solutions and their integration within existing tech-
nical systems and networks of actors.

The existence of positive externalities (impact on river biodiversity
and functioning, impact on citizens) beyond heat decarbonation due to
replacement of existing heat generation systems by river heat pumps, is
the main driver of implementing these systems. However, a trade-off has
to be found between opposite goals as the minimisation of all indicators:
energy consumption, environmental impacts, economical cost and social
impact, etc. at the same time is not realistic. To identify the best com-
promises, a holistic interdisciplinary approach is required and this
article aims at identifying and discussing the main challenges to be met.

2. Potential impact of river heat pump deployment

Because of the holistic nature of such a system, the quantification of
the expected results is challenging per se. To set up the scene, pre-
liminary calculations have been run for the Grand Lyon Metropole
(France, 1.4 million inhabitants) district heating (DH). As shown in
Fig. 2, significant extension of the network is already foreseen and ac-
cesses to the river resources are numerous and close to a wide variety of
end-users. Furthermore, the heat generation mix consists of gas units,

Fig. 1. River water heat pump working principle.

Fig. 2. Evolution of the Lyon Centre Metropole DHN (red 2015, orange goal for 2030), high potential areas for DHN extension beyond 2030 (green zone) and main
river resources [9].
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fuel units for back-up, biomass and incinerators; the last two ones rep-
resenting 65 % of the total production at the 2027 horizon [8].

Considering the existing and foreseen heating demand (table 1),
significant cooling of river flows can be achieved (from 0.5 K to 1.5 K or
more with adequate rejection strategy) depending on the integration
strategy. With adequate sizing of heat pumps and seasonal thermal
storage, a full replacement of existing solution can credibly be achieved
considering installations in other countries [10]. Hence massive decar-
bonation could be achieved, the average carbon content in DH falling
from 107 g/kWh [11] to about 12–15 g/kWh, assuming a Coefficient of
Performance (COP) of 3 for the heat pump and an electricity carbon
content of 35–45 g/kWhel for France. However, this highly significative
carbon emission reduction must be balanced against other impacts
(environmental, sociologic, economic) to define the best configurations.

As for biodiversity, considering the targeted temperature decrease, a
decrease of the level of stress for cold water species and changes in the
relative abundance of species having different thermal preferences is
expected [13-15]. The benefit of river cooling has been highlighted in
several studies like in Seedang et al. [16] who discussed the impact of a
reduction in temperature between 0.48 and 1.99 ◦C on ecosystem
restoration. Abdi et al. [5] have shown positive effect on river dissolved
oxygen (DO) for cooling as low as 0.3 – 0.7 ◦C, the effect increasing
significantly for greater variations in temperature (value as high as 7 ◦C
were tested). As stated by these authors, this improvement in DO satu-
ration level leads to a better habitat for “desired fish and other aquatic
organisms”.

3. Scientific and technical barriers

Because of the required holistic approach, the barriers are numerous
and related to several research field. The main ones are discussed
hereafter.

3.1. River heat pump based DHN design, simulation and assessment

The impact assessment of river water heat pumps remains relatively
unexplored to date, despite their definite potential to decarbonise heat
production in urban areas [17-18]. Moreover, the studies carried out are
mostly limited to technical (mostly energy [12], but also exergy anal-
ysis) even in some very recent studies [19]. In case of multicriteria based
analysis, energy analysis is complemented by economic indicators
coupled with an evaluation of gains in CO2 emissions, e.g. [17],[20],
[21],[22], without implementing a complete LCA (Life Cycle Assess-
ment) approach based on the full set of impact categories (definition in
appendix), while it has been proven highly necessary in similar cases
(industrial heat) to obtain a fair comparison [23]. Indeed, although 4E
(Energy, Exergy, Economic and Environmental) assessment is increas-
ingly used, no generic tool is currently available to perform such an

analysis. Hence, specific modelling needs to be performed and appro-
priate scenarios defined. Furthermore, a truly relevant assessment of the
sustainability of the available solutions requires positioning them in
relation to global limits, which must be transcribed at the level of the
concerned sector [24].

Finally, in the context of new metropolitan heating strategy
deployment, important attention should be paid to the integration of the
studied solution in the local energy system, understood as an inter-
twined set of infrastructures, public policies and energy practices [25].
Indeed, under the effect of European and French public energy policies,
the energy mix of heat provision is rapidly diversifying and new energy
sources are being integrated. This is particularly the case for waste heat,
whether it is generated by industrial actors or urban services [26],[27].
However, the construction of systematic heat policies still lacks recog-
nition [28]. Within a framework of urban political ecology [29], how
new ways of producing heat and heating renew urban configurations
have to be questioned. Compared to recent research [30], a strong focus
on the water-energy nexus is needed to question adequately the social,
political, economic, legal, and geographical relationships at play in the
mobilization of urban waterways as a decarbonized energy resource.

3.2. Cooling the river and its impact on the aquatic ecosystems

The impact of a thermal stress is conditioned, among other, by the
response of organisms. This implies knowing, on different time scales,
the effect of seasonal temperature changes [31], on the thermal decrease
needed to create cool shelters for organisms (impact on physiology and
growth [32], balance between species [33], indicators of ecosystem’s
health [34]). The impact on the organisms is also conditioned by the
achievable temperature reductions, through the dispersion of cooled
water within the river. A given cool-water outflow can have different
effects: its slow dispersion within the river favours the cooling of a
selected river bank over a long distance, while a fast dispersion cools the
whole river section, far-less intensively. Understanding the dispersion of
a fresh-water plume is thus paramount, notably the influence of buoy-
ancy and stratification [35], the discharge strategy [36] and the inter-
action of the plume with the canopy [37,38], – at the frontier of biology
and hydrodynamics.

Hence two strategies of fresh water dispersion can be considered. A
first strategy is to promote a rapid mixing of the fresh water, causing a
global cooling of the river. It requires an efficient mixing directly at the
exhaust, either making profit of local turbulence [39] or using dedicated
mixing devices [40]. The other strategy is a limited thermal mixing of
the fresh water with the river flow in order to form local thermal refugia
in privileged regions of the river, with a more pronounced temperature
decrease [41]. Thermal effluents are subject to buoyancy effects: the
injected cool water is heavier than the river water, and temperature
gradients affect the mixing. A stable stratification is known to reduce
vertical motions by causing density and stratification effects [42,43].
Classical criteria to predict this stratification, like a Richardson number
successfully used in tidal estuaries, are inadequate for river applications
[43]. Hence, the dynamics of a cooler (negatively buoyant) flow along
an inclined bank remains a scientific gap [44] that needs to be filled by
detailing the plume dispersion, conditions of stratification (plume
plunging towards the river bed, below the banks) in relation with
non-dimensional parameters (e.g. Richardson number, river to effluent
flow-rate ratio).

The privileged regions to be cooled to form thermal refugia are in the
near surface photic region (depth usually <2 m) where the river banks
are colonised by aquatic plants used as habitat by many species. Such a
plant canopy acts as a porous region which affects the hydrodynamics
and the local mixing due to both a reduced velocity [45] and large
coherent structures generated at the interface with the main-stream
[37]. With the increase of computational capacities, eddy resolving
computational methods as Large-Eddy Simulation (LES) or Detached
Eddy Simulation (DES), have become an affordable and efficient tool for

Table 1
River temperature decrease for different locations of cool water release in Lyon
centre Metropole (France) and heat demand assuming a COP of 3 for heat-pumps
[12].

Rivers to be equipped

Saône
(annual
average)

Saône (low-
water average 5
months)

Channel of
Miribel

Flow rate (m3/s) 473 224 30
Achieved

ΔT (K)
Reference
demand (615
GWh)

0.02 0.12 0.37

Extension 2030
(1678 GWh)

0.06 0.33 1.01

Lyon all DHN
2030 (2425
GWh)

0.09 0.47 1.47
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flow prediction at large scales [46] and in rivers [47]. Using these
methods, instantaneous large scales of the turbulent river flow are
resolved, while scales smaller than the grid, called subgrid scales are
modelled with promising results for similar configurations [44]. The
eddy resolving methods proved their efficiency for characterizing the
mixing of cool water at the scale of the city reach, up to a few kilometres
[48,49],. Nevertheless, a specific challenge is to reproduce at the same
time small-scale (near-field of the outflow) and large-scale (of the river
reach) thermal mixing with affordable meshing efforts and CPU time.

3.3. Biodiversity in LCA (Life cycle assessment)

As highlighted in the 2019 Intergovernmental Science-Policy Plat-
form on Biodiversity and Ecosystem Services report [50] or in recent
publications [51], the inclusion of biodiversity in LCA remains a chal-
lenge. Indeed, it has been until now limited to specific species or is
considered in related factors such as climate change or land use; even if
several authors have discussed options to incorporate ecosystem ser-
vices, they remain limited so far. There is therefore a strong issue at
stake regarding these questions for LCA.

In aquatic ecosystems, plants play key roles on both other biological
groups (macroinvertebrates, fish, etc.) and ecosystem functioning

(shelter and food for animals, water oxygenation, nutrient cycling,
sediment formation, erosion regulation etc. [52,53]). Still, plants being
fixed, they respond strongly to local environmental conditions [54], and
are thus commonly used as bioindicators of ecosystem functioning and
health [34]. Using aquatic plant communities for assessment of the ef-
fect of water refreshing and implementation of LCA could enable both to
characterize finely the effects of changes in water temperature on living
organisms through responses of individual plants and to assess conse-
quences on ecosystem functioning [55].Responses of aquatic plant to
changes in temperature have mostly been studied in the sense of
increased temperature due to global warming [56],[57], with reported
effect at different levels: plant physiology and growth, species distri-
bution and species interactions [31]. When plants are subjected to
unfavourable conditions of temperature, cell metabolism produces
Reactive Oxygen Species (ROS) which can then be used as an indicator
of the level of stress [58]. At the individual plant level, the water tem-
perature strongly influences productivity, phenology (e.g. leaf bud
burst, flowering) and growth [59],[13],[31]. At the community level,
changes in temperature leads to changes in frequency and abundance of
species having different thermal preferences [13],[15]. The plant
response will depend on the initial water temperature, the amplitude of
water cooling and on the thermal preference of the considered species.
Measuring the response to water refreshing of a large set of species
having contrasting thermal preferences would permit to characterize the
responses of the ecosystems, integrating its complexity as an expected
“beneficial” effect for cold-water species vs. a “negative” effect on
thermal tolerant species as invasive species.

Though a large number of attempts has been made to integrate the
biodiversity into LCA, there is still no consensus on indicators or
methods due to the complexity of the biodiversity and ecosystems
[51],[60]. In many cases, going beyond a simple assessment of species
richness and integrating functional assessment is crucial to characterize
the pressure on biodiversity and ecosystems in a relevant way [61].

4. Conclusion

The aim of this article is to discuss the scientific challenges that need
to be met to better assess the impact of district heating decarbonation
through the deployment of River Water Heat-Pumps.

The literature review and discussion confirm these challenges are
many and diverse. In consequence, a strong interdisciplinary approach is
required to address them appropriately combining aquatic biology, flow
mechanics, energy engineering sciences, social sciences, etc.

To highlight the diversity of the challenges, the actual state of the art
on the subject and the progress that needs to be achieved, are sum-
marised in Table 2 for the sake of clarity.

Declaration of competing interest
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APPENDIX

Life Cycle Impact Assessment. The impact categories, classification and characterisation used in EF 3.0 methodology developed with the Join
Research Center from European commission for the environmental analyses [62] are presented in Table A1.

Table 2
State of the art vs. progress to be achieved.

State of the Art Progress to be achieved

Assessment of DHN performance for one
configuration, based on thermo-
economic approach plus CO2 balance

Full 4E (energy, exergy, economic &
environment) assessment for various
configurations and evolutions in time
with consequential LCA in case of
massive impact on Country’s grid

Impact of seasonal storage evaluated
mainly for solar DHN

Evaluation of seasonal storage benefit for
river water heat pumps based DHN

SSH approach mostly limited to
economic aspects or to the
construction of social acceptance

Social, environmental, economic,
political and technical issues taken
altogether in the context of a socio-
technical sciences analysis

River mixing phenomenon mainly
characterised for positive buoyant
plume

Better understanding of cold water
plume dispersion and stratification
conditions

River flow modelled without canopy
interaction most of the time

River flows with the presence of aquatic
plants and canopy on river banks
modelled with LES

No consensus on indicators or methods
have been established to integrate the
biodiversity into LCA

Multi scale approach (from physiology to
community) based on key organisms, as
aquatic vegetation, to integrate
functional assessment of the biodiversity
into LCA.

Lack of integrative study on responses of
aquatic plant community to changes
in temperature

Quantification of key processes (stress,
productivity, phenology, species
interaction) to provide comprehensive
assessment of responses of aquatic
vegetation

Lack of study of the possible resilience of
aquatic communities in case of water
refreshing

Quantification of the responses of aquatic
communities to water refreshing, and
hence of the resilience capacity, step
necessary to propose restoration and
nature-based solutions to global warming
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Table A1
Environmental and energy Impact categories with description from SIMAPRO software.

Source Impact category Units Description

EF 3.0
Climate change kg CO2 eq Radiative forcing as Global Warming Potential GWP100 Baseline model of the IPCC 2013 with some factors adapted

from EF guidance
Ozone depletion kg CFC11 eq Ozone Depletion Potential calculating the destructive effects on the stratospheric ozone layer over a time horizon of

100 years.
Ionising radiation kBq U-235 eq Ionizing Radiation Potentials: Quantification of the impact of ionizing radiation on the population, in comparison to

Uranium 235.
Photochemical ozone
formation

kg NMVOC eq Expression of the potential contribution to photochemical ozone formation.

Particulate matter disease
incidence

Disease incidence due to kg of PM2.5 emitted.
The indicator is calculated applying the average slope between the Emission Response Function (ERF) working point
and the theoretical minimum-risk level. Exposure model based on archetypes that include urban environments, rural
environments, and indoor environments within urban and rural areas.

Human toxicity, non-
cancer

CTUh Comparative Toxic Unit for human. Using USEtox consensus multimedia model. It spans two spatial scales:
continental scale consisting of six compartments (urban air, rural air, agricultural soil, natural soil, freshwater and
costal marine water), and the global scale with the same structure but without the urban air.Human toxicity, cancer CTUh

Acidification mol H+ eq Accumulated Exceedance characterising the change in critical load exceedance of the sensitive area in terrestrial and
main freshwater ecosystems, to which acidifying substances deposit.Eutrophication, freshwater kg P eq

Eutrophication, marine kg N eq Nitrogen equivalents: Expression of the degree to which the emitted nutrients reach the marine end compartment
(nitrogen considered as limiting factor in marine water).

Eutrophication, terrestrial mol N eq Accumulated Exceedance characterising the change in critical load exceedance of the sensitive area, to which
eutrophying substances deposit.

Ecotoxicity, freshwater CTUe Comparative Toxic Unit for ecosystems. Using USEtox consensus multimedia model. It spans two spatial scales:
continental scale consisting of six compartments (urban air, rural air, agricultural soil, natural soil, freshwater and
costal marine water), and the global scale with the same structure but without the urban air.

Land use Pt Soil quality index
Calculated by JRC starting from LANCA® v 2.2 as baseline model.

Water use m3
deprivation

User deprivation potential (deprivation-weighted water consumption)
Relative Available WAter REmaining (AWARE) per area in a watershed, after the demand of humans and aquatic
ecosystems has been met. Blue water consumption only is considered, where consumption is defined as the
difference between withdrawal and release of blue water. Green water, fossil water, sea water and rainwater are not
to be characterised with this methodology.

Resource use, fossils MJ Abiotic resource depletion fossil fuels; based on lower heating value ADP for energy carriers, based on van Oers et al.
2002 as implemented in CML, v. 4.8 (2016).

Resource use, minerals and
metals

kg Sb eq Abiotic resource depletion (ADP ultimate reserve) ADP for mineral and metal resources, based on van Oers et al.
2002 as implemented in CML, v. 4.8 (2016).

Ecoinvent
Cumulative energy
demand

MJ Method to calculate Cumulative Energy Demand (CED), based on the method published by Ecoinvent version 2.0
and expanded by PRé Consultants for raw materials available in the SimaPro 7 database. The method is based on
higher heating values (HHV)

Cumulative exergy
demand

MJ In this method exergy is used as a measure of the potential loss of "useful" energy resources.
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[7] A. Correljé, T. Hoppe, R. Künneke, Guest Editorial: special Issue on “Sustainable
urban energy systems – Governance and citizen involvement, Energy Policy 192
(2024) 114237, https://doi.org/10.1016/j.enpol.2024.114237.

[8] Inauguration de la chaufferie de Surville n.d. https://www.lyon.fr/actualite/cadre
-de-vie/inauguration-de-la-chaufferie-de-surville (accessed December 19 2023).
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Argentina, J. Geophys. Res. Earth. Surf. 113 (2008), https://doi.org/10.1029/
2006JF000745.

[36] G.R. Jones, J.D. Nash, R.L. Doneker, G.H. Jirka, Buoyant Surface Discharges into
Water Bodies. I: flow Classification and Prediction Methodology, J Hydraul Eng
133 (2007) 1010–1020, https://doi.org/10.1061/(ASCE)0733-9429(2007)133:9
(1010).

[37] L. Cornacchia, N. Riviere, J.J. Soundar Jerome, D. Doppler, F. Vallier, S Puijalon,
Flow and wake length downstream of live submerged vegetation patches: how do
different species and patch configurations create sheltering in stressful habitats?
Water. Resour. Res. 58 (2022) e2021WR030880 https://doi.org/10.1029/
2021WR030880.

[38] M.R. Raupach, J.J. Finnigan, Y. Brunet, Coherent eddies and turbulence in
vegetation canopies: the mixing-layer analogy, in: JR Garratt, PA Taylor (Eds.),
Bound.-Layer Meteorol. 25th Anniv. Vol. 1970–1995 Invit. Rev. Sel. Contrib.
Recognise Ted Munn’s Contrib. Ed. Past 25 Years, Dordrecht, Springer,
Netherlands, 1996, pp. 351–382, 10.1007/978-94-017-0944-6_15.

[39] L. Gond, E. Mignot, J. Le Coz, L Kateb, Transverse mixing in rivers with
longitudinally varied morphology, Water. Resour. Res. 57 (2021)
e2020WR029478, https://doi.org/10.1029/2020WR029478.

[40] K. Dae Geun, S Il Won, Modeling the mixing of heated water discharged from a
submerged multiport diffuser, J. Hydraul. Res. 38 (2000) 259–270, https://doi.
org/10.1080/00221680009498325.

[41] B.L. Kurylyk, K.T.B. MacQuarrie, T. Linnansaari, R.A. Cunjak, R.A. Curry,
Preserving, augmenting, and creating cold-water thermal refugia in rivers:
concepts derived from research on the Miramichi River, New Brunswick (Canada),
Ecohydrology. 8 (2015) 1095–1108, https://doi.org/10.1002/eco.1566.

[42] G.O. Hughes, P.F. Linden, Mixing efficiency in run-down gravity currents, J. Fluid.
Mech. 809 (2016) 691–704, https://doi.org/10.1017/jfm.2016.696.

[43] S. Pouchoulin, J. Le Coz, E. Mignot, L. Gond, N Riviere, Predicting transverse
mixing efficiency downstream of a river confluence, Water. Resour. Res. 56 (2020)
e2019WR026367, https://doi.org/10.1029/2019WR026367.

[44] A. Mohammadian, H. Kheirkhah Gildeh, I Nistor, CFD modeling of effluent
discharges: a review of past numerical studies, Water. 12 (2020) 856, https://doi.
org/10.3390/w12030856.

[45] F. Sonnenwald, V. Stovin, I. Guymer, A stem spacing-based non-dimensional model
for predicting longitudinal dispersion in low-density emergent vegetation, Acta
Geophys 67 (2019) 943–949, https://doi.org/10.1007/s11600-018-0217-z.
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