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A B S T R A C T

A brittle creep and time-dependent fracturing process model of rock is established by incorporating the stress 
corrosion model into discrete element method to analyze the creep behavior and microcrack evolution in brittle 
rocks at a micro-scale level. Experimental validation of the model is performed, followed by numerical simu
lations to investigate the creep properties and microcrack evolution in rocks under single-stage loading, multi
stage loading, and confining pressure, at various constant stress levels. The results demonstrate that as the stress 
level increases in single-stage creep simulations, the time-to-failure progressively decreases. The growth of 
microcracks during uniaxial creep occurs in three stages, with tensile microcracks being predominant and the 
spatial distribution of microcracks becoming more dispersed at higher stress levels. In multi-stage loading- 
unloading simulations, microcracks continue to form during the unloading stage, indicating cumulative damage 
resulting from increased axial stress. Additionally, the creep behaviour of rocks under confining pressure is not 
solely determined by the magnitude of the confining pressure, but is also influenced by the magnitude of the axial 
stress. The findings contribute to a better understanding of rock deformation and failure processes under 
different loading conditions, and they can be valuable for applications in rock mechanics and rock engineering.

1. Introduction

Brittle creep in rock is a phenomenon characterized by the progres
sive increase in the strain of rocks over time when subjected to a con
stant external load [1,2]. When subjected to a constant external load, the 
creep strain rate first decreases to a minimum, before accelerating as the 
specimen approaches macroscopic failure [3]. Brittle creep has been 
observed in many different rock types, including granite[4,5], sandstone 
[6–9], limestone [10,11], and basalt [12]. Brittle creep is considered to 
be promoted by subcritical crack growth [13]. With the exception of 
limestone, for which pressure solution is considered important [10], 
stress corrosion microcracking is considered to be the main mechanism 
responsible for brittle creep in rocks [2,13]. The efficiency of stress 
corrosion microcracking, and therefore the rate of brittle creep in rock, 
depends on environmental factors such as temperature, pressure, and 
the pH of the pore fluid [2,13,14]. The understanding of brittle creep in 
rock holds significant importance for various aspects of rock engineer
ing, such as slope stability [15,16], tunnel and underground 

construction [17,18], mine design, rock mass control, seismology, and 
geological radioactive waste disposal [19] and geophysical phenomena 
in the Earth’s crust [6,20–22]. Consequently, extensive research on 
brittle creep in rock is of utmost importance and practical value in the 
field of rock engineering.

Currently, theoretical models and laboratory experiments are widely 
employed to investigate rock creep, leading to substantial advancements 
in the field. In terms of theoretical models, classic combined component 
models that combine multiple components, such as dashpots, springs, 
and sliders, to simulate the behavior of a complex system or mechanism, 
have gained a wide application. Each component represents a specific 
aspect of the system and contributes to its overall response in classic 
combined component models. For instance, Ma et al. [23] explored the 
creep behavior of rock salt using the Burger’s model and determined the 
optimal parameters of the model through probabilistic analysis. One 
potential limitation of the combined component model is the complexity 
and challenge of accurately determining and calibrating the parameters 
and interactions of the individual components, which can affect the 
overall accuracy and reliability of the model’s predictions. Considering 
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the influence of initial damage state, Hou et al. [24] proposed a novel 
nonlinear creep damage model for rocks, facilitating the prediction of 
creep behavior in sandstone under various initial damage conditions. 
Additionally, Liu et al. [25] introduced a nonlinear creep damage model 
that incorporated the effect of water, and its accuracy was validated 
through triaxial creep tests conducted on both saturated and dry sand
stone samples. Brantut et al. [26] incorporated subcritical crack growth 
into the micromechanical wing-crack model of Ashby and Sammis [27]
and found that the model results compare well with data from experi
ments performed on granite, sandstone, and basalt. Nishihara [28]
proposed a model for predicting creep-time relations of a material under 
various constant stresses from a strain-time relation under a certain 
stress-rate, which is now widely known as Nishihara model. These 
models can only provide the temporal evolution of strain and damage 
during creep, but it’s challenging to model its spatial distribution, 
localization before failure, or the size distribution of damage events.

In terms of laboratory tests, creep tests on rock in laboratory offer the 
advantage of providing controlled conditions to study the time- 
dependent deformation behavior of rocks, allowing for the character
ization of creep properties and the development of predictive models for 
long-term geological and engineering applications. Some studies (e.g., 
[29–31]) show that the creep of rock observed in laboratory tests ex
hibits three distinct stages: decelerating creep, steady-state creep, and 
accelerating creep. However, Brantut et al. [3] later showed that there is 
no steady-state creep phase. They showed that the strain rate first de
celerates to a minimum before accelerating as the specimen approaches 
macroscopic failure. In general, the experimentally-derived relation
ships between differential stress and creep strain rate can be adequately 
fitted to either a power law [32–35] or an exponential law [36–38]. 
Using a stress-stepping approach, Heap et al. [6] studied the influence of 
differential stress, effective pressure, and pore fluid pressure on the 
creep strain rate of porous sandstone. These authors found that 
increasing the differential stress and effective pressure increases and 
decreases the creep strain rate, respectively. However, increasing the 
pore fluid pressure (at a constant effective pressure) did not influence 
the creep strain rate. Heap et al. [6] showed that, for the range of strain 

rates measurable in the laboratory, the relationship between creep strain 
rate and differential stress can be well described by a power law and an 
exponential function.

However, rocks are often inherently heterogeneous, and can contain 
discontinuities as well as anisotropy due to the presence of natural 
microcracks and weak planes [39,40]. Consequently, problems 
encountered in rock mechanics often defy straightforward analytical 
solutions. Conversely, numerical analysis methods offer notable ad
vantages such as low cost, high precision, and efficiency. The remark
able advancements in computer technology have significantly expanded 
the applicability of numerical analysis methods. These methods not only 
enable the simulation of complex mechanical and structural properties 
of rock masses, but also facilitate the analysis of diverse boundary value 
problems. They can simulate and calculate potential hazards in rock 
engineering, thereby improving the safety and stable operation of en
gineering projects. Consequently, numerical analysis methods are 
widely recognized as effective tools for addressing geotechnical engi
neering problems [41–43].

Different principles of numerical computation give rise to various 
commonly used methods, such as the finite element method (FEM), 
finite difference method (FDM), discrete element method (DEM), and 
hybrid finite-discrete element method (FDEM) [44,45]. Among these, 
the DEM has emerged as a crucial approach for investigating rock me
chanics problems due to its capability to simulate large deformations 
and phenomena such as discontinuities [46–48]. For example, Chen and 
Konietzky [43] employed distinct element software based on subcritical 
crack growth theory to conduct numerical simulations of creep insta
bility in brittle rocks. Tiedtke et al. [49] developed a novel DFN-DEM 
modelling approach to simulate long-term behavior of crystalline rock 
under effects of glacial climate conditions. Xia et al. [50] validated the 
effectiveness of their numerical model using creep tests and uniaxial 
loading tests on specimens containing pre-existing cracks. They used an 
improved simulation method grounded in the classical Burger’s model 
and the parallel bonding model in Particle Flow Code (PFC). Potyondy 
[51] developed a parallel bonding stress corrosion model in the 
two-dimensional particle flow code, PFC2D, drawing on stress corrosion 

Nomenclatures

A the area of the parallel-bond cross-section
D the diameter of parallel bond
E* the apparent activation energy
E+ the stress-free activation energy
F the force
Fn the normal-directed force component
Fs the shear-directed force component
I the moment of inertia of the parallel-bond cross-section
J the polar moment of inertia of the parallel-bond cross- 

section
kn the normal stiffness of parallel bond per unit area
ks the shear stiffness of parallel bond per unit area
kratio the ratio of normal to shear stiffness
M the bending moment
Mn the normal-directed moment
Ms the shear-directed moment
n the normal direction and
s the tangential direction
R the universal gas constant
R the radius of the cemented zone
RA the radius of the bonded particle A
RB the radius of the bonded particle B

t the thickness of the contact bond
tf the creep failure time
T the absolute temperature
ΔUn the axial-directed relative displacement between the two 

bonded particles
ΔUs the shear-directed relative displacement between the two 

bonded particles
Δθn the axial-directed relative rotation between the two 

bonded particles
Δθs the shear-directed relative rotation between the two 

bonded particles
σa the micro-activation stress
σc the tensile strength of the parallel bond
τc the shear strength of the parallel bond
V0 an experimental constant
v+ the activation volume
α the constant of proportionality between the corrosion rate 

and the reaction rate
β1 the rate constant with units of velocity
β2 the dimensionless constant
σ the crack-tip stress
γ the interfacial surface energy between the glass and the 

reaction products
ρ the radius of curvature of the crack tip
vM the molar volume
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theory to simulate stress corrosion reactions in wet silicate rocks. In a 
similar manner, other studies such as [52,53] have also employed 
PFC2D to perform discrete element simulations focused on rock creep 
instability. Yang et al. [54] used a three-dimensional particle flow code, 
PFC-3D, based on the Burgers model to simulate rock creep processes, 
examining the influence of elastic coefficients, viscous coefficients, and 
friction factors in the Burgers model on instantaneous strength and 
rheological properties. Finally, Hu et al. [55] combined the equivalent 
crystal model with the parallel bonding stress corrosion model to 
investigate the impact of the non-uniform distribution of mineral grain 
sizes on the creep strain rate and the long-term strength of granite under 
uniaxial creep loading. In summary, these numerical methods offer 
valuable insights into rock mechanics, empowering researchers to 
analyze and comprehend various facets of rock behavior and 
deformation.

However, despite the ability of the aforementioned methods to 
simulate the deformation characteristics of rocks during brittle creep, 
most of the studies have focused on describing the apparent phenomena 
of creep, such as fitting creep curves and simulating failure modes. There 
is still a lack of in-depth understanding regarding the internal damage 
mechanisms and evolution of microcrack characteristics of rocks during 
the creep process. Therefore, this study introduces a stress corrosion 
model into the three-dimensional PFC3D, establishing a time-dependent 
deformation damage and fracture model of rock based on the discrete 
element method. Using this model, numerical simulations are conducted 
to investigate creep damage and failure processes of rocks under single- 
stage creep loading, multistage creep loading, and under confining 
pressure, at different stress levels. The aim is to reveal the creep insta
bility mechanism from a microscopic perspective and provide some 
references and theoretical guidance for issues related to the long-term 
stability of rock engineering projects.

2. Implementation of stress corrosion model

2.1. Principles of PFC3D

A 3-dimensional particle flow code (PFC3D) model consists of rigid 
balls that can overlap at contact points using a soft contact approach. 
The calculation cycle in PFC employs a time-stepping algorithm, where 
Newton’s law of motion is applied repeatedly to each particle, and a 
force-displacement law is applied to each contact. This allows the 
interaction between particles and their motion to be modeled.

PFC incorporates two types of bonded models: the contact bonded 
model and the parallel bonded model [21,56]. A contact bond can be 

envisioned as a pair of elastic springs with constant normal and shear 
stiffness acting at the contact point. The contact bonded model is 
capable of simultaneously carrying forces, but not moments. On the 
other hand, the parallel bonded model simulates the mechanical 
behavior of a finite-sized cement-like material deposited between two 
contacting pieces. This material acts in parallel with the linear compo
nent and establishes an elastic interaction between the pieces. The 
presence of a parallel bond does not exclude the possibility of slip, and it 
can transmit both force and moment between the pieces. Conceptually, a 
parallel bond can be understood as a collection of elastic springs with 
constant normal and shear stiffness that are uniformly distributed over a 
rectangular cross-section in 2D or a circular cross-section in 3D. These 
springs are located on the contact plane and centered at the contact 
point. They work in parallel with the springs of the linear component to 
provide the desired mechanical behavior. The bonded-particle model 
(BPM) is commonly used to simulate rocks or rock-like materials [51]. A 
schematic diagram of the parallel bonded model is shown in Fig. 1, 
where R is the radius of the cemented zone. R can be defined asR =

λ min (RA,RB), whereλ is the bond radius multiplier, RA and RB are the 
radii of the bonded particles, F is the force, and M is the bending 
moment. The superscript represents the direction, where n is the normal 
direction and s is the tangential direction.

The relative motion between two contact particles leads to an in
crease in contact forces and moments due to the contact stiffness, 
following Newton’s law of motion. The increments in elastic force and 
moment carried by the parallel bond can be calculated as follows: 
⎧
⎪⎪⎨

⎪⎪⎩

ΔFn
= k

n
AΔUn

ΔFs
= − k

s
AΔUs

ΔMn
= − k

s
JΔθn

ΔMs
= − k

n
IΔθs

(1) 

where Fn,Fs,Mn, andMsdenote the normal- and shear-directed forces and 
moments, respectively, and kn and ksare the normal and shear stiffness 
of parallel bond per unit area, respectively. ΔUnandΔUsare the axial and 
shear-directed relative displacements between the two bonded particles, 
respectively, and Δθn and Δθsare the axial and shear-directed relative 
rotations between the two bonded particles, respectively. A, I, and J are 
the area, moment of inertia, and polar moment of inertia of the parallel- 
bond cross-section, respectively. We have: 
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where, R is the radius of the cemented zone, and t is the thickness of the 
contact bond. 2D and 3D represent two-dimensional and three- 
dimensional conditions, respectively.

The maximum tensile and shear stresses acting on the parallel-bond 
periphery can be calculated from beam theory, and are given by: 
⎧
⎪⎪⎨

⎪⎪⎩

σ =
− Fn

i
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+

⃒
⃒Ms

i
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I
R
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Fs

i
A
+

⃒
⃒Mn

i

⃒
⃒

J
R

(2) 

where, σcand τc are the tension and shear strength of the parallel bond, 
respectively. The parallel bond will break if either σmax > σc or τmax > τc.

In our study, we assume that each bond breakage in the modeled 
rock corresponds to a microcrack. When the shear strength of a bond is 
exceeded, the resulting crack is considered to be a shear crack. On the 
other hand, if the tensile stress acting on a bond exceeds its tensile 
strength, the resulting crack is considered to be a tensile crack. It is 
important to note that the representation of tensile and shear cracks in 
our study is a simplified approach to simulate the fracture process in 

Fig. 1. The parallel bond model in particle flow code.
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rock. The cracks discussed here do not fully capture the complexity and 
intricacies of real fractures that occur in natural rock formations [57].

2.2. Description of stress corrosion model

The BPM is a representation of rock at the grain scale, where a dense 
packing of non-uniform-sized circular or spherical particles is used. 
These particles are bonded together at their contact points, and their 
mechanical behavior is simulated using the distinct element method. 
Within the BPM, the explicit representation of damage is incorporated 
through the presence of broken bonds, which are referred to as micro
cracks. These microcracks may form when loads are applied to the rock 
model. By tracking the state of the bonds and identifying those that are 
broken, the BPM can capture the development and propagation of 
microcracks, thus simulating the progressive damage and failure of the 
rock material under loading conditions.

In order to simulate time-dependent damage in rock, it is important 
to account for stress corrosion reactions that occur at strained defects 
within the rock. These defects are commonly idealized as Linear Elastic 
Fracture Mechanics (LEFM) cracks, where the appropriate driving force 
for crack growth is represented by the stress intensity factor KI [58]. 
However, in the case of the parallel bonded model, KI does not accu
rately characterize the stress field at the tip of an isolated microcrack. It 
only becomes applicable when a sufficient number of these microcracks 
have coalesced into a macroscopic fracture. Under compressive loading, 
the BPM exhibits distributed bond breakages that precede the formation 
of one or more shear-like faults, which corresponds to failure in rock 
deformation tests, including creep tests. In long-term loading scenarios, 
the system spends a significant amount of time in a state of distributed 
damage.

Therefore, it is necessary to develop a damage mechanism that does 
not rely upon the presence of LEFM cracks. By comparing it with the 
crack propagation process in fracture mechanics, Potyondy [51] pro
posed that the reduction in inter-particle bonding strength in the BPM 
can be considered as creep damage, while the fracture between contacts 
can be regarded as microcracks generated during the creep process due 
to damage. Based on this, Potyondy [51] introduced the parallel-bonded 
stress corrosion (PSC) model. The main concept of the PSC model is to 

simulate the time-dependent damage of rocks by weakening the contact 
strength between particles. The contact strength between particles is 
directly proportional to the contact radius, thus, reducing the contact 
radius can effectively decrease the contact strength. The proposed 
mechanism instead relies upon the existence of micro-tensions 
throughout the BPM, even in the absence of microcracks. These 
micro-tensions act as the driving forces for damage production. By 
considering these micro-tensions, the PSC model can capture the gradual 
accumulation of damage over time without explicitly relying on the 
formation of LEFM cracks. This approach allows for a more accurate 
representation of time-dependent damage in the BPM.

In developing a damage mechanism for the BPM, it would be ideal to 
establish a direct mapping between the physical system and the model 
system. However, deriving the form of the damage-rate law directly 
from reaction-rate theory is not feasible in this case. This is because the 
stress at the reaction site in the BPM is only equal to the tensile stress in 
the model if the particle size is comparable to atomic spacing. In reality, 
the particle sizes in the rock models used in BPM are significantly larger. 
Instead, the form of the damage-rate law in the BPM arises from con
siderations of reaction-rate theory and an analogy between the physical 
system and the model system. This analogy is represented in Fig. 2. The 
damage-rate law is determined based on these considerations, as it is the 
best approach given that the BPM can only resolve stresses down to the 
particle scale. Thus, the PSC model captures the effect of micro-tensions 
activating a damage process, even though direct mapping to reaction- 
rate theory is not possible due to the differences in scale between the 
BPM and the physical system.

The static fatigue theory of Hillig and Charles [59] applied to glass 
provides a rate equation to describe crack growth behavior: 

V = V0exp
(
− E* + v+σ

RT

)

, E* = E+ + vMγ
/

ρ (3) 

where, V0 is an experimental constant, E* is the apparent activation 
energy, v+ is the activation volume, σ is the crack-tip stress, R is the 
universal gas constant, and T is the absolute temperature. The apparent 
activation energy contains the following terms: E+is the stress-free 
activation energy, vMis the molar volume of the glass, γ is the interfa
cial surface energy between the glass and the reaction products, and ρ is 

Fig. 2. Damage-rate relations for (a) LEFM and (b) PSC models.
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the radius of curvature of the crack tip.
Eq. (3) assumes that the crack velocity is proportional to the reaction 

rate and states that an energetically favored reaction will progress at a 
rate determined by the rate of successful attempts to overcome an en
ergy barrier represented by the activation energy. In addition, if the 
reaction site (in this case, the material at the crack tip) is stressed, the 
effective energy barrier is reduced by the amountv+σ.

Assuming that the time-dependent behavior of silicate rock in the 
brittle regime is controlled by stress corrosion reactions (in which water 
attacks the Si-O bonds of the material in regions experiencing large 
stress-induced volumetric expansion [60]) and that this reaction can be 
represented using reaction-rate theory, stress corrosion reactions serve 
as an appropriate basis for the damage-rate law of the PSC model.

The BPM mimics the mechanical behavior of a collection of grains 
joined by cement. In the following, we consider each grain as a single 
particle and each cement entity as a parallel bond. Eq. (3) is introduced 
into the BPM by making the following assumptions:

(a) Stress corrosion reactions only affect the cement; they do not 
affect the grains. Therefore, each parallel bond is a potential re
action site.

(b) Stress corrosion reactions occur at the bond surface and remove 
bond material at a uniform rate that is proportional to the crack 
velocity in Eq. (3), which is, in turn, proportional to the reaction 
rate. The rate of material removed is called the corrosion rate. We 
can envision the removal process as a uniform erosion of bond 
material along its periphery.

(c) The corrosion rate is dependent on the stress at the reaction 
boundary.

(d) Corrosion only occurs when the stress is tensile and above some 
threshold level.

We express the corrosion rate as the rate at which the parallel-bond 
diameter decreases by assumptions (a) and (b): 

dD
dt

= −

(

αV0e− E*/RT
)

ev+/RT (4) 

where, α is the constant of proportionality between the corrosion rate 
and the reaction rate. The reaction-site stress is taken as σ, the maximum 
tensile stress acting on the parallel-bond periphery (assumption (c) 
above), and the threshold stress below which the stress corrosion reac
tion ceases (assumption (d) above) is taken as σa. Therefore, Eq. (4) can 
be expressed as: 

dD
dt

=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0, σ < σa

− β1e
β2

(
σ
σc

)

, σa ≤ σ < σc − ∞, σ ≥ σc

(5) 

where, σ has been normalized by the parallel-bond tensile strength, σc. 
The damage-rate law provides the rate at which the diameter,D, of each 
parallel bond decreases. As damage proceeds, the effective bond 
strength decreases, which allows for a macroscopic load redistribution 
to occur throughout the material. The variables are the maximum tensile 
stress acting on the parallel-bond periphery (σ) and the elapsed time 
since bond formation (t). The parameters are the one rate constants (β1) 
with units of velocity, and the dimensionless constant (β2), the micro- 
activation stress (σa), and the parallel-bond tensile strength (σc) [61]. 
In the present model, In the present model, we focus on the dam
age/microcracking evolution and failure processes during the 
time-dependent deformation of rock under creep loading and confining 
pressure conditions. Additionally, the generalized effective stress law 
could be introduced into the model to conduct uniaxial compressive or 
constant loading simulations of the rock [61].

2.3. Characterization of microcracking

The characteristic behavior of rock creep is the occurrence of internal 
damage within the rock due to constant external loads, resulting in a 
reduction in its load-bearing capacity [2]. Eventually, the rock experi
ences macroscopic failure once it reaches a certain strain threshold. This 
internal damage inevitably leads to the formation of microcracks, and 
the PFC can accurately elucidate the entire process of microcrack gen
eration and the consequent failure mode from a microscopic perspec
tive. We define that a tensile microcrack forms between particles when 
the normal stress between them exceeds the tensile strength limit of the 
parallel bonding. Similarly, when the tangential stress between particles 
surpasses the shear strength limit of the parallel bonding, a shear 
microcrack forms between the particles, as illustrated in Fig. 3.

3. Calibration and validation of stress corrosion model

3.1. Sensitivity analysis for input parameters

Eq. (5) reveals that the crack growth rate of the PSC model is influ
enced by key parameters, namely σa,σc, β1, and β2. Among these pa
rameters, σc is the strength parameter of the inter-particle bonding 
material, which controls the static strength of the model. Meanwhile, σa, 
β1, and β2 collectively determine the long-term strength of the model. To 
analyze the impact of these parameters on the long-term strength of the 
PSC model, a parameter sensitivity analysis was conducted for σa, β1, 
and β2 individually. Prior to the parameter sensitivity analysis, an initial 
test was performed to determine the approximate range of each 

Fig. 3. The characterization of microcracking in PFC showing the formation of 
tensile and shear cracks.

Table 1 
Parameter settings for the sensitivity analysis of the PSC model.

Scheme number σa/MPa В1×10− 15 β2

1 10 10 15
2 10 10 18
3 10 10 21
4 10 10 24
5 10 10 27
6 10 10 30
7 10 1 21
8 10 5 21
9 10 10 21
10 10 15 21
11 10 20 21
12 10 25 21
13 1 10 21
14 5 10 21
15 10 10 21
16 15 10 21
17 20 10 21
18 25 10 21
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parameter based on the results of laboratory uniaxial creep tests: σa 
ranged from 1 to 25 MPa, β1 ranged from 1 to 25 × 10–15, and β2 ranged 
from 15 to 30. Subsequently, 18 sets of simulation tests were designed 
using these approximate parameter ranges. The constant stress for each 
sensitivity analysis group was set at 70 % of the stress required for the 
short-term failure of the specimen. During the sensitivity analysis sim
ulations, the creep failure time (tf) was recorded, which corresponds to 
the time at which the axial strain experienced a significant and sudden 
acceleration. A sudden acceleration in axial strain indicates macroscopic 
failure in a brittle creep test [2]. To facilitate the analysis, we let Tf = log 
(tf). The specific parameter settings for the simulation tests are listed in 
Table 1.

(1) Based on the results of simulation schemes 1–6 (Table 1), it can be 
observed that there is an approximate exponential relationship 
between β2 and Tf. As β2 increases, Tf rapidly decreases (Fig. 4
(a)). Moreover, when β2 approaches 0, the creep failure time 
becomes constant.

(2) Based on the results of simulation schemes 7–12 (Table 1), it can 
be observed that there is an approximate power function rela
tionship between β1 and Tf. As β1 increases, Tf sharply decreases 
(Fig. 4(b)). Additionally, when β1 approaches 0, the model re
mains stable and does not experience creep failure. Conversely, 
when β1 exceeds a certain threshold, the instantaneous fracture of 
the specimen occurs.

(3) Based on the results of simulation schemes 13–18 (Table 1), it can 
be observed that there is a linear relationship betweenσaand Tf, 
where increasingσaleads to a linear increase in Tf (Fig. 4(c)). This 
linear relationship can be attributed to the fact that increasing σa 
raises the threshold for exciting the PSC model among the par
ticles. Consequently, under the same loading conditions, the 
number of contacts experiencing damage is reduced, making the 
model more resistant to failure.

Through sensitivity analysis of the PSC model parameters (Fig. 4), it 
is evident that β1 and β2 have a significant impact on the time to creep 
instability, while σa is positively, and linearly correlated with the 
instability time Tf of the model. Therefore, when determining the pa
rameters of the PSC model, it is recommended to initially set σa to a 
relatively large value and gradually transition β1 and β2 from larger to 
smaller values. This approach ensures that the creep instability time of 
the model aligns (same order of magnitude) with the creep instability 
times observed in laboratory experiments. Subsequently, the value of σa 
can be determined.

3.2. Calibration of input parameters for time-independent model

The calibration of the short-term microscale parameters in the model 
is typically conducted using the macroscopic mechanical parameters of 
rock specimens in laboratory uniaxial compression tests, including the 
peak stress (the uniaxial compressive strength, UCS), Young’s modulus, 
and Poisson’s ratio. To achieve this calibration, a numerical model 
employing the PFC is established, wherein the microscale particle and 
contact parameters are adjusted to ensure consistency with the macro
scopic mechanical properties of the laboratory rock specimens. During 
the laboratory tests, uniaxial compression experiments were performed 
on dry, cylindrical sandstone samples (50 mm in diameter and 100 mm 
in length). The macroscopic mechanical parameters from these experi
ments were: a peak axial stress of 47.27 MPa, a Young’s modulus of 
12.4 GPa, and a Poisson’s ratio of 0.29.

In this study, the microscale mechanical parameters of the numerical 
model were calibrated based on the results of the laboratory uniaxial 
compression tests. The contact behavior between particles in the model 
was simulated using parallel-bonded contacts. A 3D numerical particle 
model with the same dimensions as the laboratory samples (i.e., 50 mm 
in diameter and 100 mm in length) was constructed for the calibration. 

Fig. 4. Results of the PSC model parameter sensitivity analysis.
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The calibrated, best-fit particle-level and parallel-bonded contact pa
rameters are detailed in Table 2. The stress-strain curves obtained from 
the laboratory experiment and from the calibrated model are shown in 
Fig. 5.

During compression tests in the laboratory, micropores and micro
cracks that are present in natural rock specimens are initially compacted 
as the applied stress increases. Consequently, the stress-strain curve 
exhibits an initial concave shape, followed by linear elastic behavior 
(green curve in Fig. 5(a)). The model, however, does not contain such 
imperfections and, as a result, nominal values of test data are approxi
mately obtained by shifting the curve (blue curve in Fig. 5(a)). Since 
Young’s modulus of the rock is calculated as the slope of the stress-strain 
curve in the elastic stage, it is common to shift experimental curves to 
the left to eliminate the initial crack compaction stage, in order to better 
facilitate the comparison between the laboratory and numerical curves 
[62], as we have done in Fig. 5(a). As shown in Fig. 5(a), it can be 
observed that the numerically simulated curve (red curve) generally 
agrees well with the nominal values of the test curve (blue curve). We 
also note that the failure mechanism of the laboratory specimen (Fig. 5
(b)) is very similar to that of the numerical specimen (Fig. 5(c)).

In order to further validate the numerical model developed in this 
study, the same rock numerical model was used to simulate compression 
tests under different confining pressures. Stress-strain curves for simu
lations performed under confining pressures of 0, 5, 10, 20, 30, and 
40 MPa are shown in Fig. 6. As shown in Fig. 6, peak differential stress 
increases as a function of increasing confining pressure, as observed in 
laboratory experiments performed in the brittle field [63]. We also note 
that the stress drop following macroscopic failure is less pronounced as 
confining pressure increases (Fig. 6), which is also in line with labora
tory experiments performed in the brittle field [63].

By comparing the compressive strength obtained from the numerical 
model under different confining pressures with the results from labo
ratory tests, it was observed that the compressive strength of the rock 
exhibited a good fit with the experimental results at low confining 
pressures (0–20 MPa) (Fig. 7). However, at confining pressures above 
20 MPa, there was an increasing discrepancy between the simulated and 

experimental results (Fig. 7). Nevertheless, both the experimental and 
simulated results showed a linear relationship between peak stress and 
confining pressure, following the Mohr-Coulomb criterion (Fig. 7). 
Therefore, the adoption of the PFC model proves effective in simulating 
the fundamental mechanical properties of rock.

Table 2 
Micro-parameters for the numerical model.

Parameters, unit Value

Minimum particle radius dmin, mm 2.0
Ratio of maximum to minimum particle radius dmax /dmin 1.25
Young’s modulus of particle Ec, GPa 9.0
The ratio of normal to shear stiffness kratio 2.2
The friction coefficient of particle 0.3
The friction coefficient of walls 0.15
Parallel-bond tensile strength, MPa 55
Parallel-bond shear strength, MPa 30

Fig. 5. Comparisons between experimental results and numerical simulations of sandstone. (a) Stress-strain curves, (b) Failure mechanism of the specimen (100 mm 
in length) in the laboratory test, and (c) Failure mechanism of the specimen (100 mm in length) in the numerical simulation.

Fig. 6. The stress-strain curves for numerical simulations performed at 
different confining pressures.

Fig. 7. The relationship between compressive strength and confining pressure 
for laboratory experiments [63] (in black) and numerical simulations (in red).
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3.3. Calibration of input parameters for time-dependent model

A PFC model that reflects the short-term (i.e., time-independent) 
mechanical characteristics of the rock specimens was established 
based on calibrated short-term microstructural parameters in the pre
vious section. By adjusting the main parameters of the PSC model, 
namely β1, β2 andσa, it is possible to calibrate the PFC model to perform 
numerical uniaxial creep tests (i.e., time-dependent). First, the param
eters β1, β2 andσa must be determined. To do so, we performed nu
merical uniaxial creep test simulations, in which numerical rock 
specimens were held at a constant stress equal to 70 % of its UCS, in 
which we varied β1, β2 andσa. By comparing the results of these simu
lations with the results from a laboratory uniaxial creep test, also held at 
70 % of its UCS, we are able to determine the most appropriate values 
for β1, β2 andσa. Based on this calibration, we found β1 = 8 × 10–15, β2 =

18.5, and σa = 10 MPa.
Fig. 8 shows the creep curves (axial strain versus time) obtained from 

the numerical simulation and the laboratory experiment (Fig. 8(a)), and 
the final creep failure mode for both the experimental rock sample 
(Fig. 8(b)) and the numerical simulation (Fig. 8(c)). From Fig. 8, it can 
be observed that the results from the numerical simulation align well 
with the results from the laboratory experiment. The simulation results 
not only effectively capture the decelerating and accelerating creep 
stages of the laboratory creep test, including similar values for the 
instantaneous elastic strain εe, creep strain rate ε̇2, and time-to-failure tf 
(Fig. 8(a)), but also demonstrate the process of microcrack initiation and 

propagation, and their coalescence into a macroscopic shear fracture 
(Fig. 8(c)). Similar creep curves, characterized by a decelerating stage 
followed by an accelerating stage, have been previously reported for 
many different rock types (see review by Brantut et al. [2]).

4. Modeling of creep of brittle rock

4.1. Conventional single-stage creep tests

4.1.1. Creep under different levels of loading
To investigate the creep deformation behavior of rocks under single- 

stage loading conditions (i.e., “conventional” creep tests), we conducted 
uniaxial creep simulations on rocks at various constant stress levels 
(50 %, 60 %, 70 %, 80 %, and 90 % of the UCS) using the creep model 
described in the previous section. A series of creep curves for rocks at 
different stress levels were obtained, as shown in Fig. 9. At stress levels 
of 50 % and 60 % of the UCS, the axial strain of the model remains 
approximately constant: the axial creep strain rate decelerates to close to 
zero, indicating a long-term stability (Fig. 9(a)). On the other hand, 
under stress levels of 70 %, 80 %, and 90 % of the UCS, the rock exhibits 
both decelerating and accelerating creep, and, ultimately, macroscopic 
failure (indicated by the large increases in axial strain) (Fig. 9(a)). The 
lateral creep curves follow the same pattern as the axial creep curves, as 
illustrated in Fig. 9(b).

The variations of creep strain rates with time for different axial stress 
levels are presented in Fig. 10. According to Fig. 10, the axial creep 

Fig. 8. Comparisons between the results of experimental uniaxial creep tests and numerical uniaxial creep simulations. (a) Creep curves for the laboratory 
experiment and the numerical simulation. (b) Photograph of the failed laboratory specimen. Yellow dashed lines show the position of the shear fracture. (c) Image 
showing the failed specimen following the numerical creep simulation. Yellow dashed lines show the position of the shear fracture. Red color represents tensile 
microcracks, and green color represents shear microcracks.

Fig. 9. Numerical (a) axial and (b) lateral strain creep curves of brittle rocks at different stress levels of 50 %, 60 %, 70 %, 80 %, and 90 % of the UCS.
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strain rates for the numerical specimens are 5.79 × 10–9 s–1，3.32 ×
10–8 s–1 and 1.10 × 10–7 s–1, respectively, for the stress levels of 70 %, 
80 %, and 90 % of the UCS. It was found that increasing the stress by 
only 10 % of the UCS increases the axial creep strain rate by about an 
order of magnitude. Similarly, the corresponding lateral creep strain 
rates are 1.52 × 10–8 s–1，1.14 × 10–7 s–1 and 7.12 × 10–7 s–1, 
respectively.

Fig. 11 illustrates the variations of the axial and lateral creep strain 
rates (on a logarithmic scale) of the numerical specimens as a function of 
initial axial stress applied. As depicted in Fig. 11, both the axial and 
lateral creep strain rates demonstrate a linear correlation with the stress 
level in semi-log plots. These numerical simulation results align with 
previous experimental observations [2,6,64]. It is worth noting that 
even minor alterations in stress levels can result in significant variations 

Fig. 10. The variations of creep strain rate with time for different stress levels (70 %, 80 %, and 90 % of the UCS). (a)axial creep strain rate, (b) lateral creep 
strain rate.
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in the creep strain rate (Fig. 11). Large increases in creep strain rate for 
small increases in differential stress have previously been observed in 
brittle creep experiments performed in the laboratory [2], adding con
fidence to our modeling approach.

Fig. 12 illustrates the volumetric strain versus time curves of rocks at 
various stress levels (50 %, 60 %, 70 %, 80 %, and 90 % of the UCS). 
Fig. 12 clearly reveals that at lower stress levels (especially the stress 
levels of 50 % and 60 % of the UCS), the rock samples first undergo 
compression and then expansion during the creep stage associated with 
the deceleration of the creep strain rate. However, due to the greater 
extent of axial compressive deformation compared to lateral expansion 
deformation, the overall volume of the specimen decreases. At higher 
stress levels (e.g., at 70 %, 80 %, and 90 % of the UCS), the volume of 
the specimen at the start of the simulation decreases due to the greater 
extent of axial compressive deformation compared to lateral expansion 
deformation. As the strain rate slows down during decelerating creep, 
the lateral creep rate exceeds the axial creep rate (the lateral creep strain 
rate is consistently higher than the axial creep strain rate in Fig. 11), 
resulting in lateral expansion deformation and a gradual reduction in the 
trend of volume contraction. During the accelerating creep stage, there 
is a significant increase in the number of fractures occurring in the 
particle contacts. This results in a lateral expansion that far exceeds the 
axial compressive deformation. Consequently, the specimen undergoes a 
rapid transition from a volumetric contraction to a volumetric expan
sion, causing a sharp increase in the volume of the rock specimen and, as 
a result, macroscopic instability and failure. This phenomenon is clearly 

indicated by the large and sudden change observed in the volume strain 
curves (Fig. 12), also observed during laboratory creep experiments [6].

4.1.2. Microcracking at different levels of loading
To gain deeper insights into microcracking in rocks during time- 

dependent deformation and failure, additional uniaxial creep simula
tions were run at stress levels corresponding to 75 % and 85 % of the 
UCS. At stress levels of 50 % and 60 % of the UCS, the contact stresses 
between particles within the rock were minimal, falling below the stress 
threshold required for significant microcracking and strain accumula
tion. Consequently, additional simulations at stress levels of 75 % and 
85 % of the UCS was vital to achieving a more comprehensive under
standing of microcrack propagation during creep-induced failure in 
rocks.

Due to significant variations in the time-to-failure at different stress 
levels during creep on rocks (e.g., see Fig. 10), it was necessary to 
normalize the creep time using t/tf to investigate the number of micro
cracks that formed during the creep process at different stress levels (as 
illustrated in Fig. 13). In Fig. 13, tf represents the time-to-failure, and t 
denotes the creep damage time. Based on Fig. 13, under the conditions of 
single-stage loading creep, the number of microcracks undergoes a 
three-stage pattern. The initial stage of microcracking (Stage 1; Fig. 13): 
During this stage, the number of microcracking is essentially negligible, 
and as the stress level increases, the duration of this stage gradually 
decreases. Microscopically, the number of contacts within the model 
that reach or exceed the stress threshold gradually increases as the stress 
level increases, leading to an escalation in the damage rate of the model. 
The stage of stable microcrack growth (Stage 2; Fig. 13): In this stage, 
the number of microcracking exhibits approximately linear growth, and 
the slope of this stage increases with higher stress levels. Microscopi
cally, as the stress level increases, the internal damage within the model 
gradually increases, intensifying the fracture process and accelerating 
the rate of microcrack growth. The stage of rapid microcrack growth 
(Stage 3; Fig. 13): During this stage, the number of microcracking ex
periences sharp growth. Microscopically, prior to this stage, a certain 
number of microcracks have already formed within the model, altering 
its microstructure and reducing its load-carrying capacity. As a result, 
the number of microcracking rapidly increases, leading to instability and 
the failure of the model.

Fig. 14 illustrates the variation in the number of tensile and shear 
cracks (and the total number of cracks) over time during single-stage 
creep loading for different stress levels. It is clearly seen from Fig. 14
that tensile microcracks dominate the entire creep process for all stress 
levels. Initially, tensile cracks form, causing a weakening of the internal 
structure of the numerical specimen, leading to the generation of shear 

Fig. 11. Variations of axial and lateral creep strain rates against axial stress.

Fig. 12. Volumetric strain as a function of time for simulations performed at 
different stress levels (50 %, 60 %, 70 %, 80 %, and 90 % of the UCS).

Fig. 13. Variation of the number of microcracks with normalized time for 
uniaxial creep simulations performed at different stress levels.
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microcracks. During the stage of stable microcrack growth, both tensile 
and shear microcracks within the model exhibit an increasing trend, 
leading to further deterioration of the internal load-bearing structure 
within the model. In the stage of rapid microcrack growth, the internal 
load-carrying capacity in the model becomes significantly diminished 
due to the prior accumulation of a substantial number of microcracks. 
The number of microcracking experiences sharp growth during this 
stage, resulting in a rapid increase in strain and the subsequent failure of 
the model (Fig. 14).

The spatial distribution of microcracks during the creep process 
plays a crucial role in determining the creep failure mode of rocks. 
Therefore, the spatial location information of microcracking during the 
creep simulations are recorded in the study. As depicted in Fig. 15, for 
the single-stage creep loading simulations, the overall pattern of 
microcrack distribution upon macroscopic failure remains relatively 
consistent between the different stress levels. However, at higher stress 
levels, the spatial microcracking within the model is more dispersed (e. 
g., Fig. 15(e)). In addition to the significant number of microcracks 

Fig. 14. Number of microcracks (tensile, shear, and total) as a function of time for creep simulations performed at different stress levels.
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generated near the macroscopic fracture zone, a considerable quantity 
of microcracks also forms outside the macroscopic failure zone at high 
stress-levels (e.g., Fig. 15(e)). This type of microcracking behavior at 
high stress levels exacerbates the failure of the specimen.

4.2. Multistage creep tests

The multistage step-loading, and multistage loading-unloading creep 
test simulations were performed using servo control applied to the upper 
and lower loading plates, enabling the maintenance of a constant axial 
stress during both loading and unloading. Two sets of stress paths were 
employed for the multistage loading simulations, presented in Fig. 16. 
The procedure for the multistage step-loading simulations consisted of 
incrementally increasing the stress level from 60 % to 90 % in a stepwise 
manner, with each stage being maintained for a duration of 4 hours 
(Fig. 16(a)). In the multistage loading-unloading simulations, following 
each loading stage, the stress was unloaded to 50 % and held for 1 hour 
before applying the next level of load (Fig. 16(b)). This approach was 
adopted to investigate the deformation behavior of rocks under various 
stress paths during creep.

4.2.1. Creep under multistage loading
According to the stress loading scheme described above (Fig. 16), the 

corresponding axial and lateral strain versus time curves are presented 
in Fig. 17. Under multistage step-loading conditions (Fig. 16(a)), both 
axial and lateral strains exhibit typical time-dependent creep deforma
tion (Fig. 17(a)). In the initial stages of each stress increment, the 
specimen undergoes significant elastic deformation (Fig. 17(a)). Sub
sequently, both axial and lateral strains evolve as a function of time 
under constant stress. At lower stress levels, the axial strain increases 
slowly and eventually stabilize after entering the creep stage. However, 
as the stress level increases, the axial and lateral strain of the specimen 
rapidly increases, leading to eventual macroscopic failure under high- 

stress conditions (Fig. 17(a)).
From a microscopic perspective, at lower stress levels, the number of 

microcracking within the specimen remains stable as the internal con
tact stresses reach the stress corrosion threshold. The axial and lateral 
strains remain relatively unchanged (as observed in Fig. 17(a), at stress 
levels of 60 %, 70 %, and 80 % of the UCS). In the later stages of creep 
failure, the mechanical properties of the particle contacts in the nu
merical specimen further deteriorate, rendering a significant number of 
internal contacts unable to sustain the loads. Consequently, there is a 
rapid increase in macroscopic strain within the model, ultimately 
resulting in macroscopic failure (as observed in Fig. 17(a), at a stress 
level corresponding to 90 % of the UCS).

Under the conditions of multistage loading-unloading (Fig. 16(b)), 
the creep behavior of the model exhibits a similar trend to that observed 
in the multistage step-loading scenario (compare Fig. 17(a) with Fig. 17
(b)). This is demonstrated in Fig. 18, which compares the strain-time 
curves from Fig. 17 (after removing the unloading phase in the multi
stage loading-unloading simulation). It can be observed that, despite the 
previous indication in Section 4.1.1 that the axial strain of the model 
remains nearly unchanged and the internal damage is minimal at a stress 
level corresponding to 50 % of the UCS, the implementation of multi
stage loading still has a detrimental effect on the model, even when it is 
unloaded to the same 50 % stress level. This effect becomes evident in 
the difference in time-to-failure between the multistage step-loading 
simulation and the multistage loading-unloading simulation (Fig. 18), 
serving as a direct reflection of the impact of multistage loading on the 
behavior of the model.

4.2.2. Microcracking under multistage loading
The relationship between the number of microcracks (tensile, shear, 

and total) in the model versus time during multistage step-loading and 
multistage loading-unloading is shown in Fig. 19(a) and Fig. 19(b), 
respectively. At lower stress levels (e.g., 60 % and 70 % of the UCS), no 

Fig. 15. The spatial distribution of microcracks during creep at different stress levels (from left to right: 70 %, 75 %, 80 %, 85 %, and 90 % of the UCS, respectively). 
Red color represents tensile microcracks, and green color represents shear microcracks.

Fig. 16. Stress paths employed for the (a) multistage step-loading simulations and the (b) multistage loading-unloading simulations.
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microcracks are observed within the model. However, at higher stress 
levels (e.g., 80 % of the UCS), both tensile and shear microcracks begin 
to develop within the model, without a clear sequence of initiation 

between them. When the model eventually fails, the number of tensile 
cracks still exceeds the number of shear microcracks. Hence, in the 
context of multistage loading (step-loading and loading-unloading), 
tensile microcracks play a dominant role in the creep failure process 
of rocks.

Under multistage step-loading conditions, microcracks generated by 
creep gradually form an inclined shear fracture, with the majority of 
microcracks concentrated in this region (Fig. 20(a)). The development of 
these microcracks weakens the cohesion in the direction of the fracture, 
resulting in the formation of a macroscopic shear fracture under the 
influence of external loads. This phenomenon bears a strong resem
blance to the failure mode observed in uniaxial compression, where the 
initiation of tensile cracks leads to the formation of a shear fracture.

Although the numerical specimen subjected to multistage loading- 
unloading also formed an inclined shear fracture (Fig. 20(b)), the fail
ure pattern appears more fragmented compared to that observed during 
multistage step-loading (Fig. 20(a)). Hence, further investigation is 
warranted to explore the creep failure behavior of rocks under complex 
stress conditions in practical engineering scenarios.

4.3. Confining pressure dependence

Studying the influence of confining pressure on rock creep is pri
marily achieved in the model by applying servo control to the upper and 
lower loading plates and the side walls, thereby achieving constant axial 
stress and lateral stress loading. Two schemes of creep simulations were 
conducted to study the influence of confining pressure. Each scheme had 
two different confining pressures: 5 MPa and 10 MPa. The specific 
loading configurations were as follows:

Scheme A: Confining pressure of 5 MPa, axial stress levels of 40, 45, 
50, 55, and 60 MPa.

Scheme B: Confining pressure of 10 MPa, axial stress levels of 45, 50, 
55, 60, and 65 MPa.

In these simulations, the confining pressure was controlled to 
maintain a constant value while the axial stress was varied to investigate 
the impact of confining pressure on rock creep behavior.

4.3.1. Creep deformation characteristics under confining pressure
Fig. 21 presents the results of the creep simulations conducted under 

confining pressures of 5 MPa (Fig. 21(a)) and 10 MPa (Fig. 21(b)). 
Fig. 21 shows that the deformation behavior of the model during creep is 
qualitatively similar to the results obtained from the uniaxial creep 
simulations (shown in Fig. 10). Specifically, as the axial stress increases, 
the time-to-failure decreases (Fig. 21).

In this study, the results of creep simulations under axial stresses of 
45 and 60 MPa were compared to investigate the impact of different 
confining pressures on rock creep under the same axial stress. This 
comparison is presented in Fig. 22, which demonstrates that higher 
confining pressures can effectively reduce both axial and lateral strains 
in rocks when subjected to the same axial stress. For example, the axial 
strain under a confining pressure of 10 MPa is smaller than the axial 
strain under a confining pressure of 5 MPa (Fig. 22(a)). A similar trend is 
observed for lateral strain (Fig. 22(b)). This phenomenon can be 
attributed to the fact that high confining pressure limits the lateral 
deformation of the rock. According to Poisson’s effect, under higher 
confining pressures (e.g., 10 MPa), the rock experiences additional 
elongation in the axial direction, counterbalancing the compressive ef
fect of the axial stress. Consequently, under higher confining pressures, 
the axial strain in the rock is reduced compared to that under lower 
confining pressures. Fig. 22 also shows that the time-to-failure is greatly 
increased when the confining pressure is increased from 5 to 10 MPa. 
The results of our numerical simulations are in line with those from 
laboratory brittle creep experiments, which also showed that, for a given 
differential stress, the creep strain rate is higher and the time-to-failure 
is shorter at lower effective pressures (e.g., Heap et al. [6]).

Fig. 23 shows the axial and lateral creep strain rate as a function of 

Fig. 17. Axial and lateral strain versus time variations for (a) a multistage step- 
loading simulation and the (b) a multistage loading-unloading simulation.

Fig. 18. Comparison between the evolution of strain against time for the step- 
loading and loading-unloading test simulations.
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axial stress for simulations performed at confining pressures of 5 and 
10 MPa. Fig. 23 shows that, at both confining pressures of 5 and 10 MPa, 
the creep strain rate of the specimens increases as the differential axial 
stress increases (as also found for the uniaxial simulations; see Fig. 11). 
Fig. 23 also shows that the increase in creep strain rate for a given in
crease in axial stress is the same for the simulations performed at 5 and 
10 MPa. However, there are notable distinctions in the creep behavior 
between the confining pressure of 5 and 10 MPa. Firstly, at a given stress 

level, the creep strain rate is higher when the confining pressure is 
5 MPa compared to 10 MPa, as depicted in Fig. 23. Secondly, under a 
confining pressure of 10 MPa, the lateral creep strain rate of the rock is 
nearly equal to the axial creep strain rate. Conversely, under a confining 
pressure of 5 MPa, the lateral creep strain rate surpasses the axial creep 
strain rate (we also note that the lateral creep strain rate exceeds the 
axial creep strain rate in our uniaxial simulations, as shown in Fig. 11). 
Based on these observations, it can be concluded that confining pressure 

Fig. 19. The number of microcracks formed during (a) a multistage step-loading simulation and (b) a multistage loading and unloading simulation.

Fig. 20. The distribution of microcracks and the macroscopic failure of specimens subjected to (a) a multistage step-loading and (b) multistage loading-unloading.

Fig. 21. Axial and lateral creep curves for simulations performed under different confining pressures of (a) 5 MPa and (b) 10 MPa.
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has a restrictive effect on rock creep. In other words, higher confining 
pressures can diminish the creep rate of rocks, thereby enhancing their 
mechanical performance when subjected to long-term sustained 
loading. Therefore, in practical rock engineering, providing active sup
port can effectively enhance the mechanical performance of rock 
masses.

4.3.2. Creep microcrack characteristics under confining pressure
In creep simulations performed under confining pressure, we notice 

that the presence of microcracks is influenced not only by the magnitude 
of axial stress, but also by the magnitude of the confining pressure 
(Fig. 24). Fig. 24(a) shows that the total number of microcracks formed 
following creep failure decreases linearly with increasing axial stress, 
both at confining pressures of 5 and 10 MPa. Additionally, Fig. 24(a) 
also demonstrates that, for a given axial stress, the total number of 
microcracks formed following creep failure decreases as confining 
pressure is increased from 5 to 10 MPa. This finding is consistent with 
the earlier conclusion that confining pressure can enhance the me
chanical performance of rocks.

Fig. 24(b) and (c) show the number of tensile and shear microcracks 
for simulations performed at various axial stresses under confining 
pressures of 5 and 10 MPa, respectively. These figures reveal that as the 

axial stress increases, the number of tensile cracks gradually decreases, 
and their proportion relative to the total number of microcracks de
creases, indicating a reduced role in failure. Meanwhile, the proportion 
of shear cracks gradually increases as the axial stress increases. 
Comparing the results at a confining pressure of 5 MPa (Fig. 24(b)) with 
10 MPa (Fig. 24(c)), we can see that, at high stresses, the relative 
number of shear to tensile cracks increases as confining pressure is 
increased from 5 to 10 MPa. Therefore, these findings demonstrate that 
increasing the confining pressure restricts the formation of tensile 
microcracks.

Fig. 25 presents the spatial distribution of microcracks at different 
axial stresses (40, 45, 50, 55, and 60 MPa) under confining pressures of 5 
and 10 MPa. It can be observed from Fig. 25 shows that, regardless of the 
axial stresses and confining pressures applied, the occurrence of 
macroscopic failure is attributed to the development of an inclined shear 
fracture. In other words, increasing the confining pressure from 5 to 
10 MPa does not change the mode of creep failure. Furthermore, it is 
evident that, for a given confining pressure, macroscopic failure is more 
localized at higher stresses (Fig. 25). However, when considering a 
specific axial stress, there is minimal variation in the distribution of 
microcracks as the confining pressure increases from 5 to 10 MPa 
(Fig. 10). Therefore, it can be concluded that the influence of confining 
pressure on the distribution of microcracks within the model is 
comparatively less significant than the influence of axial stress.

It is noted that the number of particles used in a simulation can have 
a significant impact on the accuracy and reliability of the results in the 
DEM modelling. A larger number of particles improves the statistical 
significance of the results, reducing random fluctuations and providing a 
more representative simulation as well as capture fine details of the rock 
behavior such as local stress distributions and particle interactions. 
However, increasing the number of particles increases computational 
resources and simulation time, balancing accuracy with computational 
efficiency. Sensitivity analyses help determine the optimal number of 
particles, with validation against experimental data aiding in assessing 
the model’s accuracy. Thus, the number of particles in a DEM simulation 
plays a critical role in determining the accuracy, reliability, and 
computational efficiency of the results. Careful consideration of factors 
such as statistical significance, spatial resolution, computational cost, 
and system size effects is essential in determining an appropriate num
ber of particles to achieve meaningful and reliable simulation outcomes 
[48,65,66].

Fig. 22. The influence of confining pressure on creep behavior under the same axial stress of (a) 45 MPa and (b) 60 MPa.

Fig. 23. Relationship curve between creep strain rate and axial stress under 
different confining pressures (5 and 10 MPa).
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5. Conclusions

In this study, numerical simulations were conducted to investigate 
the creep behaviour of rocks under various loading conditions, including 
single-stage creep loading, multistage creep loading, and under 
confinement, at various stress levels. The objective was to analyze the 
effects of different loading conditions on rock creep. The PSC model was 
integrated into the three-dimensional PFC3D to establish a time- 
dependent deformation damage and fracture process model of rock 
based on the discrete element method. This model was used to conduct 
uniaxial compression and uniaxial creep tests on rocks, and the obtained 
results were compared with and validated against laboratory experi
ments. Our findings demonstrate that the model effectively captures the 
creep characteristics of rocks and accurately simulates the decelerating 
and accelerating creep behavior observed in laboratory experiments.

Under single-stage creep loading conditions, the occurrence of 
accelerated creep in rocks is closely influenced by factors such as the 
magnitude of the applied stress and the mechanical properties of the 
rocks. When the applied stress is significantly below the long-term 
strength of the rock, minimal or no damage occurs within the rock, 
and the axial strain does not exhibit an accelerating stage. However, 
when the applied stress surpasses the long-term strength, the axial strain 
of the rock enters an accelerating stage, leading to instability and 
macroscopic failure of the specimen. The lateral creep strain and volu
metric creep strain curves display similar trends. The simulation results 
of the single-stage creep loading of rocks indicate that the propagation of 
microcracks can be classified into three stages: an initial stage, a stable 
growth stage, and a rapid increase and failure stage. During the creep 

damage and instability process of rocks, tensile cracks are the predom
inant type, with shear cracks assuming a secondary role, ultimately 
resulting in the formation of a macroscopic shear fracture. Under multi- 
stage loading conditions, as stress levels increase, the axial and lateral 
strain of the specimen rapidly increases, microcracks experience rapid 
growth during the late stages of the simulation when the stress level is 
high, leading to a volumetric expansion of the rock specimen and 
eventual macroscopic failure.

The creep behavior of the model exhibits a similar trend in the multi- 
stage step-loading and multi-stage loading-unloading. The difference in 
time-to-failure between the multistage step-loading simulation and the 
multistage loading-unloading simulation could serve as a direct reflec
tion of the impact of multistage loading on the behavior of the model. 
Tensile microcracks play a dominant role in the creep failure process of 
rocks in the context of multistage loading (step-loading and loading- 
unloading). The numerical specimen subjected to multistage step- 
loading and loading-unloading both form an inclined shear fracture, 
the failure pattern of specimen under loading-unloading appears more 
fragmented compared to that observed during multistage step-loading.

Creep simulations performed under different confining pressures 
show that creep behaviour and the variation of microcracks in rocks is 
influenced not only by the magnitude of the confining pressure, but also 
by the magnitude of the axial stress. Under identical axial stress condi
tions, increasing the confining pressure imposes a limiting effect on the 
creep strain rate and can effectively reduce both axial and lateral strains 
in rocks, thus enhancing the mechanical performance of rocks. 
Conversely, under the same confining pressure conditions, increasing 
the axial stress increases the creep strain rate, but reduces the number of 

Fig. 24. The variations of the number of microcracks against axial stress for different confining pressures (5 and 10 MPa).
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microcracks in the model at the point of failure. Furthermore, the in
fluence of confining pressure on the distribution of microcracks in the 
model is less than the influence of axial stress. These findings reveal the 
creep mechanism from a microscopic perspective and important impli
cations can be directed to the long-term stability of rock engineering 
projects such as underground gas storage, underground tunnel supports 
and compressed air energy storage.
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