
HAL Id: hal-04743948
https://hal.science/hal-04743948v1

Submitted on 18 Oct 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Copyright

Cross-Detection of Mobile-specific Energy Hotspots:
MBSE to the Rescue

Léa Brunschwig, Olivier Le Goaër

To cite this version:
Léa Brunschwig, Olivier Le Goaër. Cross-Detection of Mobile-specific Energy Hotspots: MBSE to the
Rescue. 1st International Workshop on Sustainability and Modeling co-located with MoDELS’24, Sep
2024, Linz, Austria. pp.518-522, �10.1145/3652620.3687797�. �hal-04743948�

https://hal.science/hal-04743948v1
https://hal.archives-ouvertes.fr

Cross-Detection of Mobile-specific Energy Hotspots:
MBSE to the Rescue

Léa Brunschwig

Université de Pau et des Pays de l’Adour

Pau, France

lea.brunschwig@univ-pau.fr

Olivier Le Goaër

Université de Pau et des Pays de l’Adour

Pau, France

olivier.legoaer@univ-pau.fr

ABSTRACT
Regarding mobile applications (or apps), energy efficiency is be-

coming as important a quality attribute as security. One interesting

approach is to automatically pinpoint energy hotspots, i.e., areas

in the code base of an Android or iOS project that may negatively

impact battery life. The basic principle is to statically analyze the

input source code based on a growing catalogue of mobile-specific

energy code smells or anti-patterns. Although some anti-patterns

overlap across Android and iOS, detection strategies must be im-

plemented from scratch for each mobile platform and for each code

analyzer. This situation is not sustainable in the medium term in the

race to develop environmentally friendly mobile apps. This paper

demonstrates how the MBSE can address this industrial use case.

CCS CONCEPTS
• Software and its engineering → Domain specific languages.

KEYWORDS
Code Smell, Energy, Mobile app, Static analysis

ACM Reference Format:
Léa Brunschwig and Olivier Le Goaër. 2024. Cross-Detection of Mobile-

specific Energy Hotspots: MBSE to the Rescue. In ACM/IEEE 27th Inter-
national Conference on Model Driven Engineering Languages and Systems
(MODELS Companion ’24), September 22–27, 2024, Linz, Austria. ACM, New

York, NY, USA, 5 pages. https://doi.org/10.1145/3652620.3687797

1 INTRODUCTION
Model-Based Software Engineering (MBSE) quickly became of in-

terest in the field of mobile applications due to the heterogeneity

of the underlying platforms. That was quite true ten years ago

during the OS war, and it’s still true today with the two remaining

platforms – Android and iOS – which together account for 99% of

the market. Over the years, the research literature has focused on

producing native code for both platforms from a single code base,

following the principles of MDA/MBSE like in [1, 7, 13]. There is

no doubt that this research craze has declined with the arrival of

mature and shiny cross-platform solutions such as Flutter, React

Native and Kotlin Multiplatform Mobile.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

MODELS Companion ’24, September 22–27, 2024, Linz, Austria
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-0622-6/24/09

https://doi.org/10.1145/3652620.3687797

Yet, the story doesn’t end there: the heterogeneity challenge

strikes again when it comes to detecting and fixing flaws in the

source code of Android or iOS native projects. Since suboptimal cod-

ing choice for energy consumption at runtime is considered a defect,

this duplicate effort is becoming very important for developers that

target both platforms (i.e. a large majority). It is important to note

that submitting the codebase to a lint-type tool is a widespread

practice for improving the overall quality of the code delivered

by teams. Doing it for "green quality" is a new trend driven by a

climate-conscious tech landscape.

Intuition tells us that there are energy-related flaws (or anti-

patterns) that are the same from one platform to another and that

it should be possible to detect them, even if Android and iOS are

different, in terms of languages used and APIs provided. Unfor-

tunately, hand-developed detection rules are a complex piece of

engineering and, hence, a tedious task.

In this research paper, we introduce domain-specific languages

(DSLs) designed to describe code smells and map them with the

mobile language of choice, ultimately generating detection rules

for the static analysis tools of our choice.

The remainder of this paper follows this organization: Section 2

lays out the theoretical and practical foundations for this study.

Section 3 presents a motivational example, and Section 4 outlines

the development of meta-models for describing and translating

energy code smells across development environments. Finally, we

contrast our approach with similar works in Section 5 and outline

conclusions and future work in Section 6.

2 BACKGROUND
Energy code smells are surface symptoms, indicating that some-

thing is potentially wrong with energy efficiency. They imply that

the app’s source code could be improved or that additional effort

could be put into it. If they are well-defined, it is possible to review

the entire codebase automatically and highlight them, so-called

energy hot spots, thus requiring the developer’s attention.

2.1 Mobile-Specific Energy Code Smells
An extensible catalogue of mobiles-specific energy code smells was

yielded by O. Le Goaer as a digital common [8]. This work drew

significant inspiration from the 22 energy patterns for mobile ap-

plications of Cruz et al. [3] but with the special objective of turning

good/bad practices into statically detectable code smells. The em-

pirical catalogue now provides more than 40 energy code smells,

divided into eight categories, and targets both mobile platforms.

Some code smells go beyond the energy concern (i.e. environmental

concerns), but for the sake of simplicity, this paper will only focus

https://doi.org/10.1145/3652620.3687797
https://doi.org/10.1145/3652620.3687797

MODELS Companion ’24, September 22–27, 2024, Linz, Austria Léa Brunschwig and Olivier Le Goaër

Code Smell Name Common Practice

leakage

Sensor Leak Always remember to unsubscribe from

a sensor once you have subscribed to it

to avoid wasting data acquisition

idleness

Keep Screen On Never prevent the device from going to

sleep after a certain time to avoid drain-

ing the battery in just a few hours

Rigid Alarm Applications are strongly discouraged

from using exact alarms unnecessarily as

they reduce the OS’s ability to minimize

battery use

power

Charge Awareness Adapt workload accordingly when the

device is connected/disconnected to a

power station or switch to a different

battery level

Save Mode Awareness Adapt workload accordingly when en-

ergy save mode is activated intentionally

by the end-user or by the system

sobriety

Thrifty Geolocation Configure the geolocation sensor (aka

GPS) in a less accurate mode and with a

lower position update rate

Dark Mode Dark themes should be preferred to light

themes as this can affect the AMOLED

display under certain conditions

Brightness Override Don’t override the screen brightness

value, which automatically adjusts to

ambient light to save energy

Animation-free Avoid extraneous animations, which

consume a lot of power as they require

the CPU, GPU and screen to be active

Torch-free Don’t programmatically activate the

LED flashlight, a notoriously power-

hungry component

Table 1: Energy code smells shared by bothmobile platforms.

on energy code smells. The interesting point to notice is that a sub-

set of code smells is common to both platforms. Table 1 keeps the

10 code smells that intersect both platforms, describing commonly

shared practices for energy savings and falling into the leakage,
idleness, power and sobriety categories. At this level of abstraction,

each code smell has an evocative name and a platform-independent

and hence scanner-independent description.

2.2 Energy Code Smells Detection
The detection technique can range from a simple regular expression

in the textual source code to a more robust solution based on an

abstract syntax tree (AST). This approach is chosen by static code

analysis tools on the market. They embed code scanners specific to

the target languages and everything needed to report defects to the

individual developer or team, ultimately leading to their resolution.

We can mention IDE-based solutions such as Android Lint, Ktlint,

SwiftLint, or code quality tools such as PMD, Checkstyle, Semgrep,

SonarQube or even GitHub CodeQL.

Such tools have historically focused on maintainability and/or

vulnerability, but their scope is just beginning to shift to sustain-

ability, which includes energy concerns, as in [4, 12]. This is also

the special purpose of pioneering plugins for the world-class solu-

tion SonarQube for pinpointing the energy code smells mentioned

above [6]. The Android Java and iOS Swift plugins are already avail-

able while the Android Kotlin plugin is under construction, while

the iOS Objective-C plugin has been dismissed. This fragmentation,

which we are facing in the single case of SonarQube, is exacerbated

when targeting further tools. Ideally, to reach the maximum num-

ber of mobile developers and align with their practices, all of them

should be targeted.

3 MOTIVATING EXAMPLE
This section will argue for leveraging model-driven engineering,

recognized for offering abstraction, automation, adaptable models,

enhanced productivity, and enforcement of best practices. To justify

the necessity of MBSE in defining energy code smells for mobile

devices, we will illustrate our point by drawing on the example of

using the flashlight. Indeed, this feature is specific to smartphones

or tablets and is not commonly addressed by the general-purpose

energy code smells dealing with computers or servers. The sum-

mary of our motivations is depicted in Figure 1, and the statement

of our mobile energy code smell example is as follows (cf. Table 1):

“Don’t programmatically activate the LED flashlight, a
notoriously power-hungry component”

“Don't
programmatically
activate the LED

flashlight, a
notoriously

power-hungry
component.”

Targeted OS

Android

iOS

Flutter

React
Native

Objective-C

JavaScript

Kotlin

Java

Swift

Dart

Code QL
PMD

Targeted Language
Targeted Static
Analysis Tool

⭐ Custom

⭐

⭐

⭐

⭐

⭐

Energy Code
Smell

Figure 1: Ramification of a energy code smell at different
levels of abstraction.

The heterogeneity of mobile device operating systems poses the

initial challenge for developers, a challenge that is equally familiar

to code smell experts, who must know the different platforms. The

first hurdle entails choosing between developing a native applica-

tion, requiring a decision between Google’s Android and Apple’s

iOS platforms, which induces coding the app twice. Alternatively,

developers may choose cross-platform technologies like Flutter

or React Native if native functionality is not essential. These con-

siderations are integral to the definition of energy code smells.

Cross-Detection of Mobile-specific Energy Hotspots: MBSE to the Rescue MODELS Companion ’24, September 22–27, 2024, Linz, Austria

As illustrated in Figure 1, this complexity leads to four distinct

pathways, each offering a potential approach to addressing a sin-

gle energy code smell. However, it’s important to emphasize that

this list is not exhaustive. In our example, the flashlight feature is

available in native and cross-platform solutions.

Each mobile operating system or cross-platform technology is

associated with specific programming languages. For Android, ap-

plications must be written in Java or Kotlin, while for iOS, devel-

opers use Objective-C or Swift. This diversity in programming

languages adds further complexity to Figure 1, as each language

introduces additional branches, resulting in many versions needed

to express the energy code smell for mobile apps. In our scenario,

when dealing with Android Java, turning on the flashlight with

CameraManager#setTorchMode(..., true) must be avoided. Similarly, in

iOS Swift, it is essential to refrain from activating the flashlight us-

ing AVCaptureDevice#setTorchMode(level:) or AVCaptureDevice#torchMode.

Static code analysis examines the source code of a program

without executing it. Its purpose is to detect code smells previously

defined for a specific language. Several tools are available for that

purpose (cf. Section 2.2). It highlights the need to create multiple

versions of a single mobile energy code smell to detect it across

applications and static analysis tools. Figure 1 illustrates 24 distinct

branches from a single code smell root.

This paper proposes an approach for defining mobile code smells

at the highest abstraction level for maximum reuse. The detection

rule for an energy code smell would be generated by selecting a

mobile platform, the corresponding programming language, and a

target static analysis tool. With the proposed approach, the detec-

tion rules can be automatically regenerated each time an energy

code smell is created or updated, or as mobile technologies or code

quality tools evolve. Our approach will adhere to the following

requirements:

R1: Energy code smells should be described at the highest ab-

straction level, independent of any specific programming

language.

R2: Energy code smells should be defined once and reused for

as many mobile code translations as necessary.

R3: Translations into a targeted language should be independent

of any specific static analysis tool.

R4: The definition of an energy code smell, its translation, and

the code generation model for a static analysis tool should

be achievable iteratively and by different actors.

To address these requirements, we propose two DSLs as stated

in Figure 2. The first DSL will enable the definition of a catalogue of

energy code smells following R1 and, transitively, R3. The second

DSL will extend the first one to fulfil R2, allowing for distinctions

such as Android Java or iOS Swift and more. Code to be utilized

within a static analysis tool will be generated via Model-to-Code

transformation, fulfilling R3. Furthermore, as depicted in Figure 2,

R4 will be addressed by facilitating collaboration among experts,

enabling end-users to analyze their code using the energy code

smells catalogue. Ideally, a code smell expert will handle the task

of describing and categorizing mobile energy code smells using

the Energy Code Smell DSL. Mobile development experts will then

translate these smells from the catalogue into specific mobile lan-

guages using the second DSL, which extends the first one. Finally,

Code Smell Expert

Mobile Development
Expert

End User

Static Analysis
Tool Expert

Specify energy
code smells

Classify energy
code smells

Use Energy Code
Smell DSL

<<include>>

<<include>>

Write detection rules for
energy code smell

Platform-Specific Energy
Code Smell DSL

<<extend>>

<<include>>

Integrate generated code
into static analysis tool <<extend>>

Find energy hotspots in the
mobile codebase

<<include>>

Figure 2: Use cases and actors in the proposed approach.

a static analysis tool expert will outline the template for generating

any code smell within the targeted static analysis tool.

4 PROPOSED APPROACH
The implementation of energy code smells can result in multiple

versions because of specific languages or platforms. In response

to the heterogeneity of energy code smells, we propose two meta-

models and a model-to-code transformation. This section describes

the abstract and concrete syntax of these meta-models and the

envisioned process for generating the final code.

4.1 Abstract Syntax

Smell

name: String

description: String

smellKind: SmellKind

smellScore: Integer

EnergyHungryComponent

Sensor

GPS Camera

...

CellNetwork

Screen

WiFi Bluetooth

SmellKind

GOOD

BAD

SmellCategory

OptimizedAPI

Leakage

Bottleneck

Idleness

Sobriety

Batch

Power

Release

Longevity

Category

preExistingCategory: RuleCategory

customCategory: String

Network

......

category
1

1
appliedOn

1

*

Figure 3: Energy Code Smell meta-model.

We have created two meta-models. The first one in Figure 3 is

called the Energy Code Smell DSL. It permits the description of a

mobile-specific smell at the highest abstraction level, independent of
any specific programming language (R1). Each smell has a name and

a description, aligning with the two columns of Table 1. Although a

smell is usually a synonym for bad practices, we argued that there

could be good smells too (cf. [8]): a code smell can cause more or

less damage (or benefit); hence, we can give a score which will

allow classifying the importance of a smell compared to another.

One model conforming to the meta-model will contain one single

smell, but several models compose a catalogue of smells. Conse-

quently, we offer to specify a smell with two elements: the categories

we have cited in Table 1 and the hardware-related components that

are involved in battery drain.

MODELS Companion ’24, September 22–27, 2024, Linz, Austria Léa Brunschwig and Olivier Le Goaër

LogicalOp

OR

AND

NOT

EQ

DIFF

LE

GE

LT

GT

ArithmeticalOp

ADD

SUB

MUL

DIV

MOD

StatusOp

EXIST

CHANGED_VALUE

Kind

Class

Method

Attribute

File

Operator

TargetedLanguage

Android iOS

Operand

name: String

value: String

location: String

kind: Kind

Formula

isFreeFormula: Boolean

freeFormula: String

StatusOperator

type: StatusOp

ArithmeticalOperator

type: ArithmeticalOp

LogicalOperator

type: LogicalOp

Smell

targetedSmell: String

Flutter

Java Kotlin ObjectiveC Swift

targets

1..*

*
otherExpression

0..1

formulas

1

operand

operator

0..1

targetedSmell refers
to the file location of

an energy code smell
model

Figure 4: Platform-Specific Energy Code Smell meta-model.

1 Name: Torch -free
2 Description: Don t programmatically activate the LED

flashlight , a notoriously power -hungry component
3 Score: -2
4 #Sobriety @Flashlight

Listing 1: Example of the Energy Code Smell meta-model
concrete syntax.

Energy code smells should be defined once and reused for as many
mobile code translations as necessary (R2), thus our second meta-

model in Figure 4 is referring to a model of the first meta-model

and it defines all the different syntax of the targeted languages (cf.

Figure 1). Thanks to this solution, we separate the definition of the

energy code smell from its mapping. We must nonetheless qualify

the statement of R2 by noting that it is not possible to guarantee that

two smells with the same purpose are not defined differently twice,

which could create redundancy. However, our solution proposes to

handle the translation of a single smell once rather than repeating

the operation X times, which preserves R2.

The second meta-model, named the "platform-specific energy

code smell DSL", serves as a bridge to translate a smell into various

mobile programming languages. This mapping is achieved by di-

rectly referencing the smell via its file location in an attribute of

type "String". The meta-model is designed to be versatile and allows

targeting several operating systems and languages. The detection

rules for energy code smells are to be written by mobile develop-

ment experts. The translations into a targeted language should be
independent of any specific static analysis tool (R3) and this aspect

will be tackled in Section 4.3. Each target language can have multi-

ple formulas associated with the detection, as there can be various

ways to identify the same smell. These formulas can either be a

"free formula," a simple string that needs to be searched within the

files of an application, or a more complex formula composed of

operands and operators for more intricate detection scenarios.

4.2 Concrete Syntax
We have implemented the textual concrete syntax of our meta-

models using Xtext. Listing 1 shows an example of the concrete

syntax of our energy code smell meta-model. It corresponds to

1 Smell: "/../ energy -smell/Torch -free"
2 @Java {
3 Method."setTorchMode" in "android.hardware.

camera2.CameraManager" == "true"
4 }
5 @Swift {
6 "AVCaptureTorchMode.on" OR "setTorchModeOn" OR "

TorchMode.on"
7 }

Listing 2: Example of the Platform-Specific Energy Code
Smell meta-model concrete syntax.

the example introduced in Section 3 and describes the Torch-free

code smell (lines 1-2). This example has a score of -2. The negative

sign means it is a bad smell, and the absolute value describes its

estimated impact on the battery drain (line 3). This smell is part

of the Sobriety category and applies to only one energy-hungry

component: the flashlight (line 4).

Listing 2 is an instance of the platform-specific energy code smell

meta-model. The first line of the listing is the location of the model

to translate; here, it is the model of Listing 1.

This example illustrates the mapping with Android Java API and

iOS Swift API, and we can easily understand why we need mobile

development experts, as stated in Figure 2. In Android Java, we

describe that we will look for a method invocation setTorchMode, on

an instance of the class CameraManager when the argument is true. In

the iOS Swift example, we do not give any details and only provide

strings to search for in the application source code.

4.3 Model-to-Code Transformation
The definition of an energy code smell, its translation, and the code
generation model for a static analysis tool should be achievable itera-
tively and by different actors (R4), the first part has to be done by a

code smell expert according to Figure 2 and has already been tack-

led with the energy code smell meta-model. We have introduced

our meta-model to translate the code smells in Section 4.1 and 4.2.

In this section, we will explain the challenges for generating the

final code for the detection rules that the static analysis tool expert

of Figure 2 will integrate into static analysis tools.

The detection rules will be generated using the template lan-

guage Acceleo and the difference between the two first steps is

that we will need a template version that will be using the two

meta-models per static analysis tools but also languages. In fact, the

problem of heterogeneity arises again to illustrate our challenge:

we will take the case of SonarQube and its Java API, which allows

writing custom detection rules.

Unfortunately, when writing custom SonarQube rules, Swift

code scanner is not available. Hence, the approach to analyzing and

reporting issues in an Android Java app and iOS Swift one is com-

pletely different. Listing 3 shows an extract of the code necessary

to track a Torch-free code smell in Android Java apps: the solution

is based on an AST for Java. Listing 4 is the solution for iOS Swift

apps, and we use a hybrid solution between the textual node of

AST yielded by a tailor-made parser, and basic regular expressions.

This example demonstrates that the 24 branches of Figure 1might

have other hidden leaves and emphasize the need for abstraction

and code generation.

Cross-Detection of Mobile-specific Energy Hotspots: MBSE to the Rescue MODELS Companion ’24, September 22–27, 2024, Linz, Austria

1 public class TorchFreeRule extends
ArgumentValueOnMethodCheck {

2 ...
3 public TorchFreeRule () {
4 super("setTorchMode", "android.hardware.camera2.

CameraManager", true);
5 }
6 @Override
7 protected void checkConstantValue(Optional <Object >

optionConstantValue , Tree reportTree , Object
constantValueToCheck) {

8 if(optionalConstantValue.isPresent () && (
optionalConstantValue.get().equals(
constantValueToCheck) || ((Boolean)
optionalConstantValue.get()))) {

9 reportIssue(reportTree , getMessage ());
10 }}}

Listing 3: SonarQube rule of torch-free code smell detection
for Android Java.

1 public class TorchFreeRule extends SwiftRuleCheck {
2 ...
3 @Override
4 public void apply(ParseTree tree) {
5 if (tree instanceof Swift5Parser.

ExpressionContext) {
6 Swift5Parser.ExpressionContext id = (

Swift5Parser.ExpressionContext) tree;
7 String expressionText = id.getText ();
8 if (expressionText.contains("AVCaptureTorchMode

.on") || expressionText.contains("setTorchModeOn"
) || expressionText.contains("torchMode =.on")) {

9 this.recordIssue(id.getStart ().getStartIndex
(), DEFAULT_ISSUE_MESSAGE);

10 }}}}

Listing 4: SonarQube rule of torch-free code smell detection
for iOS Swift.

5 RELATEDWORK
Many works discuss the definition and detection of energy code

smells for mobile development [3, 10–12, 14], although they do not

employ MBSE.

DECOR [9] addresses the definition of code smells and defines

detection rules using a DSL. Despite its robust capabilities in iden-

tifying and fixing code smells, DECOR does not focus specifically

on mobile applications or energy concerns. However, its method-

ologies and tools could integrate with or complement the research

approach.

Furthermore, research exists on generating mobile applications

through MBSE [1, 7, 13] but [2, 5] focus on generating energy-

efficient applications. Although these approaches are compelling,

it is of no help for pre-existing applications or for enhancing static

analysis tools since they do not address code smells.

These related studies collectively highlight the importance of

code smells and energy efficiency in software engineering, along-

side the critical role of abstraction. This demonstrates the need

for specialized tools to address these issues in the mobile applica-

tion domain. By building on these principles, this research aims to

bridge the gap and introduce a novel solution tailored to detect and

address energy code smells in mobile applications.

6 CONCLUSION AND FUTUREWORK
Automated detection of mobile-specific energy code smells is still

in its infancy, but the next big step is already to address time-to-

market. Indeed, the diversity of mobile technologies, along with the

diversity of static code analyzers, hinders a widespread adoption

by mobile developers.

In this paper, we have presented an approach to large-scale

mobile-specific energy hotspot detection, starting from the descrip-

tion of commonly shared energy smells to a variety of operational

detection rules. We have proposed two meta-models and first steps

towards code generation for integration into static analysis tools.

We are currently implementing our proposal and laying the

groundwork for a future website that will store existing code smells

described in categorized models. This initiative aims to foster col-

laboration among code smell experts and environment-friendly

mobile developers, facilitating the integration of these detection

rules into static analysis tools.

ACKNOWLEDGMENTS
We’d like to thank the core team of the "Green Code Initiative"

(GCI) for their great work on the series of plugins for SonarQube.

REFERENCES
[1] Hanane Benouda, Redouane Essbai, Mostafa Azizi, and Mimoun Moussaoui.

2016. Modeling and Code Generation of Android Applications Using Acceleo.

International Journal of Software Engineering and Its Applications 10 (03 2016),
83–94.

[2] Kowndinya Boyalakuntla, Marimuthu Chinnakali, Sridhar Chimalakonda, and

Chandrasekaran K. 2022. eGEN: an energy-saving modeling language and code

generator for location-sensing of mobile apps. In Proceedings of the 30th ACM Joint
European Software Engineering Conference and Symposium on the Foundations of
Software Engineering (ESEC/FSE 2022). ACM, 1697–1700.

[3] Luis Cruz and Rui Abreu. 2019. Catalog of energy patterns for mobile applications.

Empirical Softw. Engg. 24, 4 (aug 2019), 2209–2235.
[4] Olivier Le Goaër. 2020. Enforcing green code with Android lint. In Proceedings of

the 35th IEEE/ACM International Conference on Automated Software Engineering.
ACM, 85–90.

[5] Imre Kelényi, Jukka K. Nurminen, Matti Siekkinen, and László Lengyel. 2014. Sup-

porting Energy-Efficient Mobile Application Development with Model-Driven

Code Generation. In Advanced Computational Methods for Knowledge Engineering.
Springer, 143–156.

[6] Olivier Le Goaer and Julien Hertout. 2023. ecoCode: a SonarQube Plugin to Re-

move Energy Smells from Android Projects. In Proceedings of the 37th IEEE/ACM
International Conference on Automated Software Engineering (ASE ’22). ACM,

Article 157.

[7] Olivier Le Goaer and Sacha Waltham. 2013. Yet another DSL for cross-platforms

mobile development. In Proceedings of the First Workshop on the Globalization of
Domain Specific Languages (GlobalDSL ’13). ACM, 28–33.

[8] Olivier Le Goaër. 2024. Mobile-specific Best Practices for Sustainable Software.
https://github.com/cnumr/best-practices-mobile

[9] Naouel Moha, Yann-Gaël Guéhéneuc, Laurence Duchien, and Anne-Francoise

Meur. 2010. DECOR: A Method for the Specification and Detection of Code and

Design Smells. IEEE Transactions on Software Engineering 36 (01 2010), 20–36.

[10] Ghulam Rasool and Azhar Ali. 2020. Recovering Android Bad Smells from

Android Applications. Arabian Journal for Science and Engineering 45 (02 2020).

[11] Reeshti, Rajni Sehgal, Deepti Mehrotra, Renuka Nagpal, and Tanupriya Choud-

hury. 2021. Code Smell Refactoring for Energy Optimization of Android Apps.
Springer, 371–379.

[12] Ana Ribeiro, João Ferreira, and AlexandraMendes. 2021. EcoAndroid: An Android

Studio Plugin for Developing Energy-Efficient Java Mobile Applications. In 2021
IEEE 21st International Conference on Software Quality, Reliability and Security
(QRS). 62–69.

[13] Steffen Vaupel, Gabriele Taentzer, Jan Peer Harries, Raphael Stroh, René Gerlach,

and Michael Guckert. 2014. Model-Driven Development of Mobile Applications

Allowing Role-Driven Variants. In Model-Driven Engineering Languages and
Systems. Springer, 1–17.

[14] Zhiqiang Wu, Xin Chen, and Scott Uk-Jin Lee. 2023. A systematic literature

review on Android-specific smells. J. Syst. Softw. 201 (2023), 111677.

https://github.com/cnumr/best-practices-mobile

	Abstract
	1 Introduction
	2 Background
	2.1 Mobile-Specific Energy Code Smells
	2.2 Energy Code Smells Detection

	3 Motivating Example
	4 Proposed Approach
	4.1 Abstract Syntax
	4.2 Concrete Syntax
	4.3 Model-to-Code Transformation

	5 Related Work
	6 Conclusion and Future Work
	Acknowledgments
	References

