
HAL Id: hal-04743850
https://hal.science/hal-04743850v1

Submitted on 25 Nov 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Queuing dynamics of asynchronous Federated Learning
Louis Leconte, Matthieu Jonckheere, Sergey Samsonov, Eric Moulines

To cite this version:
Louis Leconte, Matthieu Jonckheere, Sergey Samsonov, Eric Moulines. Queuing dynamics of asyn-
chronous Federated Learning. AISTAT, PMLR, May 2024, Valencia (Espagne), Spain. �hal-04743850�

https://hal.science/hal-04743850v1
https://hal.archives-ouvertes.fr


Queuing dynamics of asynchronous Federated Learning

Louis Leconte Matthieu Jonckheere Sergey Samsonov Eric Moulines
Lisite, Isep, Sorbonne Univ.

Math. and Algo.
Sciences Lab, Huawei Tech.

LAAS-CNRS,
Université de Toulouse,

CNRS, France

HSE University,
Moscow, Russia

CMAP
Ecole Polytechnique,

France

Abstract

We study asynchronous federated learning
mechanisms with nodes having potentially
different computational speeds. In such an
environment, each node is allowed to work
on models with potential delays and con-
tribute to updates to the central server at
its own pace. Existing analyses of such algo-
rithms typically depend on intractable quan-
tities such as the maximum node delay and
do not consider the underlying queuing dy-
namics of the system. In this paper, we pro-
pose a non-uniform sampling scheme for the
central server that allows for lower delays
with better complexity, taking into account
the closed Jackson network structure of the
associated computational graph. Our experi-
ments clearly show a significant improvement
of our method over current state-of-the-art
asynchronous algorithms on an image classi-
fication problem.

1 Introduction

Federated learning (FL) is a distributed learning
paradigm that allows agents to learn a model without
sharing data (Konečnỳ et al., 2015; McMahan et al.,
2017). A central server (CS) coordinates the entire
process. In most implementations, the CS uses syn-
chronous operations. During each epoch, the CS com-
municates with a subset of clients and waits for their
"local updates". The CS then uses these local updates
to update the global model; McMahan et al. (2017);
Wang et al. (2021). Nevertheless, different compu-
tational speeds, latencies, and/or transmission band-
widths lead to a cascade of issues such as delays and

Proceedings of the 27th International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2024, Valencia,
Spain. PMLR: Volume 238. Copyright 2024 by the au-
thor(s).

stragglers. In each epoch, CS must keep up with the
pace of the slowest agent.

A solution called FedAsync eliminates the structured
rounds of CS interaction and transitions to asyn-
chronous optimization (Xie et al., 2019). This ap-
proach, along with subsequent works in this direction
(Chen et al., 2020, 2021; Xu et al., 2021), enables asyn-
chronous operation for the CS and agents. FedAsync
facilitates the aggregation of agents updates through
the CS, rendering the solution highly scalable. More re-
cently, Mishchenko et al. (2022) has expanded the the-
oretical comprehension of purely asynchronous SGD
within a homogeneous framework where all agents can
access identical data; certain limitations still persist in
heterogeneous scenarios.

In practical applications of asynchronous federated
learning (FL), interactions between agents and the CS
require the use of queues for processing (potentially)
multiple jobs. The distribution of processing delays
varies significantly across agents, and this variability
has been shown to have a negative impact on optimiza-
tion processes. In this paper, we significantly improve
the analysis delineated in Koloskova et al. (2022), ex-
ploring in depth an asynchronous algorithmAsyncSGD.
This algorithm empowers nodes to queue tasks, ini-
tiating communication with the central server upon
task completion. The subsequent analysis adheres to
a virtual iterates sequence under standard non-convex
assumptions. However, previous studies made overly
simplistic assumptions about the dynamics of queues,
choosing to represent them with an upper bound on
the processing delays encountered by the CS. In con-
trast, our theory intricately models the queuing dy-
namics using a stationary closed Jackson network.
This approach allows capturing precisely the queuing
dynamics - number of buffered tasks, processing delay,
etc. . . -, as a function of agents speed. We integrate
assumptions about the service time distributions, en-
abling us to define the explicit stationary distribution
of the number of in-service tasks.



Queuing dynamics of asynchronous Federated Learning

Contributions.

• We identify key variables that affect the perfor-
mance of the optimization procedure and depend
on the queuing dynamics.

• Building on the findings of our analysis, we
introduce a new algorithm called Generalized
AsyncSGD. This algorithm exploits non-uniform
agent selection and offers two notable advantages:
First, it guarantees unbiased gradient updates, and
second, it improves convergence bounds.

• To gain deeper insights, we delve into the limit
regimes characterized by large concurrency. In
these contexts, our analysis shows that heterogene-
ity in server speeds can be balanced by the strategic
use of non-uniform sampling among agents.

• Experimental results show that our approach out-
performs other asynchronous baselines on a deep
learning experiment.

Related works Up to this point, the focus has been
on synchronous federated learning techniques, as evi-
denced by notable contributions such as (Wang et al.,
2020; Qu et al., 2021; Makarenko et al., 2022; Mao
et al., 2022; Tyurin and Richtárik, 2022). However,
synchronous methods often suffer from suboptimal re-
source allocation and long training times. Moreover, as
the number of participating agents grows, coordinating
synchronous rounds with all participants becomes an
increasingly difficult task for the central server (CS).

Synchronous federated learning methods are particu-
larly vulnerable to the challenge of stragglers, prompt-
ing the emergence of research endeavors rooted in the
principles of FedAsync and its subsequent extensions,
as elucidated by (Xie et al., 2019). The core concept re-
volves around updating the global model upon receiv-
ing a local model at the central server (CS). ASO-Fed
(Chen et al., 2020) introduces memory-based mecha-
nisms on the local client side. AsyncFedED (Wang
et al., 2022), drawing inspiration from FedAsync’s in-
stantaneous update strategy, proposes dynamic adjust-
ments to the learning rate and the number of local
epochs to mitigate staleness.

Looking at the problem from a different perspective,
QuAFL (Zakerinia et al., 2022) introduces a concurrent
algorithm that aligns closely with the FedAvg strategy.
QuAFL seamlessly integrates asynchronous and com-
pressed communication methods while ensuring con-
vergence. In this approach, each client is allowed a
maximum of K local steps and can be interrupted. To
address the variability in computational speeds across
nodes, FAVAS (as discussed by Leconte et al. (2023))
strikes a balance between the slower and faster clients.

FedBuff (Nguyen et al., 2022) addresses asynchrony
and concurrency by incorporating a buffer on the
server side. Clients conduct local iterations, with the
CS updating the global model solely upon completion
by a predefined number of different clients.

Similarly, the work presented by Koloskova
et al. (2022) revolves around Asynchronous SGD
(AsyncSGD), offering guarantees contingent on the
maximum delay. Recent developments by Fraboni
et al. (2023) expand upon the ideas presented by
Koloskova et al. (2022), allowing multiple clients to
contribute within a single round. Liu et al. (2021)
diverges from the buffer-centric approach and develops
Adaptive Asynchronous Federated Learning (AAFL) to
address speed disparities among local devices. Similar
to FedBuff, Liu et al. (2021)’s method entails only a
fraction of locally updated models contributing to the
global model update. Convergence guarantees within
asynchronous distributed frameworks commonly
rely on an analysis contingent upon the maximum
delay (Nguyen et al., 2022; Toghani and Uribe, 2022;
Koloskova et al., 2022), which substantially exceeds
the average delay.

Tyurin and Richtárik (2023) introduces a novel asyn-
chronous algorithm, presenting optimal convergence
guarantees under the assumption of fixed computa-
tional speeds among workers over time. Notably,
Mishchenko et al. (2022) conducts an independent
analysis of asynchronous stochastic gradient descent
that does not rely on gradient delay. However, in the
context of a heterogeneous (non-i.i.d.) setting, conver-
gence is guaranteed up to an additive term linked to
the dissimilarity limit between the gradients of local
and global objective functions.

AsGrad (Islamov et al., 2023) is a recent contribution
that proposes a general analysis of asynchronous FL
under bounded gradient assumption, and adapt ran-
dom shuffling SGD to the asynchronous case. Most
of standard asynchronous baselines can be expressed
in the general form proposed in Islamov et al. (2023),
and strong convergence guarantees are provided. But
all derivations assume delays are finite quantities.

While an impressive body of research has been ded-
icated to establishing theoretical tools for the per-
formance evaluation of communication networks, in-
cluding the development of intricate scheduling mech-
anisms and models (as exemplified in Malekpour-
shahraki et al. (2022); Stavrinides and Karatza (2018)
and references therein), the predominant focus has
revolved around performance metrics such as de-
lays/completion times (measured in terms of physi-
cal time per node), queue lengths, and throughputs.
When it comes to modeling federated learning, the ap-



Louis Leconte, Matthieu Jonckheere, Sergey Samsonov, Eric Moulines

plication of stochastic network paradigms is significant,
based on a wealth of results in the field. However, it
is important to recognize that the key metrics to be
computed in FL are significantly different from tradi-
tional network metrics, as we will discuss in more de-
tail shortly. In particular, the measurement of delay in
this context must take into account server steps, which
introduces a more complicated dependence on the dy-
namics of each queue within the network. Moreover,
optimizing these novel metrics may require completely
different resource allocation paradigms.

2 Problem statement

We consider the optimization problem:

minw∈Rd

∑n
i=1 E(x,y)∼Ddata

i
[ℓi(NN(x,w), y)] . (1)

Here d is the number of parameters (network weights
and biases), n is the total number of clients, ℓi is the
local loss function, NN(x,w) is the DNN prediction
function, Ddata

i is the training data distribution on
node i. In FL, the distributions Ddata

i are allowed to
differ between clients (statistical heterogeneity). Let
us denote by

fi(w) := E(x,y)∼Ddata
i

[ℓi(NN(x,w), y)]

the local function optimized on node i and f :=
1
n

∑n
i=1 fi. Each node i does not compute the true gra-

dient of the function fi, but has access to a stochastic
version of the gradient, denoted by g̃i.

We consider the task as a computation of a gradient
(or possibly stochastic gradient) on one of the clients.
We assume that n clients process a fixed number of
tasks C ∈ N∗ in parallel, and the total number of CS
steps is T . Once a task is completed by an agent,
the corresponding update is sent to the CS, which up-
dates the global model and then passes the updated
parameters to a new agent with probabilities (pi)

n
i=1.

The selected agent might already be busy computing
a previous update. When the agent is busy, the new
job enters a queue that is serviced on a first-in-first-
out basis (FIFO). To perform this analysis, we must
establish the following definitions:

• Jk ∈ [1, n] is the node completing a task at the k-th
CS epoch (or step),

• Kk+1 ∈ [1, n] is the node selected at step k ∈ [1, T ],
• Xi,k is the number of tasks in node i at step k,

i ∈ [1, n], k ∈ [1, T ].

All these random variables can be constructed as deter-
ministic functions of the i.i.d. sequence (Rl)l∈N which
stands for the routing decisions and the sequences

(ξil )l∈N,i=1,...,n which stand for the service times (du-
rations) of the tasks in each node. These two i.i.d.
sequences are independent.

We denote by MT
i,k the number of CS steps between

the time that a task is sent to node i and the time it
is completed:

MT
i,k = 1{i}(Kk+1)

∑T

r=k
1(

∑r
l=k 1Jl=i)<Xi,k

Finally, for k ∈ {0, . . . , T} we define

ITk =
∑k

l=0 l · 1{k−l}(M
T
Kl+1,ℓ

) ,

which is the CS step corresponding when the task was
dispatched to node Jk.

Direct analysis of the server iterate (wk)k≥0 is difficult
because we do not have access to the joint distribu-
tion of (Jk)k≥0, (MT

i,k)k≥0 and (ITk )k≥0. Koloskova
et al. (2022) assumes an upper bound on the num-
ber of gradients that are pending at step k but have
not yet been applied. Koloskova et al. (2022) pro-
poses to select new nodes with uniform probability.
In Generalized AsyncSGD (see Algorithm 1), we add
some degree of freedom by allowing the central server
to select a new node Kk+1 with (possibly non-uniform)
probability p = (pj)

n
j=1.

Algorithm 1: Generalized AsyncSGD
Input : Number of server steps T , Number of

tasks C ;
/* At the Central Server */

1 Initialize
2 Initialize parameters w0;
3 Select initial set of clients S0, with |S0| = C ;
4 Server sends w0 to each client in S0;
5 All clients in S0 compute gradients on w0 ;
6 Compute optimal (p, η) by minimizing (3) ;
7 end
8 for k = 0, . . . , T do
9 Server receives stochastic gradient g̃Jk

(wIk) ;
10 Update wk+1 ← wk − η

npJk
g̃Jk

(wIk) ;
11 Sample a new client Kk+1 with prob. pKk+1

;
12 Send new model wk+1 to Kk+1 ;
13 end

We denote

mT
i,k := E[MT

i,k] , and mT
k :=

n∑
i=1

mT
i,k /(n

2p2i ) .

It is worth noting that mT
i,k depends on the sampling

probability pi, but for simplicity, we prefer not to index
explicitly by p := (pj)

n
j=1. We will show in Section 4



Queuing dynamics of asynchronous Federated Learning

k

m
T 0
,k

n =10

n =50

Figure 1: Evolution of mT
i,k w.r.t. k, for two networks

of size n = 10, 50 initialized with full concurrency.

that, limk→∞ limT→∞ mT
i,k = mi (these expectations

become stationary) see Proposition 3. Of course, the
exact analysis of the transient behavior is very com-
plex: simple upper bounds can be computed, but these
are generally not expressive and hide the influence of
key parameters. In Figure 1, we simulate n = 10 and
n = 50 nodes with C = n initial tasks. In this sim-
ulation, nodes {0, 1, 2, 3, 4} are 10 times faster than
the other nodes to compute a task. Without loss of
generality, we focus on the first node (i = 1), and we
plot the value of mT

i,k with respect to k, for T = 500.
The value of mT

i,k becomes stationary when k > 50 and
k > 150, for n = 10 and n = 50, respectively.

In our analysis, in line with the approach presented in
Koloskova et al. (2022) (but the same idea was applied
earlier), we introduce the virtual iterates µk as follows:

µ0 = w0,

µ1 = µ0 − η
∑

i∈S0

1
npi

g̃i(w0),

µk+1 = µk − η
npKk

g̃Kk
(wk) , k ≥ 1 .

In fact µk is defined as if the selected client Kk was in-
stantaneously contributing to the server update. Note
that the gradients are computed on wk, not on µk. The
difference between µk and wk consists of all the gradi-
ents computed (on potentially outdated w’s) and not
applied yet, µk −wk =

∑
(i,j)∈Ik

−1
npi

g̃i(wj), with Ik =

{(i, j) ∈ [1, n] × [1, k]|(Xi,k ̸= 0) and (
∑n

i=1 M
T
i,j >

k − j)}.

3 Non-convex bounds

Following the setting considered in Koloskova et al.
(2022), Nguyen et al. (2022), we focus on the scenario
of the optimization problem (1) with L-smooth and
nonconvex objective functions fi. Proofs are detailed
in Appendix C. Our analysis is based on the following
assumptions:
A1. Uniform Lower Bound: There exists f∗ ∈ R such
that f(w) ≥ f∗ for all w ∈ Rd.
A2. Smooth Gradients: For any client i, the gradient

∇fi is L-Lipschitz continuous for some L > 0, i.e. for
all w, µ ∈ Rd: ∥∇fi(w)−∇fi(µ)∥ ≤ L∥w − µ∥.
A3. Bounded Variance: For any client i, the variance
of the stochastic gradients is bounded by some σ2 > 0,
i.e. for all w ∈ Rd: E[∥g̃i(w)−∇fi(w)∥2] ≤ σ2.

A 4. Bounded Gradient Dissimilarity: There ex-
ist constant G, such that for all w ∈ Rd:
∥∇fi(w)−∇f(w)∥2 ≤ G2.

The assumption A3 can be generalized to the strong
growth condition Vaswani et al. (2019):

E[∥g̃i(w)−∇fi(w)∥2] ≤ σ2 + ρ2 ∥∇fi(w)∥2 ,

following Beznosikov et al. (2023). Full details are
given in the appendix.
Theorem 1. Assume A1 to A4 and let the learning
rate η satisfy η ≤ ηmax(p), where

ηmax(p) =:
1

4L

(
C−1/2 max

k≤T
{mT

k }−1/2∧2/
∑n

i=1

1

n2pi

)
.

Then Generalized AsyncSGD converges at rate:

T∑
k=0

E[∥∇f(wk)∥2]
8(T + 1)

≤ E[f(µ0)− f(µT+1)]

η(T + 1)
(2)

+
ηLB

n

∑n

i=1

1

npi
+

η2L2B C

n

∑n

i=1

∑T
k=0 m

T
i,k

np2i (T + 1)
,

where B = 2G2 + σ2.

The upper bound in Theorem 1 includes three distinct
terms. The first term is a standard component asso-
ciated with a general nonconvex objective function; it
expresses how the choice of initialization affects the
convergence process.

The second and third terms depend on the statistical
heterogeneity within the client distributions and the
fluctuations of the minibatch gradients. If we assume
uniform probabilities, the second term agrees with that
of FedAvg: this is the bound that would be obtained
with synchronous optimization. In contrast, the third
term encapsulates the unique challenge posed by opti-
mization within an asynchronous framework.

Before moving on to the main study, it is important
to analyze the behavior of this bound. Note first that
the upper bound is minimized by T → ∞ if we set
η = O(T−1/2). In this setting, the third term of the
upper bound, which is proportional to η2, becomes
negligible. To obtain the optimal probability value p,
one should minimize

∑n
i=1 1/pi in this regime, subject

to the condition
∑n

i=1 pi = 1. This minimization is
achieved when pi = 1/n. Thus, with T → ∞, a uni-
form distribution of weights turns out to be a reason-
able choice.



Louis Leconte, Matthieu Jonckheere, Sergey Samsonov, Eric Moulines

A worked-out example For regimes other than
T → ∞, the bound given by Eq. (2) proves diffi-
cult to handle due to the complicated relationship be-
tween mT

i,k and the sampling distribution p. In the
next section, we will apply queuing theory methods
to shed light on these quantities. However, before
diving into this detailed analysis, we will first exam-
ine the behavior of the bound using a simple example.
We choose the sampling probabilities p and the step
size η by solving the constrained optimization problem
minp,η G(p, η) as a function of η ≤ ηmax(p), where

G(p, η) =
A

η(T + 1)
+

ηLB

n

∑n

i=1

1

npi

+
η2L2B C

n

∑n

i=1

∑T
k=0 m

T
i,k

np2i (T + 1)
, (3)

and where A = E[f(µ0) − f(µT+1)]. To better under-
stand this bound, let us examine a simple case. Sup-
pose we have n = 100 clients that are classified as
either "fast" or "slow". There are nf = 90 fast clients
and n − nf = 10 slow clients, which are assumed to
have the same characteristic (within each group). We
will focus on how the proposed bound behaves based
on the ratio of the processing speed of the "fast" and
"slow" clients, the proportions of fast and slow clients,
and the concurrency. We will also examine two situ-
ations: one in which the processing time for gradient
requests is fixed, and another in which it follows an
exponential distribution. By default, slow clients pro-
cess a gradient in a time unit of 1 (on average in the
random case), while fast clients take 1

µf
≤ 1 units on

average. Let p ∈ (0, 1). We denote p the probability
to select one of the fast clients, and q = 1

n−nf
−p

nf

n−nf

the probability of selecting one of the slow clients (we
need nfp+(n−nf )q = 1). The parameters are L = 1,
B = 20 (to assess the effects of gradient noise and
statistical heterogeneity), A = 100 (to highlight the
impact of initial conditions). The number of tasks is
varied C = 10, 50, 100, to assess the impact of concur-
rency. For the total number of CS iterations, we con-
sider T = 104. We plot the selection probability p ver-
sus µf , ranging from 2 to 16 in Figure 2. Furthermore,
we graphically illustrate the relative improvement of
the upper bound when compared with the uniform se-
lection problem in Figure 3. The results show that a
significant improvement may be achieved (from 30%
when µf = 2 to 55% when µf = 16). To achieve this
improvement, we should decrease the probability of se-
lecting fast clients to p = 7.3 · 10−3. The conclusion
(that will be justified theoretically in the next section)
is that fast agents should be selected less frequently
than slow agents. Even though this result may appear
to be counter intuitive, it is justified by the fact that
by selecting slow customers more frequently, process-

f

p

C = 10

C = 50

C = 100

C = 10 (det.)

C = 50 (det.)

C = 100 (det.)

uniform sampling

0.01

0.0085

0.0075

speed

Figure 2: Optimal sampling probability p as a func-
tion of the speed for different concurrency levels. The
number of nodes is fixed to n = 100 nodes.

f

C = 10

C = 50

C = 100

C = 10 (det.)

C = 50 (det.)

C = 100 (det.)

speed

1.0

0.7

0.5

sc
al

ed
 b

o
u
n
d

Figure 3: Relative improvements of the upper bounds
as a function of the speed for different concurrency
levels. The number of nodes is fixed to n = 100 nodes.

ing times are reduced. Our simulations shows that the
average delay at the CS is divided by 10 and 2, for fast
and slow nodes respectively. More details are given in
Appendix F.

Finally, these experiments also show that the distribu-
tion of the working time required for gradient evalu-
ation does not have a significant impact: results are
very similar whether the working time is deterministic
or distributed according to an exponential (and there-
fore random) distribution (provided that the mean are
preserved).

Comparison with FedBuff and AsyncSGD We em-
phasize that previous analyses of both FedBuf and
AsyncSGD are based on strong assumptions: the queu-
ing process is not considered in their analysis. In prac-
tice, slow clients with delayed information contribute.
Nguyen et al. (2022); Koloskova et al. (2022) propose
to bound this delay uniformly by a quantity τmax. We
retain this notation while reporting complexity bounds
in Table 1, but argue that nothing guarantees that
τmax is properly defined. In Figure 4 we compared
the relative improvements of the upper bounds ob-
tained with Generalized AsyncSGD, w.r.t. FedBuff
and AsyncSGD for the scenario described in the pre-
vious paragraph. The plot illustrates the massive im-
provement achieved by Generalized AsyncSGD when
optimal selection probabilities are used. It also illus-



Queuing dynamics of asynchronous Federated Learning

Table 1: Asynchronous bounds (up to numerical constants) under non-convex assumption for T server steps. C
is the number of initial tasks. A = E[f(µ0) − f∗], and B = 2G2 + σ2. τmax is defined in Toghani and Uribe
(2022) as the maximum delay. τc, τ

i
sum are defined in Koloskova et al. (2022) as the average number of active

nodes, and the sum of delays of node i, respectively.

Method Bounds η

FedBuff A
η(T+1) + ηLB + η2τ2maxL

2Bn ≤ 1

L
√

τ3
max

AsyncSGD A
η(T+1) + ηLB + η2τcL

2B
∑n

i=1
τ i

sum
T+1 ≤ 1

L
√
τcτmax

Generalized
AsyncSGD

A
η(T+1) + ηLB

∑n
i=1

1
n2pi

+ η2 CL2B
∑n

i=1

∑T
k=0 mT

i,k

n2p2
i (T+1)

≤ 1

L
√

Cmaxk≤T mT
k

B
o

u
n

d

f

Generalized AsyncSGD, C=100

FedBuff, C=100

Generalized AsyncSGD, C=100 (det.)

AsyncSGD

FedBuff, C=100 (det.)

speed

10

1

Figure 4: Relative improvement of Generalized
AsyncSGD over FedBuff and AsyncSGD as a function
of speed. The number of nodes is fixed to n = 100
nodes.

trates that the bounds previously reported in the lit-
erature do not capture the essence of the problem. In
particular, this comparison holds under the condition
that the work time for gradient evaluation is deter-
ministic, such that τmax equals C times the work time
of a slow client. When the working time is exponen-
tial, the maximum delay as defined in the analyses of
FedBuff and AsyncSGD is infinite, and the bounds in
Nguyen et al. (2022) and Koloskova et al. (2022) are
then empty.

4 Closed network

The aim of this section is to obtain theoretical guaran-
tees using precise results on closed Jackson networks
(Jackson, 1954, 1957). We assume in this section that
task duration follows an exponential distribution, with
each user having its own mean. While it is feasible to
extend these findings to deterministic durations and
even almost arbitrary duration distributions, this com-
plicates the theory. This approach not only captures
the different speeds of the clients, but also allows for
a precise assessment of the system dynamics. Conse-
quently, we can accurately determine the critical val-
ues mT

i,k in a steady state. Detailed proofs are post-

poned to the Appendix D.

Stationary distribution and key performance in-
dicators Let us denote by (Di(t))i=1,...,n the number
of task departures from node i at time t, with the con-
vention that Di(0) = 0. (Ti,l)l∈N are the jump times
associated with the counting process Di. We further
denote by N(t) the number of tasks arriving at the CS,
given by

N(t) =
∑n

i=1 Di(t) ,

while (Tl)l∈N are the jump times associated with N .
Observe that the indices k used in the previous Section
correspond to those jump times. Finally we define the
sequences of times (τi,l)l∈N as the arrival times to node
i after time 0.

In what follows, we assume that the task duration is
i.i.d. and exponentially distributed at rate µi, and that
the routing decisions are also i.i.d. (and independent of
everything else). As in the previous section, we denote
by pi the probability that the dispatcher sends a task
to node i.

We denote by X(t) = (X1(t), . . . , Xn(t)) the
continuous-time stochastic process describing the num-
ber of tasks in each node. The unit vectors in Nn are
denoted by (ei)i=1...,n. We have the following results
for X.
Proposition 2. Under the above assumptions, the dy-
namics of (X(t), t ≥ 0) is that of a closed Jackson net-
work on the complete graph with n nodes and C tasks.
The generator of the corresponding jump Markov pro-
cess is given for all x ∈ Nn, i ∈ N, j ∈ N by

q(x, x+ ei − ej) = piµj1(xj > 0) .

Furthermore, defining θi =
pi

µi
, the stationary distribu-

tion of X may be expressed as:

πC(x1, . . . , xn) = H−1
C

∏n
i=1 θ

xi
i ,

with HC =
∑

x:
∑

i xi=C

∏n
i=1 θ

xi
i .



Louis Leconte, Matthieu Jonckheere, Sergey Samsonov, Eric Moulines

Building on the understanding gained in Section 2, our
goal is to quantify the number of server steps that are
executed when a new task arrives at a given node (say
node i) and subsequently returns to the dispatcher.

For simplicity, the analysis is performed in the station-
ary regime. In particular, this means that at time 0
the distribution of the number of tasks in each node
follows the product measure defined in Proposition 2.
We denote by EC the stationary average of the closed
Jackson network when the total number of tasks is
equal to C. We can now state the main result of this
section:
Proposition 3. Given the model assumptions and as-
suming stationarity, for all k ∈ N,

limT→∞ mT
i,k = EC−1

[ ∫ Si

0

∑n
j=1 µj1(Xj(s) > 0) ds

]
.

From now on, we use the notation mi = limT→∞ mT
i,k .

This quantity is in general difficult to simplify further.
We consider in the sequel a specific regime in which
we can obtain tractable expressions as the Jackson net-
work gets close to saturation. We now describe how the
queue length Xi, and mi depend on the agents speed
and selection probability p, under this saturated sta-
tionary regime similar to the Halfin-Whitt regime in
queuing theory (Halfin and Whitt, 1981).

Scaling regime We rely on scaling bounds to pro-
vide rules of thumb when certain traffic conditions are
satisfied. We follow the derivation of Van Kreveld et al.
(2021), which considers closed Jackson networks under
a particular load regime. We assume without loss of
generality that θn = maxi∈[1,n](θi); where θi = pi/µi

(see Proposition 2). Due to the closed nature of the
network, rescaling all parameters through division by
the maximum traffic load leads to a different normal-
ization constant H̃C , but otherwise has no effect on
the stationary joint distribution:

π(x1, . . . , xn−1) = H̃−1
C

∏n−1
i=1 γi

−xi ,

where for all i ∈ [1, n], γi = θn/θi. We consider a
scaling regime where all nodes are saturated, but at
different rates. In Appendix G we also define a more
complicated scenario where some queue lengths may
degenerate to 0.

2 clusters under saturation We consider two clus-
ters of nodes of size nf and n − nf , respectively.
Nodes i ∈ [1, nf ] are fast, the rest are slow. We
assume that nodes from the same cluster have the
same speed µf , µs, for fast and slow nodes, respectively
(θf < θs). This gives the scaled intensity of the slow
nodes γs(ι) = 1, and the fast nodes γf (ι) := θs

θf
, where

ι is the scaling parameter and the scaling regime corre-
sponds to choosing those values as γf (ι) = 1+ cf ι

α−1;
with cf > 0 a fixed positive constant, and α ≤ 1, while
the total number of tasks also scales as follows:

βι1−α = C+1 .

Choosing α ≤ 1 as in Van Kreveld et al. (2021) en-
sures that node loads approach 1 as ι → ∞, enabling
the application of Corollary 2 from Van Kreveld et al.
(2021). This yields precise results on saturated node
queue lengths at high traffic loads, while queue lengths
for the remaining nodes are determined by population
size constraints. In this context, define Xι

i as the sta-
tionary queue length for a scaling parameter ι and
mi(ι) the corresponding value of mi.
Proposition 4 (Corollary.2 in Van Kreveld et al.
(2021)). In stationary regime, as the scaling parameter
ι→∞,

cf ι
α−1Xι

i →d. χi ,

where χi = E
[
Ei |

∑nf

j=1 Ej/cf ≤ β
]
, i ∈ [1, nf ], and

the (Ej)j≤n are independent unit mean exponential dis-
tributions.

As a consequence, using uniform integrability, we can
estimate the following expected value (expected sta-
tionary queue lengths of fast, and slow nodes respec-
tively) as follows:ια−1E[Xι

i ]→
Γ(cfβ)

cf
, ∀i ∈ [1, nf ],

ια−1E[Xι
i ]→ 1

n−nf

(
β − nf

1
cf
Γ(cfβ)

)
, ∀i ∈ [nf + 1, n] .

Denoting by P (k, x) = 1−
∑k−1

i=0 e−x xi

i! , we have:

Γ(c) =
P(
∑nf+2

j=1 Ej ≤ c)

P(
∑nf+1

j=1 Ej ≤ c)
=

P (nf + 2, c)

P (nf + 1, c)
.

We now turn to bound the key quantity mi(ι) for large
ι.
Proposition 5. Using the same assumptions as those
of Proposition 4 we get that :{
lim supι→∞ ια−1µf mi(ι) ≤ λ

Γ(cfβ)
cf

, ∀i ∈ [1, nf ] ,

lim supι→∞ ια−1µs mi(ι) ≤ λ
β−nfΓ(cfβ)/cf

n−nf
, otherwise,

where λ =
∑n

i=1 µi.

We expect these bounds to be sharp for large ι.

Numerical example Under the previous assump-
tions, we have λ = nfµf +(n−nf )µs. We will further
assume nf = n

2 , and pi =
1
n . Under these conditions,

we have that Γ(cfβ) is close to 1. We can give a closed



Queuing dynamics of asynchronous Federated Learning

fast

slow
O
cc
u
re
n
ce

0
0

100000

300000

1000 3000 5000 7000

delay

Figure 5: Histogram of fast and slow delays (in number
of server steps) for a uniform sampling scheme.

form approximations of the bounds of the expected de-
lays:{
mi(ι) ≤ n(µf+µs)

2µf (µf/µs−1) , ∀i ∈ [1, nf ] ,

mi(ι) ≤
(
2C
n −

1
µf/µs−1

)n(µf+µs)
2µs

, ∀i ∈ [nf + 1, n].

All delays bounds estimations have a closed form in
the 2-cluster saturated regime: they only depend on
the number of tasks in the network C, on the num-
ber of nodes n, and on the intensity of nodes µf , µs.
More details on the derivations, and on the following
experiment are available in Appendix F. We consider a
numerical simulation with n = 10 clients, split in two
clusters of same size: fast nodes with rate µf = 1.2,
and slow nodes with rates µs = 1. We saturate the
network with C = 1000 tasks, and we simulate up
to T = 106 server steps, and plot the distribution of
the delays (in number of server steps). Our numerical
experiment in Figure 5 gives average delays (50 and
1950 for fast and slow nodes, respectively) and queue
lengths that correspond to the theoretical expected val-
ues. It is also important to point out that the average
delays are way smaller than the maximum delay expe-
rienced in the T = 106 steps. This further highlights
the necessity to switch from analysis that depend on
the τmax quantity, to our analysis that only depends
on the expected delays.

5 Deep learning experiments

We evaluate FL algos performance on a classic im-
age classification task: CIFAR-10 (Krizhevsky et al.,
2009). We consider a non-i.i.d. split of the dataset:
each client takes seven classes (out of the ten possible)
without replacement. This process introduces hetero-
geneity among the clients.

We compare different asynchronous methods in terms
of CS steps. In all experiments, we track the per-
formance of each algorithm by evaluating the server
model against an unseen validation dataset.

0 25 50 75 100 125 150 175 200

Server steps

0.1

0.2

0.3

0.4

0.5

0.6

0.7

A
cc

u
ra

cy

Generalized AsyncSGD
AsyncSGD
FedBuff

Figure 6: Accuracy on validation dataset on central
server, for CIFAR-10 classification task.

We decide to focus on nodes with different exponen-
tial service rates as in Nguyen et al. (2022). We
build AsyncSGD and Generalized AsyncSGD codes
from scratch. After simulating n clients, we randomly
group them into fast or slow nodes. We assume that
the clients have different computational speeds, and
refer the readers to Appendix H.1 for further details.
We have assumed that half of the clients are slow. We
compare the classic asynchronous methods FedBuff
(Nguyen et al., 2022), and AsyncSGD (Koloskova et al.,
2022). Details about concurrent works implementa-
tion can be found in Appendix H.2.

We use the standard data augmentations and nor-
malizations for all methods. All methods are imple-
mented in Pytorch, and experiments are performed
on an NVIDIA Tesla-P100 GPU. Standard multiclass
cross entropy loss is used for all experiments. All mod-
els are fine-tuned with n = 100 clients, and a batch
of size 128. We have finetuned the learning rate for
each method. For FedBuff we tried several values for
the buffer size, but finally found that the default one
Z = 10 gives the best performances.

In Figure 6, we compare the performance of a Resnet20
(He et al., 2016) with the CIFAR-10 dataset, which
consists of 50000 training images and 10000 test im-
ages (in 10 classes). The total number of CS steps is
set to 200. Despite the heterogeneity between client
datasets, we can achieve good performance on image
classification. FedBuff has to fill up its buffer before
performing an update, slowing down the training pro-
cess. AsyncSGD provides acceptable performance, but
we can go further by sampling fast nodes slightly less
than the uniform (as suggested in Section 2), and this
leads to much better accuracy.

We have additionally tested Generalized AsyncSGD
on the TinyImageNet classification task (Le and Yang,
2015), with a ResNet18. We compare Generalized
AsyncSGD with the classic synchronous approach Fe-
dAvg (McMahan et al., 2017) and two newer asyn-



Louis Leconte, Matthieu Jonckheere, Sergey Samsonov, Eric Moulines

0 2000 4000 6000 8000 10000
Time

0.00

0.05

0.10

0.15

0.20
Ac

cu
ra

cy
AsyncSGD
Generalized AsyncSGD
FAVANO
FedBuff
FedAvg

Figure 7: Test accuracy on TinyImageNet dataset with
n = 100 total nodes.

chronous methods FedBuff (Nguyen et al., 2022) and
FAVANO (Leconte et al., 2023). FAVANO (and the
NN quantized QuAFL Zakerinia et al. (2022)) follows
a completely different method than we do. There are
no queues: Clients are triggered at the CS and either
withhold their results or are interrupted by the CS be-
fore the work is completed. In FAVANO, the clients
can have a high latency. The update rate of the CS
is limited by (slow) clients: The minimum time be-
tween two CS updates should be at least as long as
the minimum time needed to process a gradient up-
date. TinyImageNet has 200 classes and each class
has 500 (RGB) training images, 50 validation images
and 50 test images. To train ResNet18, we follow the
usual practices for training NNs: we resize the input
images to 64×64 and then randomly flip them horizon-
tally during training. During testing, we center-crop
them to the appropriate size. The learning rate is set
to 0.001 and the total simulated time is set to 1000.
Figure 7 illustrates the performance of Generalized
AsyncSGD in this experimental setup. While the par-
titioning of the training dataset follows an IID strat-
egy, TinyImageNet provides enough diversity to chal-
lenge federated learning algorithms. FedBuff is effi-
cient when the number of stragglers is small. However,
FedBuff is sensitive to the fraction of slow clients and
may get stuck if the majority of clients in the buffer
are more frequently the fast clients: this introduces
a bias and few information from slow clients will be
taken into account at the CS. FAVANO works better
than FedBuff, but the CS updates should not be too
small in order to allow slow clients to compute at least
one local gradient step. However with AsyncSGD, no
constraints are set on the time between two consecu-
tive CS steps: it evolves freely based on the queuing
processes. Generalized AsyncSGD presents the same
advantage, and in addition, samples clients with an op-
timal scheme. This leads to better performance, even
on the challenging TinyImageNet benchmark.

6 Conclusion

In this study, we analyze the convergence of an
Asynchronous Federated Learning mechanism in a
heterogeneous environment. Through a detailed
queuing dynamics analysis, we demonstrate signifi-
cantly improved convergence rates for our algorithm
Generalized AsyncSGD, eliminating dependence on
the maximum delay τmax seen in previous works.
Our algorithm enables non-uniform node sampling,
enhancing flexibility. Empirical evaluations reveal
Generalized AsyncSGD superior efficiency over both
synchronous and asynchronous state-of-the-art meth-
ods in standard CNN training benchmarks for image
classification tasks.

Acknowledgement.

Part of the work has been prepared under the aus-
pice of the Lagrange Center for Mathematics and Com-
puting. The work of E.M. has been partially funded
by the European Union (ERC-2022-SYG-OCEAN-
101071601). Views and opinions expressed are how-
ever those of the author only and do not necessarily
reflect those of the European Union or the European
Research Council Executive Agency. Neither the Eu-
ropean Union nor the granting authority can be held
responsible for them. The work of S. Samsonov was
supported by the grant for research centers in the field
of AI provided by the Analytical Center for the Gov-
ernment of the Russian Federation (ACRF) in accor-
dance with the agreement on the provision of subsidies
(identifier of the agreement 000000D730321P5Q0002)
and the agreement with HSE University No. 70-2021-
00139. The work of M.J. has been conducted with the
support of the Chaire DSPI at Ecole Polytechnique.



Queuing dynamics of asynchronous Federated Learning

References

Baccelli, F. and Bremaud, P. (2002). Elements of
Queueing Theory: Palm Martingale Calculus and
Stochastic Recurrences. Stochastic Modelling and
Applied Probability. Springer Berlin Heidelberg.

Beznosikov, A., Samsonov, S., Sheshukova, M., Gas-
nikov, A., Naumov, A., and Moulines, E. (2023).
First order methods with markovian noise: from ac-
celeration to variational inequalities. arXiv preprint
arXiv:2305.15938.

Chen, Y., Ning, Y., Slawski, M., and Rangwala, H.
(2020). Asynchronous online federated learning for
edge devices with non-iid data. In 2020 IEEE Inter-
national Conference on Big Data (Big Data), pages
15–24. IEEE.

Chen, Z., Liao, W., Hua, K., Lu, C., and Yu, W.
(2021). Towards asynchronous federated learning for
heterogeneous edge-powered internet of things. Dig-
ital Communications and Networks, 7(3):317–326.

Fraboni, Y., Vidal, R., Kameni, L., and Lorenzi, M.
(2023). A general theory for federated optimiza-
tion with asynchronous and heterogeneous clients
updates. Journal of Machine Learning Research,
24(110):1–43.

Halfin, S. and Whitt, W. (1981). Heavy-traffic limits
for queues with many exponential servers. Opera-
tions research, 29(3):567–588.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep
residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and
pattern recognition, pages 770–778.

Islamov, R., Safaryan, M., and Alistarh, D. (2023).
Asgrad: A sharp unified analysis of asynchronous-
sgd algorithms. arXiv preprint arXiv:2310.20452.

Jackson, J. R. (1957). Networks of waiting lines. Op-
erations research, 5(4):518–521.

Jackson, R. (1954). Queueing systems with phase type
service. Journal of the Operational Research Society,
5(4):109–120.

Koloskova, A., Stich, S. U., and Jaggi, M. (2022).
Sharper convergence guarantees for asynchronous
sgd for distributed and federated learning. Ad-
vances in Neural Information Processing Systems,
35:17202–17215.

Konečnỳ, J., McMahan, B., and Ramage, D.
(2015). Federated optimization: Distributed opti-
mization beyond the datacenter. arXiv preprint
arXiv:1511.03575.

Krizhevsky, A., Hinton, G., et al. (2009). Learning
multiple layers of features from tiny images.

Lannelongue, L., Grealey, J., and Inouye, M. (2021).
Green algorithms: Quantifying the carbon footprint
of computation. Advanced Science, 8(12):2100707.

Le, Y. and Yang, X. (2015). Tiny imagenet visual
recognition challenge. CS 231N, 7(7):3.

Leconte, L., Nguyen, V. M., and Moulines, E. (2023).
Favas: Federated averaging with asynchronous
clients. arXiv preprint arXiv:2305.16099.

Liu, J., Xu, H., Wang, L., Xu, Y., Qian, C., Huang,
J., and Huang, H. (2021). Adaptive asynchronous
federated learning in resource-constrained edge com-
puting. IEEE Transactions on Mobile Computing.

Makarenko, M., Gasanov, E., Islamov, R., Sadiev, A.,
and Richtarik, P. (2022). Adaptive compression for
communication-efficient distributed training. arXiv
preprint arXiv:2211.00188.

Malekpourshahraki, M., Desiniotis, C., Radi, M., and
Dezfouli, B. (2022). A survey on design challenges
of scheduling algorithms for wireless networks. Int.
J. Commun. Netw. Distrib. Syst., 28(3):219265.

Mao, Y., Zhao, Z., Yan, G., Liu, Y., Lan, T., Song,
L., and Ding, W. (2022). Communication-efficient
federated learning with adaptive quantization. ACM
Transactions on Intelligent Systems and Technology
(TIST), 13(4):1–26.

McMahan, B., Moore, E., Ramage, D., Hampson, S.,
and y Arcas, B. A. (2017). Communication-efficient
learning of deep networks from decentralized data.
In Artificial intelligence and statistics, pages 1273–
1282. PMLR.

Mishchenko, K., Bach, F., Even, M., and Wood-
worth, B. (2022). Asynchronous sgd beats mini-
batch sgd under arbitrary delays. arXiv preprint
arXiv:2206.07638.

Nguyen, J., Malik, K., Zhan, H., Yousefpour, A., Rab-
bat, M., Malek, M., and Huba, D. (2022). Federated
learning with buffered asynchronous aggregation. In
International Conference on Artificial Intelligence
and Statistics, pages 3581–3607. PMLR.

Qu, L., Song, S., and Tsui, C.-Y. (2021).
Feddq: Communication-efficient federated learn-
ing with descending quantization. arXiv preprint
arXiv:2110.02291.

Serfozo, R. (1999). Introduction to Stochastic Net-
works. Stochastic Modelling and Applied Probabil-
ity. Springer New York.

Stavrinides, G. L. and Karatza, H. D. (2018). Schedul-
ing techniques for complex workloads in distributed
systems. In Proceedings of the 2nd International
Conference on Future Networks and Distributed Sys-
tems, ICFNDS ’18, New York, NY, USA. Associa-
tion for Computing Machinery.



Louis Leconte, Matthieu Jonckheere, Sergey Samsonov, Eric Moulines

Toghani, M. T. and Uribe, C. A. (2022). Un-
bounded gradients in federated leaning with
buffered asynchronous aggregation. arXiv preprint
arXiv:2210.01161.

Tyurin, A. and Richtárik, P. (2022). Dasha:
Distributed nonconvex optimization with commu-
nication compression, optimal oracle complexity,
and no client synchronization. arXiv preprint
arXiv:2202.01268.

Tyurin, A. and Richtárik, P. (2023). Optimal
time complexities of parallel stochastic optimization
methods under a fixed computation model. arXiv
preprint arXiv:2305.12387.

Van Kreveld, L., Dorsman, J., and Mandjes, M. (2021).
Scaling limits for closed product-form queueing net-
works. Performance Evaluation, 151:102220.

Vaswani, S., Bach, F., and Schmidt, M. (2019).
Fast and faster convergence of SGD for over-
parameterized models and an accelerated percep-
tron. In The 22nd international conference on ar-
tificial intelligence and statistics, pages 1195–1204.
PMLR.

Wang, J., Liu, Q., Liang, H., Joshi, G., and Poor, H. V.
(2020). Tackling the objective inconsistency problem
in heterogeneous federated optimization. Advances
in neural information processing systems, 33:7611–
7623.

Wang, Q., Yang, Q., He, S., Shui, Z., and Chen, J.
(2022). Asyncfeded: Asynchronous federated learn-
ing with euclidean distance based adaptive weight
aggregation. arXiv preprint arXiv:2205.13797.

Wang, S., Zhang, C., Su, D., Wang, L., and Jiang,
H. (2021). High-precision binary object detector
based on a bsf-xnor convolutional layer. IEEE Ac-
cess, 9:106169–106180.

Xie, C., Koyejo, S., and Gupta, I. (2019). Asyn-
chronous federated optimization. arXiv preprint
arXiv:1903.03934.

Xu, C., Qu, Y., Xiang, Y., and Gao, L. (2021). Asyn-
chronous federated learning on heterogeneous de-
vices: A survey. arXiv preprint arXiv:2109.04269.

Zakerinia, H., Talaei, S., Nadiradze, G., and Alistarh,
D. (2022). Quafl: Federated averaging can be both
asynchronous and communication-efficient. arXiv
preprint arXiv:2206.10032.

Checklist

1. For all models and algorithms presented, check if
you include:

(a) A clear description of the mathematical set-
ting, assumptions, algorithm, and/or model.
[Yes] See Section 3

(b) An analysis of the properties and complexity
(time, space, sample size) of any algorithm.
[Yes] See Appendix A, and the code.

(c) (Optional) Anonymized source code, with
specification of all dependencies, including ex-
ternal libraries. [Yes]

2. For any theoretical claim, check if you include:

(a) Statements of the full set of assumptions of
all theoretical results. [Yes] See Section 3

(b) Complete proofs of all theoretical results.
[Yes] See Appendix C and Appendix D

(c) Clear explanations of any assumptions. [Yes]
See Section 3

3. For all figures and tables that present empirical
results, check if you include:

(a) The code, data, and instructions needed to
reproduce the main experimental results (ei-
ther in the supplemental material or as a
URL). [Yes] See supplemental material

(b) All the training details (e.g., data splits, hy-
perparameters, how they were chosen). [Yes]
See Section 5

(c) A clear definition of the specific measure or
statistics and error bars (e.g., with respect to
the random seed after running experiments
multiple times). [Yes] See Appendix H

(d) A description of the computing infrastructure
used. (e.g., type of GPUs, internal cluster, or
cloud provider). [Yes]

4. If you are using existing assets (e.g., code, data,
models) or curating/releasing new assets, check if
you include:

(a) Citations of the creator If your work uses ex-
isting assets. [Yes] See Section 5

(b) The license information of the assets, if appli-
cable. [Not Applicable]

(c) New assets either in the supplemental mate-
rial or as a URL, if applicable. [Not Applica-
ble]

(d) Information about consent from data
providers/curators. [Not Applicable]

(e) Discussion of sensible content if applicable,
e.g., personally identifiable information or of-
fensive content. [Not Applicable]

5. If you used crowdsourcing or conducted research
with human subjects, check if you include:



Queuing dynamics of asynchronous Federated Learning

(a) The full text of instructions given to partici-
pants and screenshots. [Not Applicable]

(b) Descriptions of potential participant risks,
with links to Institutional Review Board
(IRB) approvals if applicable. [Not Applica-
ble]

(c) The estimated hourly wage paid to partici-
pants and the total amount spent on partici-
pant compensation. [Not Applicable]



Louis Leconte, Matthieu Jonckheere, Sergey Samsonov, Eric Moulines

A Environmental footprint

In the current context, we estimated the carbon footprint of our experiments to be about 1 kg CO2e (calcu-
lated using green-algorithms.org v2.1 Lannelongue et al. (2021)). Generalized AsyncSGD’s time and memory
complexity is on par with concurrent methods.

B Notations and definitions

In the proof section below we will refer on the following notations. For 0 ≤ k ≤ T consider the filtration Fk

defined as Fk = σ({wℓ, ℓ ≤ k,Km,m < k}). We define the virtual iterates µk as follows:
µ0 = w0,

µ1 = µ0 − η
∑

i∈S0

1
npi

g̃i(w0),

µk+1 = µk − η
npKk

g̃Kk
(wk) , k ≥ 1 .

(4)

C Proofs of Section 2

We split the proof of Theorem 1 into several steps. First we bound the quantity of interest
∑T

k=0 E[∥∇f(wk)∥2]
in terms of norms of difference between exact and virtual iterations ∥µk − wk∥2 defined in (4). More precisely,
the following statement holds:
Lemma 6. Assume A1 to A4 and let the learning rate η satisfy η ≤ n2

8L
∑n

i=1
1
pi

. Then for the iterates (wk)k≥0

of Generalized AsyncSGD it holds that

η

4(T + 1)

∑T

k=0
E[∥∇f(wk)∥2] ≤

f(µ0)− E[f(µT+1)]

T + 1
+

ηL2

2

1

T + 1

∑T

k=0
E[∥µk−wk∥2]+ η2L

∑n

i=1

2G2 + σ2

n2pi
.

Proof. Using the smoothness assumption A2 and the definition of µk+1 from (4), we obtain the following descent
inequality:

E [f (µk+1) | Fk]− f (µk) ≤ −ηE
[
⟨∇f(µk),

1

npKk

g̃Kk
(wk)⟩

∣∣∣∣Fk

]
+

η2L

2
E
[
∥ 1

npKk

g̃Kk
(wk)∥2

∣∣∣∣Fk

]
.

With the unbiasedness property of stochastic gradients and A3, we get

E [f (µk+1) | Fk]− f (µk) ≤ −ηE
[
⟨∇f(µk),

1

npKk

∇fKk
(wk)⟩

∣∣∣∣Fk

]
+ η2LE

[
∥ 1

npKk

∇fKk
(wk)∥2

∣∣∣∣Fk

]
+ η2Lσ2

∑n

i=1

1

n2pi

= −η⟨∇f(µk),∇f(wk)⟩+ η2LE
[
∥ 1

npKk

∇fKk
(wk)∥2

∣∣∣∣Fk

]
+ η2Lσ2

∑n

i=1

1

n2pi
.

In the last equality we used that E
[
⟨∇f(µk),

1
npKk

∇fKk
(wk)⟩

∣∣∣Fk

]
= ⟨∇f(µk),∇f(wk)⟩. Now we introduce a

notation
∆k = E [f (µk+1) | Fk]− f (µk) .

Since ⟨a, b⟩ = 1/2(∥a∥2 + ∥b∥2 − ∥a− b∥2) for any a, b ∈ Rd, we get that

∆k ≤ −η

2
(∥∇f(µk)∥2 + ∥∇f(wk)∥2 − ∥∇f(wk)−∇f(µk)∥2) + η2LE

[
∥ 1

npKk

∇fKk (wk)∥2
∣∣∣∣Fk

]
+ η2Lσ2

∑n

i=1

1

n2pi

≤ −η

2
∥∇f(wk)∥2 +

η

2
L2∥µk − wk∥2 + η2LE

[
∥ 1

npKk

(∇fKk (wk)−∇f(wk) +∇f(wk))∥2
∣∣∣∣Fk

]
+ η2Lσ2

∑n

i=1

1

n2pi

≤ −η

2
∥∇f(wk)∥2 +

η

2
L2∥µk − wk∥2 + 2η2L(E

[
∥ 1

npKk

(∇fKk (wk)−∇f(wk))∥2
∣∣∣∣Fk

]
+ ∥∇f(wk)∥2

∑n

i=1

1

n2pi
)

+ η2Lσ2
∑n

i=1

1

n2pi
.



Queuing dynamics of asynchronous Federated Learning

Applying the bounded gradient dissimilarity assumption A4, we get

∆k ≤ −
η

2
∥∇f(wk)∥2 +

η

2
L2∥µk − wk∥2 + 2η2L(

∑n

i=1

G2

n2pi
+ ∥∇f(wk)∥2

∑n

i=1

1

n2pi
) + η2Lσ2

∑n

i=1

1

n2pi

≤ (−η

2
+ 2η2L

∑n

i=1

1

n2pi
)∥∇f(wk)∥2 +

η

2
L2∥µk − wk∥2 + 2η2L

∑n

i=1

G2

n2pi
+ η2Lσ2

∑n

i=1

1

n2pi
.

As a consequence by taking η ≤ n2

8L
∑n

i=1
1
pi

and substituting for ∆k, we get

η

4
∥∇f(wk)∥2 ≤ f(µk)− E [f(µk+1) | Fk] +

ηL2

2
∥µk − wk∥2 + 2η2L

∑n

i=1

G2

n2pi
+ η2Lσ2

∑n

i=1

1

n2pi
.

Now taking sum for k ∈ {0, . . . , T}, we get

η

4(T + 1)

∑T

k=0
E[∥∇f(wk)∥2] ≤

f(µ0)− E[f(µK+1)]

T + 1
+

ηL2

2

1

T + 1

∑T

k=0
E[∥µk − wk∥2] + η2L

∑n

i=1

2G2 + σ2

n2pi
.

In order to apply the result of Lemma 6, one needs to provide an upper bound on the correction term
E[∥µk − wk∥2]. As explained in Section 2, the virtual iterates deviation from the true {wk}k>0 is made of all
the gradients computed (on potentially outdated w’s) and not applied yet. We can introduce the sets {Ik}k>0,
as the sets of time and client indexes whose gradients are still on fly at time k. With S0 being the set of initial
active workers from Generalized AsyncSGD, there are defined by the recursion:

I1 = {(i, 0)|i ∈ S0, i ̸= J0}

Ik+1 =

{
Ik if Ik = k,

Ik \ (Jk, Ik) ∪ (Kk, k) otherwise.

As ∥µk − wk∥ represents the norm of gradients, it is easier to introduce the sets {Gk}k>0, as the set of gradients
scaled with their respective weight −1

npi
for each client i, that correspond to the indexes in {Ik}k>0:

Gk = {− 1

npi
g̃i(wj)|(i, j) ∈ Ik}.

In the following lines, we will show that the sets {Gk}k>0 (and as a consequence the sets {Ik}k>0) have a constant
cardinal: the number of running tasks in Generalized AsyncSGD is fixed during the whole optimization process,
and only depends on the initialization.
Remark 7. The number of running tasks is constant, but the number of active nodes is not! If there is a very
slow client i, the number of active clients can be reduced to 1: all tasks are currently processed in the queue of
client i.
Lemma 8. For the sequence (wk)k≥0 of updates produced by Generalized AsyncSGD and for the sequence of
virtual updates (µk)k≥0 defined in (4), it holds that

µ1 − w1 = −η
∑

i∈S0

1 {i ̸= J0}
1

npi
g̃i(w0) ,

µk+1 − wk+1 = −η
∑

i∈S0

1 {i ̸= J0}
1

npi
g̃i(w0) + η

∑k

r=1
(

1

npJr

g̃Jr
(wIr )−

1

npKr

g̃Kr
(wr)) , k ≥ 1 .

Proof. The proof follows from the definition of recurrence (4). Indeed, first we can note that

µ1 − w1 = (w0 − η
∑

i∈S0

1

npi
g̃i(w0))− (w0 − η

1

npJ0

g̃J0
(wI0))

= (w0 − η
∑

i∈S0

1

npi
g̃i(w0))− (w0 − η

1

npJ0

g̃J0
(w0))

= −η
∑

i∈S0

1 {i ̸= J0}
1

npi
g̃i(w0).



Louis Leconte, Matthieu Jonckheere, Sergey Samsonov, Eric Moulines

Now for a general iteration number k we have:

µk+1 − wk+1 = (µk − η
1

npKk

g̃Kk
(wk))− (wk − η

1

npJk

g̃Jk
(wIk))

= (µk − wk) + η(
1

npJk

g̃Jk
(wIk)−

1

npKk

g̃Kk
(wk))

= (µ1 − w1) +
∑k

r=1
η(

1

npJr

g̃Jr (wIr )−
1

npKr

g̃Kr (wr))

= −η
∑

i∈S0

1 {i ̸= J0}
1

npi
g̃i(w0) + η

∑k

r=1
(

1

npJr

g̃Jr
(wIr )−

1

npKr

g̃Kr
(wr)).

Lemma 9. The sets {Gk}k≥0 have constant cardinal and compile all the gradients in computation at step k > 0:{
(i) |Gk| = |G1| = |S0| − 1,

(ii) µk − wk = η
∑

g∈Gk
g.

Proof. Step (i): We are going to proof the result by induction. Assume |Gk| = |S0| − 1 for some k. If Ik = k
we can immediately conclude that |Gk+1| = |Gk|. Otherwise, Ik < k, hence there exists some i ∈ [n] such that
− 1

npi
g̃i(wIk) ∈ Gk. In particular, client Jk is the client that finishes computation at step k, thus − 1

npJk
g̃Jk

(wIk) ∈
Gk. As a consequence, |Gk \ {− 1

npJk
g̃Jk

(wIk)}| = |S0| − 2. Furthermore, by definition, all gradients in Gk are
taken on models older than k. And by taking Ik < k, we obtain − 1

npKk
g̃Kk

(wk) /∈ Sk \ {− 1
npJk

g̃Jk
(wIk)}. It

concludes |Gk+1| = |Gk|.

Step (ii): We also prove it by induction. It is valid for k = 1. Now assume µk − wk =
∑

g∈Gk
g, for some

k > 1.

µk+1 − wk+1 = (µk − wk) +
1

npJk

g̃Jk
(wIk)−

1

npKk

g̃Kk
(wk)

= (µk − wk) + (1{0}(Ik)
1

npJk

g̃Jk
(w0) + · · ·+ 1{k}(Ik)

1

npJk

g̃Jk
(wk))−

1

npKk

g̃Kk
(wk)

= (µk − wk) + 1{0}(Ik)
1

npJk

g̃Jk
(w0) + · · ·+ 1{k−1}(Ik)

1

npJk

g̃Jk
(wk−1)

+ (1{k}(Ik)
1

npJk

g̃Jk
(wk)−

1

npKk

g̃Kk
(wk)).

By induction, we have:

µk+1 − wk+1 =
∑

g∈Gk

g + 1{0}(Ik)
1

npJk

g̃Jk
(w0) + · · ·+ 1{k−1}(Ik)

1

npJk

g̃Jk
(wk−1)

+ (1{k}(Ik)
1

npJk

g̃Jk
(wk)−

1

npKk

g̃Kk
(wk)).

If Ik = k we have Jk = Kk: some client contributes instantaneously. This results in:

µk+1 − wk+1 =
∑

g∈Gk

g + 1{0}(Ik)
1

npJk

g̃Jk
(w0) + · · ·+ 1{k−1}(Ik)

1

npJk

g̃Jk
(wk−1)︸ ︷︷ ︸

=0

+ (1{k}(Ik)g̃Jk
(wk)−

1

npKk

g̃Kk
(wk))︸ ︷︷ ︸

=0

=
∑

g∈Gk+1

g.

Same idea as in Step (i) allows us to conclude µk+1 − wk+1 =
∑

g∈Gk+1
g when Ik < k.



Queuing dynamics of asynchronous Federated Learning

Lemma 10. For the sequence (wk)k≥0 of updates produced by Generalized AsyncSGD and for the sequence of
virtual updates (µk)k≥0 defined in (4), it holds that

1

T + 1

∑T

k=0
E[∥µk − wk∥2] ≤ 2η2 C

∑n

i=1

mT
i,0

(n2p2i )(T + 1)
(2G2 + σ2)

+ 4η2 C
E[∥∇f(w0)∥2]mT

0

(n2p2i )(T + 1)

+ 4η2 C
∑T

k=1

mT
k

(n2p2i )(T + 1)
E[∥∇f(wk)∥2]

+ 2η2 C
∑n

i=1

∑K
k=1 m

T
i,k

(n2p2i )(T + 1)
(2G2 + σ2).

Proof. Using the statement of Lemma 9, we bound the expected value of the correction term as follows:

E[∥µk − wk∥2] = η2E[∥
∑

g∈Gk

g∥2] ≤ η2E[|Gk|
∑

g∈Gk

∥g∥2] ≤ η2E[C
∑

g∈Gk

∥g∥2]. (5)

As the cardinal of sets |Gk| := C is constant among iterations, and in particular it is independent from g’s, we
can simplify the form above.

We also introduce the set Uk:
Uk = {i ∈ {1, . . . , n}|Xi,k > 0}.

Hence, from (5) and A3, we get

E[∥µk − wk∥2] ≤ η2 CE[
∑

(i,j)∈Ik∪{Uk×{0}}

1

n2p2i
2∥∇fi(wj)∥2 + 2σ2]

≤ η2 CE[
∑n

i=1

1

n2p2i
1Uk∩S0

(i)(4G2 + 4∥∇f(w0)∥2 + 2σ2)︸ ︷︷ ︸
gradients on initial model

+
∑k

j=1
1Ik

(
(i, j)

)
(4G2 + 4∥∇f(wj)∥2 + 2σ2)]

Now we average over T iterations:

1

T + 1

∑T

k=0
E[∥µk − wk∥2] ≤ 2η2 C

∑n

i=1
(
∑T

k=0

P(i ∈ Uk ∩ S0)
T + 1

)(
2G2 + σ2

n2p2i
)

+ 4η2 CE[∥∇f(w0)∥2]
∑n

i=1

1

n2p2i
(
∑T

k=0

P(i ∈ Uk ∩ S0)
T + 1

)

+
4

T + 1
η2 C

∑n

i=1
E[
∑T

k=1

1

n2p2i

k∑
j=1

(1Ik

(
(i, j)

)
∥∇f(wj)∥2)]

+
4G2 + 2σ2

T + 1
η2 C

∑n

i=1
E[
∑T

k=1

1

n2p2i

∑k

j=1
1Ik

((i, j))].

We rearrange the last 2 terms:

1

T + 1

∑T

k=0
E[∥µk − wk∥2] ≤ 2η2 C

∑n

i=1

∑T
k=1 P(i ∈ Uk ∩ S0)

T + 1
(
2G2 + σ2

n2p2i
)

+ 4η2 CE[∥∇f(w0)∥2]
∑n

i=1

1

n2p2i

∑T
k=1 P(i ∈ uk ∩ S0)

T + 1

+ 4η2 C
∑T

k=1
E[

∑n
i=1

1
n2p2

i

∑T
r=k 1Ir

((i, k))

T + 1
∥∇f(wk)∥2]

+ 2η2 C
∑T

k=1
E[

∑n
i=1

1
n2p2

i

∑T
r=k 1Ir

((i, k))

T + 1
(2G2 + σ2)].



Louis Leconte, Matthieu Jonckheere, Sergey Samsonov, Eric Moulines

We can simplify the bounds with the following identity:∑T

r=k
1Ir

((i, k)) = 1{i}(Kk+1)
∑T

r=k
1(

∑r
l=k 1Jl=i)<Xi,k

= MT
i,k, for k > 0.

And with a slight abuse of notation, we take: MT
i,0 =

∑T
k=1 1Uk∩S0

(i). Combining the above bounds, we obtain

1

T + 1

∑T

k=0
E[∥µk − wk∥2] ≤ 2η2 C

∑n

i=1

E[MT
i,0]

T + 1
(
2G2 + σ2

n2p2i
)

+ 4η2 CE[∥∇f(w0)∥2]
∑n

i=1

1

n2p2i

E[MT
i,0]

T + 1

+ 4η2 C
∑T

k=1

∑n
i=1

1
n2p2

i
E[MT

i,k]

T + 1
E[∥∇f(wk)∥2]

+ 2η2 C
∑n

i=1

∑T
k=1 E[M

T
i,k]

T + 1
(
2G2 + σ2

n2p2i
) ,

and the statement follows using the definition mT
k .

C.1 Proof of Theorem 1

We apply the bound Lemma 6 and use Lemma 10 to control the correction term 1
T+1

∑T
k=0 E[∥µk−wk∥2]. Hence,

we get

1

4(T + 1)

∑T

k=0
E[∥∇f(wk)∥2] ≤

E[f(µ0)− f(µT+1)]

η(T + 1)
+

L2

2(T + 1)

∑T

k=0
E[∥µk − wk∥2] + ηL

∑n

i

2G2 + σ2

n2pi

≤ E[f(µ0)− f(µT+1)]

η(T + 1)
+ ηL

∑n

i

2G2 + σ2

n2pi

+ L2η2 C

(∑n

i=1

∑T
k=0 m

T
i,k

n2p2i (T + 1)
(2G2 + σ2) +

2E[∥∇f(w0)∥2]mT
0

T + 1

)

+
L2η2 C

T + 1

∑T

k=1
2mT

k E[∥∇f(wk)∥2] .

Hence we have:

1

T + 1

∑T

k=0
(1/4− 2mT

k L2η2 C)E[∥∇f(wk)∥2] ≤
E[f(µ0)− f(µT+1)]

η(T + 1)
+ ηL

∑n

i

2G2 + σ2

n2pi

+ L2η2 C
∑n

i=1

∑T
k=0 m

T
i,k

n2p2i (T + 1)
(2G2 + σ2) .

Now we impose the step size condition

η ≤
√

1

16L2 Cmaxk∈{1,...,T} m
T
k

,

which enable us to conclude that

1

8(T + 1)

∑T

k=0
E[∥∇f(wk)∥2] ≤

E[f(µ0)− f(µT+1)]

η(T + 1)
+ ηL

∑n

i

2G2 + σ2

n2pi

+ L2η2 C
∑n

i=1

∑T
k=0 m

T
i,k

n2p2i (T + 1)
(2G2 + σ2) ,

and the statement follows.



Queuing dynamics of asynchronous Federated Learning

C.2 Influence of the strong growth condition

The assumption A3 can be generalized to the strong growth condition Vaswani et al. (2019):

E[∥g̃i(x)−∇fi(x)∥2] ≤ σ2 + ρ2 ∥∇fi(x)∥2 .

All previous derivations are impacted by a factor ρ2. But the proofs remain the same. In particular, the quantity
∆k from Lemma 6 can be bounded as:

∆k ≤ (−η

2
+ 2η2L

∑n

i=1

1 + ρ2

n2pi
)∥∇f(wk)∥2 +

η

2
L2∥µk − wk∥2 + 2η2L

∑n

i=1

(1 + ρ2)G2

n2pi
+ η2Lσ2

∑n

i=1

1

n2pi
.

This slightly change the condition on the step size: η ≤ n2

8L
∑n

i=1
1+ρ2

pi

. The rest of the proof is similarly impacted.

We now impose the additional step size condition:

η ≤
√

1

(1 + ρ2)16L2 Cmaxk∈{1,...,T} m
T
k

,

which enable us to conclude that

1

8(T + 1)

∑T

k=0
E[∥∇f(wk)∥2] ≤

E[f(µ0)− f(µT+1)]

η(T + 1)
+ ηL

∑n

i

2(1 + ρ2)G2 + σ2

n2pi

+ L2η2 C
∑n

i=1

∑T
k=0 m

T
i,k

n2p2i (T + 1)
(2(1 + ρ2)G2 + σ2) .

D Proofs of Section 4

D.1 Proof of Proposition 2

Given the assumptions, it is straightforward to check that the dynamics are those of the Markov process with
the given generator.

Then the result follows from classical results in queuing theory: the Markov process corresponds to a Jackson
quasi-reversible network with an explicit stationary distribution, see for instance Theorem 1.12 in Serfozo (1999).

Before continuing, we need a fundamental property of closed Jackson network which is the arrival Theorem also
called MUSTA in the literature:

Theorem 11 (Arrival Theorem, Prop 4.35 in Serfozo (1999)). Suppose the system is stationary. Upon arrival
to a given node (i.e., just before waiting or being served in the queue), a task sees the network according to the
distribution πC−1, i.e.,

P(Xτi,1− = x) = πC−1(x).

For the link with Palm probabilities, we also refer to Example 3.3.4. in Baccelli and Bremaud (2002).

Now, define Si the first sojourn time on node i, i.e.,

Si = inf{t ≥ τi,1|Di(t) = Xi(τi,1
−) + 1}

Recall that, EC corresponds to the stationary average for a system with C tasks (in particular the process Xt

follows πC for all times t ≥ 0). We denote in turn by EC−1 the Palm probability associated to the event of
an arrival at a given node (say i) and corresponding informally to conditioning to τi,1 = 0. Using the Arrival
Theorem, the distribution at time 0 at node i corresponds in this case to πC−1, the dynamics under the Palm
probabilities being unchanged (seeBaccelli and Bremaud (2002)).



Louis Leconte, Matthieu Jonckheere, Sergey Samsonov, Eric Moulines

D.2 Proof of Proposition 3

Assuming the system is stationary and using the definition of mT
i,k we have that for any k,

mT
i,k = mT

i = EC
[(∑

n
1(τi,1 ≤ Tn ≤ Si)

)
∧ T

]
.

Using the monotone convergence Theorem,

lim
T→∞

mT
i,k = mi = EC

[∑
n
1(τi,1 ≤ Tn ≤ Si)

]
.

We then use the arrival Theorem (11) for closed Jackson network and using the Palm probability, we can write
that

EC[
∑

n
1(τi,1 ≤ Tn ≤ Si)] = EC−1[

∑
n
1(0 ≤ Tn ≤ Si)].

Then by using the stochastic intensity formula (see Definition 1.8.10 and Example 1.8.3. in Baccelli and Bremaud
(2002)):

EC−1[
∑

n
1(0 ≤ Tn ≤ Si)] = EC−1

[ ∫ Si

0

∑n

j=1
µj1(Xj(s) > 0) ds

]
.

D.3 Computation of the constant Γ

Γ(c) =
E[X1X+Y≤c]

E[1X+Y≤c]
,

with X an Exp(1) and Y an Erlang(F,1) independent from each other. By integrating by parts:

Γ =

∫∞
0

∫ c−y

0
xe−xdx1(y ≤ c)dPY (y)

P(X + Y ≤ c)
,

=

∫∞
0

(−(c− y)e−c+y +
∫
x
1x≤c−y1(y ≤ c)dPX(x)dPY (y)

P(X + Y ≤ c)
,

=

∫∞
0
−(c− y)e−c+y1(y ≤ c) yF−1

(F−1)!e
−ydy

P(X + Y ≤ c)
+ 1,

=
e−c(−cF+1/F ! + FcF+1/(F + 1)!)

P(X + Y ≤ c)
+ 1,

=
−e−ccF+1/(F + 1)! + 1−

∑F
k=1 e

−cck/(k)!

1−
∑F

k=1 e
−cck/(k)!

,

=
P(
∑F+2

i=1 Ei ≤ c)

P(
∑F+1

i=1 Ei ≤ c)
,

D.4 Proof of Proposition 5

First note that:
mi(ι) = EC−1

[ ∫ Si

0

∑n

j=1
µj1(X

ι
j(s) > 0) ds

]
≤ λEC−1[Si].

Then it follows from the FIFO representation that

EC−1(Si) =
1

µi
(EC−1[Xι

i ]) + 1)

which implies the claim.



Queuing dynamics of asynchronous Federated Learning

E Upper bounds simulations

E.1 Illustration of G(p, η) before optimization

We decide to simulate n = 100 nodes with C = 10 initial tasks. Nodes can only be fast (sampled with pi = p)
or slow (sampled with pi =

2
n − p), and are evenly distributed. We estimate the values of mT

i,k through Monte-
Carlo and compute the upper bounds given in Theorem 1. All others constants are kept unitary to ease the
computation. In Figure 8, we plot the value of the previously mentioned upper-bound with respect to the step

p = 0.0001

p = 0.001

p = 0.005

p = 0.01

p = 0.0105

p = 0.015

uniform

10

1

B
o
u
n
d

step size

10 4 10
3

10 2

Figure 8: Variation of the non-convex upper-bound with respect to the step size η, for K = 104 server steps and
different values of sampling p. The maximum step size value is different for each case and equal to

√
1

8L2 CmaxmT
k

.

size η, for several sampling probabilities of fast node p. When the step size considered is small, all sampling
strategies are equivalent. Whereas for large value of η, sampling around the uniform one is a good strategy. Large
value of p, close to the limit 2

n , hinders the bound because it increases the delays for slow nodes by sampling fast
nodes quite often. In Figure 2 and Figure 3, we define grids of 50 values of p around the uniform one, and for
each p we compute the exact optimal step size by solving the cube roots. The optimal values of the sampling p
on the grid, and of the optimal step size are further used to compute the optimal bound and compare it against
the one obtained with uniform sampling.

E.2 Bounds w.r.t physical time

We want here to focus on the relative improvements of the upper bounds when time rather than CS steps is
considered as fixed. Indeed, when we determine complexity in terms of number of communications, we don’t take
into account the time intervals between two successive arrivals at the central server. In particular, the results
from Section 2 propose to sample more frequently slow nodes. But this results into an increased waiting time
between two consecutive server steps. As a consequence, in this section, we choose a fixed unit of time U = 1000
and optimize the bounds for T = λ(p) · U server steps, where λ(p) is the average network speed.

We choose the sampling probabilities p and the step size η by solving the constrained optimization problem
minp,η G(p, η) as a function of η ≤ ηmax(p), where

G(p, η) =
A

η(λ(p)U + 1)
+

ηLB

n

∑n

i=1

1

npi
+

η2L2B C

n

∑n

i=1

∑λ(p)U
k=0 mT

i,k

np2i (λ(p)U + 1)
,

and where A = E[f(µ0)− f(µT+1)]. In Figure 9 we run the same simulation as in Section 2, for a fixed amount
of time U . Taking into account a fixed amount of time U instead of CS epochs T also favours our approach.
The experimental results suggest to sample less fast nodes. It reduces delays (in number of steps), but increases
the average time spent between two consecutive server steps. This trade-off is key for optimizing the bounds.
When the concurrency is small (w.r.t. n), uniform sampling appears as the best strategy. However, by taking
p = 8.5 · 10−3, for full concurrency (C = n), the bound can be reduced by 40%.



Louis Leconte, Matthieu Jonckheere, Sergey Samsonov, Eric Moulines

f

C = 10

C = 50

C = 100

C = 10 (det.)

C = 50 (det.)

C = 100 (det.)

1.0

0.9

0.8

0.7

0.6

2 6 10 14

speed

sc
al

ed
 b

o
u
n
d

Figure 9: Relative improvements of the upper bounds as a function of the speed for different concurrency levels.

F 2 clusters under saturation

F.1 Example with 2 saturated clusters

In Section 4, we propose a study of the delays and queue lengths when the number of task goes to infinity with
a rate controlled by some ι > 0. In particular, we introduce the scaled intensities for slow and fast nodes as:

γs(ι) =
maxi∈[1,n](θi)

θs
= θs

θs
= 1

γf (ι) =
maxi∈[1,n](θi)

θf
= θs

θf
= 1 + cf · ια−1︸ ︷︷ ︸

deviation from slow speed

Note cf > 0 and α ≤ 1 are parameters we are free to choose to match the number of tasks in the network. In
particular, the total number of tasks also scales as follows: βl1−α = C+1. Thanks to Proposition 5, we can
bound the number of server steps when a task arrive and quits some node i as:

lim
ι→∞

ια−1 mi(ι) ≤ lim
ι→∞

λ

µi
(ια−1E[Xι

i ] + 1),

where λ = nfµs + (n− nf )µs. Hence,

lim
ι→∞

ια−1 mi(ι) ≤
nfµs + (n− nf )µs

µi
(
1

cf
Γ(cfβ) + 1)

We will further assume nf = n
2 , and pi =

1
n . Under this setting, we have Γ(cFβ) ≃ 1 and

ι1−α

cf
Γ(cfβ) =

1

γf (ι)− 1

=
1

θs
θf
− 1

=
1

µfps

µspf
− 1

=
1

µf

µs
− 1

.

For fast nodes, the delay can be simplified as:

lim
ι→∞

mi(ι) ≤
n

2

µs + µf

µf

1
µf

µs
− 1

.

For slow nodes, this simplifies as:

lim
ι→∞

mi(ι) ≤
n

2

µs + µf

µs
(
2

n
C− 1

µf

µs
− 1

).



Queuing dynamics of asynchronous Federated Learning

In the following we consider n = 10 clients, split in two clusters of same size: fast nodes with rate µf = 1.2, and
slow nodes with rates µs = 1. We simulate up to T = 106 server steps, and plot the distribution of the delays
(in number of server steps). We saturate the network with C = 1000 tasks. Hence we can estimate the following:limι→∞ mi(ι) ≤ n

µf
µs

−1
≃ 5n, ∀i ∈ [1, nf ],

limι→∞ mi(ι) ≤ ( 2C
n −

1
µf
µs

−1
)n ≃ 195n, ∀i ∈ [nf + 1, n].

All delays bounds estimations have a closed form in the 2-cluster saturated regime: they only depend on the
number of tasks in the network C, on the number of nodes n, and on the intensity of nodes µf , µs.

Figure 10: Histogram of fast and slow delays (in number of server steps) for a uniform sampling scheme.

Our numerical experiment in Figure 5 gives an average delay of 59 ∼ 5n for fast nodes. The average delay for
slow nodes reaches the value 1938 ≃ 195n. And the queue lengths also correspond to the expected values. It is
also important to point out that the average delays are way smaller than the maximum delay experienced in the
K = 106 steps. This further highlights the necessity to switch from analysis that depend on the τmax quantity,
to our analysis that only depends on the expected delays.

F.2 Optimal sampling strategy under saturation

In the previous paragraph we kept the sampling probability pi uniform. The previous computation gives

l1−α

cf
Γ(cfβ) =

1

γl
f − 1

=
1

θs
θf
− 1

=
1

µfps

µspf
− 1

.

Sticking to the previous assumptions, we want to minimize the quantity

G(p, η) =
A

η(T + 1)
+

ηLB

n
(
∑nf

i=1

1

np
+
∑n

i=nf+1

1

n( 1
n−nf

− p
nf

n−nf
)−1

) +
η2L2B C

n
(
∑nf

i=1

mf

np2

+
∑n

i=nf+1

ms

n( 1
n−nf

− p
nf

n−nf
)−2

) ,



Louis Leconte, Matthieu Jonckheere, Sergey Samsonov, Eric Moulines

This is equivalent to minimizing:

G(p, η) =
A

η(T + 1)
+

ηLB

n
(
∑nf

i=1

1

np
+

∑n

i=nf+1

1

n( 1
n−nf

− p
nf

n−nf
)−1

) +
η2L2BC

n
(
∑nf

i=1

nfµs+(n−nf )µs

µf

1
µfps
µspf

−1

np2

+
∑n

i=nf+1

nfµs+(n−nf )µs

µs
( C
n−nf

− nf

n−nf

1
µfps
µspf

−1
)

n( 1
n−nf

− p
nf

n−nf
)−2

) ,

Hence we want to find (p, η) that minimize the following:

G(p, η) =
A

η(T + 1)
+

ηLB

n
(
∑nf

i=1

1

np
+
∑n

i=nf+1

1

n( 1
n−nf

− p
nf

n−nf
)−1

)

+
η2L2B C

n
(
∑nf

i=1

nfµs+(n−nf )µs

µf

1
µf
µs

( 1
p(n−nf )

−
nf

n−nf
)−1

np2

+
∑n

i=nf+1

nfµs+(n−nf )µs

µs
( C
n−nf

− nf

n−nf

1
µf
µs

( 1
p(n−nf )

−
nf

n−nf
)−1

)

n( 1
n−nf

− p
nf

n−nf
)−2

) ,

The uniform sampling strategy (p = 1
n = 0.1) and higher probability values, give larger average delays.But very

small sampling probabilities lead to a sharp increase in the delays. It is not easy to find a closed form formula
of the optimal probability value p. Our simulations suggest an optimal value of p = 7.5 · 10−3.

In Figure 11, we have run the same simulations as in Figure 5, except that we do not sample nodes uniformly
at random. Instead, we sample fast nodes with a probability p = 7.5 · 10−3, and slow nodes with a probability
2
n − p. Our simulations shows the average delay is divided by 10 and 2, for fast and slow nodes respectively.

Figure 11: Histogram of fast and slow delays (in number of server steps) for an optimal sampling strategy.

G 3 clusters scaling regime under saturation

We consider three clusters of nodes of size nf , nm − 1 − nf , and n − 1 − nm, respectively. Nodes ∀i ≤ nf are
considered as fast, whereas nodes ∀i > nm are considered as slow (and will likely get more saturated).



Queuing dynamics of asynchronous Federated Learning

The medium nodes (∀i ∈ [nf + 1, nm]) have an intermediate computational speed. We assume nodes from the
same cluster have the same intensity µf , µm, µs, for fast, medium, and slow nodes respectively. For practical
reason we assume now that nodes ∀i > nm are the slowest ones, and has an intensity θs > θj , ∀j < n. This
assumption is not restrictive due to the close nature of the network, and allows us to simplify the problem by
splitting nodes into clusters.

This results in the scaled intensities γf (ι), γm(ι), γs(ι), where γs(ι) = 1, γm(ι) = 1+cmια−1, and γf (ι) = 1+cf ι
δ−1;

with α ≤ 1 and δ > 1. The constant task constraint translates into the existence of β such that βι1−α = C+1.
The particular choice of α ≤ 1 in Van Kreveld et al. (2021) allows us to obtain traffic loads of nodes that tend
to 1 as ι → ∞, and we could directly apply Corollary 2 from Van Kreveld et al. (2021). But this setting is
inconsistent with the practical Federated Learning framework we consider in this section: in practice most of fast
clients have an empty queue. Hence, we stick to δ > 1, and we can apply the results of (Corollary.3, Van Kreveld
et al., 2021). This work gives a precise results on the queue length of saturated nodes, in the limit of high traffic
loads. The queue length of the remaining queue are defined by the population size constraint. Note because the
unnormalized queue length of fast nodes converges to a finite-mean random variable, there is no need to scale it.
Proposition 12 (Corollary.3 in Van Kreveld et al. (2021)). In stationary regime, as ι → ∞, Xι

i , ∀i ∈ [1, nf ]
become degenerate with value 0, and

cmια−1Xι
i →d. E

[
Ei |

∑nm

j=nf+1

Ej

cm
≤ β

]
, ∀i ∈ [nf + 1, nm],

with Ei unit mean exponential distributions.

As a consequence, using as before dominated convergence we can estimate the following expected value (expected
stationary queue lengths of fast, medium, and slow nodes respectively):

limι→∞ E[Xι
i ] = 0, ∀i ∈ [1, nf ],

limι→∞ ια−1E[Xι
i ] =

1
cm

Γ(cmβ), ∀i ∈ [nf + 1, nm],

limι→∞ ια−1E[Xι
i ] =

1
n−nm

(
β − (nm − nf )

1
cm

Γ(cmβ)
)
, ∀i ∈ [nm + 1, n].

Hence, we can estimate the number of server steps when a task arrive and quits some node i as :

lim
ι→∞

ια−1 mi(ι) ≤ lim
ι→∞

λ

µi
(ια−1E[Xι

i ] + 1),

where λ = nfP(Xf > 0)µf + (nm − nf )µm + (n − nm)µs (because fast nodes have almost empty queue Xf in
the considered stationary setting).

We will further assume nf = n
3 , nm = 2n

3 , and p = 1
n . Under these conditions, we have Γ(cmβ) = Γ(C(µm

µs
−1)) ≃

1. For fast nodes, the delay can be simplified as:

lim
ι→∞

mi(ι) ≤
λ

µf
.

For medium nodes, the delay can be simplified as:

lim
ι→∞

mi(ι) ≤
λ

µm

1
µm

µs
− 1

.

For slow nodes, this simplifies as:
lim
ι→∞

mi(ι) ≤
λ

µs
(
3

n
C− 1

µm

µs
− 1

).

In the following we consider n = 9 clients, split in three clusters of same size: fast nodes with rate µf = 10,
medium nodes with rate µm = 1.2, and slow nodes with rate µs = 1. We simulate up to T = 106 server steps,
and plot the distribution of the delays (in number of server steps). Under this setting, we have ι1−α

cm
Γ(cmβ) =

1
µm
µs

−1
= 5. Hence we can estimate the following:

limι→∞ mi(ι) ≤ nfP(Xf>0)µf+(nm−nf )µm+(n−nm)µs

µf
≃ 3P(Xf > 0), ∀i ∈ [1, nf ],

limι→∞ mi(ι) ≤ nfP(Xf>0)µf+(nm−nf )µm+(n−nm)µs

µm

1
µm
µs

−1
, ∀i ∈ [nf + 1, nm],

limι→∞ mi(ι) ≤ nfP(Xf>0)µf+(nm−nf )µm+(n−nm)µs

µs
( 3C

n −
1

µm
µs

−1
), ∀i ∈ [nm + 1, n].



Louis Leconte, Matthieu Jonckheere, Sergey Samsonov, Eric Moulines

Method FedBuff AsyncSGD Generalized AsyncSGD
Accuracy on the CS test set 49.89± 0.77 59.09± 1.97 66.61± 3.26

Table 2: Performance average (mean ± std) over 10 random seeds for the CIFAR-10 task.

The simulation gives λ ≃ 9, and we recover the theoretical delays: the average delay for fast nodes is close to 1,

Figure 12: We assign C = 1000 tasks to a network of n = 9 nodes split in 3 clusters.

the average delay for medium node is 55 ≃ 5 λ
µm

, and the average delay for slow nodes is about 2935 ≃ 325 λ
µs

.

H Deep learning experiments details

H.1 Simulation

We based our simulations mainly on the code developed by Nguyen et al. (2022): we assume a server and n
clients, each of which initially has a unique split of the training dataset. To adequately capture the time spent
on the server side for computations and orchestration of centralized learning, two quantities are implemented:
the server waiting time (the time the server waits between two consecutive calls ) and the server interaction time
(the time the server takes to send and receive the required data). In all experiments, they are set to 4 and 3,
respectively. When a client i receives a new task, we take a new sample from an exponential distribution (with
mean 1

µi
, where µi is the rate of node i), and stack the gradient computation on top of the client queue.

H.2 Implementation

In Section 5 we have simulated experiments and run the code for the concurrent approaches AsyncSGD and
FedBuff. We also propose an implementation of FedAvg in the supplemental material. FedAvg is a standard
synchronous method. At the beginning of each round, the central node s selects clients uniformly at random
and broadcast its current model. Each of these clients take the central server value and then performs exactly
K local steps, and then sends the resulting model progress back to the server. The server then computes the
average of the s received models and updates its model. In this synchronous structure, the server must wait in
each round for the slowest client to complete its update.

AsyncSGD is an asynchronous method that initially randomly selects C clients. Then, a server step is done when
a new task is completed and sent back to the server. The server uniformly selects a new client and send a new
task. While AsyncSGD was tested on a simple task in Koloskova et al. (2022), we have developed a deep learning



Queuing dynamics of asynchronous Federated Learning

version of the algorithm (see supplemental material) based on a list of dictionaries (to simulate a network of
waiting queues).

For each global step, in FedBuff, the runtime is the sum of the server interaction time and the time spent feeding
the buffer of size Z. The waiting time for feeding the buffer depends on the respective local runtimes of the
slow and fast clients, as well as on the ratio between slow and fast clients: in the code, we reset a counter at
the beginning of each global step and read the runtime when the Zth local update arrives. In AsyncSGD and
Generalized AsyncSGD, the runtime is defined by the closed Jackson network properties.


	Introduction
	Problem statement
	Non-convex bounds
	Closed network
	Deep learning experiments
	Conclusion
	Environmental footprint
	Notations and definitions
	Proofs of sec:optimbounds
	Proof of theorem:cvgquant
	Influence of the strong growth condition

	Proofs of Section 4
	Proof of Proposition 2
	Proof of Proposition 3
	Computation of the constant 
	Proof of Proposition 5

	Upper bounds simulations
	Illustration of G(p,) before optimization
	Bounds w.r.t physical time

	2 clusters under saturation
	Example with 2 saturated clusters
	Optimal sampling strategy under saturation

	3 clusters scaling regime under saturation
	Deep learning experiments details
	Simulation
	Implementation


