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Abstract. Inspections of 48 photovoltaic (PV) modules within a 302.4 kWp solar array were undertaken to
expose the presence of defects after 12 years of operation under the harsh environmental conditions of Djibouti.
To this end, a multiple-technique testing protocol was conducted including visual inspection (VI), infrared
thermography (IR), current-voltage curve characterization (I-V), ultraviolet fluorescence (UVFL) and
electroluminescence imaging (EL). The main visible degradation features observed were discoloration, bubbling
and snail trails with occurrences of 100%, 93.7% and 2.1% respectively. According to the IR imaging results,
hotspots were observed on cells affected by snail trails. IR was combined with convolutional neural network
(CNN) techniques to automatically detect the different classes of failures that PV modules may experience. EL
imaging reveals that the cracks of the cells underlie the observed snail trails during visual inspection and UVFL
imaging. In addition, a decrease in STC power was observed after 12 yr of operation with amedian reaching 5.5%
corresponding to an average degradation rate of 0.46%/years. Conclusively, fault diagnosis with combined
approaches of imaging and electrical techniques is crucial to prevent defects and minimize the investment losses;
this will ensure uninterrupted power generation, extended service life and high safety of photovoltaic modules.

Keywords: Photovoltaic fault diagnosis / infrared imaging / ultraviolet fluorescence / electroluminescence /
current-voltage (I-V) curves / convolutional neural network
1 Introduction

Access to affordable and reliable energy supplies is vital for
socio-economic advancement and is also a driving factor in
the ongoing transition from fossil to renewable sources.
Photovoltaic (PV) energy has gained significant promi-
nence in the renewable energy market thanks to increas-
ingly competitive prices, abundance of the solar resource
and flexibility of technology in different integration
contexts. Solar energy is now utilized across industries,
communities and for individual needs. Worldwide photo-
voltaic energy use has grown by more than 20% per yr [1],
exceeding the 1 TW milestone in the global cumulative
installed capacity in 2022.

Africa has long faced challenges with the sustainability
of its electricity supply. Benefitting from a high solar
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potential, Africa is emerging as a promising market for PV
installations, with a total installed solar PV capacity of
6,235 megawatts (MW) [2], incentivized by the advantages
outlined above and as an effective solution for rural
electrification. A significant risk to further utilization of PV
in the region is the current lack of detailed understanding
regarding the long-term degradation of PV components
subjected to these climate zones found in Africa.

Given the importance of the reliability and durability of
PV modules, components and systems, the long-term
successful utilization of the technology has been extensively
studied in recent years [3–9]. The quality assurance of
photovoltaic (PV) power plants should begin during the
development, engineering and procurement phases, and
continue through the commissioning and on to the
operational lifetime of the facility. Indeed, a detailed
methodology would be able to anticipate faults and help
avoiding the emergence of major defects [10].
monsAttribution License (https://creativecommons.org/licenses/by/4.0),
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Having an effective operation and maintenance plan is
crucial for PV power plants to ensure the proper operation
of PVmodules, components and systems, which ultimately
leads to extended operation of the plants. Naturally,
minimizing degradations andmitigating failures reduce the
Levelized Cost of Energy (LCOE) by increasing the
operational lifetime of PV systems [11,12] and making
power plants financially more viable in the long run.

However, PV systems often experience failures during
their service life and those with their associated mainte-
nance are rarely taken into account in the early phases of
PV projects as mentioned by Catelani et al. [13]. PV
systems degrade naturally over time due to the exposure of
subcomponents to macro and micro-climatic stressors such
as solar irradiation, ambient temperature, temperature
cycles, humidity, soiling, pollution, heterogeneous con-
ditions across the PV array, soiling, humidity, salt mist/
gas, wind/snow, hail and so on [12]. It was shown by Kaaya
[14,15] that the natural aging of PV modules can be
described as the combination of three processes: hydrolysis,
photodegradation and thermomechanical degradation.
Module temperature is perhaps the most significant factor
both due to its direct influence and also as a factor to
increase the rate of other mechanisms. Significant differ-
ences are observed between the various cell technologies, as
reported by Bansal et al. [3].

It has been broadly reported in the literature [16–18]
that PV components are affected by critical failures with a
broad range of frequency and performance impacts [19].
Conversely, in tropical climatic conditions, it has been
observed that the degradation of I-V characteristics in PV
modules differs. As an example, in Senegal, a PVmodule at
mid-life demonstrated the highest decline in maximum
power (Pmax) ranging from 0.22% to 2.96% per yr, while its
open-circuit voltage (Voc) remained unaffected [20]. Under
desert conditions, the presence of cracked cells and other
atypical physical material defects has been identified,
leading to PV module degradation of up to 12% when
compared to their initial performance [21]. It should be
noted that the output power of crystalline-silicon solar
panels is significantly affected by soil in desert regions [22].
For instance, under climatic conditions like in Saudi Arabia
and Kuwait, soiling can cause a drop in the output power of
up to 40% and around 65% respectively [23]. Previous
studies have provided data indicating that dust accumula-
tion on the surface of solar panels can result in efficiency
reductions of 35% in the Bangladeshi environment [24] and
50% in the Malaysian climate [25].

Nonetheless, the causes of failures are very diverse and
complex to anticipate. These could be classified into four
main sources.

–
 Environmental stress: temperature, humidity, expo-
sure to UV light, rain, and wind [26] as well as soiling,
deterioration from animals and others. For instance,
wires and electrical systems are particularly sensitive to
wildlife intrusion from rodents, snakes and termites [27].
–
 Poor quality during construction: manufacturing,
installation, transportation. Jordan et al. [6] highlighted
that installation risks may be mitigated with proper
training and inspections.
–
 Unforeseen incidents from the design phase:
shading, significant potential differences leading to
PID, lightning and more.
–
 Accelerated aging: fatigue, thermo-mechanical cycle,
acetic acid formation in the encapsulant, material
interactions and others.

At the level of individual PVmodules, Aghaei et al. [11]
showed the interconnection between failure causes and
effects and highlighted the possibility of cascading failures
such as the degradation of the encapsulant, which produces
acetic acid and further accelerates degradation.

To mitigate PV failures, inspection methods enable to
alert that the PV installation does not operate correctly
[28]. In particular, each method detects a specific spectrum
of failures according to its methodology and its detection
perimeter [16,29]. Those methods can be defined by their
maturity, cost and availability [28] and they can be
categorized into three main categories:

–
 Remote: The detection is performed from automated
readings according to sensors on the installation. The
identification and classification of failures are then
performed with data-driven methods [30].
–
 In-situ: The main tools include visual inspection,
imaging methods, electrical protection testing and
electrical testing [28]. It requires a specialist to go
on-site and inspect the PV power plant. Those
inspections usually provide a high level of precision on
failure recognition, but involve some higher costs.
–
 Laboratory tests: Some detection methods such as
lock-in thermography, require bringing PV modules to
the laboratory for further tests. Those tests are excluded
from the study scope since an operational methodology is
envisioned and the logistics including plant interruption
time, transportation, laboratory costs and so forth would
make the inspection unrealistic in an operational setup.

Inspection methods and failures are closely intertwined.
For instance, Figure 1 provides a summary of a set of 5
common inspection methods from a previous work [19]
covering several literature sources [16,18,28] wherein the
capacity to detect and identify module-level failures was
assessed. Herein “detection” capability is defined as the
ability to spot operating faults without pinpointing from
which specific failures they originate. In contrast, “identifi-
cation” precisely locates and thoroughly characterizes a
fault. Remote techniques have high capabilities in
detectability and sometimes even identifiability, which
makes it a valuable tool in line with in-situ inspection
techniques. However, these remote techniques are often less
accurate at the module level where monitoring data are
rarely collected and, the development of an in-situ protocol
is key to identifying failures at this level.

The main objective of this article is to define and
establish an in-situ protocol for the identification and
diagnosis of failures of outdoor photovoltaic modules. This
protocol encompasses a comprehensive methodology to
detect the degradation modes using imaging techniques,
electrical assessment, and a machine learning method to
automate anomaly detection. The different methods
featured in this protocol are visual inspection, infrared



Fig. 1. Failure � detection capabilities correspondence on PV array.

D.H. Daher et al.: EPJ Photovoltaics 15, 25 (2024) 3
imaging, ultraviolet fluorescence imaging (UVFL), electro-
luminescence imaging and I-V tracing. The protocol was
further applied to the Djibouti PV installation, showcasing
its ability to identify failures on a sample of 48 polycrystal-
line-silicon PV modules after 12 years of operation.

2 Methodology

2.1 Diagnosis technique

Various methods and tools exist for PV inspection without
a clear consensus on which ones to employ and in what
order to efficiently identify failures. As highlighted in the
literature [19], there are a significant number of inspection
methods with different coverages on the failure modes. This
article primarily focuses on visual inspection, I-V curve
tracing and imagery techniques as it covers the identifica-
tion of most of the failure modes over the PV array, which
could arise over the lifespan of the installation. Visual
inspection, infrared imaging and I-V tracing are performed
as the first steps since they allow to detect the widest range
of failures. Then, some failures might remain unidentified
and the high accuracy of the imagery methods (Electrolu-
minescence and UV fluorescence) make it possible to
precisely locate the failures.

2.2 Test site

A sample of 48 Kyocera KD210GH-2PU modules, forming
a sub-array of a 302.4 kWp ground-mounted solar facility
located in Djibouti was inspected using the various
techniques described in the following section. The solar
facility is a grid-tied solar array that has operated
continuously for 12 years. Located at the CERD, the solar
array is monitored and manually cleaned on a daily to
weekly basis. The 48 modules were all part of the original
installation. The performance of the facility and the
environmental context are described in previous works by
the author [31,32]. A photograph of the facility is shown in
Figure 2.

2.3 Failure mode detection protocol and measurement

In the current work, the PV module inspections comprised
a combination of visual inspection, imaging techniques and
electrical characterization. The approach followed a test
protocol for outdoor PV failure diagnosis developed by the
Laboratory of New and Renewable Energies of the Centre
for Studies and Research (LENR-CERD).
2.3.1 Overall protocol

The LENR-CERD test protocol is summarized in Figure 3.
Modules are first cleaned to discard any heterogeneity from
soiling. A visual inspection is then undertaken to develop a
preliminary assessment of the array, followed up by
infrared imaging to locate any temperature anomalies on
the modules under operation. An analysis of the I-V curves
is then undertaken to reveal the deterioration in the
electrical characteristics. Finally, UVFL and EL are used
to complete the inspection with further information
regarding the nature of the faults. Lastly, the data is
consolidated to construct a diagnostic of the module
performance highlighting single-point failures.



Fig. 2. CERD solar facility.
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The following instrumentation was used to undertake
the protocol:

–
 FLIR E-6XT model for an infrared thermal imaging
camera.
–
 Solmetric PV analyzer to assess the electrical character-
istics of I-V data points [33].
–
 UVFL lamp.

–
 BrightSpot Automation 24 megapixel EL camera, plus a
DC generator for electroluminescence imaging.

2.3.2 Visual inspection (VI)

Freshly cleaned modules are evaluated by visual inspection
(VI). VI involves a thorough examination of the compo-
nents and is an important step that can reveal several
visible defects (bubbles, yellowing, delamination, snail
trails, cell cracks, etc.) [11]. The result is a list of apparent
problems that can be confirmed by subsequent measure-
ments. This step also offers a first set of recommendations
and insights for the following inspection steps.

2.3.3 Infrared (IR) imaging

Infrared thermography analysis provides a comprehensive
understanding of the condition of the PV module by
performing a non-invasive inspection method using infra-
red radiation (IR) imaging cameras. The main purpose of
this technique is to evaluate the temperature distribution
on the surface of the module, and especially to locate any
hot spots on the photovoltaic module. The protocol
recommends performing the IR inspection with the PV
installation in operation under clear sky conditions
between 9 AM to 10 AM with irradiance values higher
than 700W/m2 [34]. IR imaging can be strongly disrupted
by direct solar radiation arriving on the panels when taking
images at noon. Furthermore, prior to the IR imaging, the
panels should be cleaned before taking the first images to
avoid having inaccurate findings because of the presence of
dust on the panels.
2.3.4 Electrical characteristics (I-V) curves

I-V curves offer a quantitative account of the PV strings or
modules in terms of their electrical response. These curves
particularly give insights into the characteristics of the
string/module, including its maximum power point
(MPP), open-circuit voltage (Voc), short-circuit current
(Isc), and fill factor (FF). These data facilitate the diagnosis
of performance issues and highlight any deviations from
expected behavior, allowing for timely maintenance and
troubleshooting.

In this study, the PV modules were compared to the
specifications provided by the PV module manufacturer
with an uncertainty of +/�0.5%. Along with the I-V
measurement, the irradiance and cell temperature were
measured according to the SolSensor with a typical
uncertainty of 2% and 2 °C respectively [33].

Correcting the I-V curves to Standard Test Conditions
(STC 1000W/m2, module at 25 °C) is essential to evaluate
the evolution of the module characteristics over time. To
obtain the reference STC curve, the 5 parameters of
the Single Diode Model (SDM) [35] (IL,I0,a,Rs, Rsh) are
fit according to the STC datasheet characteristics. The
model further establishes the relationship between
the module current I and the voltage V as shown in
equation (1).

I ¼ IL � I0⋅ exp
V þ I⋅Rs

a

� �
� 1

� �
� V þ I⋅Rs

Rsh
: ð1Þ

Among the several methods [36,37] to translate curves
to STC conditions, the correction procedure 1 from the
standard IEC 60891-1 [38] has been followed.

I2 ¼ I1 þ Isc1·
G2

G1
� 1

� �
þ a·ðT 2 � T 1Þ; ð2Þ

V 2 ¼ V 1 � Rs·ðI2 � I1Þ � k·I2·ðT 2 � T 1Þ þ b·ðT 2 � T 1Þ: ð3Þ



Fig. 3. Testing protocol.
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I2 and I1, V2 and V0,T2 and T1, and, G2 and G1 are the
current, voltage, module temperature, and irradiance after
and before correction, respectively. ISC1 is the short-circuit
current before correction. a and b are the PV module
absolute temperature coefficients at open-circuit and short-
circuit respectively which are extracted from the manu-
facturer’s datasheet. Then, the correction factor k and the
internal resistance Rs are deducted from simulated curves
thanks to the SDM with the method suggested by Li et al.
[36,39] and are respectively equal to 0.0007 and 0.35 V.

All the 48measured I-V curves were translated from the
local environmental conditions to STC conditions. To
achieve this correction, it is advisable to conduct measure-
ments at irradiance levels over 700W/m2 according to
the IEC standard 60891 [40]. I-V curves were collected
with irradiance levels at not less than 950W/m2 over
the 48 module measurements spanning from 11 to 12
(GMT+3) on 27 February 2024. I-V measurements were
done with a Solmetric I-V curve tracer by isolating each
module from the rest of the installation. More details
regarding I-V characteristic measurement and test proto-
col can be found in our previous work [34].

2.3.5 UV fluorescence (UVFL) imaging

Electroluminescence and UVFL are made in dark environ-
ments such as in a dark room for indoor tests or at
nighttime for outdoor tests. UVFL is a characterization
method that allows detailed inspection of encapsulation
materials in photovoltaic modules. This imaging technique
can detect several failures occurring in the lifetime of the
PV module like discoloration, delamination, snail trail, cell
cracks, hot spots and more. The UVFL imaging was
performed at nighttime with a UV lamp with an emission
spectrum of 350 nm [41].

2.3.6 Electroluminescence (EL) imaging

EL imaging is based on the physical phenomenon of
electroluminescence, whereby a material emits light when
stimulated electrically. Under DC excitation, c-Si photo-
voltaic cells emit infrared radiation (IR) with a wavelength
of 1000–1300 nm and a peak value of 1150 nm, and its
intensity depends on the bias voltage of the cell. EL
imaging can identify local cell failures as well as
inhomogeneities within the module [42]. Electrolumines-
cence imaging was performed using a BrightSpot Automa-
tion 24 megapixel EL camera and a DC generator
connected to the PV module under test. The electrical
parameters of the generator are set according to the PV
module under test (ISC= 8.56 A and VOC=33.2V). The
voltage of the power supply should be set at 10% higher
than the VOC (V=36.5V). All are connected to a tablet
with an IMPEL software for camera control and, image
visualization and processing.

2.4 Analysis of thermal imaging data

Knowing that there are several artificial intelligence (AI)
methodologies and models [43–47] used in image classifica-
tion, the choice of the method depends on the specific
requirements of the task, such as the need for high
accuracy, computational efficiency, training dataset avail-
ability, etc. For this purpose, the IR images were inspected



Fig. 4. Samples obtained from each dataset of “InfraredSolarModules”.

Fig. 5. Proportions for each of the 12 classes.
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automatically for fault signatures with the aid of the
Convolutional Neural Network (CNN) model. In order to
train the CNN, a reference dataset was utilized: the
“InfraredSolarModules” dataset, publicly available under a
MIT license. This dataset comprises thermal images of PV
modules, capturing various anomalies. It was meticulously
collected, annotated, and structured by Millendorf et al.
[43]. The dataset encompasses 20,000 thermal images,
categorized into eleven distinct anomaly classes (10,000)
and one class with no anomaly (10,000 images). Figure 4
presents the twelve different classes.
In Figure 5, the proportions are depicted for each of the
eleven anomaly classes, as well as the class denoting the
absenceof anomalies. It illustrates that thedataset exhibitsan
imbalanced distribution, reflecting the real-world prevalence
of PV anomalies. Unbalanced datasets possess the potential
to exert a significant influenceonthe trainingprocess ofneural
networks, thereby influencing their ability to effectively
generalize theminority of samples. There are severalmethods
to address this issue; however, in our case, we employed the
“under-sampling” method, which means reducing the size of
the majority class by randomly removing samples.



Table 1. Dataset groups EG and TG.

Estimation group (85%) Testing group (15%) Total number of
images (100%)

Training set Validation set Testing set
14 750 2 250 3 000 20 000

Fig. 6. Evolution of the CNN model training and validation accuracy (a) and loss (b) for 40 epochs.
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Themethodology proposed in this work aims to address
two different scenarios, as suggested below.

2.4.1 First step: detection of fault in PV module

The initial step involved implementing a Convolutional
Neural Network (CNN) to analyze a set of IR images. The
objective is to determine whether a given solar panel
exhibits any defects or no anomalies. To carry out this
analysis, the dataset was divided into two main groups: an
Estimation Group (EG) comprising 85% of the images and
a Testing Group (TG) containing the remaining 15%
(Tab. 1). Both groups were selected randomly, ensuring a
consistent distribution of each class for training purposes.
Within the EG, a further division occurred, creating
distinct subsets for training and validation. The TG, on the
other hand, was utilized exclusively after the validation of
the training process. This segregation ensured that the
testing phase was only initiated once the network had been
adequately validated. Consequently, post training, the
ability of the network to generalize on unseen data was
evaluated. The primary objective was to determine
whether the CNN could effectively identify defects in
images sourced from other PV plants, establishing its
potential applicability beyond the initial training dataset.

In order to do this, a CNN using a Nadam optimizer, a
0.001 learning rate, 32 samples as batch size, and training
time given by 40 epochs were used as parameters for the
CNN model. The evolution of the accuracy of the proposed
model, considering both the training and validation
accuracy is shown in Figure 6a. As observed, the training
accuracy curve increases as the model learns from the data.
At the end of the training, the model presented a 94.64%
accuracy in the training set, 90.19% in the validation set,
and 89.73% in the previously unseen data during the
testing phase.

Figure 6b shows the evolution of the loss function of the
proposed model taking into account the training and
validation loss. The training loss curve represents the
prediction error on the training data, and a decrease in this
curve indicates that the model is learning from the training
data. Similarly, the validation loss curve displays the loss
on unseen data, resulting in a decrease indicating a good
performance on the data. It took about 34 epochs for the
validation loss to start stabilizing. Continuing to run
the network for additional epochs resulted in an increase in
the validation loss, indicating overfitting to the training set.

A predictive analytic technique called a confusion
matrix is used to describe how well a deep learning
classification model performs. The confusion matrix of the
trained model in the test set is illustrated in Figure 7. The
matrix reveals that the model achieved an accuracy of
90.39% in classifying instances without anomalies (no-
anomaly class) and achieved an 89.09% accuracy in
identifying solar modules with defects.

2.4.2 Second step: classification of anomalies in PV
modules using the “under-sampling” method

The second scenario implied the creation of a classifier for
eleven potential defects in PV modules through the under-
sampling of the “InfraredSolarModules” Dataset. In this



Fig. 7. The confusion matrix obtained during the first scenario.
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approach, all classes were downsized to match the size of
the smallest class, which is “Diode-Multi”. Accordingly,
175 images from each of the eleven classes were randomly
selected, resulting in a balanced dataset comprising 1,925
defective thermographic images. Due to the limited
amount of data available for each class, a ten-fold cross-
validation process was implemented. In this scenario, the
1,925 IR images were divided into 5 folds of 192 IR images
and 5 folds of 193 IR images. Each fold maintained a
proportional representation of all eleven different classes of
PV faults. This ten-fold approach aimed to ensure robust
evaluation and validation of the classifier performance
across the diverse set of defects in the PV modules. Table 2
presents the main results of training and testing for each of
the ten-fold training cases. At the end of the training, the
average testing accuracy was 87.6%, and the best case was
given by the 8th fold with a testing accuracy of 95.31%.

Figure 8 shows the confusion matrix of the trained
model for all the ten folds of the second scenario. Knowing
that the diagonal elements represent the correct predic-
tions, off-diagonal elements indicate the misclassifications.
The matrix is generally diagonally dominant, denoting
good performance, as the main diagonal has higher values
than the off-diagonal ones. As shown in the confusion
matrix, the model seems to performwell overall as the main
diagonal has elevated values, specifying that the model is
making correct predictions for most of the classes.

3 Results and discussion

3.1 Visual inspection

During the visual inspection, numerous defects were
discovered, including encapsulant discoloration, snail trails
and backsheet bubbling. A detailed description of the
visual inspection results is shown in Table 3. A summary of
the statistical analysis and evaluation of the degradation of
the PV system component is displayed in Figure 9.
Encapsulant discoloration was observed to be the most
common degradation mode in all PV modules. It was
followed by backsheet bubbling and snail trails, which
occurred in 45 over 48 modules (93.7%) and 2.1% of the
cases respectively.

3.2 Infrared imaging

The observed defects on visual inspection were thoroughly
analyzed through infrared thermography with the PV
installation in operation. Figure 10 shows the infrared
images of the front and rear sides of a module presenting
bubbles. By analyzing these IR images (Fig. 10a), the exact
location and the accurate size of the bubbles can be
discerned. They are discernible and indicated by a greenish
coloration. Based on the temperature gradient displayed in
the image, the areas affected by this degradation had a
lower apparent temperature than the rest of the backsheet,
of around 50 °C. On the front side, the infrared image
indicated the presence of hotspots at an apparent
temperature of 50.9 °C (Fig. 10b) on certain cells according
to the hot spot detection algorithm. These cells were
precisely located where the bubbles were situated.

Figure 11 shows the IR images of a module presenting
several snail trails. Multiple cells were found to exhibit
relatively high temperatures with differences of 5 to 6 °C.
Indeed, hot spots were expected to be associated with snail
trails since they are known to have a detrimental impact on
the performance of PV modules and may serve as an
indicator of moisture ingress, often attributed to mechani-
cal stress resulting from the loss of module hermeticity and
cell cracking.

One of the key findings from the IR imaging analysis
was that all solar cells located directly on top of the
junction boxes were approximately hotter than the other
cells with a temperature difference from 8 °C to 13 °C
(Fig. 12). On the rear side of the PV module, it could be
noticed that the temperature of the junction box was
extremely elevated as high as 63.7 °C. This indicated that
more cell thermal stress may have occurred at these
locations and as a result led to hot spots [48]. A higher
temperature was observed when the bypass diode inside the
junction box was activated.

The importance of employing infrared imaging techni-
ques in this context becomes evident as it demonstrated
that the detected hot spots may have had several
underlying causes that justified their presence. This
underscored the significance and relevance of utilizing
infrared imaging to further elucidate the observed
degradation modes during visual inspection. However, to
determine the underlying reasons that these hot spots were
indicated, we will delve deeper with I-V characterization,
UVFL and EL imaging, which will give us more insights
into the state and performance of the modules in question.

3.3 I-V characterization

Fromanelectricalperspective, I-Vcurveswerecollectedover
the 48 modules and translated to Standard Test Conditions
(STC) with the methodology explained earlier in
Section 2.3.4. All the characteristic points (Isc, Voc, Impp,



Table 2. 10-fold cross-validation performed on a dataset of 2,100 images to classify between 11 different defects.

k- fold Training loss Training accuracy Testing loss Testing accuracy

Fold 1 0.215 0.930 2.819 0.497
Fold 2 0.056 0.985 0.965 0.814
Fold 3 0.055 0.982 0.203 0.948
Fold 4 0.058 0.984 0.535 0.933
Fold 5 0.042 0.986 0.945 0.928
Fold 6 0.043 0.989 0.514 0.938
Fold 7 0.026 0.992 0.874 0.917
Fold 8 0.022 0.994 0.394 0.953
Fold 9 0.028 0.993 0.928 0.917
Fold 10 0.066 0.985 0.968 0.917

Fig. 8. The confusion matrix from the tenth fold of the second scenario.
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Vmpp, FF) were extracted from the I-V curves as shown in
Figure 13 and were compared to the initial STC manufac-
turer datasheet values. Isc corresponds to the short-circuit
current and Voc is the open-circuit voltage. The current and
voltage at the maximum power point (MPP) are denoted
Impp andVmpp. The Fill Factor (FF) corresponds to the ratio
of Impp and Vmpp product atMPP and the product of Isc and
Vmpp. Moreover, the resistance in series Rs and parallel Rsh
which are equal to the inverse of the slope at the open-circuit
and short-circuit points respectively are qualitatively
evaluated for some of the modules.

For almost all the tested modules, a decrease in all the
studied characteristics was observed compared to the
initial assumed datasheet STC values. The evolution of
each electrical characteristic is shown in Figure 14 and
Table 4.



Table 3. Results of the visual inspection.

PV module components Observation and remarks Images

Front side
Discoloration

EVA discoloration affects all the
PV modules, with varying degrees
of severity. It is uniformly
widespread over all the cells of
the panel. This alteration affects
the transmittance of light
reaching the solar cells, therefore
leading to a reduction in power
generation.

Snail trails Several snail trails are observed
on one PV panel. It appears as a
gray/black discoloration on the
silver paste of screen-printed
front metallization of solar cells.
Snail trails observed on this panel
vary in shape, color, and size. On
two cells of this module, the snail
trail is quite visible and thick,
and spread across these cells.

Rear side Bubbles 45 of the 48 PV panels exhibit
bubbles on the rear-side. Some
modules may contain multiple
bubbles arranged side by side,
each varying in size. These
bubbles create an air chamber in
which the gas temperature is
lower than that in the adjacent
cells. Bubbles have the potential
to rupture, thereby causing
damage to the rear sealing
surface, hence facilitating the
ingress of humidity. It represents
a recurring form of degradation
within this array, predominantly
manifesting in the modules after
years of operation.
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From Figure 14, it can be observed that the
characteristic points at the axis-intercepts with Isc and
Voc were moderately impacted with amedian decreasing by
not more than 2%. The decrease at the operating points
Impp andVmpp had awider distribution, but also exhibited a
higher degradation with medians over 2%. The Fill Factor
(FF) decreased within a range of 4.6% to 1.6% testifying for
degradation on the resistance in series and in parallel.
Overall, all the modules showed a decrease in STC power
after 12 years of operation with a median reaching 5.5%
corresponding to an average degradation rate of 0.46%/
year which was well in line with silicon technology rates
found in the literature [8,49].

Upon closer inspection, some I-V curves were found to
contain several degradation features. This is illustrated in
Figure 15, which shows a module exhibiting increased
slopes at the Voc intersection from all measured I-V curves.
The more pronounced slopes are a feature of the
degradation of the resistance in series Rs, which can
typically increase when the electrical circuit is deteriorated
caused by, for instance, a higher corrosion level due to aging
mechanisms. It must be noted that themeasured I-V curves
do not attain the Voc due to the STC translation which
shifts the curve to account for the temperature difference
between the measurement and the STC conditions.

Then, when zooming on the section between 5V and
25V in Figure 15, the slopes from modules 40 and 42 are
sensibly smooth and almost parallel to the STC curve, but
not for modules 4 and 13. For the latter two modules, a
cascade of steps decreasing the current at around 7.5 V–8V
intervals indicates some mismatches in the current genera-
tion between the three cell strings, which are separated with
bypass diodes in the module. This mismatch between the
three cell strings is more clearly identified in Figure 16 on
module 13 where each cell string has a distinctive maximum
current level.Thesemismatches are typicalwhen themodule



Fig. 11. Infrared images of snail trails on a PV module viewed on the edges (a) and on the center (b).

Fig. 10. Infrared images of bubbles on a PV module viewed on the backside (a) and on the front side (b).

Fig. 9. Frequency count and occurrence of observed degradation during visual inspection.
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Fig. 12. Infrared images of the junction box of a PV module on the backside (a) and on the front side (b).

Fig. 14. I-V characteristic degradation after 12 yr of operation on a population of 48 modules.

Fig. 13. Illustration of the characteristic I-V points with the Kyocera KD210GH-2PU module I-V curve at STC conditions.
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Table 4. I-V characteristic degradation statistics over the 48 studied modules.

STC reference Median over the module
population (#48)

Lower/upper bounds over the
module population (#48)

Isc [A] 8.58 8.43 (�1.7%) [8.3, 8.58]
(�3.3%, 0.0%)

Voc [V] 33.2 32.9 (�0.9%) [32.53, 33.36]
(�2.0%, 0.5%)

Impp [A] 7.9 7.71 (�2.4%) [7.54, 7.92]
(�4.6%, 0.3%)

Vmpp [V] 26.6 25.73 (�3.3%) [25.08, 26.34]
(�5.7%, �1.0%)

FF [%] 73.77 71.67 (�2.8%) [70.48, 72.62]
(�4.5%, �1.6%)

Pmpp [W] 210 198.39 (�5.5%) [195.17, 203.76]
(�7.1%, �3.0%)

Fig. 15. I-V curves of the PV modules 4, 13, 40, 42 with the initial STC curve (red).

Fig. 16. I-V curve of the PV module 13 with the initial STC curve (red).
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Fig. 17. UVFL image of a PV module.
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integrity is compromised due to cell-micro-cracks, delami-
nation, EVA deteriorations, etc., that are most often
correlated to hot spots, as observedwith the other inspection
methods.

After 12 years. it was shown that the STC power
degradation over all the 48 sampled modules had a
distribution ranging from 3% to 7.1% with a median of
5.5% corresponding to a yearly degradation rate of 0.46%/
yr. Even though the degradation remained moderate, this
analysis particularly sheds light on the presence of
degradations of resistances in series and microcracks,
which might have accentuated hot spot effects and led to
some accelerated aging of the PVmodules in the long term.

3.4 UV fluorescence (UVFL) imaging

In Figure 17, dark streaks are clearly visible in UVFL
images of PVmodules, located in the junction boxes. These
dark streaks may potentially be attributed to the
accumulation of contaminants such as dirt or dust in the
vicinity of the cells adjacent to the junction boxes.
Moreover, it was observed through infrared imaging that
the areas where the cells or junction boxes were situated
exhibited high temperatures in comparison to the remain-
ing cells of the module, occasionally manifesting as ’hot
spots’. Despite the absence of visible evidence during visual
inspections, it is evident that the utilization of UVFL
corroborates the outcomes obtained through the infrared
imaging technique.

Following the utilization of three distinct inspection
techniques, and being aware of the outcome of each
approach, the UV fluorescence method was ultimately
implemented as an evaluative tool for photovoltaic
modules. Commencing with the solar panels that under-
went visual examination, with a focus on the presence of
snail trails, the image in Figure 18 was obtained.

Snail trails are a phenomenon that is primarily seen in
c-Si PV modules after several months to a few years of
operation in the field, as shown in Figure 18. The UVFL
method, as depicted in Figure 19a, proves to be a more
effective means of detecting this phenomenon. Areas on the
surface of the PV panel affected by snail trails contain
substances or contaminants exhibiting distinct fluor-
escence properties compared to the surrounding regions.
This discrepancy results in the manifestation of dark
streaks or lines when observed under UV fluorescence.
Nevertheless, both visual inspection and Infrared imaging
techniques are also useful in identifying snail trails over an
extended post-installation period. It is important to
understand that snail trails have a negative effect on the
performance of the PV module and can be used as a sign of
moisture infiltration. This is frequently due to mechanical
stress brought on by the loss of module hermeticity and cell
breaking. This is discernible in UVFL imaging. Figure 19b
illustrates cracks in four different cells on the PV module.
These cracks can disrupt the electrical conductivity within
the affected cell regions, resulting in a decrease in short-
circuit current, an increase in series resistance, and
thereby, in a reduction in the output power of the PV
modules and, by extension, the entire PV array.

3.5 Electroluminescence imaging of field-installed PV
modules

El imaging technique enables a comprehensive understand-
ing of PV module degradation modes. Therefore, EL
analysis was conducted on field installed PV modules. To
achieve this, the panel containing the snail trails for visual
inspection was selected. A DC power supply was employed
to pass a current equal to the rated short-circuit current of
the module so as to achieve the forward biasing of the
module. EL images were captured with an exposure
duration of 10 seconds. Notably, since the modules within
the site are affixed to the support structure, EL images
obtained during the survey exhibit modules with a parallel
orientation mounted on the structure. As depicted in
Figure 20, the extent of cracks within the module becomes
readily discernible in these images.

Figures 21a and 21b show material flaws that resulted
from the production process, most notably finger inter-
ruptions. Unless they are caused by significant mechanical
strain at the solder joints, these specific abnormalities
normally do not shorten the operational lifespan of the
involved solar panel. EL images reveal the presence of
cracks in several modules. These cracks have been
categorized into three groups, based on the extent of
the affected area, as demonstrated in the EL image
captured at the short circuit current, as depicted in
Figure 22: (a) Mode A � hairline cracks, without any dark
area (b) Mode B � cracks associated with grey areas in the
cell (c) Mode C � cracks associated with dark areas in the
cell. Mode A cracks are typically regarded as harmless and
do not impact the power generation of the modules. On the
other hand, the dark regions associated with Mode B and
Mode C cracks can result in power loss. This is because dark
areas in electroluminescence images signify a disruption in
the electrical connection to the affected region, thereby
influencing the efficiency of the cell and the overall power
output of the photovoltaic panel.

Finally, it is evident that a correlation exists among
various inspection methods employed to ascertain the
deteriorations affecting a panel. For instance, on a single
panel, the presence of snail trails was observed. Sub-
sequently, when employing infrared imaging, it was



Fig. 19. UVFL image of a PV module: (a) affected by snail trails and (b) affected by microcracks.

Fig. 18. UVFL image of a PV module affected by snail trails.

Fig. 20. EL images for 54 cells of a polycrystalline module.

D.H. Daher et al.: EPJ Photovoltaics 15, 25 (2024) 15
discerned that these snail trails manifested as hot spots.
The presence of the latter can be attributed to multiple
potential causes. Ultimately, electroluminescence allowed
us to pinpoint the exact cause of these snail trails, which is
a broken cell that can potentially impact the overall
output power of the PV panel. EL imaging technique can
provide a deeper understanding of the situation and
precisely identify the source of the problem. Comparing
the three imaging techniques, it is possible to identify a
connection among visual defects, hot areas, and electri-
cally isolated regions. In summary, it is deducible that this
embodies a progression of occurrences aimed at system-
atically identifying the type of degradation, drawing upon
a variety of inspection methods to guarantee precision.
Furthermore, in the following section, CNN techniques
will be applied to automatically detect and classify the
observed failures in the IR images from the array under
inspection.



Fig. 21. Defects on solar cells.

Fig. 22. Different types of cracks as visible in EL images.

Fig. 23. Predicted classes by the CNN model.
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3.6 Convolutional neural network (CNN)

This section investigates the PV anomaly detection and
classification via Convolutional Neural Network (CNN).

After training the model on the “InfraredSolarMod-
ules” dataset, IR images from our photovoltaic field were
introduced into the model. These images were initially
resized to match the sample size, and subsequently, the
model permitted to classify them based on their respective
defects. The ensuing responses are shown in Figure 23.

Firstly, it should be noted that the images of defects
proposed to the CNN were already manually catalogued.
Next, it was observed that the CNN model had correctly
predicted the majority of images, which aligns with what
had been deduced from the results of the confusion matrix.
However, there are two instances of inaccuracies in the
predictions made by the CNN model, specifically, for the
images labeled FLIR0045 and FLIR0047, the predicted
classification should correspond to the “Hot-Spot-Multi”
category.

In summary, it can be concluded that the CNN model
performs well. Therefore, it would be interesting to use this
model for predicting future infrared images taken from the
photovoltaic field instead of classifying them manually one
by one. This would represent a time-saving benefit.
4 Conclusion

Failure mode detection and diagnosis were undertaken for
a sample of 48 multicrystalline-silicon PV modules after
12 years of operation in a ground-mounted solar array in
Djibouti. A test protocol was introduced for this assess-
ment, comprising a combination of imaging techniques
(visual inspection, infrared thermography, ultraviolet
fluorescence and electroluminescence) plus electrical
characterization. A convolutional neural network (CNN)
model was used for the identification of features in the PV
module images. Based on the study, the following
conclusions have been drawn:

–
 Visual inspection revealed significant encapsulant dis-
coloration as the most common degradation feature
across the sample of PV modules, followed by backsheet
bubbling and the presence of snail trails on 45 and 1 out of
48 modules, respectively.
–
 Infrared imaging was proven essential to associate the
presence of hot spots with visible snail trail features, and
overall to reveal sites of significant thermal stress, a
process that was shown to be effectively automated
thanks to a trained CNN model.
–
 The average decrease percentage of the 48 PV modules
are 1.7%, 0.9%, 2.4%, 3.3%, 2.8% and 5.5% for Isc, Voc,
Impp, Vmpp, FF and Pmpp respectively.
–
 The combination of UV fluorescence and infrared imaging
techniques has provided valuable insights into the
condition of photovoltaic modules, particularly in detect-
ing failures such as hot spots, snail trails and cell cracks.
The presence of dark surrounding PV cells near junction
boxes, as revealed by UV fluorescence, may indicate the
accumulation of contaminants like dirt and dust.
–
 The use of EL imaging has proven to be a valuable tool for
the detection of specific defects, such as broken cells,
which can significantly affect the output power of the PV
panel.

On the whole, this comprehensive approach under-
scores the importance of utilizing a variety of inspection
methods to accurately diagnose and resolve failures in
order to optimize the performance and longevity of the
photovoltaic modules.
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