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Abstract
Modelling population connectivity is central to biodiversity conservation and often 
relies on resistance surfaces reflecting multi-generational gene flow. ResistanceGA 
(RGA) is a common optimization framework for parameterizing these surfaces by 
maximizing the fit between genetic distances and cost distances using maximum like-
lihood population effect models. As the reliability of this framework has rarely been 
studied, we investigated the conditions maximizing its accuracy for both prediction 
and interpretation of landscape features' permeability. We ran demo-genetic simula-
tions in contrasted landscapes for species with distinct dispersal capacities and spe-
cialization levels, using corresponding reference cost scenarios. We then optimized 
resistance surfaces from the simulated genetic distances using RGA. First, we evalu-
ated whether RGA identified the drivers of the genetic patterns, that is, distinguished 
Isolation-by-Resistance (IBR) patterns from either Isolation-by-Distance or patterns 
unrelated to ecological distances. We then assessed RGA predictive performance 
using a cross-validation method, and its ability to recover the reference cost sce-
narios shaping genetic structure in simulations. IBR patterns were well detected and 
genetic distances were predicted with great accuracy. This performance depended 
on the strength of the genetic structuring, sampling design and landscape structure. 
Matching the scale of the genetic pattern by focusing on population pairs connected 
through gene flow and limiting overfitting through cross-validation further enhanced 
inference reliability. Yet, the optimized cost values often departed from the reference 
values, making their interpretation and extrapolation potentially dubious. While dem-
onstrating the value of RGA for predictive modelling, we call for caution and provide 
additional guidance for its optimal use.
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1  |  INTRODUC TION

Dispersal is defined as the movement of an individual from its  
native population to another location for breeding. This key ecolog-
ical process directly affects evolutionary dynamics by moderating 
gene flow. The resulting movement of individuals and genes shapes 
species and genetic diversities and influences biotic interactions 
(Frankham,  2015; Richardson et  al.,  2016; Schlägel et  al.,  2020; 
Spielman et  al.,  2004). Considering dispersal is therefore criti-
cal in a context of human-driven habitat fragmentation and spe-
cies range shifts (Crispo et al., 2006; Crooks et al., 2017; Manel & 
Holderegger,  2013). Accordingly, spatial models of connectivity 
(Table 1) have been crucial for identifying population connectivity 
drivers and for implementing sound conservation policies (Correa 
Ayram et al., 2016; Newmark et al., 2023; Rudnick et al., 2012).

Connectivity models often represent the landscape as a resis-
tance surface (Table 1) embedding the dispersal propensity, phys-
iological cost and mortality risk incurred by individuals across 
heterogeneous environments (Diniz et al., 2020; Zeller et al., 2012). 
As such, resistance surfaces commonly consist of a map of discrete 
landscape features, each associated with a corresponding resistance 

value (Table 1) (Spear et al., 2010, 2015). Connectivity models then 
translate these resistance assumptions and our understanding of 
dispersal into connectivity estimates for detecting landscape bar-
riers, mapping corridors or computing connectivity metrics (Dutta 
et al., 2022; Foltête et al., 2014). The latter approach involves the 
calculation of cost distances, that is, the sum of resistance values 
along the least-cost path between two populations (Table 1). Hence, 
assigning a resistance value to each landscape feature is a critical 
modelling decision, with far-reaching consequences for the reliabil-
ity of connectivity analyses.

Although many connectivity studies rely upon expert opinion to 
assign resistance values (Spear et al., 2010), several methods have been 
developed to infer them from empirical data such as genetic or animal 
movement data (Dutta et al., 2022; Peterman et al., 2019; Peterman 
& Pope,  2021; Vanhove & Launey,  2023; Zeller et  al.,  2012). In this 
context, the ResistanceGA (RGA) framework has received a great 
deal of interest (Peterman, 2018). This resistance surface optimization 
method is based on genetic data and assumes that genetic distances 
reflect gene flow, and consequently landscape functional connectivity 
(Zeller et al., 2017). Increasingly used since its release in 2018 (114 pub-
lications using it to this date, see S1.1: Data S1) (Antunes et al., 2023; 

TA B L E  1 Definitions of terms used in this paper.

Term Definition

Resistance value Numerical value associated with a landscape feature representing the movement propensity, physiological cost, and 
mortality risk incurred by individuals dispersing across this feature

Cost scenario A list of mapped landscape features in conjunction with their respective resistance values

Resistance surface Landscape map that makes spatially explicit a cost scenario, i.e., a resistance assumption about animal dispersal movements 
across heterogeneous environments

Cost-distance The sum of cost values along the least-cost path between two populations, calculated on a resistance surface

Functional 
connectivity

Inversely related to landscape matrix resistance, the functional connectivity of a habitat patch could be seen as the amount 
of reachable habitat from that patch. From an individual's perspective, this is the resistance of the surrounding landscape 
matrix

Pruning In graph theory, the selection of a limited number of connections among graph nodes. In contrast to a pruned graph, a 
complete graph has all its nodes connected to each other

Effective-
dispersal-scale

At this spatial scale, the links between habitat patches are only modelled if migrants have actually moved along them. 
Therefore, the effective dispersal scale dataset included population pairs that were expected to exchange migrants

Sampling-scale Spatial scale that corresponds to the scale of the sampling design. At this scale, all the links between habitat patches are 
modelled, leading to a complete landscape graph

Predictive 
modelling

A model that attempts to predict an unobserved pattern or process by analysing data from an observed pattern. As 
opposed to the explanatory model, which consists of identifying the variables that explain part of the variance of an 
observed process, to improve our understanding of that process

Predictive 
performance

Ability of a model to predict data not considered for its calibration (e.g., out-of-bag or validation data), as evaluated using a 
K-fold cross-validation or a leave-one-out cross-validation method and quantified by an indicator such as a validation R2

Transferability The relevance of resistance values inferred by the ResistanceGA workflow on a given landscape and for a given set 
of populations to characterize movement resistance among new populations, in the same (interpolation) or in another 
(extrapolation) landscape

Interpolation Use of resistance values inferred by ResistanceGA from a set of populations in a given landscape to predict genetic 
distances among a new set of populations in the same landscape

Extrapolation Use of resistance values inferred by ResistanceGA in a given landscape to predict genetic distances among populations in 
another landscape

Training and test 
datasets

Terms used in cross-validation methods to designate the part of the dataset used to parameterize the model (training, in-
bag or calibration data set) and the part used to evaluate the predictive quality of this parameterized model (test, validation 
or out-of-bag data set)
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Atzeni et al., 2023; McCluskey et al., 2022; Zeller et al., 2023), it infers 
dispersal costs by maximizing the statistical fit between genetic and 
cost distances. Although not without computational constraints, its 
power stems from the use of a genetic optimization algorithm, which 
efficiently explores the whole cost parameter space.

Yet, the validity of the inferences made with this flexible optimiza-
tion tool remains understudied (but see Beninde et al., 2023; Peterman 
et al., 2019; Winiarski et al., 2020). For instance, the encouraging re-
sults of Peterman et al.  (2019) and Winiarski et al.  (2020), based on 
the correlations between true and RGA optimized resistance surfaces, 
called for studies relying on direct simulations of genetic processes. 
Later, the study of Beninde et al. (2023) explored a broad range of ge-
netic distance metrics and resistance scenarios and showed that RGA 
better recovered the true resistance surface when few landscape fea-
tures restricted gene flow. However, these works have not explicitly 
examined the influence of the ecological profile and degree of habitat 
specialization of the species under study. For instance, we can rea-
sonably assume that the interaction between dispersal capacity and 
the level of habitat specialization determines the spatial scale at which 
populations are linked by dispersal events and, hence, our ability to 
infer dispersal drivers based on genetic data. Although this has not 
yet been done in the context of resistance optimization, accounting 
for this spatial scale by removing from the analyses pairwise genetic 
distances mainly driven by stochastic genetic drift could improve the 
reliability of inferences (Savary et al., 2021a).

More generally, Beninde et al.  (2023), Winiarski et al.  (2020) and 
Peterman et al. (2019) called for a more critical look on the resistance 
surfaces optimized with RGA from empirical data. Of particular concern 
is the overfitting effect inherent to the optimization process, which 
may impede the accurate assessment of the relative resistance values 
of each landscape feature. On the one hand, unsupervised data-driven 
approaches are prone to overfitting when several parameter sets can 
result in the same pattern (Paris et al., 2004). Nonetheless, very few 
studies have tackled this issue (Palm et al., 2023; Pless et al., 2021) by 
testing whether bootstrapping or cross-validation could limit overfit-
ting. On the other hand, if the data-driven nature of the stochastic op-
timization algorithm (Scrucca, 2013) does not necessarily make it ideal 
for understanding the processes at play, this makes it perfectly suited 
to predictive modelling (Table 1), learning from observed patterns to 
predict unobserved patterns or processes (Shmueli, 2010). This would 
answer the call for landscape genetics research to contribute to the 
prediction of genetic responses to landscape changes (Balkenhol 
et al., 2009; Storfer et al., 2007; Van Strien et al., 2014).

To provide evidence-based guidelines regarding the use and misuse 
of optimization frameworks in landscape genetics, we evaluated the 
performance of RGA across a wide range of realistic landscape struc-
tures, ecological profiles, sampling designs and spatial scales. For that 
purpose, we simulated gene flow using categorical resistance surfaces 
reflecting the level of habitat specialization and dispersal capacities of 
distinct virtual species. We then optimized cost distances among pop-
ulations from these surfaces based on the simulated genetic distances 
using the RGA algorithm. Using graph-based methods, we performed 
these optimizations at both the spatial scale of the whole sampling 

area and at the scale of gene flow effect on genetic differentiation 
(Balkenhol et al., 2020; Savary et al., 2021a; Van Strien, 2017).

Our simulation framework aimed first at assessing whether the 
optimization approach correctly detects that ecological distances 
drive genetic differentiation. Second, we assessed the ability of the 
optimized cost distances to predict genetic differentiation using a 
cross-validation method to prevent overfitting (Daniel et al., 2023). 
Finally, we measured the congruence between the optimized costs 
and the true cost values shaping the simulated genetic patterns.

2  |  MATERIAL S AND METHODS

2.1  |  Overall approach

To evaluate the RGA optimization framework, we performed demo-
genetic simulations in real landscapes for virtual species varying in 
their dispersal capacities (Figure 1). We then used RGA and assessed 
its ability to recover the ‘true’ drivers of genetic differentiation (land-
scape resistance and corresponding resistance values) and predict 
the resulting pairwise genetic differentiation.

2.2  |  Real landscape sampling

We selected 30 real landscapes (40 × 40 km, 100 m cell resolution) 
in metropolitan France, maximizing variations in the amount and 
spatial configuration of the four land cover types considered (for-
est, grassland, agricultural and urban areas). We used the 2018 Theia 
OSO landcover map (Inglada et al., 2018). See S1.2: Data S1 for more 
details about landscape sampling.

2.3  |  True resistance surfaces parameterization and 
cost-distances calculation

We designed two cost scenarios (Table  1) characterizing the re-
sistance of each land cover type to dispersal, scaling the contrast 
in resistance values with a negative exponential function, follow-
ing Keeley et  al.  (2016) (See S1.3: Data S1 for details). The result-
ing cost scenarios represented two contrasted ecological profiles: 
(i) a forest-specialist species experiencing high resistance across 
all land cover types but forest: {Costforest = 1; Costgrassland = 700; 
Costagricultural = 900; Costurban = 1000}; (ii) a generalist species with a 
smoother range of resistance values: {Costforest = 1; Costgrassland = 50; 
Costagricultural = 200; Costurban = 1000}. These true cost scenarios 
served as a proxy for species specialization levels.

In each of the 30 landscapes, we located 80 virtual populations 
by randomly sampling 80 forest pixels more than 500 m apart, at 
least 2 km from the edge of the raster, in forest patches of more than 
25 ha. Then, we computed the least-cost paths and corresponding 
cost distances among populations on each true resistance surface, 
using the graph4lg package (Savary et al., 2021b).
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LANDSCAPE SAMPLING

x 30 Landscapes

POPULATION SAMPLING

40 Populations x 10 Resampling

RESISTANCE SURFACE OPTIMIZATION 

Optimized cost scenario

Optimized genetic pattern
IBR / IBD / Null

Optimized CDs

ResistanceGA

x 2 True cost scenarios

TrueCDs

RESISTANCE SURFACE PARAMETERIZATION

Simulated genotypes

x 7 Dispersal 
capacites

DEMO GENETICS SIMULATIONS
GENE POOL SAMPLING

SIMULATING GENE FLOW

GENETIC RESPONSE

True genetic pattern
IBD / IBR / Null

Pairwise FST

POPULATION DISTRIBUTION

80 Populations

CONTROLING FOR SPATIAL SCALE 

FST

Complete subset

FST

Pruned subset

x2 Spatial scale considerations

Sampling-scale Effective-dispersal-scale

(a)

(b)

Consistent with the True cost scenario ? 

Able to predict genetic distances ? 

Consistent with the True genetic pattern ? 

EXAMINATION OF OPTIMIZATION RESULTS(d) (c)

30 runs

60 runs

420 runs

4,200 runs

8,400 runs

x 5

42,000 runs
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2.4  |  Demo-genetics simulations and gene pool 
sampling

We used the PopGenReport package (Adamack & Gruber, 2014) to 
simulate gene flow and resulting individual genotypes. Dispersal 
cost was conditioned by the two ‘true’ cost scenarios. To test for the 
effect of dispersal capacities, we considered seven different maxi-
mum dispersal distances. Local population sizes remained constantly 
equal to 25 individuals throughout simulations. Further details about 
simulation parameters are given in S1.4: Data S1. We ran a total of 
420 simulations (30 landscapes × 2 levels of specialization × 7 disper-
sal capacities) over 200 generations each to obtain a steady pattern 
of genetic differentiation. Using individual genotypes, we estimated 
pairwise genetic distances among populations with pairwise FST 
(Weir & Cockerham, 1984).

To test for the effect of sampling design on RGA performance, 
we randomly sampled 40 of the 80 populations in each landscape 
(10 sampling iterations) and extracted the corresponding FST ma-
trices between the sampled populations. Every combination of a 
landscape, a specialization level, a dispersal capacity level and a 
sampling design (4200 combinations) will be referred to as a ‘run’ 
hereafter.

2.5  |  Spatial scale of landscape influence on 
genetic structure

We tested whether matching the spatial scale at which disper-
sal influences genetic differentiation with that of the population 
pairs considered in the analyses would improve inferences (Savary 
et al., 2021a; Van Strien, 2017). We considered two types of pair-
wise matrices when modelling genetic distances, differing in the 
spatial scale of the connections considered. The ‘sampling-scale’ 
dataset included all population pairs (Table 1). In these matrices, 
some pairwise genetic distances may mostly reflect genetic drift 
rather than dispersal, especially for short-distance dispersers. 
Thus, for the ‘effective-dispersal-scale’ dataset (Table  1), we ex-
cluded from each pairwise matrix (run in our analysis) pairwise ge-
netic distances mostly driven by drift effects. To prune (Table 1) 
these matrices and conserve population pairs whose differentia-
tion reflects dispersal influence, we relied on a graph-theoretical 
method. Based on the conditional independence principle, this 
method is supposed to identify links between populations directly 
exchanging migrants (Dyer & Nason, 2004; see S1.5: Data S1 for 
more details).

2.6  |  RGA workflow and new implementations

The RGA algorithm optimizes resistance surfaces from genetic dis-
tances using a genetic algorithm, which efficiently explores the pa-
rameter space until maximizing the statistical fit between pairwise 
cost distances and genetic distances. Each of the 60 resistance 
surfaces (30 landscapes × 2 levels of specialization) was optimized 
based on 140 FST matrices (7 dispersal capacities × 10 samplings × 2 
spatial scales; Figure 1). Each optimization was replicated five times 
to assess the stability of the algorithm inferences (42,000 runs in 
total).

The optimization seeks to maximize an objective criterion mea-
suring the fit of maximum likelihood population effect (MLPE) mod-
els. These models of pairwise genetic distances as a function of 
pairwise cost distances account for the non-independence inherent 
to pairwise data (see S1.6: Data S1 for more details on RGA work-
flow). To prevent model optimization from overfitting the data, we 
implemented a new objective criterion within the RGA workflow. 
We adapted the Leave One Out Cross-Validation (LOOCV) method 
to the pairwise context and computed a validation R2 to quantify the 
prediction error. When fitting the models, we iteratively removed 
one of the 40 populations, and used the calibrated model to pre-
dict the genetic distances involving this population. The mean of 
the predicted ‘out-of-sample’ genetic distances was compared with  
the observed genetic distances to assess predictive accuracy,  
following Daniel et  al.  (2023). To implement this approach, we 
adapted the RGA algorithm (code available online: https://​gitlab.​
com/​psava​ry3/​rga).

2.7  |  Reliability of cost inferences from RGA 
optimization

To assess the reliability of the cost inferences made with RGA, we 
carried out a multi-criteria analysis, described by Figure 2 and the 
following sections.

2.7.1  |  RGA optimization sensitivity and specificity 
to simulated genetic patterns

First, we checked whether the RGA optimization identified the cor-
rect drivers of genetic differentiation, that is, ecological distances 
in our simulations (leading to an ‘Isolation-by-Resistance’ pattern). 
For that purpose, we compared the AIC values deriving from the 

F I G U R E  1 Overall methodology for assessing the ability of optimized cost distances to reliably reflect landscape effects on genetic 
structure. (a) Workflow for simulating gene flow among virtual populations on real landscapes, depending on two scenarios of movement 
costs and seven dispersal capacities. (b) Preparation of genetic inputs for the optimization process by sampling 10 times 40 populations 
and evaluating their related pairwise genetic distance. Two genetic distance datasets were considered depending on spatial scale. (c) 
Optimization of cost distances according to these genetic inputs using the RGA workflow. (d) Evaluation of RGA inferences according to 
the sensitivity of the algorithm to genetic pattern, the predictive power of optimized cost distances and the ability to recover the true cost 
scenario. CDs, cost distances; IBD, Isolation-by-Distance; IBR, Isolation-by-Resistance; Null, no spatial structure.
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MLPE models explaining genetic distances with either true or opti-
mized cost distances (‘Cost distances model’), Euclidean distances 
(‘Euclidean model’) or a constant (‘Null model’). We distinguished 
three possible outcomes indicating which pattern is detected:

	(i)	 Isolation-by-Resistance (IBR) when:
AICEuclidean model − AICCost distances model > 2

	(ii)	 Isolation-by-Distance (IBD) when:
AICEuclidean model − AICCost distances model < 2 and AICnull model − ​
AICEuclidean model > 2

	(iii)	Null pattern when:
AICCost distances model − AICnull model > −2 and AICEuclidean model − ​
AICnull model > −2

Consequently, we classified the optimization runs into four 
categories: true positives (TP: IBR detected from both true and 

optimized cost distances), true negatives (TN: IBR never detected), 
false positives (FP: IBR detected from optimized but not from true 
cost distances) and false negatives (FN: IBR detected from true but 
not from optimized cost distances; see S10.a: Data S1). We then 
computed the sensitivity (TP/(TP + FN)) and the specificity (TN/
(TN + FP)) indices for each spatial scale. These indices allowed us 
to assess whether the type of pairwise connections considered 
(sampling vs. effective-dispersal subset) significantly affected 
inferences (see S10.b: Data S1). Then, we modelled the sensitiv-
ity or specificity indices as a function of habitat specialization (2 
levels), dispersal capacities and landscape structure (9 FRAGSTAT 
metrics). We used the glmmTMB package (Brooks et al., 2017) to 
fit generalized linear mixed models with beta distribution (beta 
GLMM). The focal landscape was set as a random effect (30 
levels, intercept-only) to control for the non-independence of 
the data. We checked for variable collinearity and performed a 

F I G U R E  2 Diagram summarizing the successive stages of data filtering throughout the analyses. The filtration rules are shown in the red 
boxes. The arrows indicate the successive filtration rules.

C

: Successive filtration step

As
se

ss
m

en
t o

f R
GA

 
pr

ed
ict

iv
e 

pe
rfo

rm
an

ce
s

Only the true positive runs

+ 

+ Only the specialist species and the
optimal dispersal capacities

and landscape configuration

Effect of spatial scale Fig. 3

Only the sampling-scale

Effect of dispersal capacity, habitat specialization 
–

–

Fig. 4, Tab. 1

Transferability of cost inferences – Fig 5, 6

Co
ng

ru
en

ce
 o

f t
he

 o
pt

im
ize

d 
an

d 
th

e 
tr

ue
 co

st
 sc

en
ar

io
 Only the true positive runs

+ Only the sampling-scale

Fig.7, 8

Se
ns

iti
vi

ty
 a

nd
 sp

ec
ifi

cit
y 

to
sim

ul
at

ed
 ge

ne
tic

 p
at

te
rn

s

•

•

•

•

•

30 landscapes 

2 specialization profiles

7 dispersal capacities 

10 population samples 

2 spatial scales 

i.

ii. iii.

 17550998, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/1755-0998.14024 by C

ochrane France, W
iley O

nline L
ibrary on [18/10/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



    |  7 of 17DANIEL et al.

stepwise model selection based on AIC criteria, using the R pack-
age Buildmer (Voeten, 2020).

In the following analyses, we only focused on the true-
positive runs (Figure  2), and, hereafter, all the beta GLMMs 
were run using the same mixed-effect model specification and 
selection.

2.7.2  |  Assessment of RGA predictive performance

Effect of spatial scale on predictive performance
First, we tested the effect of restricting pairwise connections to 
the effective-dispersal-scale on the predictive performance of op-
timized cost distances. For each run, for comparative purposes, we 
computed the validation R2 measuring predictive accuracy by con-
sidering only the population pairs shared by both the sampling and 
the effective-dispersal-scale datasets. We then ran beta GLMM ex-
plaining validation R2 by a binary categorical variable distinguishing 
sampling (complete) and effective-dispersal (pruned) datasets.

Effect of dispersal capacity, habitat specialization and landscape 
configuration on predictive performance
Second, we compared the predictive accuracy (validation R2) of 
optimized cost distances across dispersal capacities, specialization 
levels and landscape structure variations, using a beta GLMM. The 
effective-dispersal-scale dataset included runs with varying num-
bers of populations. Therefore, for the sake of reliable compari-
son, we only considered for this analysis and the following the True 
Positives runs for the sampling-scale dataset, as they shared the 
same number of population pairs (Figure 2).

Transferability of cost inferences
For assessing predictive power, we focused on specialist species and 
considered only the dispersal distance that maximized the fit between 
genetic and cost distances (Figure 2). This reduced the number of pa-
rameters to consider and reflected the conditions optimizing RGA 
performance. To assess the transferability of cost inferences, we op-
timized a cost scenario on a landscape and we evaluated its predictive 
power for genetic distances between the 40 remaining out-of-sample 
populations, assessing its interpolation ability. To assess the extrapo-
lation ability of the optimized scenario, we assessed the predictions of 
genetic differentiation based on cost-distances computed under this 
scenario for 40 out-of-sample populations from another randomly 
selected landscape. We then fitted beta GLMM explaining valida-
tion R2 with a binary variable representing whether the costs were 
inferred in the same landscape (interpolation) or in a different one 
(extrapolation).

Finally, we compared the predictions based on optimized 
cost distances to those based on true cost distances. For each 
landscape, we fitted a beta GLMM explaining the validation R2 
with a categorical variable distinguishing the true and optimized 
scenarios.

2.7.3  |  Congruence between optimized and true 
cost scenarios

We tested whether the optimized cost values corresponded with 
the true ones, and whether they correctly identified landscape 
barriers and permeable landscape features. We considered both 
the true specialist and generalist cost scenarios as references for 
comparison (cf. section II.). Additionally, to assess the sensitivity 
of the algorithm to variations in land cover resistance rankings, we 
considered two other scenarios ranking the urban, agricultural and 
grassland resistances in reverse order compared to the specialist 
scenario: (1) {Costforest = 1; Costgrassland = 900; Costagricultural = 700; 
Costurban = 1000}; (2) {Costforest = 1; Costgrassland = 1000; 
Costagricultural = 900; Costurban = 700}.

We then assessed the proportion of 1200 optimization runs 
(30 landscapes × 10 samplings × 4 scenarios) assigning each land 
cover to each resistance rank, for simulations performed with the 
dispersal capacities maximizing the fit between genetic and cost 
distances, using sampling-scale datasets. Considering the true sce-
narios, we would ideally expect 100% of the runs assigning rank 
1, 2, 3 and 4 to forest, grassland, agricultural and urban areas, 
respectively.

We also quantified the similarity between the true and opti-
mized scenarios by calculating the Spearman correlations of land 
cover ranks between these two scenarios (see S1.12: Data S1 for the 
correspondence table between recovery index and land cover rank-
ing). We assessed the contrast between the maximum and minimum 
costs for each optimized scenario as cost.ratio = log10

(

opt.costmax

opt.costmin

)

 
and compared it to that of the true scenarios (log10

(

1000

1

)

 = 3) by the 
difference 3 − cost.ratio. The closer this difference to zero, the bet-
ter the recovery of the true contrast. The correlations of land cover 
rankings and the contrast difference were referred to as recovery 
indices.

We ran beta GLMM and Linear Mixed Models (LMM) to test for 
the influence of specialisation level, dispersal capacities and land-
scape structure (9 FRAGSTAT metrics) on these recovery indices. 
When modelling the contrast, we used the lmer and MuMin R pack-
ages for the LMM and model selection, respectively (Bartoń, 2013). 
Finally, we tested whether the recovery indices affected the predic-
tive quality (validation R2) of the optimized cost scenario, running a 
beta GLMM.

3  |  RESULTS

3.1  |  Landscape sampling and demo-genetic 
simulations

124 out of the 1000 sampled landscapes met land cover propor-
tion criteria, and we sampled 30 of them along the two first PCA 
axes (accounting for 61% of the variance, see S1.7: Data S1 for more 
information).

 17550998, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/1755-0998.14024 by C

ochrane France, W
iley O

nline L
ibrary on [18/10/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



8 of 17  |     DANIEL et al.

After 200 generations of simulation, the detected genetic pat-
terns depended on the interaction between species dispersal ca-
pacities, their specialization profile and the spatial scale of the 
analysis (S1.8: Data  S1). For the generalist species, the detected 
genetic structure was similar when analysing data at the sampling- 
and effective-dispersal-scales. For a dispersal capacity of 1000 cost 
units (cu), we mostly detected an IBR pattern (sampling-scale: 83%, 
effective-dispersal-scale: 77%). Beyond this dispersal distance, a 
null pattern was detected for 82% of the simulations. For the spe-
cialist species and the sampling-scale dataset, 47% of the simula-
tions resulted in a pattern of IBD at a small dispersal capacity (1000 
cu). Simulations mainly resulted in an IBR pattern up to an optimal 
scale of 20,000 cu before gradually shifting towards a null pattern 
beyond that scale (S1.8: Data S1). In certain regions of the parameter 
space (specialist species with low dispersal capacities in particular), 
a bimodal distribution of FST values resulted in the identification of 
spurious IBD patterns (see S1.9: Data  S1 for more details). These 
spurious patterns explained by a predominant effect of genetic drift 
on genetic differentiation at the sampling-spatial scale tended to be 
replaced by a null pattern in the effective-dispersal-scale dataset 
(only 7% of IBD patterns at 1000 cu; S1.8.C: Data S1).

3.2  |  Optimization sensitivity and specificity to 
simulated genetic patterns

The sensitivity (i.e., TP/(TP + FN)) of RGA to the simulated ge-
netic pattern (IBR, IBD, or null pattern) was 92% for the effective-
dispersal-scale dataset and 90% for the sampling-scale dataset 
(S1.10.a: Data S1). A chi-squared test (see S1.10.b: Data S1) showed 
that the lower sensitivity value of the sampling-scale dataset comes 
from a slightly higher number of false negatives when using the 
sampling-scale dataset and indicates that pruning the distance ma-
trices improved the identification of the main driver of genetic pat-
terns (X2 = 5.3, df = 1, p = .02).

The specificity indices (i.e., TN/(TN + FP)) were 88% and 92% 
at the effective-dispersal-  and sampling-scales, respectively (see 
S1.10.a: Data S1). The better performance of the sampling scale data-
set stems from a higher number of false positives at the effective-
dispersal-scale (X2 = 16.11, df = 1, p = 5.1e−5 S1.10.b: Data  S1). We 
did not detect any significant effect of landscape, specialization 
level and dispersal capacity on the sensitivity and specificity. Next, 
we only report the results obtained with the true-positive runs (see 
Figure 2.ii.).

3.3  |  Assessment of RGA predictive performances

3.3.1  |  Effect of spatial scale on predictive 
performance

In the effective-dispersal-scale dataset, 49% of runs associated with 
a generalist scenario and a dispersal capacity of 1000 cu showed 

drift-driven genetic differentiation and had therefore undergone a 
pruning stage. Those with a specialist scenario were pruned in de-
creasing proportion with increasing dispersal distances (e.g., 85% of 
the links pruned at 1000 cu, 65% at 5000 cu, 50% at 10,000 cu and 
28% at 15,000 cu).

The accuracy of FST predictions was significantly better when 
the model was calibrated with the effective-dispersal-scale 
dataset rather than with the sampling-scale dataset (estimate 
for sampling-scale ± SE = −1.5 ± 0.1, p-value <2e−16, see S1.11: 
Data S1). However, for comparative purposes, we focused on the 
runs optimized with the sampling-scale dataset in subsequent 
analyses (Figure 2.ii.).

3.3.2  |  Effect of dispersal capacity, habitat 
specialization and landscape configuration on 
predictive performance

The predictive performance of the IBR models (assessed by the 
validation R2) depended on dispersal capacities, as evidenced by a 
quadratic effect of dispersal distances in cost units, and was affected 
by their interaction with specialization levels (Table 2). Genetic dif-
ferentiation was slightly better predicted for specialist species than 
for generalist species, with optimum median values of validation R2 
reaching 0.48 at 15,000 and 20,000 cu for the specialist species, 
and 0.38 at 1000 cu for the generalist species (Table 2, Figure 3a,b). 
For both species, forest aggregation improved the predictive perfor-
mance (estimate = 4.7, p = 1.4e−4), whereas grassland aggregation de-
creased the predictive performance (estimate = −2.8, p = .01; Table 2).

Overall, the strength of the IBR pattern, assessed by AIC dif-
ferences between Euclidean distance and cost distance models, 
reached an optimum at 20,000 cu for the specialist species and at 
1000 cu for the generalist species (Figure 3c,d). This AIC difference 

TA B L E  2 Results of statistical models explaining the predictive 
performance of optimized IBR models from the sampling-scale 
dataset (assessed using the validation R2 index as the response 
variable) as a function of the level of specialization, the dispersal 
capacity and two landscape structure metrics.

Response variable: Validation R2

Random effect: 1 | landscape

Fixed effect Estimate (SE)

Generalist scenario −0.94 (0.09) ***

Dispersal capacity 6.4 (1.4) ***

Dispersal capacity2 −8.4 (1.0) ***

Forest aggregation 4.7 (1.2) ***

Grassland aggregation −2.8 (1.1) *

Generalist sc. * Disp. −39.4 (3.4) ***

Generalist sc. * Disp.2 ns

Note: Significance: *p < .05; **p < .01; ***p < .001.
Abbreviations: Disp., dispersal capacity; ns, non-significant.
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    |  9 of 17DANIEL et al.

was affected by dispersal capacities in the same way as the valida-
tion R2 (quadratic relationship, Figure  3b,c). Hence, both the pre-
dictive power and the IBR strength reached an optimum at greater 
dispersal distances for the specialist species than for the generalist 
species. Next, we relay the results obtained at the optimal dispersal 
capacity, maximizing the intensity of the IBR signal, for the specialist 
virtual species (Figure 2.ii.).

3.3.3  |  Transferability of cost inferences

Transferring cost inference to compute cost distances among popu-
lations located in another landscape and predict their FST resulted in 
poorer extrapolated predictions as compared with interpolated pre-
dictions (GLMM parameter estimate of extrapolation effect on vali-
dation R2 ± SE = − 2.27 ± 0.12, p = 2e−16). Overall, interpolations led to 
predictions with a mean validation R2 of .44, whereas extrapolations 
had a lower mean validation R2 of .12 (Figure 4). This indicates that 
resistance values informed predictions more reliably in the calibra-
tion landscape than in other landscapes.

In addition, large variations in predictive performances within 
and among landscapes (median validation R2 ranging from 0 to .7 
across landscapes) suggested that certain landscape structures 

improved RGA performances (Figure 4). Similarly, the variability of 
R2 validation across the 10 population samples within the same land-
scape (i.e., within-box variations in Figure 4) also depended on the 
landscape. This may be related to differences in the configuration of 
sampled populations, since all other variables remained equal. This 
suggests that RGA performance is more sensitive to sampling design 
in certain landscapes.

Finally, the predictive capacity of optimized cost scenarios was 
much better than that of true cost scenarios (true cost scenario es-
timate ± SE = − 0.78 ± 0.06, p < 2e−16, Figure 5), which indicates that 
the optimization consistently resulted in overfitting.

3.4  |  The congruence between optimized and true 
cost scenarios

The ranking of optimized costs for land cover types remained almost 
identical for the four ecological profiles. Yet, this ranking differed 
from that expected under the true cost scenarios for 90% of the op-
timized runs (Figure 6). Forest areas were correctly assigned the low-
est resistance (i.e., rank 1) in about 50% of the cases, and the second 
lowest otherwise. Urban and grassland areas were assigned to each 
of the four ranks in equal proportions, while agricultural areas were 

F I G U R E  3 Performance criteria as 
a function of dispersal capacities and 
specialization levels. Only sampling-scale 
datasets coming from true positive runs 
have been considered here. Each box 
corresponds to a dispersal capacity level 
and includes the model performance 
criteria for 30 landscapes and their 10 
corresponding population samples. (a, b). 
Predictive accuracy as assessed by the 
validation R2 of the IBR models explaining 
the genetic distances by the optimized 
cost-distances for the generalist (a) and 
specialist species (b). The higher the 
validation R2, the better the predictive 
power of IBR models. (c, d). Strength 
of the IBR patterns as assessed by the 
delta AIC (dAIC) between the Euclidean 
distance models and the IBR models for 
the generalist (c) and specialist species 
(d). A positive value indicates that the IBR 
model performs better than the Euclidean 
model. The higher the dAIC, the stronger 
the IBR signal. As the data were filtered to 
select only the true positive runs, the IBR 
models always have more support than 
the Euclidean models (i.e., only positive 
dAIC are shown here).
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mostly associated with the highest resistance rank (rank 4 in 53% 
of the cases). The median contrast between the lowest and highest 
optimized cost values was consistent with the true scenarios (i.e., 
log10(1000) = 3; Figure 7a). Moreover, we found a correlation of 0.51 
between the land cover recovery index (i.e., the Spearman correla-
tion between true and optimized scenarios) and the contrast recov-
ery index (i.e., 3 − log10(optimized contrast)). This suggested that the 
closer the optimized classification of land cover types is to the true 
ranking, the closer the contrast in optimized values is to the true 
contrast.

The models explaining the two recovery indices by landscape 
and ecological variables only evidenced an effect of the specializa-
tion profile. The recovery of land cover ranks showed significantly 
poorer performance with variant 1 (p < .001), and the contrast was 
poorly assessed with the generalist profile (p < .001). Finally, the 
ranking of the land cover types and the contrast values did not affect 
the validation R2 of optimized cost scenarios.

4  |  DISCUSSION

We demonstrated that the RGA approach properly detects the pro-
cess shaping genetic structure (i.e., IBR) and leads to accurate ge-
netic differentiation predictions. However, the optimized costs do 
not always reflect the actual permeability of landscape features to 
gene flow. We provide guidance for future uses of RGA in landscape 

F I G U R E  4 Evaluation of the interpolation and the extrapolation capacities of the optimized IBR models for a specialist species. Only 
the true positive runs and dispersal capacity maximizing the intensity of the IBR signal at sampling-scale are displayed here. The figure 
shows the validation R2 of IBR models as a function of the model calibration landscapes. Each pair of light and dark blue boxes represents 
runs calibrated on the same landscape (displayed in the x axis), for their 10 related samples of populations. Light blue bars correspond to 
interpolation results, showing validation R2 for data located in the calibration area, whereas dark blue bars correspond to extrapolation 
results, showing validation R2 for data located on another landscape, different from the calibration area. Only 29 of the 30 landscapes are 
represented. Indeed, one landscape has less than six population samples at the selected dispersal distance that resulted in true positive runs. 
It was discarded to ensure enough runs per box (here 6 ≤ n ≤ 10). The remaining 29 landscapes are ranked in descending order according to 
the median value of the validation R2 associated with the interpolated models. L1, Landscape 1; and so on for the 29 landscapes.

F I G U R E  5 Comparison of predictive performances (assessed 
by the validation R2 of IBR models) between the true and the 
optimized cost scenarios for a specialist species. Only the true 
positive runs with a dispersal capacity maximizing the intensity 
of the IBR signal at the sampling-scale are shown. Each point 
corresponds to a combination of landscape × population sample. 
The points above the y = x line indicate better predictive power of 
the models using optimized cost distances as compared with the 
models using the true cost distances used for simulating the data 
(i.e., the true scenarios), reflecting the effect of overfitting related 
to the optimization process.
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    |  11 of 17DANIEL et al.

genetics, emphasizing the importance of the set of population pairs 
included in analyses and the use of cross-validation approaches pre-
venting overfitting.

4.1  |  The spatial scale of landscape influence on 
genetic structure depends on the topology of the 
effective dispersal network

The detection of an IBR pattern depended on the interaction be-
tween species specialization level and dispersal capacity. These two 
parameters affect the scale at which the genetic pattern emerges, and 

therefore the scale to consider for properly detecting it. For instance, 
in species experiencing moderate movement costs across the land-
scape (called ‘generalist’ in our study), IBR patterns can only emerge 
and be detected if this species covers short distances overall. In other 
words, the dispersal limitation responsible for IBR patterns (Orsini 
et  al.,  2013) is caused by the interplay of movement costs and dis-
persal distances. This dual cause of dispersal limitation also explains 
why IBR patterns were detected for larger dispersal distances with 
the ‘specialist’ cost profile. This result is consistent with other studies 
that have demonstrated the impact of species specialization on effec-
tive dispersal and its consequences for population genetic differentia-
tion (Harris & Reed, 2002; Khimoun et al., 2016). A spatially structured 

F I G U R E  6 Assignment of each land 
cover type to the 4 ranks of relative 
resistance in the optimized cost scenarios 
for (a) a generalist species, (b) a specialist 
species, (c, d) virtual species with 
ecological profiles derived from variations 
in the specialist profile (the order of 
land use resistance has been reversed as 
compared with the specialist scenario). 
Each bar represents the proportion of 
each land cover type assigned to every 
resistance rank, across the 30 landscapes 
and their 10 related population samples 
from the sampling-scale dataset. The 
‘Expected’ line below each bar plot 
corresponds to the land cover type 
expected under the true cost scenario, 
represented by its colour. The recovery 
of the land cover ranking is accurate if 
the expected colours match the dominant 
colours in the corresponding bar plot. 
(e) Cost values assigned to every land 
cover type in the four true cost scenarios 
considered. Each column of the table 
(i.e., each true cost scenario) has to be 
compared with the bar plot describing 
the related optimized cost scenario. 
For example, for (b) and rank 2, we 
expected all runs to be grassland (light 
green), but we see that only about 50% 
of the runs are grassland. The remaining 
50% is divided into about 20% forest 
(dark green), 20% urban (red) and 10% 
agricultural (orange).
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pattern is an essential pre-requisite for optimizing resistance surfaces, 
as subsequent analyses assume its presence. Furthermore, matching 
the scale at which both drift and dispersal shape genetic structure (i.e., 
the effective-dispersal scale here) is needed to align inferences with 
the process under study (Savary et al., 2021a). This scale also depends 
on species dispersal abilities (cost profile, dispersal distances), land-
scape and population configuration and defines the topology of the 
effective dispersal network (Savary et al., 2021a).

4.2  |  Pruning enhances RGA predictive 
performance under strong dispersal limitation

We demonstrated that RGA predictive performances were maxi-
mized when considering the subset of population pairwise connec-
tions matching the effective-dispersal-scale. In other words, better 
results were obtained from a reduced dataset. It is expected from 
theory that low gene flow will lead to isolated populations whose 
genetic differentiation is mainly driven by stochastic genetic drift 
(Hutchison & Templeton, 1999) and consequently difficult to predict 
from their location on the landscape. Conversely, if gene flow is too 
strong, landscape constraints to dispersal may no longer be a limit-
ing factor, thus making their effects difficult to detect. Accordingly, 
the effective dispersal scale to consider for selecting pairwise 

population connections allowing for the detection and assessment 
of landscape effects on gene flow depends on the degree to which 
gene flow is restricted (Savary et al., 2021b).

Considering the above, we introduced a new approach to infer 
cost values, involving a pruning method (Dyer & Nason, 2004) re-
stricting the pairwise connections to those matching the effective-
dispersal scale. We showed that pruning the distance matrices 
improved RGA performances as it ensured that genetic differentia-
tion was only modelled between populations supposed to be linked 
by substantial dispersal and gene flow (Dyer & Nason, 2004; Keller 
et  al.,  2013; Murphy et  al.,  2010; Van Strien et  al., 2015). Daniel 
et al. (2023) had already shown a similar positive effect of reducing 
the genetic dataset to capture better the spatial scale of effective 
dispersal using empirical data. These results confirm the conclusion 
of previous studies (Savary et al., 2021b; Van Strien, 2017), suggest-
ing that considering the topology of dispersal networks might im-
prove resistance surface optimization.

4.3  |  Sampling design and landscape structure 
affect optimization performance

We found that in each landscape, the predictive performances of 
the optimized cost values varied greatly across the 10 sets of 40 

F I G U R E  7 (a) Characterization of the optimized cost scenarios according to their contrast as a function of the ecological profile. A log 
contrast of 3 (dotted line) represents a contrast of 1000, that is, the contrast of the simulated cost scenarios and that we would expect 
for the optimized scenarios. A log contrast greater than 3 means that the contrast is overestimated, while a log contrast less than 3 means 
that the contrast is underestimated. (b) Distribution of the ranking consistency with true cost scenarios of optimized runs (i.e., Spearman 
correlation between the ranking of land covers in the optimized cost scenario and in the true cost scenario) according to the ecological 
profile. The closer the correlation value is to 1, the greater the agreement between the order of resistance of the land covers in the real 
scenarios and the optimized scenarios. See S1.12: Data S1 for the significance of Spearman correlation values for land cover ranking in 
optimized cost scenarios.
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sampled populations, out of 80 simulated. This suggests a significant 
influence of the population sampling design on the inference out-
come, potentially related to the capacity of this sampling to properly 
capture the dispersal network. Indeed, the spatial distribution of the 
whole set of populations determines the dispersal network shap-
ing genetic patterns (McRae, 2006; Van Strien, 2017). Accordingly, 
when some populations are absent from the sampled set, landscape 
genetic analyses cannot reliably capture the spatial drivers of genetic 
structure because part of the spatial signal is missing (Naujokaitis-
Lewis et al., 2013; Van Strien, 2017). This was further supported by 
our finding of a significant relationship between the validation R2 
and the aggregation of forest areas, a factor that influences the spa-
tial distribution of the sampled populations. Van Strien et al. (2015) 
showed that population topology was tightly linked to habitat dis-
tribution, and our results suggest that some landscape configura-
tions and compositions might be more resilient to partial sampling. 
Interestingly, RGA performances seemed to be enhanced in coarse-
grained and aggregated landscapes. One explanation could be that 
the topology of the dispersal network is easier to capture when land 
cover patches are aggregated, as sampling each aggregate reduces 
the risk of missing central populations in the dispersal network.

4.4  |  Optimization is not causation: Good 
predictive abilities at the expense of accurate causal 
interpretation

Many studies have used RGA cost inferences to rank landscape fea-
tures according to their resistance to gene flow (Antunes et al., 2023; 
Khimoun et  al., 2017; Mapelli et  al.,  2020; Martin et  al.,  2023; 
Mulvaney et al., 2021; Reyne et al., 2023; Ruiz-Lopez et al., 2016). 
These interpretations often served as the basis for a mechanistic un-
derstanding of the landscape effect on dispersal. However, we evi-
denced a frequent mismatch between the optimized and true cost 
rankings across land cover types. Only 10% of the optimized runs 
showed a land cover cost ranking in line with the simulated reality. 
Surprisingly, the low accuracy of cost assignments remained fairly 
identical, regardless of the type of true cost scenario shaping genetic 
structure. Moreover, this cost ranking often seemed to reflect land-
scape composition rather than its actual permeability to gene flow. 
For instance, we found that the least frequent land cover types in 
the landscape, that is, grassland and urban areas, were equally likely 
to be assigned any one of the 4 resistance ranks. They probably 
served as adjustment variables in the optimization process, mainly 
driven by model goodness-of-fit.

Besides, the more different the optimized ranking from the 
true ranking, the larger the overestimation of the optimized con-
trast relative to the true contrast. Therefore, our results call for 
great caution when interpreting the resistance of landscape fea-
tures. Similarly, without discussing the issues in detail, Peterman 
et al. (2019) and Beninde et al. (2023) pointed out possible difficul-
ties in deriving reliable cost values with the RGA framework. The 
overfitting effect inherent to the optimization process (Peterman 

et  al.,  2019; Winiarski et  al.,  2020; Yates et  al.,  2018) was men-
tioned as a possible cause of mismatch. Given that optimized cost 
scenarios had better predictive performance than the true cost 
scenarios, we can reasonably expect that overfitting in the cali-
bration of cost values leads to a strong dependence on landscape 
configuration.

Furthermore, the dependence of the inference on the topol-
ogy of the dispersal network might exacerbate the adverse effect 
of overfitting on inference accuracy. Indeed, the good predictive 
accuracy of RGA models during cost calibration, even for popula-
tion pairs excluded from the calibration dataset, dropped when the 
models were extrapolated to population pairs located in another 
landscape. As cost inference is highly dependent on landscape com-
position and population topology due to overfitting, optimized cost 
scenarios are unlikely to provide reliable parameters for predicting 
the genetic structure of populations from another landscape.

Despite the above-mentioned limitations, our results empha-
size the RGA's good predictive performances, thereby reflecting 
the common duality between explanatory and predictive modelling 
(Shmueli, 2010; Yates et al., 2018). Based on a data-driven process 
and an optimization algorithm, RGA provides accurate predictions 
for genetic differentiation, which could then lead to a better under-
standing of the effect of population topology or landscape config-
uration on genetic structure. However, the causal link between the 
cost values obtained in the inference and the landscape effect on 
gene flow is potentially dubious. This echoes the fact that predic-
tive models, such as RGA, rarely provide insight into the underlying 
causal mechanism (Shmueli, 2010).

Some very promising landscape genetics approaches, for ex-
ample, using deep and machine learning, have recently been imple-
mented to predict genetic connectivity. Kittlein et al. (2022) showed 
that convolutional neural networks could provide highly accurate 
predictions for small-scale genetic differentiation and diversity, 
while Pless et al. (2021) conducted a least-cost transect analysis to 
predict gene flow for Aedes aegypti vector regulation. As soon as the 
common limitations of data-driven approaches are acknowledged, 
predictive models could be of great interest to capture complex pat-
terns and relationships, otherwise difficult to predict using theory-
based models (Lucas,  2020; Murphy et  al.,  2010; Shmueli,  2010; 
Vanhove & Launey, 2023).

4.5  |  The use of RGA in landscape genetics: 
Conditions and prospects

We outline below a set of guidelines regarding the use of RGA and 
list them in the order in which they should be considered when de-
signing a landscape genetic study.

First, we call for preliminary assessments of spatial genetic 
structuring before the use of optimization approaches (e.g., through 
genetic clustering analyses or the study of IBD patterns). When the 
genetic structuring is weak, great care should be taken when inter-
preting the optimization results.
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Second, one needs to capture the spatial scale of the observed 
genetic signal properly (Savary et al., 2021a). To this end, we recom-
mend performing inferences at multiple spatial scales, either using 
Moran's Eigenvector Maps (Dray et al., 2006; Galpern et al., 2014) 
or through iterative analyses with multiple pruning thresholds (Van 
Strien et al., 2015), and selecting the one that leads to the best pre-
dictive performance of the optimized IBR model.

Third, the reliability of RGA inferences may be improved by fa-
vouring exhaustive sampling designs to correctly model topological 
effects and limit their confounding effect (Van Strien, 2017). If this 
is too costly, preliminary sensitivity analyses, for example, based on 
genetic simulations, could determine the ideal set of populations to 
sample in the focal landscape (Naujokaitis-Lewis et al., 2013). After 
empirical data have been sampled and used for optimization, the 
stability of the optimized resistance surface when refitting it with a 
subset of the populations can also be assessed with a new bootstrap 
procedure implemented in RGA (Peterman et al., 2019).

Fourth, attention must be paid to the structure of the studied 
landscape and the thematic resolution. When some land cover types 
are poorly represented, or for some land cover configurations, the 
sensitivity of RGA inferences to landscape structure may prevent 
interpreting the optimized cost values. In that case, highly unstable 
cost values and rankings point towards unreliable inferences. Here 
too, simulating gene flow in the focal landscape and assessing the 
algorithm's ability to capture the correct cost scenario might prevent 
spurious conclusions.

Fifth, it is strongly recommended to limit the overfitting of the 
optimized model and ensure that it does not fit the noise in the data 
rather than the targeted signal (Lucas, 2020; Peterman et al., 2019; 
Shmueli, 2010; Winiarski et al., 2020). To do this, out-of-sample per-
formance can be assessed, as in the present and a few previous stud-
ies (see Daniel et al., 2023; Van Strien et al., 2014). This also provides 
an assessment of the transferability of the inferences. Additionally, 
when sufficient data is available to perform independent K-fold 
cross-validation, accounting for spatial autocorrelation for defin-
ing the training and test datasets (i.e., spatial cross-validation) can 
lead to more accurate extrapolated predictions than random cross-
validation (Palm et al., 2023).

Finally, alternative methodological choices potentially improving 
the inference of landscape resistance remain to be explored in the 
context of landscape genetic optimizations. For instance, Beninde 
et al. (2023) called for the adoption of eigenvector-based estimates 
of pairwise genetic distances to reliably infer the effect of landscape 
features on gene flow. Moreover, using individual-based instead of 
population-based genetic indices or resistance distances instead of 
cost distances to perform similar analyses could provide insights into 
the use of RGA in a wider range of contexts. However, these choices 
should not fundamentally change our conclusions, as they are par-
tially supported by other studies using other ecological (Beninde 
et  al.,  2023; Peterman et  al.,  2019) or genetic distances (Beninde 
et al., 2023; Winiarski et  al., 2020). Furthermore, reproducing our 
analyses for continuous landscape representations (Peterman 
et al., 2019; Vanhove & Launey, 2023) or using more recent gradient 

algorithms (such as the Radish package, Peterman & Pope, 2020) or 
gradient forests (Vanhove & Launey, 2023) could broaden its conclu-
sions in a useful way.

Although our guidelines and future tests of these approaches 
might improve the reliability of optimization results, they cannot lead 
to any improvements in the presence of significant noise in the data 
or when a key spatial process or covariate is missed (Lucas, 2020). If 
such a covariate is of great importance, including it in explanatory 
models is likely to improve their performance (Keller et  al., 2013; 
Savary et al., 2021a; Van Strien, 2017; Van Strien et al., 2014).

In conclusion, the strength of the RGA workflow is its excellent 
ability to predict genetic distances, although its lack of transferabil-
ity limits the prospective use of its inference to predict the impact of 
landscape change on gene flow. This characteristic can still be very 
useful for operational studies in conservation and population genet-
ics (Van Strien et al., 2014). It may even be interesting to use the ge-
netic distances predicted by RGA to inform operational models. For 
example, we could imagine using RGA's cost inference to weight the 
links of habitat network models and derive relevant functional con-
nectivity metrics, design dispersal corridors, or identify restoration 
areas (Foltête et al., 2014).
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