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Abstract
Modelling population connectivity is central to biodiversity conservation and often 
relies	on	 resistance	surfaces	 reflecting	multi-	generational	gene	 flow.	ResistanceGA	
(RGA)	 is	 a	 common	 optimization	 framework	 for	 parameterizing	 these	 surfaces	 by	
maximizing	the	fit	between	genetic	distances	and	cost	distances	using	maximum	like-
lihood	population	effect	models.	As	the	reliability	of	this	framework	has	rarely	been	
studied,	we	investigated	the	conditions	maximizing	its	accuracy	for	both	prediction	
and interpretation of landscape features' permeability. We ran demo- genetic simula-
tions in contrasted landscapes for species with distinct dispersal capacities and spe-
cialization	 levels,	using	corresponding	reference	cost	scenarios.	We	then	optimized	
resistance	surfaces	from	the	simulated	genetic	distances	using	RGA.	First,	we	evalu-
ated	whether	RGA	identified	the	drivers	of	the	genetic	patterns,	that	is,	distinguished	
Isolation-	by-	Resistance	 (IBR)	patterns	from	either	 Isolation-	by-	Distance	or	patterns	
unrelated	 to	 ecological	 distances.	We	 then	 assessed	 RGA	 predictive	 performance	
using a cross- validation method, and its ability to recover the reference cost sce-
narios shaping genetic structure in simulations. IBR patterns were well detected and 
genetic distances were predicted with great accuracy. This performance depended 
on the strength of the genetic structuring, sampling design and landscape structure. 
Matching the scale of the genetic pattern by focusing on population pairs connected 
through gene flow and limiting overfitting through cross- validation further enhanced 
inference	reliability.	Yet,	the	optimized	cost	values	often	departed	from	the	reference	
values,	making	their	interpretation	and	extrapolation	potentially	dubious.	While	dem-
onstrating	the	value	of	RGA	for	predictive	modelling,	we	call	for	caution	and	provide	
additional guidance for its optimal use.

K E Y W O R D S
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1  |  INTRODUC TION

Dispersal is defined as the movement of an individual from its  
native population to another location for breeding. This key ecolog-
ical process directly affects evolutionary dynamics by moderating 
gene flow. The resulting movement of individuals and genes shapes 
species and genetic diversities and influences biotic interactions 
(Frankham,	 2015; Richardson et al., 2016;	 Schlägel	 et	 al.,	 2020; 
Spielman	 et	 al.,	 2004).	 Considering	 dispersal	 is	 therefore	 criti-
cal	 in	 a	 context	 of	 human-	driven	 habitat	 fragmentation	 and	 spe-
cies	range	shifts	 (Crispo	et	al.,	2006; Crooks et al., 2017; Manel & 
Holderegger, 2013).	 Accordingly,	 spatial	 models	 of	 connectivity	
(Table 1)	have	been	crucial	 for	 identifying	population	connectivity	
drivers	 and	 for	 implementing	 sound	 conservation	 policies	 (Correa	
Ayram	et	al.,	2016;	Newmark	et	al.,	2023; Rudnick et al., 2012).

Connectivity models often represent the landscape as a resis-
tance	 surface	 (Table 1)	 embedding	 the	dispersal	propensity,	phys-
iological cost and mortality risk incurred by individuals across 
heterogeneous	environments	(Diniz	et	al.,	2020; Zeller et al., 2012).	
As	such,	resistance	surfaces	commonly	consist	of	a	map	of	discrete	
landscape features, each associated with a corresponding resistance 

value	(Table 1)	(Spear	et	al.,	2010, 2015).	Connectivity	models	then	
translate these resistance assumptions and our understanding of 
dispersal into connectivity estimates for detecting landscape bar-
riers,	mapping	corridors	or	 computing	connectivity	metrics	 (Dutta	
et al., 2022;	Foltête	et	al.,	2014).	The	 latter	approach	 involves	 the	
calculation of cost distances, that is, the sum of resistance values 
along	the	least-	cost	path	between	two	populations	(Table 1).	Hence,	
assigning a resistance value to each landscape feature is a critical 
modelling	decision,	with	far-	reaching	consequences	for	the	reliabil-
ity of connectivity analyses.

Although	many	connectivity	studies	 rely	upon	expert	opinion	to	
assign	resistance	values	(Spear	et	al.,	2010),	several	methods	have	been	
developed to infer them from empirical data such as genetic or animal 
movement	data	(Dutta	et	al.,	2022; Peterman et al., 2019; Peterman 
& Pope, 2021; Vanhove & Launey, 2023; Zeller et al., 2012).	 In	 this	
context,	 the	 ResistanceGA	 (RGA)	 framework	 has	 received	 a	 great	
deal	of	interest	(Peterman,	2018).	This	resistance	surface	optimization	
method is based on genetic data and assumes that genetic distances 
reflect	gene	flow,	and	consequently	landscape	functional	connectivity	
(Zeller	et	al.,	2017).	Increasingly	used	since	its	release	in	2018	(114	pub-
lications	using	it	to	this	date,	see	S1.1:	Data	S1)	(Antunes	et	al.,	2023; 

TA B L E  1 Definitions	of	terms	used	in	this	paper.

Term Definition

Resistance value Numerical	value	associated	with	a	landscape	feature	representing	the	movement	propensity,	physiological	cost,	and	
mortality risk incurred by individuals dispersing across this feature

Cost scenario A	list	of	mapped	landscape	features	in	conjunction	with	their	respective	resistance	values

Resistance surface Landscape	map	that	makes	spatially	explicit	a	cost	scenario,	i.e., a resistance assumption about animal dispersal movements 
across heterogeneous environments

Cost- distance The sum of cost values along the least- cost path between two populations, calculated on a resistance surface

Functional	
connectivity

Inversely	related	to	landscape	matrix	resistance,	the	functional	connectivity	of	a	habitat	patch	could	be	seen	as	the	amount	
of	reachable	habitat	from	that	patch.	From	an	individual's	perspective,	this	is	the	resistance	of	the	surrounding	landscape	
matrix

Pruning In graph theory, the selection of a limited number of connections among graph nodes. In contrast to a pruned graph, a 
complete graph has all its nodes connected to each other

Effective- 
dispersal- scale

At	this	spatial	scale,	the	links	between	habitat	patches	are	only	modelled	if	migrants	have	actually	moved	along	them.	
Therefore,	the	effective	dispersal	scale	dataset	included	population	pairs	that	were	expected	to	exchange	migrants

Sampling-	scale Spatial	scale	that	corresponds	to	the	scale	of	the	sampling	design.	At	this	scale,	all	the	links	between	habitat	patches	are	
modelled, leading to a complete landscape graph

Predictive 
modelling

A	model	that	attempts	to	predict	an	unobserved	pattern	or	process	by	analysing	data	from	an	observed	pattern.	As	
opposed	to	the	explanatory	model,	which	consists	of	identifying	the	variables	that	explain	part	of	the	variance	of	an	
observed process, to improve our understanding of that process

Predictive 
performance

Ability	of	a	model	to	predict	data	not	considered	for	its	calibration	(e.g.,	out-	of-	bag	or	validation	data),	as	evaluated	using	a	
K-	fold	cross-	validation	or	a	leave-	one-	out	cross-	validation	method	and	quantified	by	an	indicator	such	as	a	validation	R2

Transferability The	relevance	of	resistance	values	inferred	by	the	ResistanceGA	workflow	on	a	given	landscape	and	for	a	given	set	
of	populations	to	characterize	movement	resistance	among	new	populations,	in	the	same	(interpolation)	or	in	another	
(extrapolation)	landscape

Interpolation Use	of	resistance	values	inferred	by	ResistanceGA	from	a	set	of	populations	in	a	given	landscape	to	predict	genetic	
distances among a new set of populations in the same landscape

Extrapolation Use	of	resistance	values	inferred	by	ResistanceGA	in	a	given	landscape	to	predict	genetic	distances	among	populations	in	
another landscape

Training and test 
datasets

Terms	used	in	cross-	validation	methods	to	designate	the	part	of	the	dataset	used	to	parameterize	the	model	(training,	in-	
bag	or	calibration	data	set)	and	the	part	used	to	evaluate	the	predictive	quality	of	this	parameterized	model	(test,	validation	
or	out-	of-	bag	data	set)
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Atzeni	et	al.,	2023; McCluskey et al., 2022; Zeller et al., 2023),	it	infers	
dispersal	costs	by	maximizing	the	statistical	fit	between	genetic	and	
cost	 distances.	 Although	 not	without	 computational	 constraints,	 its	
power	stems	from	the	use	of	a	genetic	optimization	algorithm,	which	
efficiently	explores	the	whole	cost	parameter	space.

Yet,	the	validity	of	the	inferences	made	with	this	flexible	optimiza-
tion	tool	remains	understudied	(but	see	Beninde	et	al.,	2023; Peterman 
et al., 2019; Winiarski et al., 2020).	For	instance,	the	encouraging	re-
sults	of	Peterman	et	al.	 (2019)	and	Winiarski	et	al.	 (2020),	based	on	
the	correlations	between	true	and	RGA	optimized	resistance	surfaces,	
called for studies relying on direct simulations of genetic processes. 
Later,	the	study	of	Beninde	et	al.	(2023)	explored	a	broad	range	of	ge-
netic	distance	metrics	and	resistance	scenarios	and	showed	that	RGA	
better recovered the true resistance surface when few landscape fea-
tures	restricted	gene	flow.	However,	these	works	have	not	explicitly	
examined	the	influence	of	the	ecological	profile	and	degree	of	habitat	
specialization	of	 the	 species	 under	 study.	 For	 instance,	we	 can	 rea-
sonably assume that the interaction between dispersal capacity and 
the	level	of	habitat	specialization	determines	the	spatial	scale	at	which	
populations are linked by dispersal events and, hence, our ability to 
infer	 dispersal	 drivers	 based	on	 genetic	 data.	Although	 this	 has	 not	
yet	been	done	 in	 the	context	of	 resistance	optimization,	accounting	
for this spatial scale by removing from the analyses pairwise genetic 
distances mainly driven by stochastic genetic drift could improve the 
reliability	of	inferences	(Savary	et	al.,	2021a).

More	generally,	Beninde	et	al.	 (2023),	Winiarski	et	al.	 (2020)	and	
Peterman	et	al.	(2019)	called	for	a	more	critical	look	on	the	resistance	
surfaces	optimized	with	RGA	from	empirical	data.	Of	particular	concern	
is	 the	overfitting	effect	 inherent	 to	 the	optimization	process,	which	
may impede the accurate assessment of the relative resistance values 
of each landscape feature. On the one hand, unsupervised data- driven 
approaches are prone to overfitting when several parameter sets can 
result	in	the	same	pattern	(Paris	et	al.,	2004).	Nonetheless,	very	few	
studies	have	tackled	this	issue	(Palm	et	al.,	2023; Pless et al., 2021)	by	
testing whether bootstrapping or cross- validation could limit overfit-
ting. On the other hand, if the data- driven nature of the stochastic op-
timization	algorithm	(Scrucca,	2013)	does	not	necessarily	make	it	ideal	
for understanding the processes at play, this makes it perfectly suited 
to	predictive	modelling	(Table 1),	 learning	from	observed	patterns	to	
predict	unobserved	patterns	or	processes	(Shmueli,	2010).	This	would	
answer the call for landscape genetics research to contribute to the 
prediction	 of	 genetic	 responses	 to	 landscape	 changes	 (Balkenhol	
et al., 2009;	Storfer	et	al.,	2007;	Van	Strien	et	al.,	2014).

To provide evidence- based guidelines regarding the use and misuse 
of	optimization	frameworks	 in	 landscape	genetics,	we	evaluated	the	
performance	of	RGA	across	a	wide	range	of	realistic	landscape	struc-
tures,	ecological	profiles,	sampling	designs	and	spatial	scales.	For	that	
purpose, we simulated gene flow using categorical resistance surfaces 
reflecting	the	level	of	habitat	specialization	and	dispersal	capacities	of	
distinct	virtual	species.	We	then	optimized	cost	distances	among	pop-
ulations from these surfaces based on the simulated genetic distances 
using	the	RGA	algorithm.	Using	graph-	based	methods,	we	performed	
these	 optimizations	 at	 both	 the	 spatial	 scale	 of	 the	whole	 sampling	

area and at the scale of gene flow effect on genetic differentiation 
(Balkenhol	et	al.,	2020;	Savary	et	al.,	2021a;	Van	Strien,	2017).

Our simulation framework aimed first at assessing whether the 
optimization	 approach	 correctly	 detects	 that	 ecological	 distances	
drive	genetic	differentiation.	Second,	we	assessed	the	ability	of	the	
optimized	 cost	distances	 to	predict	 genetic	differentiation	using	 a	
cross-	validation	method	to	prevent	overfitting	(Daniel	et	al.,	2023).	
Finally,	we	measured	the	congruence	between	the	optimized	costs	
and the true cost values shaping the simulated genetic patterns.

2  |  MATERIAL S AND METHODS

2.1  |  Overall approach

To	evaluate	the	RGA	optimization	framework,	we	performed	demo-	
genetic simulations in real landscapes for virtual species varying in 
their	dispersal	capacities	(Figure 1).	We	then	used	RGA	and	assessed	
its	ability	to	recover	the	‘true’	drivers	of	genetic	differentiation	(land-
scape	 resistance	and	corresponding	 resistance	values)	and	predict	
the resulting pairwise genetic differentiation.

2.2  |  Real landscape sampling

We	selected	30	 real	 landscapes	 (40 × 40 km,	100 m	cell	 resolution)	
in	 metropolitan	 France,	 maximizing	 variations	 in	 the	 amount	 and	
spatial	 configuration	of	 the	 four	 land	 cover	 types	 considered	 (for-
est,	grassland,	agricultural	and	urban	areas).	We	used	the	2018	Theia	
OSO	landcover	map	(Inglada	et	al.,	2018).	See	S1.2:	Data	S1 for more 
details about landscape sampling.

2.3  |  True resistance surfaces parameterization and 
cost- distances calculation

We	 designed	 two	 cost	 scenarios	 (Table 1)	 characterizing	 the	 re-
sistance of each land cover type to dispersal, scaling the contrast 
in	 resistance	 values	with	 a	 negative	 exponential	 function,	 follow-
ing	Keeley	et	 al.	 (2016)	 (See	S1.3:	Data	S1	 for	details).	The	 result-
ing cost scenarios represented two contrasted ecological profiles: 
(i)	 a	 forest-	specialist	 species	 experiencing	 high	 resistance	 across	
all land cover types but forest: {Costforest = 1;	 Costgrassland = 700;	
Costagricultural = 900;	Costurban = 1000};	(ii)	a	generalist	species	with	a	
smoother range of resistance values: {Costforest = 1;	Costgrassland = 50;	
Costagricultural = 200;	 Costurban = 1000}.	 These	 true	 cost	 scenarios	
served	as	a	proxy	for	species	specialization	levels.

In each of the 30 landscapes, we located 80 virtual populations 
by	 randomly	 sampling	 80	 forest	 pixels	more	 than	 500 m	 apart,	 at	
least	2 km	from	the	edge	of	the	raster,	in	forest	patches	of	more	than	
25 ha.	Then,	we	computed	 the	 least-	cost	paths	and	corresponding	
cost distances among populations on each true resistance surface, 
using	the	graph4lg	package	(Savary	et	al.,	2021b).
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LANDSCAPE SAMPLING

x 30 Landscapes

POPULATION SAMPLING

40 Populations x 10 Resampling

RESISTANCE SURFACE OPTIMIZATION 

Optimized cost scenario

Optimized genetic pattern
IBR / IBD / Null

Optimized CDs

ResistanceGA

x 2 True cost scenarios

TrueCDs

RESISTANCE SURFACE PARAMETERIZATION

Simulated genotypes

x 7 Dispersal 
capacites

DEMO GENETICS SIMULATIONS
GENE POOL SAMPLING

SIMULATING GENE FLOW

GENETIC RESPONSE

True genetic pattern
IBD / IBR / Null

Pairwise FST

POPULATION DISTRIBUTION

80 Populations

CONTROLING FOR SPATIAL SCALE 

FST

Complete subset

FST

Pruned subset

x2 Spatial scale considerations

Sampling-scale Effective-dispersal-scale

(a)

(b)

Consistent with the True cost scenario ? 

Able to predict genetic distances ? 

Consistent with the True genetic pattern ? 

EXAMINATION OF OPTIMIZATION RESULTS(d) (c)

30 runs

60 runs

420 runs

4,200 runs

8,400 runs

x 5

42,000 runs
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2.4  |  Demo- genetics simulations and gene pool 
sampling

We	used	the	PopGenReport	package	(Adamack	&	Gruber,	2014)	to	
simulate gene flow and resulting individual genotypes. Dispersal 
cost	was	conditioned	by	the	two	‘true’	cost	scenarios.	To	test	for	the	
effect	of	dispersal	capacities,	we	considered	seven	different	maxi-
mum	dispersal	distances.	Local	population	sizes	remained	constantly	
equal	to	25	individuals	throughout	simulations.	Further	details	about	
simulation	parameters	are	given	in	S1.4:	Data	S1. We ran a total of 
420	simulations	(30	landscapes × 2	levels	of	specialization × 7	disper-
sal	capacities)	over	200	generations	each	to	obtain	a	steady	pattern	
of	genetic	differentiation.	Using	individual	genotypes,	we	estimated	
pairwise genetic distances among populations with pairwise FST 
(Weir	&	Cockerham,	1984).

To	test	for	the	effect	of	sampling	design	on	RGA	performance,	
we randomly sampled 40 of the 80 populations in each landscape 
(10	sampling	iterations)	and	extracted	the	corresponding	FST ma-
trices between the sampled populations. Every combination of a 
landscape,	 a	 specialization	 level,	 a	dispersal	 capacity	 level	 and	a	
sampling	design	(4200	combinations)	will	be	referred	to	as	a	‘run’	
hereafter.

2.5  |  Spatial scale of landscape influence on 
genetic structure

We tested whether matching the spatial scale at which disper-
sal influences genetic differentiation with that of the population 
pairs	considered	in	the	analyses	would	improve	inferences	(Savary	
et al., 2021a;	Van	Strien,	2017).	We	considered	two	types	of	pair-
wise matrices when modelling genetic distances, differing in the 
spatial	 scale	 of	 the	 connections	 considered.	 The	 ‘sampling-	scale’	
dataset	 included	all	population	pairs	 (Table 1).	 In	 these	matrices,	
some pairwise genetic distances may mostly reflect genetic drift 
rather than dispersal, especially for short- distance dispersers. 
Thus,	 for	 the	 ‘effective-	dispersal-	scale’	 dataset	 (Table 1),	we	 ex-
cluded	from	each	pairwise	matrix	(run	in	our	analysis)	pairwise	ge-
netic	distances	mostly	driven	by	drift	effects.	To	prune	 (Table 1)	
these matrices and conserve population pairs whose differentia-
tion reflects dispersal influence, we relied on a graph- theoretical 
method. Based on the conditional independence principle, this 
method is supposed to identify links between populations directly 
exchanging	migrants	 (Dyer	&	Nason,	2004;	see	S1.5:	Data	S1 for 
more	details).

2.6  |  RGA workflow and new implementations

The	RGA	algorithm	optimizes	resistance	surfaces	from	genetic	dis-
tances	using	a	genetic	algorithm,	which	efficiently	explores	the	pa-
rameter	space	until	maximizing	the	statistical	fit	between	pairwise	
cost	 distances	 and	 genetic	 distances.	 Each	 of	 the	 60	 resistance	
surfaces	 (30	 landscapes × 2	 levels	 of	 specialization)	was	 optimized	
based	on	140	FST	matrices	(7	dispersal	capacities × 10	samplings × 2	
spatial scales; Figure 1).	Each	optimization	was	replicated	five	times	
to	 assess	 the	 stability	of	 the	 algorithm	 inferences	 (42,000	 runs	 in	
total).

The	optimization	seeks	to	maximize	an	objective	criterion	mea-
suring	the	fit	of	maximum	likelihood	population	effect	(MLPE)	mod-
els. These models of pairwise genetic distances as a function of 
pairwise cost distances account for the non- independence inherent 
to	pairwise	data	(see	S1.6:	Data	S1	for	more	details	on	RGA	work-
flow).	To	prevent	model	optimization	from	overfitting	the	data,	we	
implemented	 a	 new	 objective	 criterion	within	 the	 RGA	workflow.	
We	adapted	the	Leave	One	Out	Cross-	Validation	(LOOCV)	method	
to	the	pairwise	context	and	computed	a	validation	R2	to	quantify	the	
prediction error. When fitting the models, we iteratively removed 
one of the 40 populations, and used the calibrated model to pre-
dict the genetic distances involving this population. The mean of 
the	predicted	‘out-	of-	sample’	genetic	distances	was	compared	with	 
the observed genetic distances to assess predictive accuracy,  
following	 Daniel	 et	 al.	 (2023).	 To	 implement	 this	 approach,	 we	
adapted	 the	 RGA	 algorithm	 (code	 available	 online:	 https:// gitlab. 
com/ psava ry3/ rga).

2.7  |  Reliability of cost inferences from RGA 
optimization

To	assess	the	reliability	of	the	cost	inferences	made	with	RGA,	we	
carried out a multi- criteria analysis, described by Figure 2 and the 
following sections.

2.7.1  |  RGA	optimization	sensitivity	and	specificity	
to simulated genetic patterns

First,	we	checked	whether	the	RGA	optimization	identified	the	cor-
rect drivers of genetic differentiation, that is, ecological distances 
in	our	 simulations	 (leading	 to	 an	 ‘Isolation-	by-	Resistance’	 pattern).	
For	 that	 purpose,	we	 compared	 the	AIC	 values	 deriving	 from	 the	

F I G U R E  1 Overall	methodology	for	assessing	the	ability	of	optimized	cost	distances	to	reliably	reflect	landscape	effects	on	genetic	
structure.	(a)	Workflow	for	simulating	gene	flow	among	virtual	populations	on	real	landscapes,	depending	on	two	scenarios	of	movement	
costs	and	seven	dispersal	capacities.	(b)	Preparation	of	genetic	inputs	for	the	optimization	process	by	sampling	10	times	40	populations	
and	evaluating	their	related	pairwise	genetic	distance.	Two	genetic	distance	datasets	were	considered	depending	on	spatial	scale.	(c)	
Optimization	of	cost	distances	according	to	these	genetic	inputs	using	the	RGA	workflow.	(d)	Evaluation	of	RGA	inferences	according	to	
the	sensitivity	of	the	algorithm	to	genetic	pattern,	the	predictive	power	of	optimized	cost	distances	and	the	ability	to	recover	the	true	cost	
scenario.	CDs,	cost	distances;	IBD,	Isolation-	by-	Distance;	IBR,	Isolation-	by-	Resistance;	Null,	no	spatial	structure.
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MLPE	models	explaining	genetic	distances	with	either	true	or	opti-
mized	 cost	 distances	 (‘Cost	 distances	model’),	 Euclidean	distances	
(‘Euclidean	model’)	 or	 a	 constant	 (‘Null	 model’).	We	 distinguished	
three possible outcomes indicating which pattern is detected:

	(i)	 Isolation-	by-	Resistance	(IBR)	when:
AICEuclidean model − AICCost distances model > 2

	(ii)	 Isolation-	by-	Distance	(IBD)	when:
AICEuclidean model − AICCost distances model < 2	 and	 AICnull model − 	
AICEuclidean model > 2

	(iii)	Null	pattern	when:
AICCost distances model − AICnull model > −2	 and	 AICEuclidean model − 	
AICnull model > −2

Consequently,	 we	 classified	 the	 optimization	 runs	 into	 four	
categories:	 true	 positives	 (TP:	 IBR	 detected	 from	 both	 true	 and	

optimized	cost	distances),	true	negatives	(TN:	IBR	never	detected),	
false	positives	(FP:	IBR	detected	from	optimized	but	not	from	true	
cost	distances)	and	false	negatives	(FN:	IBR	detected	from	true	but	
not	 from	optimized	cost	distances;	 see	S10.a:	Data	S1).	We	 then	
computed	 the	 sensitivity	 (TP/(TP + FN))	 and	 the	 specificity	 (TN/
(TN + FP))	 indices	for	each	spatial	scale.	These	 indices	allowed	us	
to assess whether the type of pairwise connections considered 
(sampling	 vs.	 effective-	dispersal	 subset)	 significantly	 affected	
inferences	 (see	S10.b:	Data	S1).	 Then,	we	modelled	 the	 sensitiv-
ity	or	specificity	 indices	as	a	 function	of	habitat	specialization	 (2	
levels),	dispersal	capacities	and	landscape	structure	(9	FRAGSTAT	
metrics).	We	used	the	glmmTMB	package	(Brooks	et	al.,	2017)	to	
fit	 generalized	 linear	 mixed	 models	 with	 beta	 distribution	 (beta	
GLMM).	 The	 focal	 landscape	 was	 set	 as	 a	 random	 effect	 (30	
levels,	 intercept-	only)	 to	 control	 for	 the	 non-	independence	 of	
the data. We checked for variable collinearity and performed a 

F I G U R E  2 Diagram	summarizing	the	successive	stages	of	data	filtering	throughout	the	analyses.	The	filtration	rules	are	shown	in	the	red	
boxes.	The	arrows	indicate	the	successive	filtration	rules.
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    |  7 of 17DANIEL et al.

stepwise	model	selection	based	on	AIC	criteria,	using	the	R	pack-
age	Buildmer	(Voeten,	2020).

In the following analyses, we only focused on the true- 
positive	 runs	 (Figure 2),	 and,	 hereafter,	 all	 the	 beta	 GLMMs	
were	 run	using	 the	 same	mixed-	effect	model	 specification	 and	
selection.

2.7.2  |  Assessment	of	RGA	predictive	performance

Effect of spatial scale on predictive performance
First,	 we	 tested	 the	 effect	 of	 restricting	 pairwise	 connections	 to	
the effective- dispersal- scale on the predictive performance of op-
timized	cost	distances.	For	each	run,	for	comparative	purposes,	we	
computed the validation R2 measuring predictive accuracy by con-
sidering only the population pairs shared by both the sampling and 
the	effective-	dispersal-	scale	datasets.	We	then	ran	beta	GLMM	ex-
plaining validation R2 by a binary categorical variable distinguishing 
sampling	(complete)	and	effective-	dispersal	(pruned)	datasets.

Effect of dispersal capacity, habitat specialization and landscape 
configuration on predictive performance
Second,	 we	 compared	 the	 predictive	 accuracy	 (validation	 R2)	 of	
optimized	cost	distances	across	dispersal	 capacities,	 specialization	
levels	and	landscape	structure	variations,	using	a	beta	GLMM.	The	
effective- dispersal- scale dataset included runs with varying num-
bers of populations. Therefore, for the sake of reliable compari-
son, we only considered for this analysis and the following the True 
Positives runs for the sampling- scale dataset, as they shared the 
same	number	of	population	pairs	(Figure 2).

Transferability of cost inferences
For	assessing	predictive	power,	we	focused	on	specialist	species	and	
considered	only	the	dispersal	distance	that	maximized	the	fit	between	
genetic	and	cost	distances	(Figure 2).	This	reduced	the	number	of	pa-
rameters	 to	 consider	 and	 reflected	 the	 conditions	 optimizing	 RGA	
performance. To assess the transferability of cost inferences, we op-
timized	a	cost	scenario	on	a	landscape	and	we	evaluated	its	predictive	
power for genetic distances between the 40 remaining out- of- sample 
populations,	assessing	its	interpolation	ability.	To	assess	the	extrapo-
lation	ability	of	the	optimized	scenario,	we	assessed	the	predictions	of	
genetic differentiation based on cost- distances computed under this 
scenario for 40 out- of- sample populations from another randomly 
selected	 landscape.	We	 then	 fitted	 beta	 GLMM	 explaining	 valida-
tion R2 with a binary variable representing whether the costs were 
inferred	 in	 the	 same	 landscape	 (interpolation)	 or	 in	 a	 different	 one	
(extrapolation).

Finally,	 we	 compared	 the	 predictions	 based	 on	 optimized	
cost	 distances	 to	 those	 based	 on	 true	 cost	 distances.	 For	 each	
landscape,	 we	 fitted	 a	 beta	 GLMM	 explaining	 the	 validation	 R2 
with	a	categorical	variable	distinguishing	 the	 true	and	optimized	
scenarios.

2.7.3  |  Congruence	between	optimized	and	true	
cost scenarios

We	 tested	whether	 the	 optimized	 cost	 values	 corresponded	with	
the true ones, and whether they correctly identified landscape 
barriers and permeable landscape features. We considered both 
the true specialist and generalist cost scenarios as references for 
comparison	 (cf.	 section	 II.).	 Additionally,	 to	 assess	 the	 sensitivity	
of the algorithm to variations in land cover resistance rankings, we 
considered two other scenarios ranking the urban, agricultural and 
grassland resistances in reverse order compared to the specialist 
scenario:	 (1)	 {Costforest = 1;	 Costgrassland = 900;	 Costagricultural = 700;	
Costurban = 1000};	 (2)	 {Costforest = 1;	 Costgrassland = 1000;	
Costagricultural = 900;	Costurban = 700}.

We	 then	 assessed	 the	 proportion	 of	 1200	 optimization	 runs	
(30	 landscapes × 10	 samplings × 4	 scenarios)	 assigning	 each	 land	
cover to each resistance rank, for simulations performed with the 
dispersal	 capacities	maximizing	 the	 fit	between	genetic	and	cost	
distances, using sampling- scale datasets. Considering the true sce-
narios,	we	would	 ideally	expect	100%	of	 the	 runs	assigning	 rank	
1, 2, 3 and 4 to forest, grassland, agricultural and urban areas, 
respectively.

We	 also	 quantified	 the	 similarity	 between	 the	 true	 and	 opti-
mized	 scenarios	 by	 calculating	 the	 Spearman	 correlations	 of	 land	
cover	ranks	between	these	two	scenarios	(see	S1.12:	Data	S1 for the 
correspondence	table	between	recovery	index	and	land	cover	rank-
ing).	We	assessed	the	contrast	between	the	maximum	and	minimum	
costs	 for	 each	 optimized	 scenario	 as	 cost.ratio	= log10

(

opt.costmax

opt.costmin

)

 
and	compared	it	to	that	of	the	true	scenarios	(log10

(

1000

1

)

 = 3)	by	the	
difference	3 − cost.ratio.	The	closer	this	difference	to	zero,	the	bet-
ter the recovery of the true contrast. The correlations of land cover 
rankings and the contrast difference were referred to as recovery 
indices.

We	ran	beta	GLMM	and	Linear	Mixed	Models	(LMM)	to	test	for	
the influence of specialisation level, dispersal capacities and land-
scape	 structure	 (9	 FRAGSTAT	metrics)	 on	 these	 recovery	 indices.	
When modelling the contrast, we used the lmer and MuMin R pack-
ages	for	the	LMM	and	model	selection,	respectively	(Bartoń,	2013).	
Finally,	we	tested	whether	the	recovery	indices	affected	the	predic-
tive	quality	(validation	R2)	of	the	optimized	cost	scenario,	running	a	
beta	GLMM.

3  |  RESULTS

3.1  |  Landscape sampling and demo- genetic 
simulations

124 out of the 1000 sampled landscapes met land cover propor-
tion	criteria,	 and	we	sampled	30	of	 them	along	 the	 two	 first	PCA	
axes	(accounting	for	61%	of	the	variance,	see	S1.7:	Data	S1 for more 
information).
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8 of 17  |     DANIEL et al.

After	200	generations	of	 simulation,	 the	detected	genetic	pat-
terns depended on the interaction between species dispersal ca-
pacities,	 their	 specialization	 profile	 and	 the	 spatial	 scale	 of	 the	
analysis	 (S1.8:	 Data	 S1).	 For	 the	 generalist	 species,	 the	 detected	
genetic structure was similar when analysing data at the sampling-  
and	effective-	dispersal-	scales.	For	a	dispersal	capacity	of	1000	cost	
units	(cu),	we	mostly	detected	an	IBR	pattern	(sampling-	scale:	83%,	
effective-	dispersal-	scale:	 77%).	 Beyond	 this	 dispersal	 distance,	 a	
null	pattern	was	detected	for	82%	of	the	simulations.	For	the	spe-
cialist	 species	 and	 the	 sampling-	scale	 dataset,	 47%	of	 the	 simula-
tions	resulted	in	a	pattern	of	IBD	at	a	small	dispersal	capacity	(1000	
cu).	Simulations	mainly	resulted	in	an	IBR	pattern	up	to	an	optimal	
scale of 20,000 cu before gradually shifting towards a null pattern 
beyond	that	scale	(S1.8:	Data	S1).	In	certain	regions	of	the	parameter	
space	(specialist	species	with	low	dispersal	capacities	in	particular),	
a	bimodal	distribution	of	FST values resulted in the identification of 
spurious	 IBD	 patterns	 (see	 S1.9:	Data	 S1	 for	more	 details).	 These	
spurious	patterns	explained	by	a	predominant	effect	of	genetic	drift	
on genetic differentiation at the sampling- spatial scale tended to be 
replaced by a null pattern in the effective- dispersal- scale dataset 
(only	7%	of	IBD	patterns	at	1000	cu;	S1.8.C:	Data	S1).

3.2  |  Optimization sensitivity and specificity to 
simulated genetic patterns

The	 sensitivity	 (i.e.,	 TP/(TP + FN))	 of	 RGA	 to	 the	 simulated	 ge-
netic	pattern	(IBR,	IBD,	or	null	pattern)	was	92%	for	the	effective-	
dispersal-	scale	 dataset	 and	 90%	 for	 the	 sampling-	scale	 dataset	
(S1.10.a:	Data	S1).	A	chi-	squared	test	(see	S1.10.b:	Data	S1)	showed	
that the lower sensitivity value of the sampling- scale dataset comes 
from a slightly higher number of false negatives when using the 
sampling- scale dataset and indicates that pruning the distance ma-
trices improved the identification of the main driver of genetic pat-
terns	(X2 = 5.3,	df = 1,	p = .02).

The	 specificity	 indices	 (i.e.,	 TN/(TN + FP))	 were	 88%	 and	 92%	
at	 the	 effective-	dispersal-		 and	 sampling-	scales,	 respectively	 (see	
S1.10.a:	Data	S1).	The	better	performance	of	the	sampling	scale	data-
set stems from a higher number of false positives at the effective- 
dispersal-	scale	 (X2 = 16.11,	 df = 1,	 p = 5.1e−5	 S1.10.b:	 Data	 S1).	We	
did	 not	 detect	 any	 significant	 effect	 of	 landscape,	 specialization	
level	and	dispersal	capacity	on	the	sensitivity	and	specificity.	Next,	
we	only	report	the	results	obtained	with	the	true-	positive	runs	(see	
Figure 2.ii.).

3.3  |  Assessment of RGA predictive performances

3.3.1  |  Effect	of	spatial	scale	on	predictive	
performance

In	the	effective-	dispersal-	scale	dataset,	49%	of	runs	associated	with	
a generalist scenario and a dispersal capacity of 1000 cu showed 

drift- driven genetic differentiation and had therefore undergone a 
pruning stage. Those with a specialist scenario were pruned in de-
creasing	proportion	with	increasing	dispersal	distances	(e.g.,	85%	of	
the	links	pruned	at	1000	cu,	65%	at	5000	cu,	50%	at	10,000	cu	and	
28%	at	15,000	cu).

The accuracy of FST predictions was significantly better when 
the model was calibrated with the effective- dispersal- scale 
dataset	 rather	 than	 with	 the	 sampling-	scale	 dataset	 (estimate	
for	 sampling-	scale ± SE = −1.5 ± 0.1,	 p- value <2e−16,	 see	 S1.11:	
Data S1).	However,	for	comparative	purposes,	we	focused	on	the	
runs	 optimized	 with	 the	 sampling-	scale	 dataset	 in	 subsequent	
analyses	(Figure 2.ii.).

3.3.2  |  Effect	of	dispersal	capacity,	habitat	
specialization	and	landscape	configuration	on	
predictive performance

The	 predictive	 performance	 of	 the	 IBR	 models	 (assessed	 by	 the	
validation R2)	 depended	on	dispersal	 capacities,	 as	 evidenced	by	 a	
quadratic	effect	of	dispersal	distances	in	cost	units,	and	was	affected	
by	their	 interaction	with	specialization	 levels	 (Table 2).	Genetic	dif-
ferentiation was slightly better predicted for specialist species than 
for generalist species, with optimum median values of validation R2 
reaching 0.48 at 15,000 and 20,000 cu for the specialist species, 
and	0.38	at	1000	cu	for	the	generalist	species	(Table 2, Figure 3a,b).	
For	both	species,	forest	aggregation	improved	the	predictive	perfor-
mance	(estimate = 4.7,	p = 1.4e−4),	whereas	grassland	aggregation	de-
creased	the	predictive	performance	(estimate = −2.8,	p = .01;	Table 2).

Overall,	 the	 strength	 of	 the	 IBR	 pattern,	 assessed	 by	 AIC	 dif-
ferences between Euclidean distance and cost distance models, 
reached an optimum at 20,000 cu for the specialist species and at 
1000	cu	for	the	generalist	species	(Figure 3c,d).	This	AIC	difference	

TA B L E  2 Results	of	statistical	models	explaining	the	predictive	
performance	of	optimized	IBR	models	from	the	sampling-	scale	
dataset	(assessed	using	the	validation	R2	index	as	the	response	
variable)	as	a	function	of	the	level	of	specialization,	the	dispersal	
capacity and two landscape structure metrics.

Response variable: Validation R2

Random effect: 1 | landscape

Fixed effect Estimate (SE)

Generalist	scenario −0.94	(0.09)	***

Dispersal capacity 6.4	(1.4)	***

Dispersal capacity2 −8.4	(1.0)	***

Forest	aggregation 4.7	(1.2)	***

Grassland	aggregation −2.8	(1.1)	*

Generalist	sc.	*	Disp. −39.4	(3.4)	***

Generalist	sc.	*	Disp.2 ns

Note:	Significance:	*p < .05;	**p < .01;	***p < .001.
Abbreviations:	Disp.,	dispersal	capacity;	ns,	non-	significant.
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    |  9 of 17DANIEL et al.

was affected by dispersal capacities in the same way as the valida-
tion R2	 (quadratic	 relationship,	 Figure 3b,c).	 Hence,	 both	 the	 pre-
dictive power and the IBR strength reached an optimum at greater 
dispersal distances for the specialist species than for the generalist 
species.	Next,	we	relay	the	results	obtained	at	the	optimal	dispersal	
capacity,	maximizing	the	intensity	of	the	IBR	signal,	for	the	specialist	
virtual	species	(Figure 2.ii.).

3.3.3  |  Transferability	of	cost	inferences

Transferring cost inference to compute cost distances among popu-
lations located in another landscape and predict their FST resulted in 
poorer	extrapolated	predictions	as	compared	with	interpolated	pre-
dictions	(GLMM	parameter	estimate	of	extrapolation	effect	on	vali-
dation R2 ± SE = −	2.27 ± 0.12,	p = 2e−16).	Overall,	interpolations	led	to	
predictions with a mean validation R2	of	.44,	whereas	extrapolations	
had a lower mean validation R2	of	.12	(Figure 4).	This	indicates	that	
resistance values informed predictions more reliably in the calibra-
tion landscape than in other landscapes.

In addition, large variations in predictive performances within 
and	 among	 landscapes	 (median	 validation	R2 ranging from 0 to .7 
across	 landscapes)	 suggested	 that	 certain	 landscape	 structures	

improved	RGA	performances	 (Figure 4).	Similarly,	the	variability	of	
R2 validation across the 10 population samples within the same land-
scape	(i.e.,	within-	box	variations	in	Figure 4)	also	depended	on	the	
landscape. This may be related to differences in the configuration of 
sampled	populations,	since	all	other	variables	remained	equal.	This	
suggests	that	RGA	performance	is	more	sensitive	to	sampling	design	
in certain landscapes.

Finally,	the	predictive	capacity	of	optimized	cost	scenarios	was	
much	better	than	that	of	true	cost	scenarios	(true	cost	scenario	es-
timate ± SE = −	0.78 ± 0.06,	p < 2e−16, Figure 5),	which	indicates	that	
the	optimization	consistently	resulted	in	overfitting.

3.4  |  The congruence between optimized and true 
cost scenarios

The	ranking	of	optimized	costs	for	land	cover	types	remained	almost	
identical for the four ecological profiles. Yet, this ranking differed 
from	that	expected	under	the	true	cost	scenarios	for	90%	of	the	op-
timized	runs	(Figure 6).	Forest	areas	were	correctly	assigned	the	low-
est	resistance	(i.e.,	rank	1)	in	about	50%	of	the	cases,	and	the	second	
lowest	otherwise.	Urban	and	grassland	areas	were	assigned	to	each	
of	the	four	ranks	in	equal	proportions,	while	agricultural	areas	were	

F I G U R E  3 Performance	criteria	as	
a function of dispersal capacities and 
specialization	levels.	Only	sampling-	scale	
datasets coming from true positive runs 
have	been	considered	here.	Each	box	
corresponds to a dispersal capacity level 
and includes the model performance 
criteria for 30 landscapes and their 10 
corresponding	population	samples.	(a,	b).	
Predictive accuracy as assessed by the 
validation R2	of	the	IBR	models	explaining	
the	genetic	distances	by	the	optimized	
cost-	distances	for	the	generalist	(a)	and	
specialist	species	(b).	The	higher	the	
validation R2, the better the predictive 
power	of	IBR	models.	(c,	d).	Strength	
of the IBR patterns as assessed by the 
delta	AIC	(dAIC)	between	the	Euclidean	
distance models and the IBR models for 
the	generalist	(c)	and	specialist	species	
(d).	A	positive	value	indicates	that	the	IBR	
model performs better than the Euclidean 
model.	The	higher	the	dAIC,	the	stronger	
the	IBR	signal.	As	the	data	were	filtered	to	
select only the true positive runs, the IBR 
models always have more support than 
the	Euclidean	models	(i.e.,	only	positive	
dAIC	are	shown	here).
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mostly	associated	with	 the	highest	 resistance	 rank	 (rank	4	 in	53%	
of	the	cases).	The	median	contrast	between	the	lowest	and	highest	
optimized	 cost	 values	was	 consistent	with	 the	 true	 scenarios	 (i.e.,	
log10(1000) = 3;	Figure 7a).	Moreover,	we	found	a	correlation	of	0.51	
between	the	land	cover	recovery	index	(i.e.,	the	Spearman	correla-
tion	between	true	and	optimized	scenarios)	and	the	contrast	recov-
ery	index	(i.e.,	3 − log10(optimized	contrast)).	This	suggested	that	the	
closer	the	optimized	classification	of	land	cover	types	is	to	the	true	
ranking,	 the	 closer	 the	 contrast	 in	 optimized	 values	 is	 to	 the	 true	
contrast.

The	models	 explaining	 the	 two	 recovery	 indices	 by	 landscape	
and	ecological	variables	only	evidenced	an	effect	of	the	specializa-
tion profile. The recovery of land cover ranks showed significantly 
poorer	performance	with	variant	1	(p < .001),	and	the	contrast	was	
poorly	 assessed	 with	 the	 generalist	 profile	 (p < .001).	 Finally,	 the	
ranking of the land cover types and the contrast values did not affect 
the validation R2	of	optimized	cost	scenarios.

4  |  DISCUSSION

We	demonstrated	that	the	RGA	approach	properly	detects	the	pro-
cess	shaping	genetic	 structure	 (i.e.,	 IBR)	and	 leads	 to	accurate	ge-
netic	differentiation	predictions.	However,	 the	optimized	costs	do	
not always reflect the actual permeability of landscape features to 
gene	flow.	We	provide	guidance	for	future	uses	of	RGA	in	landscape	

F I G U R E  4 Evaluation	of	the	interpolation	and	the	extrapolation	capacities	of	the	optimized	IBR	models	for	a	specialist	species.	Only	
the	true	positive	runs	and	dispersal	capacity	maximizing	the	intensity	of	the	IBR	signal	at	sampling-	scale	are	displayed	here.	The	figure	
shows the validation R2	of	IBR	models	as	a	function	of	the	model	calibration	landscapes.	Each	pair	of	light	and	dark	blue	boxes	represents	
runs	calibrated	on	the	same	landscape	(displayed	in	the	x	axis),	for	their	10	related	samples	of	populations.	Light	blue	bars	correspond	to	
interpolation results, showing validation R2	for	data	located	in	the	calibration	area,	whereas	dark	blue	bars	correspond	to	extrapolation	
results, showing validation R2 for data located on another landscape, different from the calibration area. Only 29 of the 30 landscapes are 
represented.	Indeed,	one	landscape	has	less	than	six	population	samples	at	the	selected	dispersal	distance	that	resulted	in	true	positive	runs.	
It	was	discarded	to	ensure	enough	runs	per	box	(here	6 ≤ n ≤ 10).	The	remaining	29	landscapes	are	ranked	in	descending	order	according	to	
the median value of the validation R2 associated with the interpolated models. L1, Landscape 1; and so on for the 29 landscapes.

F I G U R E  5 Comparison	of	predictive	performances	(assessed	
by the validation R2	of	IBR	models)	between	the	true	and	the	
optimized	cost	scenarios	for	a	specialist	species.	Only	the	true	
positive	runs	with	a	dispersal	capacity	maximizing	the	intensity	
of the IBR signal at the sampling- scale are shown. Each point 
corresponds	to	a	combination	of	landscape × population	sample.	
The points above the y = x line indicate better predictive power of 
the	models	using	optimized	cost	distances	as	compared	with	the	
models using the true cost distances used for simulating the data 
(i.e.,	the	true	scenarios),	reflecting	the	effect	of	overfitting	related	
to	the	optimization	process.
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genetics,	emphasizing	the	importance	of	the	set	of	population	pairs	
included in analyses and the use of cross- validation approaches pre-
venting overfitting.

4.1  |  The spatial scale of landscape influence on 
genetic structure depends on the topology of the 
effective dispersal network

The detection of an IBR pattern depended on the interaction be-
tween	species	specialization	level	and	dispersal	capacity.	These	two	
parameters affect the scale at which the genetic pattern emerges, and 

therefore	the	scale	to	consider	for	properly	detecting	it.	For	instance,	
in	 species	 experiencing	moderate	movement	 costs	 across	 the	 land-
scape	(called	‘generalist’	in	our	study),	IBR	patterns	can	only	emerge	
and be detected if this species covers short distances overall. In other 
words,	 the	 dispersal	 limitation	 responsible	 for	 IBR	 patterns	 (Orsini	
et al., 2013)	 is	 caused	by	 the	 interplay	of	movement	 costs	 and	dis-
persal	distances.	This	dual	cause	of	dispersal	limitation	also	explains	
why IBR patterns were detected for larger dispersal distances with 
the	‘specialist’	cost	profile.	This	result	is	consistent	with	other	studies	
that	have	demonstrated	the	impact	of	species	specialization	on	effec-
tive	dispersal	and	its	consequences	for	population	genetic	differentia-
tion	(Harris	&	Reed,	2002;	Khimoun	et	al.,	2016).	A	spatially	structured	

F I G U R E  6 Assignment	of	each	land	
cover type to the 4 ranks of relative 
resistance	in	the	optimized	cost	scenarios	
for	(a)	a	generalist	species,	(b)	a	specialist	
species,	(c,	d)	virtual	species	with	
ecological profiles derived from variations 
in	the	specialist	profile	(the	order	of	
land use resistance has been reversed as 
compared	with	the	specialist	scenario).	
Each bar represents the proportion of 
each land cover type assigned to every 
resistance rank, across the 30 landscapes 
and their 10 related population samples 
from the sampling- scale dataset. The 
‘Expected’	line	below	each	bar	plot	
corresponds to the land cover type 
expected	under	the	true	cost	scenario,	
represented by its colour. The recovery 
of the land cover ranking is accurate if 
the	expected	colours	match	the	dominant	
colours in the corresponding bar plot. 
(e)	Cost	values	assigned	to	every	land	
cover type in the four true cost scenarios 
considered. Each column of the table 
(i.e.,	each	true	cost	scenario)	has	to	be	
compared with the bar plot describing 
the	related	optimized	cost	scenario.	
For	example,	for	(b)	and	rank	2,	we	
expected	all	runs	to	be	grassland	(light	
green),	but	we	see	that	only	about	50%	
of the runs are grassland. The remaining 
50%	is	divided	into	about	20%	forest	
(dark	green),	20%	urban	(red)	and	10%	
agricultural	(orange).
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pattern	is	an	essential	pre-	requisite	for	optimizing	resistance	surfaces,	
as	subsequent	analyses	assume	its	presence.	Furthermore,	matching	
the	scale	at	which	both	drift	and	dispersal	shape	genetic	structure	(i.e.,	
the	effective-	dispersal	scale	here)	is	needed	to	align	inferences	with	
the	process	under	study	(Savary	et	al.,	2021a).	This	scale	also	depends	
on	species	dispersal	 abilities	 (cost	profile,	dispersal	distances),	 land-
scape and population configuration and defines the topology of the 
effective	dispersal	network	(Savary	et	al.,	2021a).

4.2  |  Pruning enhances RGA predictive 
performance under strong dispersal limitation

We	 demonstrated	 that	 RGA	 predictive	 performances	 were	 maxi-
mized	when	considering	the	subset	of	population	pairwise	connec-
tions matching the effective- dispersal- scale. In other words, better 
results	were	obtained	from	a	reduced	dataset.	 It	 is	expected	from	
theory that low gene flow will lead to isolated populations whose 
genetic differentiation is mainly driven by stochastic genetic drift 
(Hutchison	&	Templeton,	1999)	and	consequently	difficult	to	predict	
from their location on the landscape. Conversely, if gene flow is too 
strong, landscape constraints to dispersal may no longer be a limit-
ing	factor,	thus	making	their	effects	difficult	to	detect.	Accordingly,	
the effective dispersal scale to consider for selecting pairwise 

population connections allowing for the detection and assessment 
of landscape effects on gene flow depends on the degree to which 
gene	flow	is	restricted	(Savary	et	al.,	2021b).

Considering the above, we introduced a new approach to infer 
cost	values,	 involving	a	pruning	method	 (Dyer	&	Nason,	2004)	 re-
stricting the pairwise connections to those matching the effective- 
dispersal scale. We showed that pruning the distance matrices 
improved	RGA	performances	as	it	ensured	that	genetic	differentia-
tion was only modelled between populations supposed to be linked 
by	substantial	dispersal	and	gene	flow	(Dyer	&	Nason,	2004;	Keller	
et al., 2013; Murphy et al., 2010;	 Van	 Strien	 et	 al.,	2015).	 Daniel	
et	al.	(2023)	had	already	shown	a	similar	positive	effect	of	reducing	
the genetic dataset to capture better the spatial scale of effective 
dispersal using empirical data. These results confirm the conclusion 
of	previous	studies	(Savary	et	al.,	2021b;	Van	Strien,	2017),	suggest-
ing that considering the topology of dispersal networks might im-
prove	resistance	surface	optimization.

4.3  |  Sampling design and landscape structure 
affect optimization performance

We found that in each landscape, the predictive performances of 
the	 optimized	 cost	 values	 varied	 greatly	 across	 the	 10	 sets	 of	 40	

F I G U R E  7 (a)	Characterization	of	the	optimized	cost	scenarios	according	to	their	contrast	as	a	function	of	the	ecological	profile.	A	log	
contrast	of	3	(dotted	line)	represents	a	contrast	of	1000,	that	is,	the	contrast	of	the	simulated	cost	scenarios	and	that	we	would	expect	
for	the	optimized	scenarios.	A	log	contrast	greater	than	3	means	that	the	contrast	is	overestimated,	while	a	log	contrast	less	than	3	means	
that	the	contrast	is	underestimated.	(b)	Distribution	of	the	ranking	consistency	with	true	cost	scenarios	of	optimized	runs	(i.e.,	Spearman	
correlation	between	the	ranking	of	land	covers	in	the	optimized	cost	scenario	and	in	the	true	cost	scenario)	according	to	the	ecological	
profile. The closer the correlation value is to 1, the greater the agreement between the order of resistance of the land covers in the real 
scenarios	and	the	optimized	scenarios.	See	S1.12:	Data	S1	for	the	significance	of	Spearman	correlation	values	for	land	cover	ranking	in	
optimized	cost	scenarios.
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sampled populations, out of 80 simulated. This suggests a significant 
influence of the population sampling design on the inference out-
come, potentially related to the capacity of this sampling to properly 
capture the dispersal network. Indeed, the spatial distribution of the 
whole set of populations determines the dispersal network shap-
ing	genetic	patterns	(McRae,	2006;	Van	Strien,	2017).	Accordingly,	
when some populations are absent from the sampled set, landscape 
genetic analyses cannot reliably capture the spatial drivers of genetic 
structure	because	part	of	the	spatial	signal	 is	missing	(Naujokaitis-	
Lewis et al., 2013;	Van	Strien,	2017).	This	was	further	supported	by	
our finding of a significant relationship between the validation R2 
and the aggregation of forest areas, a factor that influences the spa-
tial	distribution	of	the	sampled	populations.	Van	Strien	et	al.	(2015)	
showed that population topology was tightly linked to habitat dis-
tribution, and our results suggest that some landscape configura-
tions and compositions might be more resilient to partial sampling. 
Interestingly,	RGA	performances	seemed	to	be	enhanced	in	coarse-	
grained	and	aggregated	landscapes.	One	explanation	could	be	that	
the topology of the dispersal network is easier to capture when land 
cover patches are aggregated, as sampling each aggregate reduces 
the risk of missing central populations in the dispersal network.

4.4  |  Optimization is not causation: Good 
predictive abilities at the expense of accurate causal 
interpretation

Many	studies	have	used	RGA	cost	inferences	to	rank	landscape	fea-
tures	according	to	their	resistance	to	gene	flow	(Antunes	et	al.,	2023; 
Khimoun	 et	 al.,	 2017; Mapelli et al., 2020; Martin et al., 2023; 
Mulvaney et al., 2021; Reyne et al., 2023;	Ruiz-	Lopez	et	al.,	2016).	
These interpretations often served as the basis for a mechanistic un-
derstanding of the landscape effect on dispersal. However, we evi-
denced	a	frequent	mismatch	between	the	optimized	and	true	cost	
rankings	across	 land	cover	 types.	Only	10%	of	 the	optimized	 runs	
showed a land cover cost ranking in line with the simulated reality. 
Surprisingly,	 the	 low	accuracy	of	cost	assignments	 remained	 fairly	
identical, regardless of the type of true cost scenario shaping genetic 
structure. Moreover, this cost ranking often seemed to reflect land-
scape composition rather than its actual permeability to gene flow. 
For	 instance,	we	found	that	the	 least	frequent	 land	cover	types	 in	
the	landscape,	that	is,	grassland	and	urban	areas,	were	equally	likely	
to be assigned any one of the 4 resistance ranks. They probably 
served	as	adjustment	variables	 in	the	optimization	process,	mainly	
driven by model goodness- of- fit.

Besides,	 the	 more	 different	 the	 optimized	 ranking	 from	 the	
true	 ranking,	 the	 larger	 the	overestimation	of	 the	optimized	con-
trast relative to the true contrast. Therefore, our results call for 
great caution when interpreting the resistance of landscape fea-
tures.	 Similarly,	without	 discussing	 the	 issues	 in	 detail,	 Peterman	
et	al.	(2019)	and	Beninde	et	al.	(2023)	pointed	out	possible	difficul-
ties	in	deriving	reliable	cost	values	with	the	RGA	framework.	The	
overfitting	effect	 inherent	to	the	optimization	process	 (Peterman	

et al., 2019; Winiarski et al., 2020; Yates et al., 2018)	was	men-
tioned	as	a	possible	cause	of	mismatch.	Given	that	optimized	cost	
scenarios had better predictive performance than the true cost 
scenarios,	 we	 can	 reasonably	 expect	 that	 overfitting	 in	 the	 cali-
bration of cost values leads to a strong dependence on landscape 
configuration.

Furthermore,	 the	 dependence	 of	 the	 inference	 on	 the	 topol-
ogy	of	 the	dispersal	network	might	exacerbate	 the	adverse	effect	
of overfitting on inference accuracy. Indeed, the good predictive 
accuracy	of	RGA	models	 during	 cost	 calibration,	 even	 for	 popula-
tion	pairs	excluded	from	the	calibration	dataset,	dropped	when	the	
models	 were	 extrapolated	 to	 population	 pairs	 located	 in	 another	
landscape.	As	cost	inference	is	highly	dependent	on	landscape	com-
position	and	population	topology	due	to	overfitting,	optimized	cost	
scenarios are unlikely to provide reliable parameters for predicting 
the genetic structure of populations from another landscape.

Despite the above- mentioned limitations, our results empha-
size	 the	 RGA's	 good	 predictive	 performances,	 thereby	 reflecting	
the	common	duality	between	explanatory	and	predictive	modelling	
(Shmueli,	2010; Yates et al., 2018).	Based	on	a	data-	driven	process	
and	an	optimization	 algorithm,	RGA	provides	 accurate	predictions	
for genetic differentiation, which could then lead to a better under-
standing of the effect of population topology or landscape config-
uration on genetic structure. However, the causal link between the 
cost values obtained in the inference and the landscape effect on 
gene flow is potentially dubious. This echoes the fact that predic-
tive	models,	such	as	RGA,	rarely	provide	insight	into	the	underlying	
causal	mechanism	(Shmueli,	2010).

Some	 very	 promising	 landscape	 genetics	 approaches,	 for	 ex-
ample, using deep and machine learning, have recently been imple-
mented	to	predict	genetic	connectivity.	Kittlein	et	al.	(2022)	showed	
that convolutional neural networks could provide highly accurate 
predictions for small- scale genetic differentiation and diversity, 
while	Pless	et	al.	(2021)	conducted	a	least-	cost	transect	analysis	to	
predict gene flow for Aedes aegypti	vector	regulation.	As	soon	as	the	
common limitations of data- driven approaches are acknowledged, 
predictive	models	could	be	of	great	interest	to	capture	complex	pat-
terns and relationships, otherwise difficult to predict using theory- 
based	 models	 (Lucas,	 2020; Murphy et al., 2010;	 Shmueli,	 2010; 
Vanhove & Launey, 2023).

4.5  |  The use of RGA in landscape genetics: 
Conditions and prospects

We	outline	below	a	set	of	guidelines	regarding	the	use	of	RGA	and	
list them in the order in which they should be considered when de-
signing a landscape genetic study.

First,	 we	 call	 for	 preliminary	 assessments	 of	 spatial	 genetic	
structuring	before	the	use	of	optimization	approaches	(e.g.,	through	
genetic	clustering	analyses	or	the	study	of	IBD	patterns).	When	the	
genetic structuring is weak, great care should be taken when inter-
preting	the	optimization	results.
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Second,	one	needs	to	capture	the	spatial	scale	of	the	observed	
genetic	signal	properly	(Savary	et	al.,	2021a).	To	this	end,	we	recom-
mend performing inferences at multiple spatial scales, either using 
Moran's	Eigenvector	Maps	(Dray	et	al.,	2006;	Galpern	et	al.,	2014)	
or	through	iterative	analyses	with	multiple	pruning	thresholds	(Van	
Strien	et	al.,	2015),	and	selecting	the	one	that	leads	to	the	best	pre-
dictive	performance	of	the	optimized	IBR	model.

Third,	the	reliability	of	RGA	inferences	may	be	improved	by	fa-
vouring	exhaustive	sampling	designs	to	correctly	model	topological	
effects	and	limit	their	confounding	effect	(Van	Strien,	2017).	If	this	
is	too	costly,	preliminary	sensitivity	analyses,	for	example,	based	on	
genetic simulations, could determine the ideal set of populations to 
sample	in	the	focal	landscape	(Naujokaitis-	Lewis	et	al.,	2013).	After	
empirical	 data	 have	 been	 sampled	 and	 used	 for	 optimization,	 the	
stability	of	the	optimized	resistance	surface	when	refitting	it	with	a	
subset of the populations can also be assessed with a new bootstrap 
procedure	implemented	in	RGA	(Peterman	et	al.,	2019).

Fourth,	attention	must	be	paid	 to	 the	structure	of	 the	studied	
landscape and the thematic resolution. When some land cover types 
are poorly represented, or for some land cover configurations, the 
sensitivity	 of	 RGA	 inferences	 to	 landscape	 structure	may	 prevent	
interpreting	the	optimized	cost	values.	In	that	case,	highly	unstable	
cost values and rankings point towards unreliable inferences. Here 
too, simulating gene flow in the focal landscape and assessing the 
algorithm's ability to capture the correct cost scenario might prevent 
spurious conclusions.

Fifth,	 it	 is	strongly	recommended	to	limit	the	overfitting	of	the	
optimized	model	and	ensure	that	it	does	not	fit	the	noise	in	the	data	
rather	than	the	targeted	signal	(Lucas,	2020; Peterman et al., 2019; 
Shmueli,	2010; Winiarski et al., 2020).	To	do	this,	out-	of-	sample	per-
formance can be assessed, as in the present and a few previous stud-
ies	(see	Daniel	et	al.,	2023;	Van	Strien	et	al.,	2014).	This	also	provides	
an	assessment	of	the	transferability	of	the	inferences.	Additionally,	
when	 sufficient	 data	 is	 available	 to	 perform	 independent	 K-	fold	
cross- validation, accounting for spatial autocorrelation for defin-
ing	 the	 training	and	 test	datasets	 (i.e.,	 spatial	 cross-	validation)	can	
lead	to	more	accurate	extrapolated	predictions	than	random	cross-	
validation	(Palm	et	al.,	2023).

Finally,	alternative	methodological	choices	potentially	improving	
the	inference	of	landscape	resistance	remain	to	be	explored	in	the	
context	of	 landscape	genetic	optimizations.	 For	 instance,	Beninde	
et	al.	(2023)	called	for	the	adoption	of	eigenvector-	based	estimates	
of pairwise genetic distances to reliably infer the effect of landscape 
features on gene flow. Moreover, using individual- based instead of 
population- based genetic indices or resistance distances instead of 
cost distances to perform similar analyses could provide insights into 
the	use	of	RGA	in	a	wider	range	of	contexts.	However,	these	choices	
should not fundamentally change our conclusions, as they are par-
tially	 supported	 by	 other	 studies	 using	 other	 ecological	 (Beninde	
et al., 2023; Peterman et al., 2019)	 or	 genetic	 distances	 (Beninde	
et al., 2023; Winiarski et al., 2020).	 Furthermore,	 reproducing	our	
analyses	 for	 continuous	 landscape	 representations	 (Peterman	
et al., 2019; Vanhove & Launey, 2023)	or	using	more	recent	gradient	

algorithms	(such	as	the	Radish	package,	Peterman	&	Pope,	2020)	or	
gradient	forests	(Vanhove	&	Launey,	2023)	could	broaden	its	conclu-
sions in a useful way.

Although	 our	 guidelines	 and	 future	 tests	 of	 these	 approaches	
might	improve	the	reliability	of	optimization	results,	they	cannot	lead	
to any improvements in the presence of significant noise in the data 
or	when	a	key	spatial	process	or	covariate	is	missed	(Lucas,	2020).	If	
such	a	covariate	 is	of	great	 importance,	 including	 it	 in	explanatory	
models	 is	 likely	 to	 improve	 their	 performance	 (Keller	 et	 al.,	2013; 
Savary	et	al.,	2021a;	Van	Strien,	2017;	Van	Strien	et	al.,	2014).

In	conclusion,	the	strength	of	the	RGA	workflow	is	its	excellent	
ability to predict genetic distances, although its lack of transferabil-
ity limits the prospective use of its inference to predict the impact of 
landscape change on gene flow. This characteristic can still be very 
useful for operational studies in conservation and population genet-
ics	(Van	Strien	et	al.,	2014).	It	may	even	be	interesting	to	use	the	ge-
netic	distances	predicted	by	RGA	to	inform	operational	models.	For	
example,	we	could	imagine	using	RGA's	cost	inference	to	weight	the	
links of habitat network models and derive relevant functional con-
nectivity metrics, design dispersal corridors, or identify restoration 
areas	(Foltête	et	al.,	2014).

AUTHOR CONTRIBUTIONS
A.D.,	P.S.,	A.K.	and	S.G.	designed	 the	project.	P.S.	 and	G.V.	devel-
oped	the	R	functions	 for	 the	optimization	workflow.	P.S.	and	A.D.	
designed	the	R	functions	for	the	genetic	simulations.	A.D.	performed	
the analysis and wrote the manuscript, with significant contributions 
and remarks from all co- authors.

ACKNOWLEDG EMENTS
We thank Julien Pergaud for his help with the computer program-
ming	 aspect.	 Simulations	 and	 optimization	 analyses	 were	 carried	
out	on	the	computing	cluster	of	the	University	of	Bourgogne,	with	
Henri	Gaulard	 as	our	 cluster	 correspondent.	We	are	 very	 grateful	
to Erin Landguth and two anonymous reviewers for the relevance 
of their comments, which notably improved this manuscript. This 
work	is	supported	by	the	French	Ministère	de	l’Enseignement	supé-
rieur,	de	la	Recherche	et	de	l’Innovation,	and	is	part	of	the	CANON		
project	 steered	 by	 Stéphane	 Garnier	 and	 funded	 by	 the	 French	
Investissements	 d’Avenir	 program,	 project	 ISITE-BFC	 (contract	
ANR-15-IDEX-0003).

CONFLIC T OF INTERE S T
The authors declare no conflict of interest.

DATA AVAIL ABILIT Y S TATEMENT
Data and code are available online: https://	doi.	org/	10.	5281/	zenodo.	
8180746.	 The	 modified	 version	 of	 ResistanceGA	 package	 is	 also	
available online: https:// gitlab. com/ psava ry3/ rga.

ORCID
Alexandrine Daniel  https://orcid.org/0000-0003-3379-281X 
Paul Savary  https://orcid.org/0000-0002-2104-9941 

 17550998, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/1755-0998.14024 by C

ochrane France, W
iley O

nline L
ibrary on [18/10/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.5281/zenodo.8180746
https://doi.org/10.5281/zenodo.8180746
https://gitlab.com/psavary3/rga
https://orcid.org/0000-0003-3379-281X
https://orcid.org/0000-0003-3379-281X
https://orcid.org/0000-0002-2104-9941
https://orcid.org/0000-0002-2104-9941


    |  15 of 17DANIEL et al.

Jean- Christophe Foltête  https://orcid.
org/0000-0003-4864-5660 
Bruno Faivre  https://orcid.org/0000-0002-2493-8381 

R E FE R E N C E S
Adamack,	A.	T.,	&	Gruber,	B.	(2014).	PopGenReport:	Simplifying	basic	pop-

ulation genetic analyses in R. Methods in Ecology and Evolution, 5, 
384–387. https://	doi.	org/	10.	1111/	2041-		210X.	12158	

Antunes,	B.,	Figueiredo-	Vázquez,	C.,	Dudek,	K.,	Liana,	M.,	Pabijan,	M.,	
Zieliński,	P.,	&	Babik,	W.	 (2023).	Landscape	genetics	 reveals	con-
trasting	 patterns	 of	 connectivity	 in	 two	 newt	 species	 (Lissotriton 
montandoni and L. vulgaris).	 Molecular Ecology, 32, 4515–4530. 
https://	doi.	org/	10.	1111/	mec.	16543	

Atzeni,	 L.,	 Wang,	 J.,	 Riordan,	 P.,	 Shi,	 K.,	 &	 Cushman,	 S.	 A.	 (2023).	
Landscape resistance to gene flow in a snow leopard population 
from	Qilianshan	 National	 Park,	 Gansu,	 China.	 Landscape Ecology, 
38,	1847–1868.	https://	doi.	org/	10.	1007/	s1098	0-		023-		01660	-		8

Balkenhol,	 N.,	 Gugerli,	 F.,	 Cushman,	 S.	 A.,	 Waits,	 L.	 P.,	 Coulon,	 A.,	
Arntzen,	 J.	W.,	Holderegger,	R.,	Wagner,	H.	H.,	&	Participants	of	
the	Landscape	Genetics	Research	Agenda	Workshop	2007.	(2009).	
Identifying future research needs in landscape genetics: Where 
to from here? Landscape Ecology, 24,	455–463.	https:// doi. org/ 10. 
1007/	s1098	0-		009-		9334-		z

Balkenhol,	N.,	Schwartz,	M.	K.,	Inman,	R.	M.,	Copeland,	J.	P.,	Squires,	J.	
S.,	Anderson,	N.	J.,	&	Waits,	L.	P.	(2020).	Landscape	genetics	of	wol-
verines	 (Gulo gulo):	 Scale-	dependent	 effects	 of	 bioclimatic,	 topo-
graphic, and anthropogenic variables. Journal of Mammalogy, 101, 
790–803. https:// doi. org/ 10. 1093/ jmamm al/ gyaa037

Bartoń,	K.	(2013).	MuMIn: Multi- model inference, R package version, 1.10.0.
Beninde,	 J.,	Wittische,	 J.,	&	Frantz,	A.	C.	 (2023).	Quantifying	uncer-

tainty in inferences of landscape genetic resistance due to choice 
of individual- based genetic distance metric. Molecular Ecology 
Resources, 24, e13831. https:// doi. org/ 10. 1111/ 1755-  0998. 
13831 

Brooks,	 M.,	 Bolker,	 B.,	 Kristensen,	 K.,	 Mächler,	 M.,	 Magnusson,	 A.,	
Skaug,	H.,	Nielsen,	A.,	Berg,	C.,	&	van	Benthem,	K.	 (2017).	glm-
mTMB: Generalized linear mixed models using Template Model 
Builder.

Correa	Ayram,	C.	A.,	Mendoza,	M.	E.,	Etter,	A.,	&	Salicrup,	D.	R.	P.	(2016).	
Habitat	connectivity	 in	biodiversity	conservation:	A	review	of	re-
cent studies and applications. Progress in Physical Geography: Earth 
and Environment, 40, 7–37. https:// doi. org/ 10. 1177/ 03091 33315 
598713

Crispo,	E.,	Bentzen,	P.,	Reznick,	D.	N.,	Kinnison,	M.	T.,	&	Hendry,	A.	P.	
(2006).	The	 relative	 influence	of	natural	 selection	and	geography	
on gene flow in guppies. Molecular Ecology, 15,	49–62.	https:// doi. 
org/	10.	1111/j.	1365-		294X.	2005.	02764.	x

Crooks,	K.	R.,	Burdett,	C.	L.,	Theobald,	D.	M.,	King,	S.	R.	B.,	Di	Marco,	
M.,	 Rondinini,	 C.,	 &	 Boitani,	 L.	 (2017).	 Quantification	 of	 habi-
tat	 fragmentation	 reveals	 extinction	 risk	 in	 terrestrial	 mammals.	
Proceedings of the National Academy of Sciences of the United States 
of America, 114,	 7635–7640.	 https:// doi. org/ 10. 1073/ pnas. 17057 
69114	

Daniel,	A.,	Savary,	P.,	Foltête,	J.,	Khimoun,	A.,	Faivre,	B.,	Ollivier,	A.,	Éraud,	
C.,	Moal,	H.,	Vuidel,	G.,	&	Garnier,	S.	(2023).	Validating	graph-	based	
connectivity models with independent presence–absence and ge-
netic data sets. Conservation Biology, 37, e14047. https:// doi. org/ 
10. 1111/ cobi. 14047 

Diniz,	M.	F.,	Cushman,	S.	A.,	Machado,	R.	B.,	&	De	Marco	Júnior,	P.	(2020).	
Landscape connectivity modeling from the perspective of animal 
dispersal. Landscape Ecology, 35, 41–58. https:// doi. org/ 10. 1007/ 
s1098 0-  019-  00935 -  3

Dray,	S.,	 Legendre,	P.,	&	Peres-	Neto,	P.	R.	 (2006).	Spatial	modelling:	A	
comprehensive framework for principal coordinate analysis of 

neighbour	matrices	 (PCNM).	 Ecological Modelling, 196(3–4),	 483–
493. https://	doi.	org/	10.	1016/j.	ecolm	odel.	2006.	02.	015

Dutta,	T.,	Sharma,	S.,	Meyer,	N.	F.	V.,	Larroque,	J.,	&	Balkenhol,	N.	(2022).	
An	 overview	 of	 computational	 tools	 for	 preparing,	 constructing	
and using resistance surfaces in connectivity research. Landscape 
Ecology, 37, 2195–2224. https:// doi. org/ 10. 1007/ s1098 0-  022-  
01469	-		x

Dyer,	R.	 J.,	&	Nason,	 J.	D.	 (2004).	Population	graphs:	The	graph	 theo-
retic shape of genetic structure. Molecular Ecology, 13, 1713–1727. 
https://	doi.	org/	10.	1111/j.	1365-		294X.	2004.	02177.	x

Foltête,	 J.-	C.,	 Girardet,	 X.,	 &	 Clauzel,	 C.	 (2014).	 A	 methodological	
framework for the use of landscape graphs in land- use planning. 
Landscape and Urban Planning, 124, 140–150. https:// doi. org/ 10. 
1016/j.	landu	rbplan.	2013.	12.	012

Frankham,	 R.	 (2015).	 Genetic	 rescue	 of	 small	 inbred	 populations:	
Meta- analysis reveals large and consistent benefits of gene flow. 
Molecular Ecology, 24,	 2610–2618.	 https:// doi. org/ 10. 1111/ mec. 
13139 

Galpern,	 P.,	 Peres-	Neto,	 P.	 R.,	 Polfus,	 J.,	 &	 Manseau,	 M.	 (2014).	
MEMGENE:	 Spatial	 pattern	 detection	 in	 genetic	 distance	 data.	
Methods in Ecology and Evolution, 5(10),	1116–1120.	https:// doi. org/ 
10.	1111/	2041-	210x.	12240	

Harris,	R.	J.,	&	Reed,	J.	M.	(2002).	Behavioral	barriers	to	non-	migratory	
movements of birds. Annales Zoologici Fennici, 39, 275–290.

Hutchison,	D.	W.,	&	Templeton,	A.	R.	(1999).	Correlation	of	pairwise	ge-
netic and geographic distance measures: Inferring the relative influ-
ences of gene flow and drift on the distribution of genetic variabil-
ity. Evolution, 53(6),	1898.	https://	doi.	org/	10.	2307/	2640449

Inglada,	J.,	Vincent,	A.,	&	Thierion,	V.	(2018).	Theia OSO Land Cover Map 
2018. https://	doi.	org/	10.	5281/	zenodo.	3613415

Keeley,	A.	T.	H.,	Beier,	P.,	&	Gagnon,	J.	W.	(2016).	Estimating	landscape	
resistance from habitat suitability: Effects of data source and non-
linearities. Landscape Ecology, 31,	 2151–2162.	 https:// doi. org/ 10. 
1007/	s1098	0-		016-		0387-		5

Keller,	D.,	Holderegger,	R.,	&	Van	Strien,	M.	J.	(2013).	Spatial	scale	affects	
landscape genetic analysis of a wetland grasshopper. Molecular 
Ecology, 22,	2467–2482.	https://	doi.	org/	10.	1111/	mec.	12265	

Khimoun,	A.,	Eraud,	C.,	Ollivier,	A.,	Arnoux,	E.,	Rocheteau,	V.,	Bely,	M.,	
Lefol,	 E.,	Delpuech,	M.,	Carpentier,	M.-	L.,	 Leblond,	G.,	 Levesque,	
A.,	Charbonnel,	A.,	Faivre,	B.,	&	Garnier,	S.	(2016).	Habitat	special-
ization	predicts	genetic	response	to	fragmentation	in	tropical	birds.	
Molecular Ecology, 25, 3831–3844. https:// doi. org/ 10. 1111/ mec. 
13733 

Khimoun,	A.,	Peterman,	W.,	Eraud,	C.,	Faivre,	B.,	Navarro,	N.,	&	Garnier,	
S.	 (2017).	Landscape	genetic	analyses	reveal	 fine-	scale	effects	of	
forest fragmentation in an insular tropical bird. Molecular Ecology, 
26(19),	4906–4919.	https:// doi. org/ 10. 1111/ mec. 14233 

Kittlein,	M.	 J.,	Mora,	M.	 S.,	Mapelli,	 F.	 J.,	Austrich,	A.,	&	Gaggiotti,	O.	
E.	 (2022).	Deep	 learning	and	 satellite	 imagery	predict	genetic	di-
versity and differentiation. Methods in Ecology and Evolution, 13, 
711–721. https://	doi.	org/	10.	1111/	2041-		210X.	13775	

Lucas,	T.	C.	D.	(2020).	A	translucent	box:	Interpretable	machine	learning	
in ecology. Ecological Monographs, 90, e01422. https:// doi. org/ 10. 
1002/ ecm. 1422

Manel,	 S.,	 &	Holderegger,	 R.	 (2013).	 Ten	 years	 of	 landscape	 genetics.	
Trends in Ecology and Evolution, 28,	 614–621.	 https:// doi. org/ 10. 
1016/j.	tree.	2013.	05.	012

Mapelli,	F.	J.,	Boston,	E.	S.	M.,	Fameli,	A.,	Gómez	Fernández,	M.	J.,	Kittlein,	
M.	J.,	&	Mirol,	P.	M.	(2020).	Fragmenting	fragments:	Landscape	ge-
netics	 of	 a	 subterranean	 rodent	 (Mammalia,	 Ctenomyidae)	 living	
in a human- impacted wetland. Landscape Ecology, 35,	1089–1106.	
https://	doi.	org/	10.	1007/	s1098	0-		020-		01001	-		z

Martin,	 S.	 A.,	 Peterman,	 W.	 E.,	 Lipps,	 G.	 J.,	 &	 Gibbs,	 H.	 L.	 (2023).	
Inferring population connectivity in eastern massasauga rattle-
snakes	 (Sistrurus catenatus)	 using	 landscape	 genetics.	 Ecological 
Applications, 33, e2793. https:// doi. org/ 10. 1002/ eap. 2793

 17550998, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/1755-0998.14024 by C

ochrane France, W
iley O

nline L
ibrary on [18/10/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://orcid.org/0000-0003-4864-5660
https://orcid.org/0000-0003-4864-5660
https://orcid.org/0000-0003-4864-5660
https://orcid.org/0000-0002-2493-8381
https://orcid.org/0000-0002-2493-8381
https://doi.org/10.1111/2041-210X.12158
https://doi.org/10.1111/mec.16543
https://doi.org/10.1007/s10980-023-01660-8
https://doi.org/10.1007/s10980-009-9334-z
https://doi.org/10.1007/s10980-009-9334-z
https://doi.org/10.1093/jmammal/gyaa037
https://doi.org/10.1111/1755-0998.13831
https://doi.org/10.1111/1755-0998.13831
https://doi.org/10.1177/0309133315598713
https://doi.org/10.1177/0309133315598713
https://doi.org/10.1111/j.1365-294X.2005.02764.x
https://doi.org/10.1111/j.1365-294X.2005.02764.x
https://doi.org/10.1073/pnas.1705769114
https://doi.org/10.1073/pnas.1705769114
https://doi.org/10.1111/cobi.14047
https://doi.org/10.1111/cobi.14047
https://doi.org/10.1007/s10980-019-00935-3
https://doi.org/10.1007/s10980-019-00935-3
https://doi.org/10.1016/j.ecolmodel.2006.02.015
https://doi.org/10.1007/s10980-022-01469-x
https://doi.org/10.1007/s10980-022-01469-x
https://doi.org/10.1111/j.1365-294X.2004.02177.x
https://doi.org/10.1016/j.landurbplan.2013.12.012
https://doi.org/10.1016/j.landurbplan.2013.12.012
https://doi.org/10.1111/mec.13139
https://doi.org/10.1111/mec.13139
https://doi.org/10.1111/2041-210x.12240
https://doi.org/10.1111/2041-210x.12240
https://doi.org/10.2307/2640449
https://doi.org/10.5281/zenodo.3613415
https://doi.org/10.1007/s10980-016-0387-5
https://doi.org/10.1007/s10980-016-0387-5
https://doi.org/10.1111/mec.12265
https://doi.org/10.1111/mec.13733
https://doi.org/10.1111/mec.13733
https://doi.org/10.1111/mec.14233
https://doi.org/10.1111/2041-210X.13775
https://doi.org/10.1002/ecm.1422
https://doi.org/10.1002/ecm.1422
https://doi.org/10.1016/j.tree.2013.05.012
https://doi.org/10.1016/j.tree.2013.05.012
https://doi.org/10.1007/s10980-020-01001-z
https://doi.org/10.1002/eap.2793


16 of 17  |     DANIEL et al.

McCluskey,	 E.	 M.,	 Lulla,	 V.,	 Peterman,	W.	 E.,	 Stryszowska-	Hill,	 K.	M.,	
Denton,	R.	D.,	Fries,	A.	C.,	 Langen,	T.	A.,	 Johnson,	G.,	Mockford,	
S.	W.,	&	Gonser,	R.	A.	(2022).	Linking	genetic	structure,	landscape	
genetics, and species distribution modeling for regional conserva-
tion of a threatened freshwater turtle. Landscape Ecology, 37, 1017–
1034. https:// doi. org/ 10. 1007/ s1098 0-  022-  01420 -  0

McRae,	B.	H.	 (2006).	 Isolation	by	resistance.	Evolution, 60,	1551–1561.	
https://	doi.	org/	10.	1111/j.	0014-		3820.	2006.	tb005	00.	x

Mulvaney,	 J.	M.,	Matthee,	C.	A.,	&	Cherry,	M.	 I.	 (2021).	 Species–land-
scape interactions drive divergent population trajectories in four 
forest-	dependent	 Afromontane	 forest	 songbird	 species	 within	 a	
biodiversity	hotspot	 in	South	Africa.	Evolutionary Applications, 14, 
2680–2697.	https://	doi.	org/	10.	1111/	eva.	13306	

Murphy,	M.	A.,	Dezzani,	R.,	Pilliod,	D.	S.,	&	Storfer,	A.	(2010).	Landscape	
genetics of high mountain frog metapopulations. Molecular 
Ecology, 19,	 3634–3649.	 https://	doi.	org/	10.	1111/j.	1365-		294X.	
2010.	04723.	x

Naujokaitis-	Lewis,	I.	R.,	Rico,	Y.,	Lovell,	J.,	Fortin,	M.-	J.,	&	Murphy,	M.	A.	
(2013).	Implications	of	incomplete	networks	on	estimation	of	land-
scape genetic connectivity. Conservation Genetics, 14, 287–298. 
https:// doi. org/ 10. 1007/ s1059 2-  012-  0385-  3

Newmark,	W.	D.,	Halley,	 J.	M.,	 Beier,	 P.,	 Cushman,	 S.	 A.,	McNeally,	 P.	
B.,	&	Soulé,	M.	E.	(2023).	Enhanced	regional	connectivity	between	
western	north	American	national	parks	will	increase	persistence	of	
mammal species diversity. Scientific Reports, 13, 474. https:// doi. 
org/	10.	1038/	s4159	8-		022-		26428	-		z

Orsini,	 L.,	 Vanoverbeke,	 J.,	 Swillen,	 I.,	 Mergeay,	 J.,	 &	 De	 Meester,	 L.	
(2013).	 Drivers	 of	 population	 genetic	 differentiation	 in	 the	 wild:	
Isolation by dispersal limitation, isolation by adaptation and isola-
tion	by	colonization.	Molecular Ecology, 22, 5983–5999. https:// doi. 
org/	10.	1111/	mec.	12561	

Palm,	E.	C.,	Landguth,	E.	L.,	Holden,	Z.	A.,	Day,	C.	C.,	Lamb,	C.	T.,	Frame,	
P.	F.,	Morehouse,	A.	T.,	Mowat,	G.,	Proctor,	M.	F.,	Sawaya,	M.	A.,	
Stenhouse,	G.,	Whittington,	J.,	&	Zeller,	K.	A.	(2023).	Corridor-	based	
approach with spatial cross- validation reveals scale- dependent ef-
fects of geographic distance, human footprint and canopy cover on 
grizzly	bear	genetic	connectivity.	Molecular Ecology, 32, 5211–5227. 
https:// doi. org/ 10. 1111/ mec. 17098 

Paris,	G.,	Robilliard,	D.,	&	Fonlupt,	C.	(2004).	Exploring	overfitting	in	ge-
netic	 programming.	 In	P.	 Liardet,	 P.	Collet,	C.	 Fonlupt,	 E.	 Lutton,	
&	M.	Schoenauer	(Eds.),	Artificial Evolution	(pp.	267–277).	Springer.

Peterman,	W.	E.	(2018).	ResistanceGA:	An	R	package	for	the	optimiza-
tion of resistance surfaces using genetic algorithms. Methods in 
Ecology and Evolution, 9,	1638–1647.	https:// doi. org/ 10. 1111/ 2041-  
210X.	12984	

Peterman,	W.	E.,	&	Pope,	N.	 S.	 (2020).	 The	use	 and	misuse	of	 regres-
sion models in landscape genetic analyses. Molecular Ecology, 30(1),	
37–47. https://	doi.	org/	10.	1111/	mec.	15716	

Peterman,	W.	E.,	Winiarski,	K.	J.,	Moore,	C.	E.,	Carvalho,	C.	d.	S.,	Gilbert,	
A.	 L.,	&	 Spear,	 S.	 F.	 (2019).	A	 comparison	of	 popular	 approaches	
to	optimize	 landscape	 resistance	 surfaces.	Landscape Ecology, 34, 
2197–2208. https:// doi. org/ 10. 1007/ s1098 0-  019-  00870 -  3

Pless,	E.,	Saarman,	N.	P.,	Powell,	J.	R.,	Caccone,	A.,	&	Amatulli,	G.	(2021).	
A	 machine-	learning	 approach	 to	 map	 landscape	 connectivity	 in	
Aedes aegypti with genetic and environmental data. Proceedings of 
the National Academy of Sciences of the United States of America, 118, 
e2003201118. https:// doi. org/ 10. 1073/ pnas. 20032 01118 

Reyne,	M.	 I.,	Dicks,	K.,	Flanagan,	J.,	Nolan,	P.,	Twining,	J.	P.,	Aubry,	A.,	
Emmerson,	M.,	Marnell,	F.,	Helyar,	S.,	&	Reid,	N.	(2023).	Landscape	
genetics	 identifies	 barriers	 to	 Natterjack	 toad	 metapopulation	
dispersal. Conservation Genetics, 24, 375–390. https:// doi. org/ 10. 
1007/ s1059 2-  023-  01507 -  4

Richardson,	J.	L.,	Brady,	S.	P.,	Wang,	I.	J.,	&	Spear,	S.	F.	(2016).	Navigating	
the pitfalls and promise of landscape genetics. Molecular Ecology, 
25,	849–863.	https:// doi. org/ 10. 1111/ mec. 13527 

Rudnick,	D.,	Ryan,	S.,	Beier,	P.,	Cushman,	S.,	Dieffenbach,	F.,	 Epps,	C.,	
Gerber,	 L.,	 Hartter,	 J.,	 Jenness,	 J.,	 Kintsch,	 J.,	 Merenlender,	 A.,	
Perkl,	R.,	Preziosi,	D.,	&	Trombulak,	S.	(2012).	The	role	of	landscape	
connectivity in planning and implementing conservation and resto-
ration priorities. Issues in Ecology, 16, 1–23.

Ruiz-	Lopez,	M.	J.,	Barelli,	C.,	Rovero,	F.,	Hodges,	K.,	Roos,	C.,	Peterman,	
W.	 E.,	 &	 Ting,	 N.	 (2016).	 A	 novel	 landscape	 genetic	 approach	
demonstrates	the	effects	of	human	disturbance	on	the	Udzungwa	
red	 colobus	monkey	 (Procolobus gordonorum).	Heredity, 116,	 167–
176.	https:// doi. org/ 10. 1038/ hdy. 2015. 82

Savary,	P.,	Foltête,	J.,	Moal,	H.,	Vuidel,	G.,	&	Garnier,	S.	(2021a).	Analysing	
landscape effects on dispersal networks and gene flow with ge-
netic graphs. Molecular Ecology Resources, 21,	1167–1185.	https:// 
doi. org/ 10. 1111/ 1755-  0998. 13333 

Savary,	P.,	Foltête,	J.,	Moal,	H.,	Vuidel,	G.,	&	Garnier,	S.	(2021b).	graph4lg:	
A	package	for	constructing	and	analysing	graphs	for	landscape	ge-
netics in R. Methods in Ecology and Evolution, 12, 539–547. https:// 
doi.	org/	10.	1111/	2041-		210X.	13530	

Schlägel,	U.	E.,	Grimm,	V.,	Blaum,	N.,	Colangeli,	P.,	Dammhahn,	M.,	Eccard,	
J.	A.,	Hausmann,	S.	L.,	Herde,	A.,	Hofer,	H.,	Joshi,	J.,	Kramer-	Schadt,	
S.,	 Litwin,	M.,	 Lozada-	Gobilard,	S.	D.,	Müller,	M.	E.	H.,	Müller,	T.,	
Nathan,	 R.,	 Petermann,	 J.	 S.,	 Pirhofer-	Walzl,	 K.,	 Radchuk,	 V.,	 …	
Jeltsch,	 F.	 (2020).	Movement-	mediated	 community	 assembly	 and	
coexistence.	Biological Reviews, 95,	1073–1096.	https:// doi. org/ 10. 
1111/	brv.	12600	

Scrucca,	 L.	 (2013).	GA:	A	 package	 for	 genetic	 algorithms	 in	R. Journal 
of Statistical Software, 53, 1–37. https://	doi.	org/	10.	18637/		jss.	v053.	
i04

Shmueli,	G.	(2010).	To	explain	or	to	predict?	Statistics Science, 25, 289–
310. https://	doi.	org/	10.	1214/	10-		STS330

Spear,	 S.	 F.,	 Balkenhol,	 N.,	 Fortin,	 M.-	J.,	 Mcrae,	 B.	 H.,	 &	 Scribner,	 K.	
(2010).	 Use	 of	 resistance	 surfaces	 for	 landscape	 genetic	 stud-
ies:	 Considerations	 for	 parameterization	 and	 analysis.	Molecular 
Ecology, 19,	 3576–3591.	 https://	doi.	org/	10.	1111/j.	1365-		294X.	
2010.	04657.	x

Spear,	S.	F.,	Cushman,	S.	A.,	&	McRae,	B.	H.	(2015).	Resistance	surface	
modeling	 in	 landscape	 genetics.	 In	N.	 Balkenhol,	 S.	 A.	 Cushman,	
A.	T.	Storfer,	&	L.	P.	Waits	(Eds.),	Landscape genetics	(pp.	129–148).	
John	Wiley	&	Sons,	Ltd.	https:// doi. org/ 10. 1002/ 97811 18525 258. 
ch08

Spielman,	D.,	Brook,	B.	W.,	&	Frankham,	R.	(2004).	Most	species	are	not	
driven	to	extinction	before	genetic	factors	impact	them.	Proceedings 
of the National Academy of Sciences of the United States of America, 
101,	15261–15264.	https:// doi. org/ 10. 1073/ pnas. 04038 09101 

Storfer,	 A.,	Murphy,	M.	 A.,	 Evans,	 J.	 S.,	 Goldberg,	 C.	 S.,	 Robinson,	 S.,	
Spear,	 S.	 F.,	 Dezzani,	 R.,	 Delmelle,	 E.,	 Vierling,	 L.,	 &	Waits,	 L.	 P.	
(2007).	Putting	the	‘landscape’	in	landscape	genetics.	Heredity, 98, 
128–142. https://	doi.	org/	10.	1038/	sj.	hdy.	6800917

Van	 Strien,	 M.	 J.	 (2017).	 Consequences	 of	 population	 topology	 for	
studying gene flow using link- based landscape genetic methods. 
Ecology and Evolution, 7, 5070–5081. https:// doi. org/ 10. 1002/ 
ece3. 3075

Van	Strien,	M.	 J.,	Holderegger,	R.,	&	Van	Heck,	H.	 J.	 (2015).	 Isolation-	
by- distance in landscapes: Considerations for landscape genetics. 
Heredity, 114, 27–37. https://	doi.	org/	10.	1038/	hdy.	2014.	62

Van	Strien,	M.	J.,	Keller,	D.,	Holderegger,	R.,	Ghazoul,	 J.,	Kienast,	F.,	&	
Bolliger,	 J.	 (2014).	 Landscape	 genetics	 as	 a	 tool	 for	 conservation	
planning: Predicting the effects of landscape change on gene flow. 
Ecological Applications, 24, 327–339. https:// doi. org/ 10. 1890/ 13-  
0442. 1

Vanhove,	M.,	&	Launey,	S.	 (2023).	Estimating	resistance	surfaces	using	
gradient	forest	and	allelic	frequencies.	Molecular Ecology Resources. 
https:// doi. org/ 10. 1111/ 1755-  0998. 13778 

Voeten,	C.	C.	(2020).	buildmer: Stepwise elimination and term reordering for 
mixed- effects regression. R package version 1.

 17550998, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/1755-0998.14024 by C

ochrane France, W
iley O

nline L
ibrary on [18/10/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.1007/s10980-022-01420-0
https://doi.org/10.1111/j.0014-3820.2006.tb00500.x
https://doi.org/10.1111/eva.13306
https://doi.org/10.1111/j.1365-294X.2010.04723.x
https://doi.org/10.1111/j.1365-294X.2010.04723.x
https://doi.org/10.1007/s10592-012-0385-3
https://doi.org/10.1038/s41598-022-26428-z
https://doi.org/10.1038/s41598-022-26428-z
https://doi.org/10.1111/mec.12561
https://doi.org/10.1111/mec.12561
https://doi.org/10.1111/mec.17098
https://doi.org/10.1111/2041-210X.12984
https://doi.org/10.1111/2041-210X.12984
https://doi.org/10.1111/mec.15716
https://doi.org/10.1007/s10980-019-00870-3
https://doi.org/10.1073/pnas.2003201118
https://doi.org/10.1007/s10592-023-01507-4
https://doi.org/10.1007/s10592-023-01507-4
https://doi.org/10.1111/mec.13527
https://doi.org/10.1038/hdy.2015.82
https://doi.org/10.1111/1755-0998.13333
https://doi.org/10.1111/1755-0998.13333
https://doi.org/10.1111/2041-210X.13530
https://doi.org/10.1111/2041-210X.13530
https://doi.org/10.1111/brv.12600
https://doi.org/10.1111/brv.12600
https://doi.org/10.18637/jss.v053.i04
https://doi.org/10.18637/jss.v053.i04
https://doi.org/10.1214/10-STS330
https://doi.org/10.1111/j.1365-294X.2010.04657.x
https://doi.org/10.1111/j.1365-294X.2010.04657.x
https://doi.org/10.1002/9781118525258.ch08
https://doi.org/10.1002/9781118525258.ch08
https://doi.org/10.1073/pnas.0403809101
https://doi.org/10.1038/sj.hdy.6800917
https://doi.org/10.1002/ece3.3075
https://doi.org/10.1002/ece3.3075
https://doi.org/10.1038/hdy.2014.62
https://doi.org/10.1890/13-0442.1
https://doi.org/10.1890/13-0442.1
https://doi.org/10.1111/1755-0998.13778


    |  17 of 17DANIEL et al.

Weir,	 B.	 S.,	 &	Cockerham,	C.	 C.	 (1984).	 Estimating	 F-	statistics	 for	 the	
analysis of population structure. Evolution, 38, 1358–1370. https:// 
doi.	org/	10.	2307/	2408641

Winiarski,	K.	J.,	Peterman,	W.	E.,	&	McGarigal,	K.	(2020).	Evaluation	of	
the R package ‘resistanceGa’:	 A	 promising	 approach	 towards	 the	
accurate	optimization	of	 landscape	resistance	surfaces.	Molecular 
Ecology Resources, 20,	 1583–1596.	https:// doi. org/ 10. 1111/ 1755-  
0998. 13217 

Yates,	 K.	 L.,	 Bouchet,	 P.	 J.,	 Caley,	M.	 J.,	Mengersen,	 K.,	 Randin,	 C.	 F.,	
Parnell,	S.,	Fielding,	A.	H.,	Bamford,	A.	J.,	Ban,	S.,	Barbosa,	A.	M.,	
Dormann,	 C.	 F.,	 Elith,	 J.,	 Embling,	 C.	 B.,	 Ervin,	 G.	 N.,	 Fisher,	 R.,	
Gould,	S.,	Graf,	R.	F.,	Gregr,	E.	J.,	Halpin,	P.	N.,	…	Sequeira,	A.	M.	M.	
(2018).	Outstanding	challenges	in	the	transferability	of	ecological	
models. Trends in Ecology and Evolution, 33, 790–802. https:// doi. 
org/	10.	1016/j.	tree.	2018.	08.	001

Zeller,	K.	A.,	McGarigal,	K.,	&	Whiteley,	A.	R.	 (2012).	 Estimating	 land-
scape	 resistance	 to	 movement:	 A	 review.	 Landscape Ecology, 27, 
777–797. https:// doi. org/ 10. 1007/ s1098 0-  012-  9737-  0

Zeller,	K.	A.,	Vickers,	T.	W.,	Ernest,	H.	B.,	&	Boyce,	W.	M.	(2017).	Multi-	
level, multi- scale resource selection functions and resistance sur-
faces for conservation planning: Pumas as a case study. PLoS One, 
12, e0179570. https:// doi. org/ 10. 1371/ journ al. pone. 0179570

Zeller,	K.	A.,	Wultsch,	C.,	Welfelt,	 L.	 S.,	Beausoleil,	R.	A.,	&	Landguth,	
E.	 L.	 (2023).	Accounting	 for	 sex-	specific	differences	 in	gene	 flow	
and functional connectivity for cougars and implications for man-
agement. Landscape Ecology, 38, 223–237. https:// doi. org/ 10. 1007/ 
s1098	0-		022-		01556	-		z

SUPPORTING INFORMATION
Additional	 supporting	 information	 can	 be	 found	 online	 in	 the	
Supporting	Information	section	at	the	end	of	this	article.

How to cite this article: Daniel,	A.,	Savary,	P.,	Foltête,	J.-C.,	
Vuidel,	G.,	Faivre,	B.,	Garnier,	S.,	&	Khimoun,	A.	(2024).	What	
can	optimized	cost	distances	based	on	genetic	distances	
offer?	A	simulation	study	on	the	use	and	misuse	of	
ResistanceGA.	Molecular Ecology Resources, 00, e14024. 
https://doi.org/10.1111/1755-0998.14024

 17550998, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/1755-0998.14024 by C

ochrane France, W
iley O

nline L
ibrary on [18/10/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.2307/2408641
https://doi.org/10.2307/2408641
https://doi.org/10.1111/1755-0998.13217
https://doi.org/10.1111/1755-0998.13217
https://doi.org/10.1016/j.tree.2018.08.001
https://doi.org/10.1016/j.tree.2018.08.001
https://doi.org/10.1007/s10980-012-9737-0
https://doi.org/10.1371/journal.pone.0179570
https://doi.org/10.1007/s10980-022-01556-z
https://doi.org/10.1007/s10980-022-01556-z
https://doi.org/10.1111/1755-0998.14024

	What can optimized cost distances based on genetic distances offer? A simulation study on the use and misuse of ResistanceGA
	Abstract
	1  |  INTRODUCTION
	2  |  MATERIALS AND METHODS
	2.1  |  Overall approach
	2.2  |  Real landscape sampling
	2.3  |  True resistance surfaces parameterization and cost-distances calculation
	2.4  |  Demo-genetics simulations and gene pool sampling
	2.5  |  Spatial scale of landscape influence on genetic structure
	2.6  |  RGA workflow and new implementations
	2.7  |  Reliability of cost inferences from RGA optimization
	2.7.1  |  RGA optimization sensitivity and specificity to simulated genetic patterns
	2.7.2  |  Assessment of RGA predictive performance
	Effect of spatial scale on predictive performance
	Effect of dispersal capacity, habitat specialization and landscape configuration on predictive performance
	Transferability of cost inferences

	2.7.3  |  Congruence between optimized and true cost scenarios


	3  |  RESULTS
	3.1  |  Landscape sampling and demo-genetic simulations
	3.2  |  Optimization sensitivity and specificity to simulated genetic patterns
	3.3  |  Assessment of RGA predictive performances
	3.3.1  |  Effect of spatial scale on predictive performance
	3.3.2  |  Effect of dispersal capacity, habitat specialization and landscape configuration on predictive performance
	3.3.3  |  Transferability of cost inferences

	3.4  |  The congruence between optimized and true cost scenarios

	4  |  DISCUSSION
	4.1  |  The spatial scale of landscape influence on genetic structure depends on the topology of the effective dispersal network
	4.2  |  Pruning enhances RGA predictive performance under strong dispersal limitation
	4.3  |  Sampling design and landscape structure affect optimization performance
	4.4  |  Optimization is not causation: Good predictive abilities at the expense of accurate causal interpretation
	4.5  |  The use of RGA in landscape genetics: Conditions and prospects

	AUTHOR CONTRIBUTIONS
	ACKNOWLEDGEMENTS
	CONFLICT OF INTEREST
	DATA AVAILABILITY STATEMENT
	ORCID
	REFERENCES


