N
N

N

Redressing the Balance:

HAL

open science

A Yin-Yang Perspective on

Information Technology

Konrad Hinsen

» To cite this version:

Konrad Hinsen. Redressing the Balance: A Yin-Yang Perspective on Information Technology. On-
ward! ’24: 2024 ACM SIGPLAN International Symposium on New Ideas, New Paradigms, and
Reflections on Programming and Software, Oct 2024, Pasadena, CA, United States.

10.1145/3689492.3689808 . hal-04743587

HAL Id: hal-04743587
https://hal.science/hal-04743587v1
Submitted on 18 Oct 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

pp.194-204,

https://hal.science/hal-04743587v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Check for
Updates

Redressing the Balance: A Yin-Yang Perspective on

Information Technology

Konrad Hinsen
konrad.hinsen@cnrs.fr
Centre de Biophysique Moléculaire (CNRS)
Orléans, France
Synchrotron SOLEIL, Division Expériences
Saint Aubin, France

Abstract

Information is an essential aspect of how we interact with
the world around us. We acquire information and then inte-
grate it to build knowledge, understanding, and trust, which
in turn serve in preparing actions. Information technology
(IT) is supposed to support all these phases of information
processing. But does it?

An assessment of IT through the yin-yang lens from Chi-
nese philosophy shows that over the last decades, support
for the yin processes of building knowledge, understanding,
and trust has been neglected, the focus of most research
and development having been on the yang processes of act-
ing. IT shares this imbalance with other aspects of Western
and globalized culture. I discuss possible directions for re-
establishing a yin-yang balance in IT, as a small contribution
to redressing the balance in the world at large.

CCS Concepts: « Software and its engineering; - Human-
centered computing; « Computing methodologies; «
Applied computing;

Keywords: Yin, Yang, Science, Engineering, Technology, Au-
tomation, Formal systems, Specifications, Type systems, Sim-
ulation, Data analysis

ACM Reference Format:

Konrad Hinsen. 2024. Redressing the Balance: A Yin-Yang Perspec-
tive on Information Technology. In Proceedings of the 2024 ACM
SIGPLAN International Symposium on New Ideas, New Paradigms,
and Reflections on Programming and Software (Onward! "24), October
23-25, 2024, Pasadena, CA, USA. ACM, New York, NY, USA, 11 pages.
https://doi.org/10.1145/3689492.3689808

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.

Onward! °24, October 23-25, 2024, Pasadena, CA, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1215-9/24/10
https://doi.org/10.1145/3689492.3689808

194

1 Introduction

The importance of computing technology for learning and
higher-level knowledge! acquisition processes, such as un-
derstanding and trusting, has been recognized from its early
days. Turing’s famous paper [37] introducing what we now
call the Turing machine is about the use of automated pro-
cessing for deriving mathematical knowledge. The most com-
mon path to learning from computation is via its results, but
the utility of software as a medium for learning and under-
standing has also been clear for a long time. Fifty years ago,
Donald Knuth wrote [19]:

It has often been said that a person does not
really understand something until he teaches
it to someone else. Actually a person does not
really understand something until he can teach
it to a computer, i.e., express it as an algorithm.

Indeed, formulating knowledge in terms of algorithms, i.e.
executable rules in a formal system, makes all of this knowl-
edge explicit and is a proof that no aspects that matter to
the result of the computation have been overlooked. Further-
more, it gives access to automated consistency checks (“does
it compile?”, “does it typecheck?”) that increase trust in the
correctness of the automated procedure.

More recently, Sussman and Wisdom elaborated on this
idea, discussing “the role of programming in the formula-
tion of ideas” [34]. Their example is the formulation of an
advanced theoretical framework for classical mechanics in
terms of unambiguous computer code, replacing its tradi-
tional expression in a semi-formal mathematical notation
that turns out to be imprecise and ambiguous on a closer look.
They even wrote an advanced textbook on classical mechan-
ics based on this computational framework [35]. Another
example of formalization supporting better understanding is
the post-hoc formalization of the semantics of the organically
grown Python language [27], which explains common pain
points.

Computational science is the application at scale of the
idea that knowledge can be derived from models and ob-
servations through formalization and computation. It is an

!n this essay, I use the term “knowledge” to mean declarative knowledge,
although computation can also play a role in practical knowledge.

https://orcid.org/0000-0003-0330-9428
https://doi.org/10.1145/3689492.3689808
https://doi.org/10.1145/3689492.3689808
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3689492.3689808&domain=pdf&date_stamp=2024-10-17

Onward! ’24, October 23-25, 2024, Pasadena, CA, USA

approach to scientific research that has been developed since
the 1950s, in parallel with the development of electronic
computers. Today, many scientific disciplines have a well-
identified computational branch, and all of today’s research
can be qualified as “computer-aided” in the sense that even
when computation is not the main tool deployed, it is always
an essential support technology.

And yet, in the course of my career in computational sci-
ence, which started in the 1990s, information technology has
overall become less suited to the process of learning that is
the essence of scientific research. APL?, which I used for the
exploratory part of my PhD thesis, was a more suitable envi-
ronment for doing research than today’s Jupyter notebooks.
The subsequent Fortran 77 implementation of the methods
I had developed using APL was more suitable for learning
from the results of my simulations than many of today’s
simulation software packages, because it could be read and
understood in its entirety in a few days.

It is easy to blame the growing complexity of scientific
models for the loss of understandability, but that is not the
whole story. As I will try to show in this essay, there has been
very little work over the last few decades on technology that
supports learning, understanding, and trusting, compared to
the efforts invested in technology that supports doing things.

The analysis tool I have chosen for this assessment, the yin-
yang lens from Chinese philosophy, is likely to be unfamiliar
to most readers, which is why I provide a short introduction
in the following section. The yin-yang lens provides a fresh
perspective on the problem and reveals connections between
information technology and other social processes, which
I will come back to in the final part of this essay. After this
introduction, I will examine how today’s information pro-
cessing technology supports the yin processes of learning,
understanding, and trusting, and discuss possible directions
for improving this support.

2 The Yin-Yang Lens

The yin-yang lens® originated in Chinese philosophy as the
dualist aspect of an abstract world view describing multi-
plicity and diversity coming out of unity. It describes two
complementary kinds of processes, labeled yin and yang,
which feed and control each other in a circular or alternating
pattern. Yin and yang processes are often grouped in comple-
mentary pairs that are at the opposites of some characteris-
tic, such as dark”™ - light”*", diminishing”™" - growing?*"¢,

2The acronym stands for “A Programing Language”, which is the title of
the book that presented this language [16]. APL was initially developed
as a notation for purely human use, in developing and communicating
algorithms. The book does not refer to the computer implementation of
APL, which was developed later.

3The qualification as a lens is mine. In Chinese philosophy, yin-yang dualism
is considered a principle of the universe that expresses itself everywhere.
But if you ignore that belief and consider only how people use yin-yang in
practice, it becomes a perspective taken, or a lens being applied.

195

Konrad Hinsen

retreating?™ — advancing?®®, or humid”™ - dry»®"¢. To give
a concrete example, in taijiquan4, a Chinese martial art, yin
movements are backward and down, and generally serve to
absorb the energy of an opponent while maintaining one’s
own integrity and stability. Yang movements are forward
and up, transferring one’s energy to the opponent with the
goal of hurting and destabilizing,.

A focus on yin or yang is often expressed through a choice
of words. In the paragraph above, I have annotated such
words with ¥ or Y&, and I will continue to do so in the
following.

Information technology is used in processes that involve
acquiring”™ information and integrating”™" it to form knowl-
edge or trust, and also in processes that involve exploiting”*"8
information for acting”® and shaping”*"# one’s environ-
ment (which includes other people). A simple example at the
level of an individual, taken from an illuminating case study
by ink&switch [33], is preparing a trip by gathering informa-
tion about the destination (yin), using tools such as search
engines or note-taking software, planning the details of the
trip (transition to yang), and then leaving (yang). Western
cultures tend to see this as a linear chain of steps that ends
with the trip itself. But the trip inevitably causes more learn-
ing to happen, the individual acquiring new information that
is likely to be exploited later on. Learning and acting happen
in cycles that continue over the life of an inividual. Many
such cycles are ongoing at any time, as we learn about and
act on different aspects of the world around us.

Similar processes happen at the level of families, teams,
associations, companies, cities, or states. All human social
structures learn and act. At the scale of a culture, the phases
stretch over long time periods, up to centuries. In Western
culture, the most prominent yin process of the last centuries
is called science and feeds yang processes such as engineering
or medicine.

Figure 1. Yin-yang symbol (from Wikimedia)

Fig. 1 shows the most common contemporary graphical
representation of yin-yang. The dark areas represent yin, the
light areas yang. Imagine the hand of a clock superposed on
this image. As it turns, the proportions of dark and light un-
der it go up and down in a cycle. The yin and yang processes

4Traditionally called Tai-Chi in English.

https://commons.wikimedia.org/wiki/File:Yin_and_Yang_symbol.svg

Redressing the Balance: A Yin-Yang Perspective on Information Technology

have no clearly delimited beginnings and endings, they wax
and wane.

The two opposite-colored dots in the black and white areas
stand for the presence of yin in the yang and yang in the
yin. They are a reminder that if you zoom in on a process,
you will always see aspects of the opposite kind. In the trip
example I mentioned above, learning about the destination
requires actions, such as taking notes, that draw on earlier
learning. That is yang in the yin. During the trip, the plan
prepared in advance will be completed or even modified
based on last-minute information. That is yin in the yang. In
science, constructing an experimental setup is yang in the
yin, whereas in engineering, learning from a prototype is
yin in the yang.

3 Tools and Technology

By definition, technology is used for shaping the world,
and therefore any use of technology implies a yang pro-
cess. When I use pencil and paper to take notes during a
lecture, the immediate role of the pencil is to leave marks on
the paper, and thus change the world, even though note tak-
ing is part of the yin process of me remembering the subject
of the lecture. When using the yin-yang lens, it is important
not to mix multiple levels of granularity. There’s always yin
in the yang and yang in the yin, and it’s easy to get lost in
them. In this essay, I do not look at technology itself, nor at
its development, but at the roles it plays in the processes of
learning and doing by humans and human social structures.
Pencil and paper are tools that support yin processes such
as learning and understanding, just like they support yang
processes such as writing laws.

Another relevant feature of technology is that its use re-
quires prior learning and continuous adaptation by the user.
Pencil and paper support me learning philosophy only after I
have learned how to write using pencil and paper. Moreover,
while using them to take notes, I have to adapt my note-
taking habits (speed, amount, etc.) to the characteristics of
these tools. We tend to be aware of the learning effort, but
much less of the continuous adaptation effort required by our
tools. A famous quote attributed to Marshal McLuhan (but
actually from an article by John Culkin about McLuhan’s
work [4]) says that "We shape our tools and thereafter they
shape us". Tools shaping us is, from the human tool user
perspective, a yin process, but one that is imposed rather
than chosen. There is also an imposed yang aspect, which
consists of the unintended and potentially undesirable side
effects of using a tool, including the use of material resources
and the generation of waste.

4 Automation

The key aspect in my analysis is automated information
processing, via algorithms and their implementations, or
via machine learning techniques. Low-automation software,

196

Onward! ’24, October 23-25, 2024, Pasadena, CA, USA

such as basic word processing or drawing tools, are not very
different from pencil and paper in supporting yin and yang
processes equally well. Their main function is to implement
a new medium for information storage. Automation is what
makes the difference between a tool and a machine. It intro-
duces epistemic opacity, i.e. the impossibility for a user of
the machine to fully know and understand the machine’s
behavior in detail, which is a topic I will come back to in
section 7.

The construction and deployment of machines, be they
physical machines or software, are yang processes, but as
I explained for pencil and paper, this is not the aspect I am
interested in. My focus is on how these machines or their
construction support yin and yang processes in other do-
mains. An example of a machine supporting a yin process is
a DNA sequencer, which automates the chemical procedures
required to obtain information about the genome of an or-
ganism. An example of a machine supporting a yang process
in a different domain is a photocopier used to automate the
distribution of teaching material to a class of students, the
supported yang process being teaching.

The foundation of automation in information processing
is formalization, i.e. encoding knowledge as expressions and
rules of a formal system. Often there are aspects that can-
not be formalized but encoded as variables in the formal
system, for which values are then obtained by data-driven
inference techniques. For a small number of variables, this is
called parameter fitting, whereas for a very generic formal
system with many variables, it is called machine learning.
The variables are usually numbers but more general variants
are possible, an example being genetic programming where
the automatically adjusted values are algorithms.

There are two ways in which automation can support yin
processes: computational modeling and the deployment of
computational models in simulation and data analysis. Com-
putational modeling is yin feeding the yang of automated
processing: it consists of combining available information
fragments into a formal system, potentially containing vari-
ables. Automated evaluation and analysis provide feedback
about the model while it is built. Simulation and data analy-
sis exploit computational models in the exploration of larger
systems of which these models describe parts. This is a yin
fed by the yang of automated processing.

While I am using a scientific vocabulary here, these con-
cepts apply equally well to small-scale learning processes in
everday life. Trip planning, an example I referred to earlier, is
computational modeling (usually partial) of the trip. Embark,
the trip planning tool described in [33], supports the model-
ing process by facilitating formalization, e.g. by identifying
dates and geographical locations on which computations
and database lookups can be performed. An everyday ex-
ample for applying well-known computational models is
consulting a weather forecast, which is the outcome of a
very sophisticated simulation of the Earth’s atmosphere.

Onward! ’24, October 23-25, 2024, Pasadena, CA, USA

5 Computational Modeling: Formalization

Formal systems, consisting of (1) a formal language that de-
fines what a valid expression is, and (2) a set of rules for
the transformation of expressions in that language, are a
medium for representing information and knowledge in au-
tomated information processing systems. Formalization of
knowledge, i.e. encoding knowledge in a formal system, is
a major yin process in computing. Applying a formal sys-
tem, e.g. by running software, is the yang process fed by
formalization.

Formalization of knowledge comes in many varieties, not
all of which are easy to spot as such. Unicode is a formal
system, with rules for operations such as capitalizing let-
ters. The simple act of typing text into a computer is thus
already formalization. Numbers with associated arithmetic
operations are a formal system as well, meaning that quan-
tification is formalization. Spreadsheets are among the most
popular formalization tools today. Adding machine-readable
markup (e.g. HTML tags) to a text is also formalization, as is
data wrangling resulting in a table stored in a CSV file. These
are all examples for lightweight formalization, in which the
formalized information is not very different from the corre-
sponding informal expressions in plain written language, but
more amenable to automated processing. At the other end
of the scale, we have program source code, formal specifica-
tions for large software systems, or mathematical statements
formalized for use with a proof assistant. In these cases, the
formalized version is hard to recognize even for domain
experts if they are unfamiliar with the formalization tools.

Computational formalization never starts from scratch.
It happens in a software environment that has a strong im-
posed yin aspect: users need to learn the environment and
adapt their way of thinking to it, in particular by adopting
its notations. During the formalization process, a good sup-
port system should provide a rapid feedback loop. The user
should be able to construct the formal system in small steps,
and receive immediate feedback on the consequences of each
change. This feedback includes the application of the trans-
formation rules of the formal system, but also verification
of conditions, consistency checks, visualizations, and con-
nections to repositories of established knowledge, such as
databases.

In the following, I will discuss various formalization tools
and techniques with respect to their suitability for support-
ing yin processes. I will limit myself to techniques that can
integrate automation. This means that I exclude most for-
malization tools actually used for yin processes today, such
as note taking software or semantic Web tools. These tools
implement media that are limited to inert data, whereas the
automated processing happens in software external to the
media that users cannot easily change as part of their yin
process. The fact that such restricted media dominate the

197

Konrad Hinsen

yin support of information technology today is a symptom
of the problem I wish to expose.

5.1 Programming Languages

Programming languages are the formal systems that have
received by far the most attention, both by academic re-
searchers and by software developers. They have a strong
yang focus on the automated transformation (algorithms,
programs) of formal expressions (data), whereas statements
about data, which are not executable, are neglected. The one
exception is statements used in a particular form of consis-
tency checks known as static type checking. Even assertions,
which superficially look like statements about data, are re-
ally instructions for execution. They say “ring a bell if this
property doesn’t hold”, which is much less valuable than a
queryable database for such properties.

The stated goal of programming languages is to support
the creation”"¢ of programs that are executed”*” in order
to do”*" something. Creating programs requires the prior
formalization”™ of the information being processed and of
the processing rules, but neither programming languages nor
the development environments proposed for them provide
much support for this formalization phase.

5.2 Programming Systems

Programming systems, whose differences from languages
have been discussed in detail by Gabriel [8], support the iter-
ative construction of a formal subsystem in a rapid feedback
loop. This is a huge advantage for the human user perform-
ing formalization work.

Programming systems have been recognized for a long
time as well adapted to exploratory programming [31], i.e.
the construction and evaluation of prototypes as part of
the design phase of software systems. Design lies at the
transition from yin to yang: the goal of building an artefact is
already there, but many of its detailed characteristics remain
to be defined based on experiments with prototypes. A recent
testimonial [23] expresses the advantage of programming
systems in this phase concisely:

Those who follow me know that GNV is written
in Common Lisp. A great learning exercise for
me. It’s incredibly suited for this task because I
could modify the code for numerous edge cases
while the crawler is running, without starting
from scratch every time an exception is thrown.
Sure, when the project is finished and the prob-
lem is modeled out properly, one could say: that
would be easy to write in lang X.Y.Z! Sure, but
it’s not the end product where Common Lisp
shines, it’s the journey.

As Gabriel notes [8], research on programming systems
has almost stopped in the 1990s. The three main families,
Lisp, APL, and Smalltalk, have their origins in the 1950s to

Redressing the Balance: A Yin-Yang Perspective on Information Technology

1970s. They all have actively developed and used descen-
dants, but mainstream research and development has shifted
to programming languages.

5.3 Specification Languages

Specification languages are formal languages that are de-
signed specifically to support the formalization process. Spec-
ifications have two properties that make them more suitable
for yin processes than programs:

1. They can be written as a set of small independent frag-
ments. A specification does not have to be complete in
the sense of fully defining an algorithm or a program.
Partial specifications can be analyzed and explored, e.g.
using a model finder. Any number of specifications
can be lumped together to make a larger specification,
facilitating exploration.

2. There is no requirement of executability. A specifica-
tion can encode constraints on and metadata about
any kind of formal expression. More generally, a spec-
ification does not have a built-in purpose, contrary
to a program that is considered defective if it is not
executable. However, nothing prevents the inclusion
of a ready-to-run algorithm in a specification, mean-
ing that specifications are strictly more general than
programs.

Specifications are to algorithms as mathematical equations
are to mathematical functions: a more general, less constrain-
ing framework to express properties of formal systems, at
the price of not being immediately exploitable for computing
values [12]. In science, the introduction of equations has led
to an enormous increase in the power of scientific models.
For example, early astronomers were concerned with pre-
dicting the future positions of heavenly bodies from past
observations, by fitting generic geometrical shapes (circles,
epicycles) to these observations in what can be qualified as
an early form of data science. For the yang purpose of mak-
ing predictions, this was good enough. Newton’s equations
[24] described the same orbits as solutions of a set of equa-
tions that express more fundamental physical laws. These
laws turned out to be valid in very different settings as well.
For two centuries, they were considered the foundation of
all science, and the idea of deterministic laws underlying
the whole universe, pioneered by Newton, remains a wide-
spread (though tacit) metaphysical belief among scientists
and technologists.

Fortunately, the mathematicians and scientists of past cen-
turies were less blindly focused on solving equations than
today’s information technologists are on turning specifica-
tions into programs. Reasoning about Newton’s equations
lead to significant fundamental insight into the nature of
physical processes, such as the discovery of the principle of
energy conservation. Specifications hold the promise of en-
abling similar progress in the space of computational models.

198

Onward! ’24, October 23-25, 2024, Pasadena, CA, USA

I have been pursuing a line of research in this space, rebrand-
ing specification languages as digital scientific notations [11]
to emphasize the different intent. In fact, a specification is
always for something and that something is usually a soft-
ware system. In contrast, a digital scientific notation encodes
information and knowledge independently of any specific
goal that authors or readers might pursue.

At this time, specifications and associated formal methods
are a respected topic of academic research, but have a very
limited domain of practical application. They are seen as
a powerful but also difficult to use tool whose deployment
cost is justified only in the construction”*"¢ of particularly
large or safety-critical software systems. As Krishnamurthi
and Nelson point out [22], there is a lot of potential for
wider use of specifications and formal methods if tools and
techniques are adapted to the needs of humans rather than
mathematicians and computer scientists®.

5.4 Static Type Systems and Type Checkers

Both programming and specification languages have type
systems, which are often static, meaning that the types of
expressions can be derived from the source code without
having to perform any of the automated transformations.
Type systems are formal systems used to describe properties
of programs or specifications and relations between those
properties, with the goal of permitting the automated vali-
dation of type relations.

Like programming languages, today’s type systems are
extremely yang-focused. Their two main roles are detecting
potential mistakes in the composition of expressions and
facilitating code optimizations. One characteristic following
from this objective is that every expression must have exactly
one type. Another characteristic is that there can only be
one type system for a complete program or specification.
Authors have to adapt their code to the type system, to the
point of not being allowed to write correct code unless the
type system can be used to prove its correctness. There are
of course good reasons for this, but they are valid only in
the yang context of constructing large software systems.

Gradual typing is an approach that aims at bridging for-
malization work and software construction. It removes one
of the totalitarian aspects of static type checkers by allowing
authors to opt out of their services for parts of the code. But
the typed part of the code is subject to the same rigid rules as
in traditional full-program type checking. I suspect that this
is a major reason why gradual typing has not been widely
adopted so far.

However, static type systems could be helpful in the yin
process of formalization, by guiding authors towards well-
formed expressions and supporting exploration tools such

STt is often assumed that mathematicians and computer scientists are hu-
mans, but I am not aware of any peer-reviewed research that supports this
hypothesis.

Onward! ’24, October 23-25, 2024, Pasadena, CA, USA

as model finders, and by documenting interfaces in a pre-
cise way that is both human-readable and machine-readable.
We can see how yin-friendly type checking could work by
considering an example that is in fact older than computers:
dimensional analysis for physical quantities, which has been
used to validate quantity arithmetic since the 19th century.

Dimensional analysis applies to physical quantities only,
simply ignoring any other mathematical objects. It can be
extended as needed, by introducing additional dimensions.
It also coexists with other formal validation systems, such as
the rank formalism of tensor algebra. As a simple example,
in classical mechanics, angular velocity w, angular momen-
tum L, and inertia I are related by the equation L = I - w.
Dimensional analysis says that « has dimension 1/time, I
has dimension mass - length?, implying that L has dimension
mass - length? /time. Independently, tensor algebra asserts
that w has rank 1, I has rank 2, implying that L as the con-
traction between them must have rank 1.

A yin-friendly type checker would manage multiple type
systems and admit any number of type annotations, includ-
ing none, on any datum or variable. It would also allow
users to define their own compatibility and transformation
rules for types. The type checker would then annotate the
code with warnings, but not require fixing those problems
immediately. A type inference engine would guide in the
construction of valid expressions, and highlight the rules
violated by any invalid expression.

6 Computational Modeling: Data-based
Inference

Data-based inference has become highly fashionable with
machine learning in recent years. It sounds like a yin process,
because it says "learning”, but if it’s the machine doing the
learning, it is not a yin process in the scope of my analy-
sis. Can data-based inference support humans in learning,
understanding, and trusting?

At small scales, i.e. fitting a few parameters in non-trivial
formal systems, the answer is yes, judging from centuries’
worth of experience with mathematical models in science.
The parameters have been chosen carefully during formaliza-
tion, and should have a meaning to anyone who is sufficiently
familiar with the formalized parts. In the example of New-
tonian celestial mechanics I have used in section 5.3, the fit
parameters are the masses of the planets and the sun. Their
physical meaning is understandable from experience with
objects of everyday life.

At the machine learning end of the scale, the formal sys-
tems are intentionally constructed to be very general, in
order to permit adaptation to a wide range of data. Nielsen
has presented a nice visual proof showing that neural net-
works can compute any function [25, chapter 4]. For the
yang process of computing the function, that’s sufficient. For

199

Konrad Hinsen

humans to learn from the Al training process, the parame-
ters of the machine learning model need to be interpretable,
individually or as a whole. For neural networks, this remains
an active field of research.

7 Simulation and Data Analysis

Simulation and data analysis are yang processes that often
feed yin processes of learning. In order to learn from their re-
sults, users must (1) have a mental model of the computation
that permits them to apply it correctly and to interpret the
results, and (2) trust the software to conform to this mental
model. There are various ways in which users can gather the
information for building their mental models”” and build
trust”™ into their validity: inspect program source code, run
programs on well-known inputs, modify the code to observe
how the outputs change, compare with results from different
programs, etc.

There are two ways in which computational results can
support learning processes. One is deducing consequences
from models and comparing them to observations, for test-
ing the less trusted part (model or observations) against the
more trusted one. The other one is as a generator of ideas
or hypotheses, as a form of externalized creativity. In that
situation, computed results can be useful even if obtained
from a defective model, and the accuracy of the user’s men-
tal model is less important as well. This is why generative
Al has found its place in scientific research. Nevertheless,
the learning value of computation increases with the accu-
racy of the user’s mental models. The most useful generative
Al models in science are those derived from well-defined
and well-understood databases, using well-documented con-
straints in the formalized part. A good example is the wide-
spread use of AlphaFold, a deep-learning model for protein
structures, in structural biology [3]. AlphaFold is used as an
engine for interpolating and extrapolating from the Protein
Data Bank [30], a 50-year-old database of experimental data
that structural biologists are intimately familiar with.

We do not have any systematic techniques for building and
validating mental models of software, let alone of machine
learning systems. We remain at the stage of tinkering. For
simple systems in familiar contexts, this works well enough.
Most people figure out how a pocket calculator works with
some practice, and then use it reliably. But even common
programs such as word processors can be problematic. Most
of us have experienced the anxiety of accidentally clicking
on the wrong menu entry in a large word processor and
wondering what it did to our document. And all heuristic
approaches to building a mental model fail for software with
intentionally hidden features, such as silently transmitting
personal data from a smartphone to a data warehouse.

For the highly complex software used in scientific research,
it is a good bet that nobody’s mental model is complete. As

Redressing the Balance: A Yin-Yang Perspective on Information Technology

a consequence, we should expect that such software is fre-
quently used incorrectly, without anybody noticing. I suspect
that this is an important factor in the ongoing reproducibility
crisis [39] that touches many scientific disciplines, in partic-
ular for statistical inferences. Performing”?*™8 a statistical test
takes only a mouse click, whereas understanding”” what
the results mean requires a course in statistics followed by
a study of the software’s source code. Much progress has
been made on teaching statistics to young researchers, but
software source code remains a serious obstacle.

The difficulty of building and validating mental models of
software is a major difference to yin-supporting machines
in the physical world. Scientists who use DNA sequencers
do have a good mental model of how such a device works
and what its limitations and failure modes are. They can
validate most aspects of that model by putting well-known
samples into the machine and checking the outputs. Such an
approach does not work for software because it tends to be
vastly more complex than most physical devices. Even given
the full source code for inspection, it is very hard to under-
stand what exactly the software does. There is some hope
that Large Language Models (LLMs) will one day help with
this task, given their capacity to process large code bases
better than humans do. However this requires that we first
develop sufficient trust in LLMs performing this task cor-
rectly. Whereas this is imaginable in principle, with software
developers judging the performance of LLMs interpreting
their product, it doesn’t look economically feasible today.

An added difficulty is that the dominant building mate-
rial for software, Turing-complete programming languages,
causes software to exhibit chaotic behavior under changes
to the source code [9], and thus an large diversity of fail-
ure modes. Engineers building physical yin-supporting ma-
chines (e.g. scientific instruments) take care to avoid chaotic
behavior, but software engineers do not currently have that
possibility.

Philosophers of science call such issues epistemic opac-
ity [13, 14]: the difficulty, or even impossibility, for the user
to know what exactly goes on inside the machine that pro-
cesses information. If you follow a set of instructions step
by step, as in a cooking recipe, you do not apply rigid rules
blindly and precisely. You interpret the steps in the specific
context, you apply them as best as you can, inevitably mak-
ing mistakes, but you are also aware of the uncertainties,
risks, and mistakes, and constantly check the state of your
work for symptoms of problems. In the end, you have a good
understanding of what you have done and what each step
contributed to the final outcome. If you delegate work to
someone else, you lose much of that feedback, but you trust
the person who does the work to be are careful as you would
be yourself. But if you delegate something to a machine,
you lose control once you have prepared the machine and
pressed the “go” button. You don’t get any feedback from
the process, except for the final result.

200

Onward! ’24, October 23-25, 2024, Pasadena, CA, USA

I am aware of two approaches for dealing with epistemic
opacity in computation. One approach is reducing it, by pro-
viding more feedback to the user. The other approach is
reasoning about the computation, deducing characteristics
of the results without following each individual step. Both
approaches are used in software development, but are not
easily accessible to software users, who are mostly expected
to develop both a mental model and trust in the implemen-
tation from only documentation (informal non-executable
prose) and interaction with the software.

The roles of developer and user have become more and
more distinct over the last decades, in parallel with the de-
velopment and growth of a software industry”*. The pro-
gramming systems of the past (see section 5.2) were made
for what would be called “power users” today: people who
would write at least the topmost task-specific software layer
themselves, and were familiar with common development
tools. Alan Kay, the chief designer of Smalltalk, had the even
more ambitious goal of a personal “Dynabook” permitting
everybody, even children, to write and modify software for
their own use [18]. A software industry selling products to
users has no interest in providing more information to users
than is strictly necessary to operate the software, out of both
commercial and legal considerations. Users are not supposed
to inspect or modify the software. Opacity becomes a desir-
able feature. This is also the major obstacle to building trust
in LLMs, whose construction for now requires means that
only large corporations can deploy. For these corporations,
it is more profitable to develop opaque system for a large
number of uncritical consumers than to develop trustworthy
systems for epistemically demanding applications.

The Open Source movement has not made much of a
difference: it is all about sharing code among developers.
As a side effect, users can inspect the source code as well,
but facilitating inspection and modification by users is not a
priority. In contrast, the Free Software movement does have
the explicit goal of empowering users, but it has focused on
the legal rather than the epistemic obstacles that users are
facing.

In the next two sections, I will describe some possible
approaches to better supporting users in developing good-
enough mental models of software, and in developing trust in
the implementation’s correctness with respect to this mental
model.

7.1 Increasing a Computation’s Cognitive Surface

In analogy with material objects, I call the parts of a computa-
tion that are readily comprehensible by its users its cognitive
surface, and the parts that are comprehensible only with spe-
cialist tools, or with significant effort, its cognitive bulk. Note
that comprehensible is not the same as visible. The source
code of the software that underlies a computation may be
very visible, in the case of Open Source software, but most
of it doesn’t make sense to a user with reasonable effort,

Onward! ’24, October 23-25, 2024, Pasadena, CA, USA

and therefore belongs to the bulk. In the context of standard
command-line or GUI applications, the cognitive surface of
a computation consists of the software’s user interface, its
documentation, and of inputs and outputs of an execution.

A reduction in epistemic opacity can thus be achieved by
increasing the cognitive surface of a computation, relative to
the bulk. An obvious idea is to divide the computation into
smaller pieces and let the user see their inputs and outputs.
Interactive read-eval-print loops (REPLs) serve this purpose,
for power users with sufficient programming experience.
Object inspectors, as known from Lisp and Smalltalk sys-
tems, are very useful complements to a REPL. Computational
notebooks go one step further and integrate code snippets
and their inputs and outputs into an explanatory narrative.
Whereas authoring such a notebook still requires power user
level, a well-written notebook can be read and understood by
less experienced users. Some notebook tools, such as Jupyter
with its widgets, allow the embedding of visualization and
control elements into a notebook, which invite the user to
explore data items in the computation.

Notebooks draw on the earlier idea of literate program-
ming [20], but apply it to a computation, i.e. a sequence of
situated® code snippets processing specific data, rather than
to a program, which consists of generic code applicable to dif-
ferent inputs. This is their strength but also their limitation.
In any non-trivial computation, the situated code snippets
call reusable generic software libraries, to which the reader
of a notebook has no access.

In an essay on making software systems explainable [26],
Nierstrasz and Girba propose a combination of notebooks
and literate programming, which is implemented in a Smalltalk-
based programming system called Glamorous Toolkit [7].
Instead of a single notebook outlining the steps of a compu-
tation, they propose multiple cross-linked narratives. Each
such narrative can contain the steps of a computation, but
also visually embed code from anywhere in the software
system. Another improvement in Glamorous Toolkit is the
replacement of the traditional Smalltalk object inspector by a
moldable object inspector that can be extended with domain-
specific views and user interface elements, similar in spirit
to Jupyter widgets but much cheaper to create, thanks to
rich support from the underlying programming system.

As these examples illustrate, softening the divide between
users and developers is an important aspect of increasing a
computation’s cognitive surface. In such a scenario, users
must invest more effort into learning computing technology,
becoming power users. In parallel with the power and under-
standing they gain, they also take more responsibility for the
software’s behavior. Such power users require very different
support tools than the immensely complex programming
languages and build systems created by and for software
professionals.

6See [32] for a discussion of situated software.

201

Konrad Hinsen

Taking this idea one step further, we should question if
generic software building blocks written for a wide range of
applications are always the best design to aim for. Reusable
software is a concept from the software industry”*", where
it serves productivity”*™. In an interview from 2008 [21],
Donald Knuth said:

I also must confess to a strong bias against the
fashion for reusable code. To me, “re-editable
code” is much, much better than an untouchable
black box or toolkit. I could go on and on about
this. If you’re totally convinced that reusable
code is wonderful, I probably won’t be able to
sway you anyway, but you’ll never convince me
that reusable code isn’t mostly a menace.

Unfortunately, he didn’t develop this thought beyond this
one paragraph. I interpret his proposal of “re-editable code”
as code that is kept as simple and situated as possible, such
that readers can understand it and then adapt it to their
own needs. Much like with Alan Kay’s Dynabook, and in
the spirit of Ivan Illich’s call for convivial tools [15]. On
the other hand, reusable software is very convenient if you
want a reliable off-the-shelf component but don’t actually
care about its inner workings. Taeumel and Hirschfeld [36]
discuss the trade-offs between reusable and re-editable code
(which they call repairable) with several examples.

7.2 Reasoning about Software

As every software developer knows, reasoning about soft-
ware is hard, even if it’s software you have written yourself.
Reasoning about someone else’s software is worse, because
the source code is a very imperfect representation of a de-
veloper’s thought processes. Program source code is not the
right medium for humans to reason about software. Could
we do better? I'll present a raw idea, not being sure that it
would work out in practice. It is inspired by a popular quote
from the well-known computer science textbook “Structure
and Interpretation of Computer Programs” [1, preface to the
first edition]:

Programs must be written for people to read,
and only incidentally for machines to execute.

How would a user go about reading a non-trivial program?
The first contact with new software is its documentation, so
let’s start from there. We could embed a formal specification
(see section 5.3) into this documentation, permitting readers
to validate the mental models they are forming, possibly with
the help of formal methods. Executable examples would help
as well.

Many users could stop at that level, if they have reasons
to trust the implementation. For those interested in diving
in deeper, a second software layer could contain a high-level
implementation of the specifications, commented for an ex-
planation of implementation choices. The algorithms would

Redressing the Balance: A Yin-Yang Perspective on Information Technology

be fully worked out, but no optimizations nor adaptations
made for purely technical reasons.

A code analyzer could annotate this layer with possible
optimizations, telling the reader not to worry about these
points because they will be taken care of automatically. A
third layer would then contain the human response to those
annotations: manual optimizations and fine-tuning to tech-
nical requirements. That layer would become the “source
code” for machines to execute.

The challenge is to keep all three layers coherent as they
evolve. That’s certainly not a trivial task, but it doesn’t look
impossible either. For humans, such an architecture should
be well-adapted because it is how we lay out explanations of
complex topics in textbooks: start with an overview and spe-
cific examples, then go progressively into technical details.

7.3 Trusting Software

Assuming that I have a good-enough mental model of what
a piece of software does, how I can develop trust in the
correctness of its implementation? If the mental model of its
operation is simple, then I can evaluate the implementation
from feedback during usage. But what if I cannot possibly
test every feature myself? They might be too numerous, or
exploring them might be dangerous or expensive.

Such questions are not specific to software. When I take
a train, I don’t ask the conductor to test the brakes at high
speed in order to convince me of their proper function. Trains
are embedded into a network of manufacturers, operators,
maintenance technicians, laws and regulations, etc., all of
which contribute to building public trust into a complex
industrial product. The corresponding trust mechanisms for
software are much weaker. Much of the software we use
every day, and all of the software we use for science, receives
little to no independent audits and is not subjected to any
norms or regulations.

This is, of course, a social rather than a technical problem.
We will get more trustworthy software as soon as we make
it a priority and are willing to pay the cost. I have outlined
possible measures for scientific software elsewhere [10], but
don’t expect them to be applied any time soon. For now, the
scientific community, in its quest for productivity”*" and
impact?®"8, wants to do¥*™8 ever more, but not examine” in if
these actions are appropriate.

There is, however, one very easy to apply measure to
facilitate trust building by users: slow down development.
Trust building is a slow yin process. It’s impossible to build
trust in a system that is modified so frequently that nobody
outside the development team has the time to examine it
carefully.

202

Onward! ’24, October 23-25, 2024, Pasadena, CA, USA

8 What We Have Lost

Now I can go back to my motivating examples from the intro-
duction, and describe what exactly we have lost during thirty
years of yang-focused innovation in computing technology.

APL was initially designed by Ken Iverson as a notation
for humans working in applied mathematics [16, 17]. It was
later implemented, initially by IBM, as a programming sys-
tem for explorative work. The APL systems available in the
1990s were already quite sophisticated, with IBM’s APL2
in particular excelling in support for plotting and visualiza-
tion, as well as providing more flexible fundamental data
structures through nested arrays.

In contrast, a Jupyter notebook as an interface to Python
code is an assembly of yang-focused technologies. Python
was initially developed as a scripting language for systems
administration [38]. A library for numerical computations,
drawing inspiration from APL and other sources, was writ-
ten later as a separate entity [5]. It implemented its own
efficient central data structure, the multi-dimensional array,
meaning that programmers have to keep juggling between
Python’s native data structures and NumPy’s add-on data
structure all the time. The Python language itself evolved
significantly over its more than thirty years of existence,
becoming more and more complicated and reserving some
unpleasant surprises for its users [27]. While Python’s initial
learning curve is attractive, compared to a superficially cryp-
tic language like APL, the ongoing cognitive load in terms
of technical details that it imposes on its users is significant.

Jupyter provides an interface to Python’ that superficially
resembles an interactive programming system, but is re-
stricted to a linear sequence of code, much like a script. The
Python libraries used in a notebook can neither be inspected
nor modified interactively. Users wishing to understand the
library code they deploy in detail have to switch to a different
set of tools. Jupyter’s two-process architecture, with a com-
putational core in Python and an interactive layer written
in JavaScript, running in a Web browser, adds another level
of cognitive burden on users and discourages in particular
explorative work on visualization, whose implementation
requires a Python layer, a JavaScript layer, plus a communica-
tion layer between the two. On the other hand, Jupyter comes
with a large range of ready-to-use’*"8 predefined visualiza-
tions, which makes it superficially attractive for visualization
work — assuming that you are willing to adapt your work to
someone else’s visualization choices, rather than adapt the
visualization environment to the needs of your work.

Whereas both APL and Jupyter were designed as support
technologies for yin processes, Jupyter relies on two major
yang-focused building blocks: Python and the Web platform.
No amount of interface polishing can make up for the inap-
propriateness of such a foundation. What we have lost at the
most fundamental level is the goal of achieving widespread

7Also a few other languages, but I concentrate on the most widely used one.

Onward! ’24, October 23-25, 2024, Pasadena, CA, USA

computational literacy. We have abandoned not only Alan
Kay’s ambitious goal of computational literacy for everyone,
starting at a young age, but even the more modest goal of
Ken Iverson: computational literacy for highly trained pro-
fessionals in knowledge-intensive domains such as scientific
research.

The story of my Fortran simulation code is a bit more
subtle. It is more understandable than many of today’s simu-
lation codes not because of building on more suitable tech-
nology, but mostly by virtue of being smaller. For someone
familiar with the problem and the mathematical toolbox used
to deal with it, studying the entire code in a few days is quite
feasible. Today’s more powerful computers allow us to study
more complex problems, using more complex models and
more complex code. There is real scientific progress in this
development. But if we had been serious about supporting
the yin process of science, we would have worked hard to
improve understandability in parallel with implementing
more complex models. We would systematically have sub-
jected software to peer review, to ensure that it makes sense
to someone else than its authors, and to build trust in it. The
idea of publishing and reviewing code was first proposed
in 1969 [29], but received little attention before the repro-
ducibility crisis. What we have lost in the quest for yang is
the core principle behind scientific research: a self-critical
attitude that insists on transparency and external verification
for every contribution to the scientific record.

9 The Wider Context

In the preceding sections, I have documented a systematic
emphasis on yang processes in information technology, with
a corresponding weakness of support for yin processes. This
imbalance is not limited to information technology. Similar
trends can be observed in other aspects of today’s Western
and globalized societies.

Scientific research is a quintessential yin process, whose
goal at the most abstract level is to increase humanity’s un-
derstanding of the world. And yet, it has been invaded by
yang ideas and terminology over the last decades. Research
is being re-branded as knowledge production”*"8. Journal
articles, whose original role was communication between
researchers, are now considered to be research outputs’*,
along with other countable and measurable artifacts such
as datasets or software. These outputs are expected to have
impact?®™. The production of high-impact outputs is over-
seen by research managers, as in industry. Whereas in the
not too distant past, science was supposed to contribute
to progress, today’s terminology is innovation. Change for
change’s sake, without the, admittedly vague and subjective,
notion of improvement that progress implies.®

8A quest for progress is also problematic because it is usually applied to a
narrowly defined aspect of the world, ignoring side effects outside of that
focus that may well be deleterious. See [28] for an in-depth discussion.

203

Konrad Hinsen

Taking another step back, the priority of today’s govern-
ments is economic growth’”"§, meaning the continuous in-
crease of the production’®" of goods and services. It no longer
matters if these goods and services are beneficial or harmful,
as such judgments would require a prior understanding of
each product’s context, followed by a public debate. A good
example is the rapid deployment at scale of social media in
the 2010s and of LLMs right now. They disrupt”*"® human
communication, including the inherently slow yin processes
of trust building. A responsible introduction of such tech-
nology would have progressed slowly, collecting feedback
along the way.

In Chinese philosophy, and in particular in daoism’, the
yin-yang lens is used to watch over harmony. Yin and yang
require each other. If either one dominates, the system is out
of balance and at risk of malfunction. From that perspective,
many of the problems we are facing today are the result of
an excess of yang. We focus on productivity and innovation,
but don’t watch out for the impact of our technology and
its products on the biosphere, including its human inhabi-
tants. We burn ever more fossil fuels, but close our eyes to
the resulting global temperature increase, although its basic
mechanisms have been known for more than a century [2, 6].
We release ever more synthetic molecules into the environ-
ment, but refuse to see their toxicity for living organisms.
The primary societal reaction to these environmental issues
so far has been activist?*® movements, who call for emer-
gency action?®® without considering the potential negative
effects that this yang-against-yang might have. Daoism has
always been suspicious of the unintended and undesirable
consequences of human action that result from insufficient
alignment with the flow of natural processes. It advocates
wuwei, often translated as effortless action, and nicely illus-
trated by the example of moving with the flow of a river
rather than against it. This is the opposite of “disruption”
and “move quickly and break things”, the Silicon Valley at-
titude that has contaminated much of today’s information
technology.

While I do not fully adhere to daoist precepts, I do be-
lieve that today’s yang obsessions in technology, economy,
and culture are related and interdependent, and that we
should counterbalance them by strengthening our yin pro-
cesses. One easy first step I have taken is to refuse the use
of yang terminology for yin concepts. I am a researcher, not
a knowledge producer. I seek insight, not impact. I make
contributions to a knowledge commons, not research out-
puts. And on my modest personal scale, I also try to improve
yin-supporting computing technology [11]. I hope that some
of my readers will join me in this quest for balance.

9The traditional English spelling is taoism.

Redressing the Balance: A Yin-Yang Perspective on Information Technology

References

(1]

—
w
[tr}

[4] John M Culkin. 1967.

— —
o0 3
[t

[10]
[11]
[12]

[13]

[14]

[15
[16
[17]

=

[18]

[19]

[20]

[21]

[22]

Harold Abelson, Gerald Jay Sussman, and Julie Sussman. 2002. Struc-
ture and Interpretation of Computer Programs (2. ed., 7. [pr.] ed.). MIT
Press [u.a.], Cambridge, Mass.

Svante Arrhenius. 1896. On the Influence of Carbonic Acid in the Air
upon the Temperature of the Ground. The London, Edinburgh, and
Dublin Philosophical Magazine and Journal of Science 41, 251 (April
1896), 237-276. https://doi.org/10.1080/14786449608620846
Elizabeth A. Campbell, Helen Walden, Johannes C. Walter, Arun K.
Shukla, Martin Beck, Lori A. Passmore, and H. Eric Xu. 2024. AlphaFold:
Research Accelerator and Hypothesis Generator. Molecular Cell 84, 3
(Feb. 2024), 404-408. https://doi.org/10.1016/j.molcel.2023.12.035

A Schoolman’s Guide to Marshall
McLuhan. The Saturday Review 51-53 (March 1967), 70—
72. https://webspace.royalroads.ca/llefevre/wp-content/uploads/sites/
258/2017/08/A-Schoolmans-Guide-to-Marshall-McLuhan-1.pdf
Paul F. Dubois, Konrad Hinsen, and James Hugunin. 1996. Numerical
Python. Computers in Physics 10, 3 (1996), 262. https://doi.org/10.
1063/1.4822400

Steve M. Easterbrook. 2023. Computing the Climate: How We Know
What We Know About Climate Change (1 ed.). Cambridge University
Press, Cambridge. https://doi.org/10.1017/9781316459768

feenk GmbH. [n. d.]. Glamorous Toolkit. https://gtoolkit.com/
Richard P. Gabriel. 2012. The Structure of a Programming Language
Revolution. In Proceedings of the ACM International Symposium on New
Ideas, New Paradigms, and Reflections on Programming and Software
(Onward! 2012). Association for Computing Machinery, New York, NY,
USA, 195-214. https://doi.org/10.1145/2384592.2384611

Konrad Hinsen. 2016. The Power to Create Chaos. Computing in
Science & Engineering 18, 4 (July 2016), 75-79. https://doi.org/10.1109/
MCSE.2016.67

Konrad Hinsen. 2023. Establishing Trust in Automated Reasoning.
https://doi.org/10.31222/0sf.io/nt96q

Konrad Hinsen. 2023. Leibniz - a Digital Scientific Notation. https:
//leibniz.khinsen.net/

Konrad Hinsen. 2023. The Nature of Computational Models. Comput-
ing In Science & Engineering 25, 1 (2023), 61-66. https://doi.org/10.
1109/MCSE.2023.3286250

Paul Humphreys. 2004. Extending Ourselves: Computational Science,
Empiricism, and Scientific Method. Oxford University Press, New York,
Us.

Paul Humphreys. 2009. The Philosophical Novelty of Computer Simu-
lation Methods. Synthese 169, 3 (2009), 615-626. https://doi.org/10.
1007/511229-008-9435-2

Ivan Illich. 1973. Tools for Conviviality. Calders and Boyars, London.
Kenneth E. Iverson. 1962. A Programming Language. Wiley, New York.
Kenneth E. Iverson. 1980. Notation as a Tool of Thought. Commun.
ACM 23, 8 (Aug. 1980), 444-465. https://doi.org/10.1145/358896.358899
Alan C. Kay. 1972. A Personal Computer for Children of All Ages.
In Proceedings of the ACM Annual Conference - Volume 1 (ACM ’72,
Vol. 1). Association for Computing Machinery, New York, NY, USA.
https://dl.acm.org/doi/10.1145/800193.1971922

Donald E Knuth. 1974. Computer Science and Its Relation to Math-
ematics. The American Mathematical Monthly 81, 4 (1974), 323-343.
https://doi.org/10.2307/2318994 jstor:2318994

Donald E Knuth. 1984. Literate Programming. Comput. J. 27, 2 (1984),
97-111. http://comjnl.oxfordjournals.org/content/27/2/97.short
Donald E Knuth and Andrew Binstock. 2010. Interview with Donald
Knuth. https://web.archive.org/web/20101203111941/https://www.
informit.com/articles/article.aspx?p=1193856

Shriram Krishnamurthi and Tim Nelson. 2019. The Human in Formal
Methods. In Formal Methods — The Next 30 Years, Maurice H. Ter Beek,
Annabelle Mclver, and José N. Oliveira (Eds.). Vol. 11800. Springer
International Publishing, Cham, 3-10. https://doi.org/10.1007/978-3-

204

[23]

[24]

[25]

[26]

Onward! ’24, October 23-25, 2024, Pasadena, CA, USA

030-30942-8_1

@louis@emacs.ch. 2024. GNV - the Gopher Web Search Engine - Just
Got an Update. https://emacs.ch/@louis/112074295465231785

Isaac Newton. 1687. Philosophise Naturalis Principia Mathematica.
Royal Society, London. https://la.wikisource.org/wiki/Philosophiae_
Naturalis_Principia_Mathematica

Michael Nielsen. 2015. Neural Networks and Deep Learning. Determi-
nation Press. http://neuralnetworksanddeeplearning.com/

Oscar Nierstrasz and Tudor Girba. 2022. Making Systems Explainable.
In 2022 Working Conference on Software Visualization (VISSOFT). IEEE,
Limassol, Cyprus, 1-4. https://doi.org/10.1109/VISSOFT55257.2022.
00009

[27] Joe Gibbs Politz, Alejandro Martinez, Mae Milano, Sumner Warren,

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

Daniel Patterson, Junsong Li, Anand Chitipothu, and Shriram Krishna-
murthi. 2013. Python: The Full Monty. In Proceedings of the 2013 ACM
SIGPLAN International Conference on Object Oriented Programming
Systems Languages & Applications. ACM, Indianapolis Indiana USA,
217-232. https://doi.org/10.1145/2509136.2509536
Consilience Project. 2024. Development in Progress.
consilienceproject.org/development-in-progress/

K. V. Roberts. 1969. The Publication of Scientific Fortran Programs.
Computer Physics Communications 1, 1 (July 1969), 1-9. https://doi.
org/10.1016/0010-4655(69)90011-3

P W Rose, A Prli, C Bi, W F Bluhm, C H Christie, S Dutta, R K Green,
D S Goodsell,] D Westbrook,] Woo,] Young, C Zardecki, H M Berman,
P E Bourne, and S K Burley. 2014. The RCSB Protein Data Bank: Views
of Structural Biology for Basic and Applied Research and Education.
Nucleic Acids Research (2014). https://doi.org/10.1093/nar/gku1214
D. W. Sandberg. 1988. Smalltalk and Exploratory Programming. ACM
SIGPLAN Notices 23, 10 (Oct. 1988), 85-92. https://doi.org/10.1145/
51607.51614

Clay Shirky. 2004. Situated Software. https://web.archive.org/web/
20040411202042/http://www.shirky.com/writings/situated_software.
html

Paul Sonntag, Alexander Obenauer, and Geoffrey Litt. 2023. Em-
bark: Dynamic Documents as Personal Software. In LIVE 2023: The
Ninth Workshop on Live Programming. Cascais, Portugal. https:
//www.inkandswitch.com/embark/

Gerald Jay Sussman and Jack Wisdom. 2002. The Role of Programming
in the Formulation of Ideas. Technical Report. MIT Artificial Intelli-
gence Laboratory. 1-19 pages. http://hdl.handle.net/1721.1/6707
Gerald Jay Sussman and Jack Wisdom. 2014. Structure and Interpreta-
tion of Classical Mechanics (2. ed ed.). MIT Press, Cambridge, Mass.
Marcel Taeumel and Robert Hirschfeld. 2022. Relentless Repairabil-
ity or Reckless Reuse: Whether or Not to Rebuild a Concern with
Your Familiar Tools and Materials. In Proceedings of the 2022 ACM
SIGPLAN International Symposium on New Ideas, New Paradigms,
and Reflections on Programming and Software (Onward! 2022). As-
sociation for Computing Machinery, New York, NY, USA, 185-194.
https://doi.org/10.1145/3563835.3568733

A M Turing. 1937. On Computable Numbers, with an Application to
the “Entscheidungsproblem”. Proceedings of the London Mathematical
Society 42, 2 (1937), 230-265. https://doi.org/10.1112/plms/s2-42.1.230
Guido van Rossum. [n.d.]. Why Was Python Created in the First
Place? https://docs.python.org/3/fag/general.html#why-was-python-
created-in-the-first-place

Wikipedia contributors. 21 April 2024 20:38 UTC. Replication Crisis.
Wikipedia (21 April 2024 20:38 UTC). https://en.wikipedia.org/w/
index.php?title=Replication_crisis&oldid=1220102316

https://

https://doi.org/10.1080/14786449608620846
https://doi.org/10.1016/j.molcel.2023.12.035
https://webspace.royalroads.ca/llefevre/wp-content/uploads/sites/258/2017/08/A-Schoolmans-Guide-to-Marshall-McLuhan-1.pdf
https://webspace.royalroads.ca/llefevre/wp-content/uploads/sites/258/2017/08/A-Schoolmans-Guide-to-Marshall-McLuhan-1.pdf
https://doi.org/10.1063/1.4822400
https://doi.org/10.1063/1.4822400
https://doi.org/10.1017/9781316459768
https://gtoolkit.com/
https://doi.org/10.1145/2384592.2384611
https://doi.org/10.1109/MCSE.2016.67
https://doi.org/10.1109/MCSE.2016.67
https://doi.org/10.31222/osf.io/nt96q
https://leibniz.khinsen.net/
https://leibniz.khinsen.net/
https://doi.org/10.1109/MCSE.2023.3286250
https://doi.org/10.1109/MCSE.2023.3286250
https://doi.org/10.1007/s11229-008-9435-2
https://doi.org/10.1007/s11229-008-9435-2
https://doi.org/10.1145/358896.358899
https://dl.acm.org/doi/10.1145/800193.1971922
https://doi.org/10.2307/2318994
http://comjnl.oxfordjournals.org/content/27/2/97.short
https://web.archive.org/web/20101203111941/https://www.informit.com/articles/article.aspx?p=1193856
https://web.archive.org/web/20101203111941/https://www.informit.com/articles/article.aspx?p=1193856
https://doi.org/10.1007/978-3-030-30942-8_1
https://doi.org/10.1007/978-3-030-30942-8_1
https://emacs.ch/@louis/112074295465231785
https://la.wikisource.org/wiki/Philosophiae_Naturalis_Principia_Mathematica
https://la.wikisource.org/wiki/Philosophiae_Naturalis_Principia_Mathematica
http://neuralnetworksanddeeplearning.com/
https://doi.org/10.1109/VISSOFT55257.2022.00009
https://doi.org/10.1109/VISSOFT55257.2022.00009
https://doi.org/10.1145/2509136.2509536
https://consilienceproject.org/development-in-progress/
https://consilienceproject.org/development-in-progress/
https://doi.org/10.1016/0010-4655(69)90011-3
https://doi.org/10.1016/0010-4655(69)90011-3
https://doi.org/10.1093/nar/gku1214
https://doi.org/10.1145/51607.51614
https://doi.org/10.1145/51607.51614
https://web.archive.org/web/20040411202042/http://www.shirky.com/writings/situated_software.html
https://web.archive.org/web/20040411202042/http://www.shirky.com/writings/situated_software.html
https://web.archive.org/web/20040411202042/http://www.shirky.com/writings/situated_software.html
https://www.inkandswitch.com/embark/
https://www.inkandswitch.com/embark/
http://hdl.handle.net/1721.1/6707
https://doi.org/10.1145/3563835.3568733
https://doi.org/10.1112/plms/s2-42.1.230
https://docs.python.org/3/faq/general.html#why-was-python-created-in-the-first-place
https://docs.python.org/3/faq/general.html#why-was-python-created-in-the-first-place
https://en.wikipedia.org/w/index.php?title=Replication_crisis&oldid=1220102316
https://en.wikipedia.org/w/index.php?title=Replication_crisis&oldid=1220102316

	Abstract
	1 Introduction
	2 The Yin-Yang Lens
	3 Tools and Technology
	4 Automation
	5 Computational Modeling: Formalization
	5.1 Programming Languages
	5.2 Programming Systems
	5.3 Specification Languages
	5.4 Static Type Systems and Type Checkers

	6 Computational Modeling: Data-based Inference
	7 Simulation and Data Analysis
	7.1 Increasing a Computation's Cognitive Surface
	7.2 Reasoning about Software
	7.3 Trusting Software

	8 What We Have Lost
	9 The Wider Context
	References

