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Abstract

Vision-Language Pretraining (VLP) and Foundation mod-
els have been the go-to recipe for achieving SoTA perfor-
mance on general benchmarks. However, leveraging these
powerful techniques for more complex vision-language tasks,
such as cooking applications, with more structured input
data, is still little investigated. In this work, we propose to
leverage these techniques for structured-text based compu-
tational cuisine tasks. Our strategy, dubbed VLPCook, first
transforms existing image-text pairs to image and structured-
text pairs. This allows to pretrain our VLPCook model using
VLP objectives adapted to the strutured data of the resulting
datasets, then finetuning it on downstream computational
cooking tasks. During finetuning, we also enrich the vi-
sual encoder, leveraging pretrained foundation models (e.g.
CLIP) to provide local and global textual context. VLPCook
outperforms current SoTA by a significant margin (+3.3 Re-
call@1 absolute improvement) on the task of Cross-Modal
Food Retrieval on the large Recipe1M dataset. We conduct
further experiments on VLP to validate their importance,
especially on the Recipe1M+ dataset. Finally, we validate
the generalization of the approach to other tasks (i.e, Food
Recognition) and domains with structured text such as the
Medical domain on the ROCO dataset. The code is available
here: https://github.com/mshukor/VLPCook.

1. Introduction

Vision-Language Pretraining (VLP) [7, 17, 30, 67, 71] has
become the general recipe to attain SoTA results on down-
stream unimodal and multimodal tasks, with the key success
is learning a shared latent space where all modalities are
aligned. This paradigm generally helps to overcome the
human labor associated with designing a task or domain cus-
tomized approaches, and pushes towards more simplification,
by unifying the model, training objective and input/output
format [6, 75, 76]. As going large scale is an important in-
gredient to push the performance limits, we have witnessed

recently a lot of work going in this direction, leading to what
so-called foundation models [1, 6, 22, 29, 53, 83].

However, these approaches are still evaluated on simple
downstream tasks, to the detriment of more complex albeit
important tasks. The current evaluation schema considers
tasks such as VQA [2], Visual entailment [78], Image-Text
Retrieval [52], Image Classification and other general bench-
marks that highly resemble the pretraining data, in terms of
image distribution, text format, length and structure. Simi-
larly, existing Foundation models have shown great transfer
capabilities to several downstream tasks, however, it is still
also unclear how they perform beyond common tasks. The
key stumbling block to leverage VLP and Foundation models
for such domains, is the complex input that is hard to digest.
In particular the tasks involving images with associated text
that goes beyond simple image caption, to richer, longer and
structured text.

In this work, we question how to leverage VLP and exist-
ing Foundation models for tasks requiring structured text. As
image-text alignment has proven to be successful for multi-
modal tasks, we focus on Image-Text Retrieval being one of
the best benchmarks to evaluate such alignment. To validate
the proposed approach, we consider the traditional task of
on Cross-Modal Food Retrieval [56], aiming at bridging the
gap between VLP and Computational Cooking.

Computational Cooking or Food applications [19, 44, 47,
56] are one of the important applications that fit very well
in this marginalized list, with no existing work to bridge
the gap with VLP. In particular, Cross-Modal Food Re-
trieval [5, 55, 56, 64] which has gained a lot of attention
in the recent years and is the current main benchmark to
assess the model performance on computational cooking.
The images are of different food plates with high inter and
low intra category similarity. The text, consists of the corre-
sponding recipe that is composed of 3 entities; title (global
description), ingredients (local descriptions, objects or enti-
ties that might be seen or not) and instructions (events that
we generally see only their effects or final results).

As the main hurdle to enable VLP for food models is
the input data, we choose to adapt the input data to be com-
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Figure 1. VLPCook framework with 2 sequential stages. Stage 1 (left) or VSLP (Sec. 3.1): the Structured Text Extraction (STE) module
transforms the caption to a structured recipe-like input that is used to pretrain the model on a large corpus of structured text and images.
Stage 2 (right) or Cross-Modal Finetuning (Sec. 3.2): we leverage existing foundation models to enrich the vision encoder with local and
global textual context. Main contributions are highlighted in red. The lock symbol means the model is frozen.

patible, structurally and semantically, to some extent, to fit
in these models. In addition, and pushing on the environ-
mentally responsible idea of reusing existing models, we ex-
ploit existing large scale Vision-Language Models (VLMs),
to guide the vision encoder with structured context. This
guidance is through region-level or local context (e.g. in-
gredients), and image-level or global context (e.g. titles).
Our approach, dubbed VLPCook, consists of 2 stages; (1)
Vision and Structured-Language Pretraining (VSLP) of the
model on the created structured text, then (2) Cross-Modal
Finetuning guided by foundation models. The approach is
illustrated in Fig. 1.

Our main contributions can be summarized as follows:

• We propose a new approach for transforming exist-
ing datasets of image-text pairs to datasets of image
and structured-text pairs, and show that VLP on such
datasets gives significant improvement.

• We propose a new model that leverages existing pre-
trained foundation models to inject structured local and
global textual context to guide the visual encoder.

To validate the work, we conduct an extensive experi-
mental study on the challenging task of Cross-Modal Food
Retrieval, which leads to the following interesting outcomes:

• VLPCook outperforms significantly other SoTA on the
Recipe1M dataset, with absolute improvement of +3
and +3.3 of R@1 on the 1k and 10k setups respectively.

• The first work showing the effectiveness of VLP in
the cooking context, after experimenting with different
kinds of existing food approaches.

• Despite what was reported [43] on the poor general-
ization from Recipe1M+ to Recipe1M, we show that
pretraining on this large dataset can unlock its poten-
tial, and lead to large improvement of +2.4 R@1 on
Recipe1M test set.

• Contrary to recent findings showing that foundation
models can attain SoTA on standard benchmarks (e.g.
VQA v2, COCO retrieval), we show that finetuning
these models lag significantly behind SoTA on the un-
derlying task of Cross-Modal Food Retrieval.

• We validate the generalization of the work to other
tasks (i.e., Food Recognition) and domains, such as
the Medical domain, showing significant improvement
over baselines.

2. Related Work
Vision and Language Pretraining (VLP) Vision and Lan-
guage Pretraining (VLP) [7, 67, 71] aims at learning vision-
language representation by pretraining on datasets of images
and texts ( [1, 49, 53, 59, 61]). The model is then evaluated
on several downstream tasks such as VQA [2], NLVR2 [70],
image-text retrieval [52] and image captioning [40]. This
line of research has shown promising success in the last
few years, leading to state of art (SoTA) results [17, 29, 30]
compared to task-customised models, and providing mod-
ular encoders that are seamlessly used in a variety of ways.
Besides several other improvements, the major ones have
been either in the architectural design, or the pretraining
objectives. On the model side, we have models with sepa-
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rate vision and language encoders, without significant cross
modal interaction (e.g., CLIP [53], ALIGN [23]). Despite
their fast inference, they are data hungry and perform poorly
on tasks that need deeper reasoning. To overcome these lim-
itations, heavy fusion models use a cross modal interaction
module [7, 25, 28, 34, 41, 67, 86] which is added on top of
unimodal encoders [16, 30, 63, 82] leading to hybrid mod-
els. These hybrid approaches have succeeded to get SoTA
results while training on reasonably sized datasets. On the
learning side, the main training objectives can be categorised
into contrastive (ITC [53], ITM [7]) and masked predictions
(MLM [12], MIM [17, 63]). The models that work best are
those that combine several objectives, however, at large scale,
there are many attempts to unify pretraining tasks.

Leveraging Foundation Models Foundation models [1, 53,
65, 75, 76, 83] draw some similarity with VLP, however
here the objective is to develop a general model that can
be adapted to many unimodal and multimodal tasks. Here
there is more emphasis on large scale, in terms of tranining
data [53], and model size [83] and on unification of the ar-
chitectural design and training objectives [75, 76]. In spite
of being successful, due to the need for huge resources to
traininig these models from scratch, researchers and prac-
tioners have leveraged them, without the burden of retrain-
ing; such as initialization and finetuning [62, 64], as frozen
modules [11, 54, 68], enriching the input [57] and extract-
ing visual concepts [63]. In our work, we leverage existing
pretrained foundation models to extract different aspects of
textual contexts to enrich the visual representation.

Food Applications and Learning from Sructured Data
Many work have been proposed in the recent years for food
tasks, such as food categorization [4], calorie estimation [46],
image generation [88] and cross modal retrieval [56]. Since
the inception of large scale food datasets such Recipe1M [56]
followed by Recipe1M+ [43] the task of cross-modal re-
trieval have gained a lot of attention. In terms of perfor-
mance and architectural designs, cross modal food retrieval
work can be divided into transformer-based [21, 50, 55, 64]
or transformer-free [5, 18, 56, 73, 74, 89] approaches, with
a significant improvements of the former. Specifically, on
the vision side, ViT [14] is used as an image encoder, and
on the recipe side, standard [21] or hierarchical transform-
ers [55, 64] are adopted. In terms of training objectives,
almost all approaches use triplet loss [13, 58, 77] in addi-
tion to some regularization such as semantic triplet [5, 64],
embedding classification [56], adversarial losses [73] and
multimodal regularization with image-text matching objec-
tive [64]. In addition to food applications, learning from
structured texts and images has been investigated in several
domains and tasks, such as Medical applications [51], News
applications [3], Multimedia Event extraction [36, 37] and
Situation Recognition [10, 69]. In the context of VLP, few
work have been recently proposed [35,39], however, they do

not consider the case of structured text as input during test
and focus on learning a structural representations.

3. VLPCook
Overview: We introduce VLPCook, the first work trying to
bridge the gap between VLP and the Computational Cooking
domain. VLPCook proposes a novel pretraining pipeline that
solves the issues of complex cooking inputs, and a finetun-
ing framework that leverages this pretraining and foundation
models for cooking tasks, such as the task of Cross-Modal
Food Retrieval. VLPCook consists in 2 stages: (1) Vision
and Structured-Language Pretraining (VSLP in Sec. 3.1);
to perform VLP relevant to complex cooking recipes, we
transform the image captions (in existing image-text pairs
datasets) to structured text, and form new datasets of im-
age and structured text pairs. This allows us to benefit
from a large-scale VLP adapted to the specificity of cook-
ing datasets. (2) Cross-Modal Finetuning (Sec. 3.2); on the
downstream cooking task, where we leverage existing foun-
dation models, without any retraining, to contextualize the
visual encoder with local and global textual context. The
approach is illustrated in Fig. 1. As our goal is to leverage
VLP and foundation models and show their benefits for the
cooking domain, we decide to build our approach on top of
recent SoTA food models and keep as much as possible the
same model architecture/finetuning objectives.
Background on VLP: VLP consists of pretraining Vision-
Language models on large datasets of image-text pairs, then
finetuning on several multimodal downstream tasks. Several
pretraining objectives are used in VLP. Here we focus only
on 2 of them; Image-Text Contrastive (ITC) and Image-Text
Matching (ITM):
ITC: several ITC losses have been proposed, such as In-
foNCE [48, 66, 87] and triplet loss [13, 77]. In this work,
we use a triplet loss on top of the unimodal encoders. On
one hand, we pull the image embedding to be close to the
corresponding recipe embedding, and vice versa, and on the
other hand, we push far away the embeddings of different
recipes. ITC is used to globally align both modalities, which
is important for tasks such as cross-modal retrieval.
ITM: is a binary classification loss to train the model to
predict matched image-text pairs [7]. This loss is applied
on top of the multimodal module (e.g., transformer decoder)
and aims to learn more fine-grained interaction between
modalities.

3.1. Vision and Structured-Language Pretraining
(VSLP)

Existing VLP approaches use image captions; usually
a one sentence describing a general event, or the scene in
the image. Despite being easily scraped from the internet,
and successful in many general downstream tasks, image
captions are not directly aligned with some domains such
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Figure 2. Illustration of our VSLP (Stage 1 of VLPCook). To
enable VLP for food models, image-text pairs are transformed to
image and structured-text pairs, that are compatible with hierarchi-
cal recipe encoders. The Structured Text Extraction (STE) module
generates 3 entities; (a) global description (”title”) using SGP, local
descriptions (”ingredients”) using CLIP-based retrieval, and the
”event” (”instructions”) which can be simply the caption. During
VLP, we optimize ITC and ITM losses and keep the vision encoder
frozen.

as Food applications. Specifically, image-captions generally
contain one sentence describing globally the image, while
recipes are longer (> 200 words), with a richer description,
including global (title), local (ingredients), and structured
(hierarchical) information.

Here we focus on computational cooking tasks that re-
quire such complex text input. The text or the recipe consists
of different elements, forming a hierarchical structure; global
information about the image (e.g., title), local information
(e.g. ingredients) and the interaction between different enti-
ties (e.g. instructions). The text is long (e.g. more than 10
ingredients/instructions) and rich, as it contains very specific
details (e.g. ingredients name and quantity). Recent food
models have dedicated recipe encoders [55, 64] to exploit
such structure. They use several stages of transformers: one
for each ingredient/instruction (T), another for the list of
ingredients/instructions (HT), and the last stage with trans-
former decoders (HTD) that take the tokens of one entity
as query and the tokens of other ones as keys and values
(Fig.2).

To bridge this gap between VLP and the food domain,
we propose first to create datasets of structured image-text
pairs, then use them to pretrain food models. This stage is
illustrated in Fig. 2.

From Image Captions to Structured Text (Recipe-fying
the captions): we propose a new approach to transform

existing image captions, in existing datasets of image and
text pairs, to richer and structured text. Transforming exist-
ing datasets helps us to leverage large scale ones, which is
cheaper than creating large scale datasets of image-recipe
pairs from scratch. We make the analogy between the ob-
tained text and recipes and detail the process in the following:
Global information (Title): we assume that the caption de-
scribes either the global scene or the main event in the image,
and use it to extract the title. However, it may also include
some unnecessary details to be considered for the title, as
well as noise (especially for datasets scraped from inter-
net). As a way to filter out the caption and keep the main
elements, we extract only the objects using Scene Graph
Parsing (SGP) [60] techniques and assemble them with a
simple ”and” (e.g., title: Woman and Piano and stage).
Local information (Ingredients): here, local entities or ob-
jects in the image should be included. Relying on the caption
alone is not optimal, as it contains only few seen objects,
besides referring to global aspects of the scene. On the
other hand, we do not want to be limited to seen objects and
include unseen but relevant objects, which is the case for
ingredients in food tasks (e.g. salt, sugar). This motivates
us to leverage additional sources of information to extract
all relevant, seen or unseen, objects. To this end, we use
existing foundation models, without retraining them, as they
enjoy good generalization capabilities on different domains
and tasks, to retrieve the closest entities. Specifically, these
entities are retrieved from a database that contains all objects
extracted from the captions of several image-text datasets
(e.g. COCO, SBU). To get the local entities of an image, the
image is fed to a CLIP visual encoder [53], then a cosine
similarity is applied to compute the distance between the
image and all textual embeddings of local entities, to select
the closest k ones.
Event (instructions): To describe the event, we consider the
caption. Even though the caption might describe only one
event in which some of the objects participate, we found that
using additional captions does not help significantly.

Note that, this approach can be leveraged in a straight-
forward way to other domains with structured text, such as
Medical applications.

VLP with Structured Text: Once we create datasets of
images and structured-text pairs, we can feed such data to
the hierarchical text encoder and pretrain our model (Fig. 2)
using standard VLP objectives. We use both ITC and ITM
objectives. For text-to-image ITC loss (similarly for the
image-to-text ITC), the triplet loss is fed with the text (t) and
image (v) embeddings:

l(ta, vp, vn, α) = [d(ta, vp) + α− d(ta, vn)]+, (1)
t = Et(G,L,E), v = Ev(I),
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where ta, vp and vn are the anchor, positive and nega-
tive embeddings respectively, α is the margin and d(·, ·) is
a distance function. The image embedding is obtained after
processing the image (I) with the image encoder Ev. The
text embedding is obtained after processing the structured
text, with the extracted local (L), global (G) and event (E)
elements. Specifically, Et first encodes each entity inde-
pendently using transformer encoders, then exploits their
interactions with cross attention [64]. We then compute ITC
loss (Litc) by summing the triplet losses over the batch and
weight the loss by the inverse of number of active triplet as
done in Adamine [5]. All examples in the batch are con-
sidered negatives, except the images that correspond to the
recipe and vice-versa. The ITM loss can be written as:

Litm = −ET,I∼D[y log(s(T, I))+ (2)
(1− y) log(1− s(T, I))],

where y is the label (i.e., 1 for matching pairs and 0 other-
wise) andD is the set of structured text (T = {L,G,E}) and
image (I) pairs, and s() is the score on top of the multimodal
module. The total loss becomes:

L = Litc + λLitm (3)

On the image side, to ease the pretraining, and leverage
the initial visual representation, we follow LiT [85] and keep
the vision encoder frozen, we also find that this gives better
results. We use a general vocabulary (used in BERT) and
change the embedding layer during this stage.

Recipe 
Encoder

Image

Multimodal Module

CExt

S
el

f A
tte

nt
io

n

Image Encoder

Title

Ingredients

Instructions

Context Module

ITC

CEmbCEmb

Local Context Global Context

ITM

Figure 3. Illustration of our contextualized vision encoder
(stage 2 of VLPCook). The ViT is contextualized by the con-
text module, which extracts local and global context (CExt), then
project them using a light-weight module (CEmb) to obtain the
context tokens. Local context tokens are concatenated to the image
tokens at the input of the ViT, and the global context token (CLS
token) is concatenated at the output.

3.2. Leveraging Foundation Models for Structured
Downstream Tasks

We propose to leverage foundation models (CLIP [53]),
without any retraining, for cross modal food retrieval. The
approach is based on injecting local and global textual con-
texts in the image encoder, to enrich the visual representation

and steer it towards the textual embedding space. This con-
text inherits the features and biases in the pretrained CLIP,
which excels in general cross-modal retrieval tasks. We
adopt a vision transformer (ViT [14]) on the image side. We
elaborate first on how we contextualize the ViT, then we
detail the finetuning step. The model is illustrated in Fig. 3.

Contextualized Visual Representation: We inject differ-
ent types of contexts during the image encoding; global and
local. For global context, we inject different titles, while
for local one, we inject different ingredients. The titles and
ingredients are extracted from the image using our CLIP-
based retrieval approach (Sec. 3.1). During training, we
inject different titles, ingredients and different combination
of them for each batch to add more variability and some
regularization during training.

To obtain the context tokens, we concatenate all context
elements (all titles for global context or all ingredients for
local one) to form one sentence that is embedded using the
Context Embedding (CEmb) module (Fig. 3). CEmb consists
of a light-weight text encoder and a linear projection layer
to project the textual tokens to the space of the visual tokens.
We inject the local context early, in the input of the ViT
(concatenation to the image tokens), and the global one,
later in its output (concatenation of CLS token before the
linear projection), where we have higher abstraction level
and more global representation. The forward pass of the
contextualized ViT can be expressed as follows:

x = V iT (Concat(i1, .., ik, c
l
1, .., c

l
p)) (4)

x = F (Concat(xcls, c
g
cls))

Where ij , clj and cgj are the tokens of the image (k tokens),
local context (p tokens) and global context respectively. The
cls means the class token and F is a linear layer.

This is different from other food approaches that add only
global information (food category or class) later by concate-
nating it to the visual embedding [79] or other approaches
that concatenate object tags (OSCAR [38]) or visual con-
cepts (ViCHA [63]) only at the input, without any distinction
between local and global contexts. Our approach is also in-
spired by prompt tuning techniques [24, 27, 42] where a
couple of learnable tokens are concatenated before the main
text to adapt the frozen model to a given task.

Finetuning: We finetune the model on cross-modal food
retrieval. During this stage, we inject the local and global
contexts (Sec 3.2). The model consists of a ViT, hierarchical
recipe encoder and a mulitmodal module [64], mainly we
train the model using Adamine triplet loss [5] with incre-
mental margin, in addition to the ITM loss as a multimodal
regularization at the output of the mulimodal module. Dur-
ing test, we only use the unimodal encoders for fast retrieval.
The context is injected also during test.
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4. Experiments

In this section we detail the experimental results.
Datasets: We use several datasets; such as Recipe1M [56]
(239 k, 51 k, 51 k pairs as training, validation and test set)
where each example consists of a recipe (title, ingredients,
instructions) and image pair. Recipe1M+ [43] that is an
extension of Recipe1M with 13M images and 1M recipe, and
Image and Structured Text pairs (IST), which is our dataset
constructed with the STE module from 3 public datasets;
COCO [40], Visual Genome [26] and SBU [49] to form a
total of 2M pairs including around 1M different images.
Implementation details: the model consists of hierarchi-
cal transformer encoders and decoders on the recipe side, a
ViT-B/16 on the image side and a multimodal module. For
VLP, we start by pretraining (with frozen ViT) with learning
rate (lr) of 1e-5 and total batch size of 200 on 4 GPUs (50
per GPU) for 30 epochs. In the second finetuning stage on
Recipe1M, we follow the implementation details of other
work [64]. We associate each image to 5 titles and 15 in-
gredients. During training, we sample only 2 titles and 4
ingredients randomly in each batch. The context is embed-
ded by the first 2 layers of the BERT [12] encoder, followed
by linear projection (more details in the appendix).

10k

image-to-recipe recipe-to-image

R@1 R@5 R@10 R@1 R@5 R@10

Adamine [5] 14.8 34.6 46.1 14.9 35.3 45.2
R2GAN [89] 13.5 33.5 44.9 14.2 35.0 46.8
MCEN [20] 20.3 43.3 54.4 21.4 44.3 55.2
ACME [73] 22.9 46.8 57.9 24.4 47.9 59.0
SN [84] 22.1 45.9 56.9 23.4 47.3 57.9
IMHF [31] 23.4 48.2 58.4 24.9 48.3 59..4
Wang et. al [72] 23.4 48.8 60.1 24.6 50.0 61.0
SCAN [74] 23.7 49.3 60.6 25.3 50.6 61.6
HF-ICMA [32] 24.0 51.6 65.4 25.6 54.8 67.3
MSJE [80] 25.6 52.1 63.8 26.2 52.5 64.1
SEJE [81] 26.9 54.0 65.6 27.2 54.4 66.1
M-SIA [33] 29.2 55.0 66.2 30.3 55.6 66.5
DaC [18] 30.0 56.5 67.0 - -
X-MRS [21] 32.9 60.6 71.2 33.0 60.4 70.7
H-T (ViT) [55] 33.5 62.1 72.8 33.7 62.2 72.7
T-Food (ViT) [64] 40.0 67.0 75.9 41.0 67.3 75.9
T-Food (CLIP-ViT) [64] 43.4 70.7 79.7 44.6 71.2 79.7

VLPCook 45.3 72.4 80.8 46.4 73.1 80.9
VLPCook (R1M+) 46.7 73.3 83.3 47.8 74.1 81.8

Table 1. Comparison with other work. Recall@k (↑) is reported
on the Recipe1M test set. Our approaches (VLPCook) significantly
outperform all existing work. Best metrics are in bold, and next
best metrics are underlined.

4.1. VLPCook Results

Results on Recipe1M: Comparison with SoTA: Tab. 1
shows a comparison with existing approaches on the test set
of Recipe1M. VLPCook significantly outperforms current

SoTA (+1.9 R@1) on the challenging 10k setup. Importantly,
the gap between VLPCook pretrained on Recipe1M+ and
SoTA is even bigger (+3.4 R@1 on 10k).
Qualitative Comparison with SoTA: we show some qual-
itative results in Fig. 4. We can notice the superiority of
VLPCook compared to the current SoTA (Tfood CLIP-ViT).
Specifically, in the first example, VLPCook correctly re-
trieves the right image. In the second example, our approach
retrieves semantically similar images (Lasagna), while for
TFood, there are totally different plates (e.g. rice, pasta).

image-to-recipe recipe-to-image
R@1 R@5 R@10 R@1 R@5 R@10

Marin et al. [43] 17.0 38.0 48.0 17.0 42.0 54.0
VLPCook∗ 45.2 75.9 84.0 47.3 77.6 85.3

Table 2. Comparison with other work. Recall@k (↑) is reported
on the Recipe1M+ test set (1k setup). Best metrics are in bold.
VLPCook∗ here is without VLP.

Results on Recipe1M+: in Tab. 2, we show the first fine-
tuning results on Recipe1M+ with interesting scores (more
details in the appendix). Due to the large dataset size, we
report the results of VLPCook without VLP (only with the
context module). The scores are almost multiplied by 3
compared to the baseline [43]. However, there is a big gap
between the scores on this dataset and those on Recipe1M,
which makes it more challenging and more interesting to
devise more complex approaches in the future.

image-to-recipe recipe-to-image
Model R@1 R@5 R@10 R@1 R@5 R@10

Baseline 40.0 67.0 75.9 41.0 67.3 75.9

+ VSLP 41.1 67.5 76.1 42.4 68.1 76.5
+ VSLP & Context 41.1 68.0 76.9 42.8 69.2 77.8

Table 3. Ablation Study: Both VSLP and Context module bring
significant improvement.

4.2. Ablation Study of VLPCook

Here we present the ablation study for some design
choices, on the 1k setup of Recipe1M test set:

VLPCook (Sec. 3): In Tab. 3, we show the effect of our
contributions, mainly VLP and Context injection. We can no-
tice that each one brings significant improvement compared
to the baseline, as well as the combination of them.

Local and Global Context (Sec. 3.2): In Tab. 4, we do an
ablation on the type and the position of the injected context.
We notice that using only the ingredients (Ing) or titles (Ttl)
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Ingredients:
4 chicken breast halves, 8 slices provolone 

cheese or 8 slices mozzarella cheese, 
barbecue sauce, 8 slices lettuce, ..tomatoes..

Title:
Barbecued Chicken Sandwiches

Instructions:
Pound each chicken thin -- this helps it to 

cook quickly.., Heat grill to medium and cook 
chicken with barbecue sauce...

Ingredients:
8 ounces lasagna noodles, uncooked, 15 
ounces ricotta cheese, 12 cup parmesan 

cheese, grated, 2 eggs, 1 (26 ounce) jar …

Title:
No-Boil Cheesy Lasagna (Vegetarian) With 

Optional Meat Sauce

Instructions:
Preheat oven to 350F, Combine ricotta, 

parmesan, and eggs and mix well, In a 9x13 
dish, spread about 1/3 of the sauce, …

TFood (C
LIP

-ViT)
TFood (C

LIP
-ViT)

V
LP

C
ook

V
LP

C
ook

No-Boil Cheesy Lasagna 
(Vegetarian) With Optional Meat 

Sauce

Company Turkey Lasagna

Shelly's Lasagna

Cajun Chicken Lasagna Cheesy Meaty Lasagna
No-Boil Cheesy Lasagna 

(Vegetarian) With Optional Meat 
Sauce

No-Boil Cheesy Lasagna 
(Vegetarian) With Optional Meat 

Sauce

No-Boil Cheesy Lasagna 
(Vegetarian) With Optional Meat 

Sauce
Chicken Parmesan 7 Layer Casserole

Barbecued Chicken Sandwiches BLT Burger With Garlicky 
Mayonnaise

Italian Meatball Burger Pizza Burgers

Barbecued Chicken Sandwiches Barbecued Chicken Sandwiches American Turkey Burgers Portobello Mushroom Tuna Melt Hamburgers

Barbecued Chicken Sandwiches

Figure 4. Recipe-to-image comparison on the Recipe1M test set, 1k setup. TFood (first and third rows) vs. our VLPCook (second and
fourth rows). The image in green is the ground truth, followed by the top 4 retrieved images in order. One can notice that our VLPCook
approach better captures some finegrained details (type of meat) and most of the retrieved images are semantically similar.

(lines 2 and 3 Tab. 4) outperforms the baseline (line 1) with-
out any context. Moreover, using both contexts is always
better, regardless of their position. We also show that the
best configuration is by injecting the ingredients at the input
to the visual encoder and the titles at the output (line 5).

Context Position RSUM RSUM
RSUM

Ing ttl Input Output 1K 10K

1 7 7 495.00 367.10 862.10

2 3 3 500.54 371.43 871.97

3 3 3 498.61 372.16 870.77

4 3 3 3 (ttl&Ing) 500.86 374.68 875.54
5 (ours) 3 3 3 (Ing) 3 (ttl) 501.75 374.30 876.05
6 3 3 3 (ttl) 3 (Ing) 501.79 372.44 874.23

Table 4. Ablation study on the context and injection position.
Local context (Ing) is better injected in the input of the ViT, and
global one (ttl) in the output.

VSLP on the Recipe1M+ Dataset Recipe1M+ is the
largest dataset for food applications, however, to the best of
our knowledge, there is no work, besides the work that intro-
duced this dataset [43], that consider it for cross-modal food
retrieval. This might be due to, in addition to computation
resources needed, the poor generalization from Recipe1M+

to Recipe1M as shown by the authors [43]. Here we try to
leverage this dataset, and assess its benefit during pretraining.
We pretrain several variants, for 30 epochs on all the recipes
of Recipe1M+ (after excluding those in the validation and
test set of Recipe1M) following the same implementation de-
tails as Sec. 3 (except training using only 2 GPUs), and then
finetune these models on Recipe1M. The results of Tab. 5
show that Recipe1M+ is more effective than our IST, how-
ever, the latter contains only 1M images compared to 13M
in the former, and the images and recipes are in the same
distribution of those during finetuning. To fairly compare
with IST, we also pretrain on Recipe1M+ by keeping only
10% of the images (i.e 1.3 images in average per recipe).
Interestingly, we can notice from Tab. 5 that pretraining on
IST leads to better results.

Model VSLP
image-to-recipe recipe-to-image

R@1 R@5 R@10 R@1 R@5 R@10

VLPCook w/o IST 69.8 89.2 92.7 70.9 89.6 92.7
CLIP-ViT R1M+ 71.0 89.3 92.7 71.9 89.6 92.7

VLPCook
IST 73.6 90.5 93.3 74.7 90.7 93.2

R1M+ 74.9 91.4 93.7 75.6 91.2 93.6

VLPCook R1M+ (1.3M Im.) 73.4 90.7 93.2 73.8 90.8 93.1

Table 5. VSLP on our IST dataset vs on Recipe1M+ (R1M+).
Pretraining on R1M+ gives better results, however, for the same
number of images, IST is a better choice.
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4.3. Further Experiments

Foundation Models in the Cooking Context. Best SoTA
results on general benchmarks are currently obtained by fine-
tuning foundation models, however, here we show that for
tasks requiring more complex input, such as food retrieval,
this paradigm lags significantly behind existing food mod-
els. To this end, we finetune on Recipe1M for cross-modal
retrieval, considering 2 kinds of approaches; light fusion
(CLIP) and heavy fusion (ALBEF) approaches.
CLIP [53]: Is trained contrastively on 400M of image-text
pairs and consists of a ViT-Base/16 as image encoder and a
transformer as text encoder.
ALBEF [30]: Is trained using ITC, ITM and MLM losses
on 14M images and their corresponding text. It consists of a
ViT-Base/16 on the image side, a BERT on the text side, in
addition to a multimodal decoder.

For both models, we change the word embedding layer,
the vocabulary, and maximum number of textual tokens to
300. We train for 120 epochs with the two losses; Adamine
triplet with incremental margin, semantic regularization, and
ITM (for ALBEF). We use Adam optimizer and learning rate
of 1e-5 (for CLIP ViT we use lr of 1e-6) and a total batch
size of 80 and 56 for CLIP and ALBEF respectively. Tab. 6
shows that CLIP and ALBEF give reasonable performance
and outperform most of the baselines (Tab. 1). However, and
contrary to other general benchmarks, their performance is
still below SoTA food models.

image-to-recipe recipe-to-image
Model R@1 R@5 R@10 R@1 R@5 R@10

X-MRS [21] 64.0 88.3 92.6 63.9 87.6 92.6
H-T (ViT) [55] 64.2 89.1 93.4 64.5 89.3 93.8
T-Food [64] 68.2 87.9 91.3 68.3 87.8 91.5

CLIP 63.5 85.4 90.0 64.1 85.8 90.1
ALBEF 61.0 84.7 89.9 61.9 84.6 89.8

Table 6. Finetuning foundation models on Recipe1M.

Food Recognition. Retrieval task is one of the best setups
to evaluate cross-modal alignment, on the other hand, there
is an established consensus in the community that cross-
modal alignment significantly helps solving multimodal
downstream tasks. To echo this finding, we test the ben-
efit of VLP for Food Recognition on Food101 [4] and the
large ISIA Food500 [45]. We compare SoTA food models to
our VLPCooK pre-trained with VSLP, following the linear
probe setup on top of frozen ViTs. Table .7 below shows
very good results, e.g. we have a significant improvement
in accuracy for Food Recognition. This shows the ability of
our approach to generalize to other food tasks.

Food Recognition ImageNet (ViT) H-T (ViT) VLPCook (ViT)

Food101 80.99 84.44 89.14
ISIA Food500 52.34 57.562 60.30

Table 7. Linear regression classification on the test sets of Food101
and ISIA Food500. Backbone (ViT) kept frozen.

4.4. Beyond Computational Cooking: Medical Do-
main

Although stage 1 of our approach has been tailored for
computational cooking tasks (stage 2), its design is more
generally concerned with the processing of structured docu-
ments, and can be seamlessly adapted to other domains. To
support that, we consider structured data from very different
domain, namely structured medical retrieval.

We experiment with Text-Image Retrieval for medical
databases. We use the large scale ROCO dataset [51] that
consists of 81k radiology images and ”reports” pairs, where
the report contains a caption, keywords, Unified Medical
Language Systems Concept Unique Identifiers (CUIs) and
Semantic Types. We consider the list of keywords and Se-
mantic Types as ”ingredients”, the caption as ”instruction”
and we extract the title from the caption (Sec.3.1). Table 8,
shows that our VSLP (VSLP) lead to additional∼4 points of
R@1 with respect to our baseline (VLPCook). This shows
the broader impact of our approach and its benefits for do-
mains and tasks requiring structured textual input.

Method PT image-to-text text-to-image
R@1 R@5 R@10 R@1 R@5 R@10

VLPCook ∅ 14.53 38.20 51.71 15.08 39.03 51.83
VLPCook VSLP 18.44 42.78 55.90 17.95 42.51 55.06

Table 8. Comparison of different types of VLP on Image-Text
Medical Retrieval on ROCO dataset.

5. Conclusion

In this work, we show the benefits of VSLP for Compu-
tational Cooking. We also, successfully leverage pretrained
foundation models, to enrich the vision encoder with struc-
tured context. These contributions led to a new SoTA for
Cross-Modal Food Retrieval. We show that this approach
has a broader impact and can be adopted for other compu-
tational cooking applications or more general multimodal
tasks, especially, those with complex input, such as Medical
databases. An interesting follow up of this work, is to im-
prove the textual structure extraction and going large scale
in terms of pretraining data.
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Appendix

The Appendix is organized as follows; Sec. A elaborates
on the implementation details, Sec. B presents the complete
comparison of VLPCook with other SoTA approaches on
Recipe1M and Recipe1M+ datasets. In section Sec. C, we
conduct additional VSLP experiments. In Sec. D, we do
a robustness analysis to missing recipe entities, where we
show also the contribution of each of these entities for food
retrieval. Finally, we show some qualitative examples on
the extracted text (Sec. E) and the injected local and global
context (Sec. F).

A. Implementation details

VLP of VLPCook: the model consists of a hierarchical
transformer encoders and decoders on the recipe side, a ViT-
B/16 [15] on the image side and a multimodal module [64].
For VLP, We start by pretraining this baseline with Adamine
triplet (without semantic regularization losses) [5] and ITM
losses (λ = 1), with learning rate (lr) 1e-5 and total batch
size of 200, on 4 GPUs (50 per GPU) for 30 epochs. We
pretrain on the 2M pairs of the IST dataset. Inspired by
LiT [85] we freeze the image encoder during this stage.

Finetuning on Recipe1M: in the second finetuning stage,
we follow the implementation details of recent work [64],
mainly, batch size of 100, lr of 1e-5 (lr of 1e-6 for CLIP-ViT)
and training for 120 epochs on the training set of Recipe1M.
We optimize the model with the Adamine triplet (instance
and semantic) with incremental margin (we start by a αinc =
0.05 and increase it by 0.005 each epoch until reaching 0.3)
and ITM objective (λ = 1). The ViT is kept frozen for the
first 20 epochs. Note that, we pretrain always with a ViT,
even when we finetune with CLIP-ViT. We associate each
image to 5 titles and 15 ingredients. These are extracted from
the recipes of the training set of Recipe1M, using the CLIP-
based retrieval approach. During training, we sample only
2 titles and 4 ingredients randomly in each batch. During
Test we use all titles and ingredients. We concatenate the
ingredients to the input of the ViT and the title to its output,
before the linear projection to the latent space. The context
is embedded by the first 2 layers of the BERT [12] encoder,
then linearly projected to obtain the context tokens, we find
it beneficial to use separate BERT encoders for each context.

Finetuning on Recipe1M+: for finetuning on Recipe1M+
[43], we adopt the same implementation details as for
Recipe1M, however, due to the large number of images
(i.e., 13M) we extract the context from only 1 image for each
recipe and use this context for all the other corresponding
images. We finetune on 2 A100 GPUs, for 60 epochs, with-
out the semantic triplet loss and keep the ViT frozen for the
first 5 epochs.

Evaluation: We follow other work and report recall@{1,
5, 10} (R@k) and their sum (RSUM), in addition to the
median rank (medR) on the 1k and 10 setups, averaged over
10 and 5 runs respectively.

Image-Text Medical Retrieval. We use the large scale
ROCO dataset [51] that consists of 81k radiology images
and ”reports” pairs, where the report contains a caption, key-
words, Unified Medical Language Systems Concept Unique
Identifiers (CUIs) and Semantic Types. We consider the list
of keywords and Semantic Types as ”ingredients”, the cap-
tion as ”instruction” and we extract the title from the caption
as we did in our STE module. The results with standard VLP
are reported from [8, 9]. We follow other approaches and
evaluate on 2k pairs of the test set of ROCO. To ensure re-
productibility, we average the results obtained on 4 different
2k subsets. Here we do not use the context module.

B. Comparison with SoTA
We compare VLPCook with other SoTA for Cross-Modal

Food Retrieval. Tab. 9 shows the results after finetuning
on Recipe1M. We outperform other SoTA by a significant
margin on the 1k (+2.1 R@1) and 10k (+1.9 R@1) setups.
Pretraining on Recipe1M+ (R1M+) leads to additional im-
provements of +3 and +3.3 R@1 on the 1k and 10k setups
respectively. We also show some qualitative results in Fig. 5
and 6.

The results of training on Recipe1M+ dataset are shown
in Tab. 10. We show the first interesting results on this
challenging dataset, after the work [43] that introduced this
dataset. Despite the large improvements, these results reveal
the difficulty of this dataset, that could be interesting for
devising more sophisticated approaches in the future.

C. Additional VLP experiments
Vision and Structured-Language Pretraining Variants.
In Tab. 11, we compare different design choices for VSLP.
The baseline is our implementation of TFood. We show the
effectiveness of VSLP, especially the IST dataset, by the
superiority of B+VSLP (ours) compared to B+VLP (w/o
structure), which is a baseline that takes the same caption
as title, ingredients and instructions, without extracting any
structure. We also compare with pretraining all modules
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1k 10k

image-to-recipe recipe-to-image image-to-recipe recipe-to-image

medR R@1 R@5 R@10 medR R@1 R@5 R@10 medR R@1 R@5 R@10 medR R@1 R@5 R@10

Salvador et al. [56] 5.2 24.0 51.0 65.0 5.1 25.0 52.0 65.0 41.9 - - - 39.2 - - -
Adamine [5] 2.0 40.2 68.1 78.7 2.0 39.8 69.0 77.4 13.2 14.8 34.6 46.1 14.2 14.9 35.3 45.2
R2GAN [89] 2.0 39.1 71.0 81.7 2.0 40.6 72.6 83.3 13.9 13.5 33.5 44.9 12.6 14.2 35.0 46.8
MCEN [20] 2.0 48.2 75.8 83.6 1.9 48.4 76.1 83.7 7.2 20.3 43.3 54.4 6.6 21.4 44.3 55.2
ACME [73] 1.0 51.8 80.2 87.5 1.0 52.8 80.2 87.6 6.7 22.9 46.8 57.9 6.0 24.4 47.9 59.0
SN [84] 1.0 52.7 81.7 88.9 1.0 54.1 81.8 88.9 7.0 22.1 45.9 56.9 7.0 23.4 47.3 57.9
IMHF [31] 1.0 53.2 80.7 87.6 1.0 54.1 82.4 88.2 6.2 23.4 48.2 58.4 5.8 24.9 48.3 59..4
Wang et. al [72] 1.0 53.5 81.5 88.8 1.0 55.0 82.0 88.8 6.0 23.4 48.8 60.1 5.6 24.6 50.0 61.0
SCAN [74] 1.0 54.0 81.7 88.8 1.0 54.9 81.9 89.0 5.9 23.7 49.3 60.6 5.1 25.3 50.6 61.6
HF-ICMA [32] 1.0 55.1 86.7 92.4 1.0 56.8 87.5 93.0 5.0 24.0 51.6 65.4 4.2 25.6 54.8 67.3
MSJE [80] 1.0 56.5 84.7 90.9 1.0 56.2 84.9 91.1 5.0 25.6 52.1 63.8 5.0 26.2 52.5 64.1
SEJE [81] 1.0 58.1 85.8 92.2 1.0 58.5 86.2 92.3 4.2 26.9 54.0 65.6 4.0 27.2 54.4 66.1
M-SIA [33] 1.0 59.3 86.3 92.6 1.0 59.8 86.7 92.8 4.0 29.2 55.0 66.2 4.0 30.3 55.6 66.5
DaC [18] 1.0 60.2 84.0 89.7 - - - - 4.0 30.0 56.5 67.0 - - -
X-MRS [21] 1.0 64.0 88.3 92.6 1.0 63.9 87.6 92.6 3.0 32.9 60.6 71.2 3.0 33.0 60.4 70.7
H-T (ViT) [55] 1.0 64.2 89.1 93.4 1.0 64.5 89.3 93.8 3.0 33.5 62.1 72.8 3.0 33.7 62.2 72.7
Papadopoulos et al. [50] 1.0 66.9 90.9 95.1 1.0 66.8 89.8 94.6 - - - - - - - -
T-Food (ViT) [64] 1.0 68.2 87.9 91.3 1.0 68.3 87.8 91.5 2.0 40.0 67.0 75.9 2.0 41.0 67.3 75.9
T-Food (CLIP-ViT) [64] 1.0 72.3 90.7 93.4 1.0 72.6 90.6 93.4 2.0 43.4 70.7 79.7 2.0 44.6 71.2 79.7

VLPCook 1.0 73.6 90.5 93.3 1.0 74.7 90.7 93.2 2.0 45.3 72.4 80.8 2.0 46.4 73.1 80.9
VLPCook (R1M+) 1.0 74.9 91.4 93.7 1.0 75.6 91.2 93.6 2.0 46.7 73.3 83.31 2.0 47.8 74.1 81.8

Table 9. Comparison with other work on the Recipe1M dataset. medR (↓), Recall@k (↑) are reported on the Recipe1M test set. Our
approaches (VLPCook) significantly outperform all existing work. Best metrics are in bold, and next best metrics are underlined.

1k 10k

image-to-recipe recipe-to-image image-to-recipe recipe-to-image

medR R@1 R@5 R@10 medR R@1 R@5 R@10 medR R@1 R@5 R@10 medR R@1 R@5 R@10

Marin et al. [43] 8.6 17.0 38.0 48.0 6.8 17.0 42.0 54.0 - - - - - - - -
VLPCook∗ 2.0 45.2 75.9 84.0 2.0 47.3 77.6 85.3 9.2 18.0 40.7 52.2 8.0 19.8 43.4 55.0

Table 10. Comparison with other work on the Recipe1M+ dataset. medR (↓), Recall@k (↑) are reported on the Recipe1M+ test set.
Our approaches (VLPCook) significantly outperform all existing work. Best metrics are in bold, and next best metrics are underlined. All
models are trained on the training set of Recipe1M+. ∗ means without pretraining.

(B+VSLP (+Unfreeze Vis. Enc.)) and show that this de-
grades the performance. Finally, we use an object detector
(VinVL [86]) to extract the objects or local entities in the
image, instead of our CLIP-based approach and show that
both are competitive in the pretraining stage.

image-to-recipe recipe-to-image
Model R@1 R@5 R@10 R@1 R@5 R@10

Baseline (B) 68.2 87.9 91.3 68.3 87.8 91.5

B + VLP (w/o strcuture) 67.2 87.3 91.0 67.5 87.5 91.1
B + VSLP (Unfreeze Vis. Enc.) 67.6 87.3 91.3 67.6 87.2 90.9
B + VSLP (w/ VinVL tags) 68.8 88.3 91.8 69.9 88.3 91.7

B + VSLP (ours) 69.5 88.0 91.4 69.7 88.1 91.5

Table 11. Ablation study on VSLP. Different variants of VSLP.

VLP of Existing Food Models. We now validate that VLP
consistently improves a wide variety of existing food models.
We experiments with 2 kinds of approaches; with standard
transformer (e.g, BERT) such X-MRS [21] and VLPCook-

B (BERT) (our Baseline where we replace the recipe en-
coder by a BERT) and with hierarchical transformers such
as TFood. We do not change the training procedure for these
methods, the only difference is in the pretraining stage, or
initialization. We train on the 2M pairs. The BERT-based
models are trained with image captions (training on IST
can be found in the appendix) and those with hierarchical
transformers with our transformed datasets (structured text).
Results are reported in Tab. 12, that shows a consistent im-
provement for all SoTA with VLP. This validates the benefit
of using VLP for cross-modal food retrieval and shows the
effectiveness of our approach to transform captions to struc-
tured text.

Pretraining on Recipe1M+ In this section, we analyse
the influence of the number of images and recipes for VSLP.
We pretrain on different subset sizes of Recipe1M+ dataset.
From Tab. 13, we can notice that there is a significant im-
provement when adding more images. Interestingly, for
comparable number of images, pretraining on IST gives
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Ingredients:
2 eggs, 2 tablespoons sugar, 13 cup olive oil, 2 

cups flour, 2 teaspoons baking powder, 12 
teaspoon salt, 12 teaspoon cracked black 

pepper, 1 teaspoon dried basil..

Title:
Savoury Mediterranean Biscotti

Instructions:
In large bowl, beat eggs and sugar, Add olive 

oil until smooth, In bowl, combine flour, 
baking powder, salt, pepper and basil and 

oregano…

Ingredients:
3 12 ounces couscous, 78 cup vegetable broth 
(from a cube is fine), 2 scallions, 1 red pepper,  
12 cucumber, 2 ounces feta cheese, cubed …

Title:
10-Minute Couscous Salad

Instructions:
Tip couscous into a large bowl, pour over 
broth, Cover, then leave for 10 mins, until 
fluffy and all the broth has been absorbed, 

Meanwhile, slice the scallions and pepper…

TFood (C
LIP

-ViT)
TFood (C

LIP
-ViT)

V
LP

C
ook

V
LP

C
ook

Savoury Mediterranean Biscotti Savoury Mediterranean Biscotti Pita Snacks Cheesy Italian Batter 
Breadsticks

Jerusalem Artichoke Hummus 
With Rosemary Bruschetta

Savoury Mediterranean Biscotti Savoury Mediterranean Biscotti Sourdough Nut Batter Bread Wheat Germ Scones With 
Dried Fruits and Nuts

Biscotti Regina (Sesame 
Seed Cookies)

Barbecued Chicken Sandwiches 10-Minute Couscous Salad Brown Rice Salad Shots Mediterranean Bean Salad Cheesy Veggie Tofu Scramble

10-Minute Couscous Salad 10-Minute Couscous Salad Savory Tofu and Vegetables 
over Tomato Couscous

Tabbouleh Wrapped in 
Romaine Leaves Green-Olive Couscous

Figure 5. Recipe to image qualitative results of VLPCook on the Recipe1M test set. The image in green is the ground truth, followed
by the top 4 retrieved images in order. For VLPCook, we can notice that all images semantically resemble the ground truth in addition to
successfully retrieving the correct image.

Model VLP
image-to-recipe recipe-to-image

R@1 R@5 R@10 R@1 R@5 R@10

XMRS
7 60.9 85.6 90.8 61.2 85.9 91.0
3 61.8 86.3 91.6 62.7 86.7 91.7

VLPCook-B 7 61.4 84.1 88.8 61.3 84.3 89.0
(BERT) 3 63.4 85.3 89.5 63.2 85.3 89.7

TFood
7 68.2 87.9 91.3 68.3 87.8 91.5
3 69.5 88.0 91.4 69.7 88.1 91.5

Table 12. Results of VLP with existing food approaches. We
see consistent improvement with VLP.

better performance.
When reducing the number of recipes in Tab. 14, we can

notice also a significant degradation.
Interestingly, reducing the number of recipes or images to

half, leads to comparable results (73.9 R@1 for 6.5M images
in Tab. 13 or 0.45M recipes in Tab. 14).

D. Robustness to missing recipe entities
Here we analyse how much our model is robust against

missing recipe entities. In addition, this will help to under-
stand the importance of each element, and how much they
contribute to find the right visual representation. This may

Pretraining
# Images

image-to-recipe recipe-to-image
Dataset R@1 R@5 R@10 R@1 R@5 R@10

IST 1M 73.6 90.5 93.3 74.7 90.7 93.2

R1M+ 1.3M 73.4 90.7 93.2 73.8 90.8 93.1
R1M+ 6.5M 73.9 91.0 93.6 74.8 91.2 93.7
R1M+ 13M 74.9 91.4 93.7 75.6 91.2 93.6

Table 13. VLPCook pretrained on IST and subsets of Recipe1M+
with different number of images; 1.3M (10%), 6.5M (50%) and
13M (100%).

Pretraining
% of Images # Recipes

image-to-recipe recipe-to-image
Dataset R@1 R@5 R@10 R@1 R@5 R@10

R1M+ 10% 0.9M 73.4 90.7 93.2 73.8 90.8 93.1
R1M+ 10% 0.45M 72.7 90.4 93.5 73.5 90.8 93.6

R1M+ 100% 0.9M 74.9 91.4 93.7 75.6 91.2 93.6
R1M+ 100% 0.45M 73.9 90.8 93.4 74.6 91.0 93.5

Table 14. VLPCook pretrained on IST and subsets of Recipe1M+
with different number of recipes; 0.45M (50%), and 0.9M (100%).

also have some important applications in several scenarios
(e.g. in case we have a specific ingredients, and we are
wondering what can we make from them). The results are
shown in Tab. 15. We can notice that the most important
elements are the ingredients, then the instructions and finally
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the title. Compared to TFood (CLIP-ViT) [64], in general
we are more robust, except for missing ingredients. This
indicates that our model rely heavily on the ingredients to
find the image which might be caused by the local context
(ingredients injected in the vision encoder) that might steer
the model to focus more on the ingredients.

Missing
Model

image-to-recipe recipe-to-image
entity R@1 R@5 R@10 R@1 R@5 R@10

Ttl
TFood (CLIP-ViT) 65.6 87.8 91.8 64.2 86.9 91.1

VLPCook 68.6 88.1 92.0 68.4 87.6 91.3

Ing
TFood (CLIP-ViT) 40.6 69.6 78.6 30.4 57.5 67.3

VLPCook 36.5 65.7 75.3 24.9 52.4 63.9

Ins
TFood (CLIP-ViT) 62.1 84.9 90.1 57.5 82.3 88.2

VLPCook 64.1 85.7 90.0 62.0 83.8 88.6

Ttl+Ins
TFood (CLIP-ViT) 45.5 72.3 80.6 34.5 61.8 72.3

VLPCook 51.0 76.9 83.6 42.9 69.6 78.1

Table 15. Robustness to missing recipe entities. The ingredients
contribute more to finding the corresponding example, then the
instructions, and finally the title.

E. Structured Text Extraction (STE)
We illustrate in Fig. 7 some qualitative examples of the

structured text, obtained after transforming image captions
using the STE module. We can see that the local elements
are related mostly to the center of the image, describe the
main or central object, and redundant. While such extracted
information proved to be useful for food retrieval, devising
other approaches that extracts information about all seen
objects, with richer details, can help for tasks requiring more
complex reasoning.

F. Local and Global Textual Concepts
Fig. 8 shows the extracted context associated with each

image. We successfully extract relevant contexts describing
the recipe. However, we have also the redundancy in the
local context, which might be due to the biases in the CLIP
to the central objects in the image.

12



Ingredients:
1 cup blueberries, 2 apples - peeled, cored and 

chopped, 1 1/2 cups raspberries, 3/4 cup 
seedless grapes, 3 tablespoons white sugar..

Title:
Fruit Smoothie II

Instructions:
In a blender, combine blueberries, apples, 
raspberries, grapes, sugar and ice., Blend 
until smooth, Pour into glasses and serve.

Ingredients:
2 12 lbs chicken, cooked and deboned, 1 (10 

1/2 ounce) can cream of chicken soup, 14 cups 
chicken broth, 1 teaspoon baking powder

Title:
Chicken Pie

Instructions:
Bring chicken, soup and broth to a boil, Pour 
into a 9x13 pan, Mix remaining ingredients 

and pour mixture over chicken mixture in pan

Ingredients:
8 ounces lasagna noodles, uncooked, 15 
ounces ricotta cheese, 12 cup parmesan 

cheese, grated, 2 eggs, 1 (26 ounce) jar …

Title:
No-Boil Cheesy Lasagna (Vegetarian) With 

Optional Meat Sauce

Instructions:
Preheat oven to 350F, Combine ricotta, 

parmesan, and eggs and mix well, In a 9x13 
dish, spread about 1/3 of the sauce, …

Figure 6. Recipe to image qualitative results of VLPCook on the Recipe1M test set. The image in green is the ground truth, followed
by the top 4 retrieved images in order.

Local
'rescue vehicles', 'repair truck', 'recycling truck', 

'emergency truck', 'emergency vehicle', 
'ambulance london service', 'ems truck', 'service 
truck', 'utility truck', 'service vehicles', 'tow truck', 

'service vehicle', 'water truck', 'city truck', 'tow 
trucks'

Global
truck and words and road

Event
A truck with words sovereign and recover on 

its side travels down the road

Local
'flower throw', 'style tablecloth', 'flower blanket', 

'print flower couch', 'flowery curtain', 'table 
runner', 'table covering', 'floral couch', 'flower 
cloth', 'muslin curtains', 'flower curtain', 'print 

tablecloth', 'flower comforter', 'table ribbon', 'cloth 
tablecloth'

Global
lamp and photo

Event
there is a lamp in the photo

Local
'tennis doubles match', 'backhand stroke', 'us 
open', 'doubles match', 'forehand hit', 'racket 

swings', 'backhand swing', 'tennis tow players', 
'backhand', 'forehand', 'backhand play', 'tennis 

on player court', 'forehand shot', 'tennis doubles 
game', 'doubles tennis'

Global
couple and people and game and tennis

Event
A couple of people playing a game of tennis

Figure 7. Illustration of the structured text, extracted by the STE module. For each image, we extract a global information using SGP ,
local information using CLIP-based retrieval and the event which is simply the caption.
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Local Context 
'sirloin beef boneless steak', 'loin strip boneless 
steak', 'steak sirloin boneless', 'sirloin boneless 
steak', 'pork sirloin boneless chop', 'rib boneless 

steak', 'lamb boneless steak', 'veal boneless 
steak', 'chicken skinless boneless tenderloin', 

'eye rib boneless steak', 'sirloin boneless pound 
steak', 'sirloin beef steak', 'strip boneless steak', 

'beef boneless tenderloin', 'rib lamb chop'

Global Context
'grilled marinated beef fillet with a tangy 

sauce', 'grilled marinated pork fillet', 
'chicken-liver salad with hot bacon dressing 
and croutons', 'grilled chicken liver skewers', 
'warm pork fillet salad with honey dressing'

Local Context 
'sugar cups confection', 'pastry cups cream', 
'pastry cups flour', 'milk cups cream', 'cups 

confection', 'food angel cups cak', 'chocolate 
semisweet cups morsel', 'pudding cups mix', 
'cheese cream cups product', 'dessert cups 

sauc', 'cake cups flour', 'sugar cup confection', 
'chocolate cups waf', 'chocolate cups piec', 'cake 

cups mix'

Global Context
'pudding cupcake cones', 'pizzelle dessert 

cups', 'pastry cups (can substitute frozen puff 
pastry)', 'fluted kisses cups with peanut butter 

filling', 'mini chocolate meringue pie tarts in 
baked wonton shells'

Local Context 
'tandoori chicken', 'wing tablespoons sauc', 'bbq 
chicken', 'bbq wing', 'tandoori tsp masala', 'wing 
tablespoon sauc', 'chicken skinless w', 'tandoori 

tbsp spic', 'spicy chicken', 'barbecue smoky 
sauc', 'chicken wings w', 'chicken fry', 'chicken 

tablespoon season', 'barbecue spicy tablespoons 
sauc', 'rotisserie boneless chicken'

Global Context
'grilled tandoori chicken wings with coriander 

yogurt', 'tandoori touchdown wings with 
mint-mango chutney recipe harvardcommon', 

'tandoori-style grilled chicken wings', 
'tamarind-chipotle chicken wings', 'indian style 

chicken wings'

Figure 8. Illustration of the local and global concepts. Both concepts are extracted using CLIP-based retrieval. The local concepts
consists of ingredients, and the global ones as recipe titles.
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