
HAL Id: hal-04743265
https://hal.science/hal-04743265v1

Submitted on 18 Oct 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

On Basic Feasible Functionals and the
Interpretation Method

Patrick Baillot, Ugo Dal Lago, Cynthia Kop, Deivid Vale

To cite this version:
Patrick Baillot, Ugo Dal Lago, Cynthia Kop, Deivid Vale. On Basic Feasible Functionals and the
Interpretation Method. FoSSaCS 2024 - 27th International Conference on Foundations of Software
Science and Computation Structures, Apr 2024, Luxembourg, Luxembourg. pp.70-91, �10.1007/978-
3-031-57231-9_4�. �hal-04743265�

https://hal.science/hal-04743265v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

ar
X

iv
:2

40
1.

12
38

5v
2

 [
cs

.L
O

]
 2

5
Ja

n
20

24

On Basic Feasible Functionals

and the Interpretation Method⋆

Patrick Baillot1 , Ugo Dal Lago2 , Cynthia Kop3 , and Deivid Vale4

1 Univ. Lille, CNRS, Inria, Centrale Lille, UMR 9189 CRIStAL, F-59000 Lille,
France, patrick.baillot@univ-lille.fr

2 University of Bologna & INRIA Sophia Antipolis, ugo.dallago@unibo.it
3 Radboud University Nijmegen, c.kop@cs.ru.nl

4 Radboud University Nijmegen, deividvale@cs.ru.nl

Abstract. The class of basic feasible functionals (BFF) is the analog
of FP (polynomial time functions) for type-2 functionals, that is, func-
tionals that can take (first-order) functions as arguments. BFF can be
defined through Oracle Turing machines with running time bounded by
second-order polynomials. On the other hand, higher-order term rewrit-
ing provides an elegant formalism for expressing higher-order computa-
tion. We address the problem of characterizing BFF by higher-order term
rewriting. Various kinds of interpretations for first-order term rewriting
have been introduced in the literature for proving termination and char-
acterizing (first-order) complexity classes. In this paper, we consider a
recently introduced notion of cost–size interpretations for higher-order
term rewriting and see definitions as ways of computing functionals. We
then prove that the class of functionals represented by higher-order terms
admitting a certain kind of cost–size interpretation is exactly BFF.

Keywords: Basic Feasible Functions · Higher-Order Term Rewriting ·
Tuple Interpretations · Computational Complexity

1 Introduction

Computational complexity classes, and in particular those relating to polynomial
time and space [19,10] capture the concept of a feasible problem, and as such
have been scrutinized with great care by the scientific community in the last fifty
years. The fact that even apparently simple problems, such as nontrivial sepa-
ration between those classes, remain open today has highlighted the need for a
comprehensive study aimed at investigating the deep nature of computational
complexity. The so-called implicit computational complexity [7,29,32,12,4] fits
into this picture, and is concerned with characterizations of complexity classes

⋆ This work is supported by the NWO TOP project “Implicit Complexity through
Higher-Order Rewriting”, NWO 612.001.803/7571, the NWO VIDI project “Con-
strained Higher-Order Rewriting and Program Equivalence”, NWO VI.Vidi.193.075,
and the ERC CoG “Differential Program Semantics”, GA 818616.

http://arxiv.org/abs/2401.12385v2
http://orcid.org/0009-0002-9364-1140
http://orcid.org/0000-0001-9200-070X
http://orcid.org/0000-0002-6337-2544
http://orcid.org/0000-0003-1350-3478

2 P. Baillot et al.

based on tools from mathematical logic and the theory of programming lan-
guages.

One of the areas involved in this investigation is certainly that of term rewrit-
ing [33], which has proved useful as a tool for the characterization of complexity
classes. In particular, the class FP (i.e., of polytime first-order functions) has been
characterized through variations of techniques originally introduced for termina-
tion, e.g., the interpretation method [30,28], path orders [14], or dependency
pairs [15]. Some examples of such characterizations can be found in [6,8,9,1,3].

After the introduction of FP, it became clear that the study of computational
complexity also applies to higher-order functionals, which are functions that
take not only data but also other functions as inputs. The pioneering work of
Constable [11], Mehlhorn [31], and Kapron and Cook [21] laid the foundations of
the so-called higher-order complexity, which remains a prolific research area to
this day. Some motivations for this line of work can be found e.g. in computable
analysis [23], NP search problems [5], and programming language theory [13].

There have been several proposals for a class of type-two functionals that
correctly generalizes FP. However, the most widely accepted one is the class BFF
of basic feasible functionals. This class can be characterized based on function al-
gebras, similar to Cobham-style, but it can also be described using Oracle Turing
machines. The class BFF was then the object of study by the research community,
which over the years has introduced a variety of characterizations, e.g., in terms
of programming languages with restricted recursion schemes [20,13], typed im-
perative languages [16,17], and restricted forms of iteration in OTMs [22]. An
investigation of higher-order complexity classes employing the higher-order inter-
pretation method (in the context of a pure higher-order functional language) was
also proposed in [18]. However, this paper does not provide a characterization
of the standard BFF class. Instead, it characterizes a newly proposed class SFF2
(Safe Feasible Functionals) which is defined as the restriction of BFF to argument
functions in FP (see Sect. 4.2 and the conclusion in [18]).

The studies cited above present structurally complex programming languages
and logical systems, precisely due to the presence of higher-order functions. It
is not currently known whether it is possible to give a characterization of BFF
in terms of mainstream concepts of rewriting theory, although the latter has
long been known to provide tools for the modeling and analysis of functional
programs with higher-order functions [24].

This paper goes precisely in that direction by showing that the interpretation
method in the form studied by Kop and Vale [26,25] provides the right tools to
characterize BFF. More precisely, we consider a class of higher-order rewriting
systems admitting cost–size tuple interpretations (with some mild upper-bound
conditions on their cost and size components) and show that this class contains
exactly the functionals in BFF. Such a characterization could not have been
obtained employing classical integer interpretations as e.g. in [8] because BFF

crucially relies on some conditions both on size and on time. This is the main
contribution of our paper, formally stated in Theorem 2.

On Basic Feasible Functionals and the Interpretation Method 3

We believe that a benefit of this characterization is that it opens the way
to effectively handling programs or executable specifications implementing BFF

functions, in full generality. For instance, we expect that such a characterization
could be integrated into rewriting-based tools for complexity analysis of term
rewriting systems such as e.g. [2].

Our result is proved in two parts. We first prove that if any term rewriting
system in this class computes a higher-order functional, then this functional has
to be in BFF (soundness). Conversely, we prove that all functionals in BFF are
computed by this class of rewriting systems (completeness). We argue that the
key ingredient towards achieving this characterization is the ability to split the
dual notions of cost and size given by the usage of tuple interpretations.

2 Preliminaries

2.1 Higher-Order Rewriting

We roughly follow the definition of simply-typed term rewriting system [27]
(STRS): terms are applicative, and we limit our interest to second-order STRSs
where all rules have base type. Reductions follow an innermost evaluation strat-
egy.

Let B be a nonempty set whose elements are called base types and range
over ι, κ, ν. The set T(B) of simple types over B is defined by the grammar
T(B) := B | T(B) ⇒ T(B). Types from T(B) are ranged over by σ, τ, ρ. The ⇒
type constructor is right-associative, so we write σ ⇒ τ ⇒ ρ for (σ ⇒ (τ ⇒ ρ)).
Hence, every type σ can be written as σ1 ⇒ · · · ⇒ σn ⇒ ι. We may write such
types as ~σ ⇒ ι. The order of a type is: ord(ι) = 0 for ι ∈ B and ord(σ ⇒ τ) =
max(1 + ord(σ), ord(τ)). A signature F is a triple (B, Σ, typeOf) where B is a
set of base types, Σ is a nonempty set of symbols, and typeOf : Σ −→ T(B). For
each type σ, we assume given a set Xσ of countably many variables and assume
that Xσ ∩ Xτ = ∅ if σ 6= τ . We let X denote ∪σXσ and assume that Σ ∩ X = ∅.

The set T(F,X) — of terms built from F and X — collects those expressions
s for which a judgment s : σ can be deduced using the following rules:

x ∈ Xσ(ax) x : σ
f ∈ Σ typeOf(f) = σ

(f-ax)
f : σ

s : σ ⇒ τ t : σ
(app)

(s t) : τ

As usual, application of terms is left-associative, so we write s t u for ((s t)u). Let
vars(s) be the set of variables occurring in s. A term s is ground if vars(s) = ∅.
The head symbol of a term f s1 · · · sn is f. We say t is a subterm of s (written s D t)
if either (a) s = t, or (b) s = s′ s′′ and s′ D t or s′′ D t. It is a proper subterm of
s if s 6= t. For a term s, pos(s) is the set of positions in s: pos(x) = pos(f) = {♯}
and pos(s t) = {♯} ∪ {1 · u | u ∈ pos(s)} ∪ {2 · u | u ∈ pos(t)}. For p ∈ pos(s),
the subterm s|p at position p is given by: s|♯ = s and (s1 s2)|i·p = si|p.

In this paper, we require that for all f ∈ Σ, ord(typeOf(f)) ≤ 2, so w.l.o.g.,
f : (~ι1 ⇒ κ1) ⇒ · · · ⇒ (~ιk ⇒ κk) ⇒ ν1 ⇒ · · · ⇒ νl ⇒ ι. Hence, in a fully applied
term f s1 . . . sk t1 . . . tl we say the si are the arguments of type-1 and the tj are

4 P. Baillot et al.

the arguments of type-0 for f. A substitution γ is a type-preserving map from
variables to terms such that {x ∈ X | γ(x) 6= x} is finite. We extend γ to terms
as usual: xγ = γ(x), fγ = f, and (s t)γ = (sγ) (tγ). A context C is a term with a
single occurrence of a variable �; the term C[s] is obtained by replacing � by s.

A rewrite rule ℓ → r is a pair of terms of the same type such that ℓ =
f ℓ1 · · · ℓm and vars(ℓ) ⊇ vars(r). It is left-linear if no variable occurs more than
once in ℓ. A simply-typed term rewriting system (F,R) is a set of rewrite rules R
over T(F,X). In this paper, we require that all rules have base type. An STRS
is innermost orthogonal if all rules are left-linear, and for any two distinct rules
ℓ1 → r1, ℓ2 → r2, there are no substitutions γ, δ such that ℓ1γ = ℓ2δ. A reducible
expression (redex) is a term of the form ℓγ for a rule ℓ → r and substitution γ.
The innermost rewrite relation induced by R is defined as follows:

• ℓγ →R rγ, if ℓ→ r ∈ R and ℓγ has no proper subterm that is a redex;

• s t→R u t, if s→R u and s t→R s u, if t→R u.

We write →+
R for the transitive closure of →R. An STRS R is innermost ter-

minating if no infinite rewrite sequence s →R t →R . . . exists. It is innermost
confluent if s →+

R t and s →+
R u implies that some v exists with t →+

R v and
u→+

R v. It is well-known that innermost orthogonality implies innermost conflu-
ence. In this paper, we will typically drop the “innermost” adjective and simply
refer to terminating/orthogonal/confluent STRSs.

Example 1. Let B = {nat} and 0 : nat, s : nat ⇒ nat, add,mult : nat ⇒ nat ⇒ nat,
and funcProd : (nat ⇒ nat) ⇒ nat ⇒ nat ⇒ nat. We then let R be given by:

add 0 y → y add (sx) y → s (addx y)
mult 0 y → 0 mult (sx) y → add y (multx y)

funcProdF 0 y → y funcProdF (sx) y → funcProdF x (mult y (F x))

Hereafter, we write pnq for the term s (s (. . . 0 . . .)) with n ss.

2.2 Cost–Size Interpretations

For sets A and B, we write A −→ B for the set of functions from A to B.
A quasi-ordered set (A,⊒) consists of a nonempty set A and a reflexive and
transitive relation ⊒ on A. For quasi-ordered sets (A1,⊒1) and (A2,⊒2), we
write A1 =⇒ A2 for the set of functions f ∈ A1 −→ A2 such that f(x) ⊒2 f(y)
whenever x ⊒1 y, i.e., A1 =⇒ A2 is the space of functions that preserve quasi-
ordering.

For every ι ∈ B, let a quasi-ordered set (Sι,⊒ι) be given. We extend this to
T(B) by defining Sσ⇒τ = (Sσ =⇒ Sτ ,⊒σ⇒τ) where f ⊒σ⇒τ g iff f(x) ⊒τ f(x)
for any x ∈ Sσ. Given a function J s mapping f ∈ Σ to some J s

f ∈ StypeOf(f) and a
valuation α mapping x ∈ Xσ to Sσ, we can map each term s : σ to an element of
Sσ naturally as follows: (a) JxK

s

α = α(x); (b) JfK
s

α = J s
f ; (c) Js tK

s

α = JsK
s

α(JtK
s

α).
For every type σ with ord(σ) ≤ 2, we define Cσ as follows: (a) Cκ = N for

κ ∈ B; (b) Cι⇒τ = Sι =⇒ Cτ for ι ∈ B; and (c) Cσ⇒τ = Cσ =⇒ Sσ =⇒ Cτ if
ord(σ) = 1. We want to interpret terms s : σ where both σ and all variables

On Basic Feasible Functionals and the Interpretation Method 5

occurring in s are of type order either 0 or 1, as is the case for the left- and
right-hand side of rules. Thus, we let J c be a function mapping f ∈ Σ to some
J c
f ∈ CtypeOf(f) and assume given, for each type σ, valuations α : Xσ −→ Sσ and

ζ : Xσ −→ Cσ. We then define:

Jx s1 · · · snK
c

α,ζ = ζ(x)(Js1K
s

α, . . . , JsnK
s

α)

Jf s1 · · · sk t1 · · · tnK
c

α,ζ = J c
f (Js1K

c

α,ζ , Js1K
s

α, . . . , JskK
c

α,ζ , JskK
s

α, Jt1K
s

α, . . . , JtnK
s

α)

We let cost(s)α,ζ =
∑

{JtKcα,ζ | s D t and t is a non-variable term of base type}.
This is all well-defined under our assumptions that all variables have a type of
order 0 or 1, and f : (~ι1 ⇒ κ1) ⇒ · · · ⇒ (~ιk ⇒ κk) ⇒ ν1 ⇒ · · · ⇒ νl ⇒ ι. We also
define cost′(s)α,ζ =

∑

{JtKcα,ζ | s D t and t /∈ X is of base type not in normal form}.
A cost–size interpretation F for a second order signature F = (B, Σ, typeOf)

is a choice of a quasi-ordered set Sι, for each ι ∈ B, along with cost- and size-
interpretations J c and J s defined as above. Let (F,R) be an STRS over F. We
say (F,R) is compatible with a cost–size interpretation if for any valuations α
and ζ, we have (a) JℓK

c

α,ζ > cost(r)α,ζ and (b) JℓK
s

α ⊒ JrK
s

α, for all rules ℓ→ r in
R. In this case we say such cost–size interpretation orients all rules in R.

Theorem 1 (Innermost Compatibility). Suppose R is an STRS compati-
ble with a cost–size interpretation F , then for any valuations α and ζ we have
cost′(s)α,ζ > cost′(t)α,ζ and JsK

s

α ⊒ JtK
s

α whenever s→R t.

From compatibility, we have that if s0 →R · · · →R sn, then n ≤ cost′(s0).
Hence, cost′(s) bounds the derivation height of s. This follows from [25, Corol-
lary 34], although we significantly simplified the presentation: the limitation to
second-order fully applied rules and the lack of abstraction terms allow us to
avoid many of the complexities in [25]. We also adapted it to innermost rather
than call-by-value evaluation. A correctness proof of this version is supplied in
the Appendix A. Since α and ζ are universally quantified, we typically omit
them, and just write x instead of α(x) and F c instead of ζ(F).

Example 2. We let Snat = (N,≥) and assign J s
0 = 0 and J s

s = λλx.x + 1, as
well as J c

0 = 0 and J c
s = λλx.0. This gives us JpnqK

s
= n for all n ∈ N, and

JpnqK
c
= cost(n) = 0. Now, we let J s

add = λλxy.x+ y and J s
mult = λλxy.x ∗ y; then

indeed JℓKs ≥ JrKs for the first four rules of Example 1 (e.g., Jmult (sx) yKs =
(x + 1) ∗ y ≥ y + (x ∗ y) = Jadd y (multx y)K

s
). Moreover, let us choose J c

add =
λλxy.x + 1 and J c

mult = λλxy.x ∗ y + x + 1. Then also JℓK
c
> cost(r) for all rules;

for example, Jmult (sx) yK
c
= (x + 1) ∗ y + 2 ∗ x+ 3 > (y + 1) + (x ∗ y + 2 ∗ x+

1) = Jadd y (multx y)K
c
+Jmultx yK

c
= cost(add y (multx y)). Regarding funcProd,

we can orient both rules by choosing J s
funcProd = λλFxy.y ∗ max(F (x), 1)x and

J c
funcProd = λλFGxy.2∗x∗y∗max(F (x), 1)x+1+x∗G(x)+2∗x+1. This works due

to the monotonicity assumption, which provides, e.g., G(x + 1) ≥ G(x). (This
function is not polynomial, but that is allowed in the general case.)

2.3 Basic Feasible Functionals

We assume familiarity with Turing machines. In this paper, we consider deter-
ministic multi-tape Turing machines. Those are, conceptually, machines consist-

6 P. Baillot et al.

ing of a finite set of states, one or more (but a fixed number of) right-infinite
tapes divided into cells. Each tape is equipped with a tape head that scans the
symbols on the tape’s cells and may write on it. The head can move to the left
or right. Let W = {0, 1}∗. A k-ary Oracle Turing Machine (OTM) is a deter-
ministic multi-tape Turing machine with at least 2k + 1 tapes: one main tape
for (input/output), k designated query tapes, and k designated answer tapes. It
also has k distinct query states qi and k answer states ai.

A computation with a k-ary OTMM requires k fixed oracle functions f1, . . . , fk :
W −→W . We write M~f to denote a run of M with these functions. A run of M~f
on w starts with w written in the main tape. It ends when the machine halts,
and yields the word that is written in the main tape as output. As usual, we only
consider machines that halt on all inputs. The computation proceeds as usual
for non-query states. To query the value of fi on w, the machine writes w on
the corresponding query tape and enters the query state qi. Then, in one step,
the machine transitions to the answer state ai as follows: (a) the query value w
written in the query tape for fi is read; (b) the contents of the answer tape for
fi are changed to fi(w); (c) the query value w is erased from the query tape;
and (d) the head of the answer tape is moved to its first symbol. The running
time of M~f on w is the number of steps used in the computation.

A type-1 function is a mapping in W −→ W . A type-2 functional of rank
(k, l) is a mapping in (W −→ W)

k −→W l −→W .

Definition 1. We say an OTM M computes a type-2 functional Ψ of rank (k, l)
iff for all type-1 functions f1, . . . , fk and x1, . . . , xl ∈ W , whenever Mf1,...,fk is
started with x1, . . . , xl written on its main tape (separated by blanks), it halts
with Ψ(f1, . . . , fk, x1, . . . , xl) written on its main tape.

Definition 2. Let {F1, . . . , Fk} be a set of type-1 variables and {x1, . . . , xl}
a set of type-0 variables. The set Pol2

N
[F1, . . . , Fk;x1, . . . , xl] of second-order

polynomials over N with indeterminates F1, . . . , Fk, x1, . . . , xl is generated by:

P,Q := n | x | P +Q | P ∗Q | F (Q)

where n ∈ N, x ∈ {x1, . . . , xl}, and F ∈ {F1, . . . , Fk}.

Notice that a polynomial expression can be viewed as a type-2 functional in the
natural way, e.g., P (F, x) = 3∗F (x)+x is a second-order polynomial functional.
Given w ∈ W , we write |w| for its length and define the length |f | of f :W −→W
as |f | = λλn. max

|y|≤n
|f(y)|. This allows us to define BFF as the class of functionals

computable by OTMs with running time bounded by a second-order polynomial.

Definition 3. A type-2 functional Ψ is in BFF iff there exist an OTM M and
a second-order polynomial P such that M computes Ψ and for all ~f and ~x: the
running time of Mf1,...,fk on x1, . . . , xl is at most P (|f1|, . . . , |fk|, |x1|, . . . , |xl|).

On Basic Feasible Functionals and the Interpretation Method 7

3 Statement of the Main Result

The main result of this paper roughly states that BFF consists exactly of those
type-2 functionals computed by an STRS compatible with a polynomially bounded
cost–size tuple interpretation. To formally state this result, we must first define
what it means for an STRS to compute a type-2 functional and define precisely
the class of cost–size interpretations we are interested in.

Indeed, let us start by encoding words in W as terms. We let bit,word ∈ B

and introduce symbols o, i : bit and [] : word, :: : bit ⇒ word ⇒ word. Then for
instance 001 is encoded as the term :: o (:: o (:: i [])). We use the cleaner list-like
notation [o; o; i] in practice. Let w denote the term encoding of a word w. Next,
we encode type-1 functions as a possibly infinite set of one-step rewrite rules.

Definition 4. Consider a type-1 function f : W −→ W and let Sf : word ⇒
word be a fresh function symbol. A set of rules Rf defines f by way of Sf if
for each w ∈W there is exactly one rule of the form Sf w → f(w) in Rf .

Henceforth, we assume given that our STRS (F,R) at hand is such that F con-

tains o, i, [], :: typed as above and a distinguished symbol F : (word ⇒ word)
k ⇒

wordl ⇒ word. Given type-1 functions f1, . . . , fk, we write F~f for F extended with

function symbols Sfi : word ⇒ word, with 1 ≤ i ≤ k, and let R+~f = R∪
⋃k

i=1 Rf .
Now we can define the notion of type-2 computability for such STRSs.

Definition 5. Let (F,R) be an STRS. We say that F computes the type-2
functional Ψ in (F,R) iff for all type-1 functions f1, . . . , fk and all w1, . . . , wl ∈
W , FSf1 · · · Sfk w1 · · ·wl →

+
R

+~f
u, where u = Ψ(f1, . . . , fk, w1, . . . , wl).

Next, we define what we mean by polynomially bounded interpretation.

Definition 6. We say an STRS (F,R) admits a polynomially bounded inter-
pretation iff (F,R) is compatible with a cost–size interpretation such that:

• Sword = (N,≥);

• J c
o = J c

i = J c
[] = 0, J c

:: = λλxy.0, and J s
:: = λλxy.x + y + c for some c ≥ 1;

• J c
F is bounded by a polynomial in Pol2

N
[F c

1 , F
s
1 , . . . , F

c
k , F

s
k;x1, . . . , xl].

Finally, we can formally state our main result.

Theorem 2. A type-2 functional Ψ is in BFF if and only if there exists a finite
orthogonal STRS (F,R) such that the distinguished symbol F computes Ψ in
(F,R) and R admits a polynomially bounded cost–size interpretation.

We prove this result in two parts. First, we prove soundness in Section 4
which states that every type-2 functional computed by an STRS as above is in
BFF. Then in Section 5 we prove completeness which states that every functional
in BFF can be computed by such an STRS. In order to simplify proofs, we
only consider type-2 functions of rank (1,1). We claim that the results can be
easily generalized, but the proofs become more tedious when handling multiple
arguments.

8 P. Baillot et al.

Example 3. Let us consider the type-2 functional defined by Ψ := λλfx.
∑

i<|x|

f(i).

Notice that Ψ adds all f(i) over each word i ∈ W whose value (as a natural
number) is smaller than the length of x. This functional was proved to lie in BFF

in [20], where the authors utilized an encoding of Ψ as a BTLP2 program. We
can encode Ψ as an STRS as follows. Let us consider ancillary symbols lengthOf :
word ⇒ nat and toBin : nat ⇒ word. The former computes the length of a given
word and the latter converts a number from unary to binary representation. We
also consider rules for addition on binary words, i.e., +B : word ⇒ word ⇒ word,
which we use in infix notation below.

computeF x 0 acc→ acc

computeF x (s i) acc→ computeF x i (acc +B F (toBin i))

startF x→ computeF x (lengthOf x) []

Now, if we want to compute Ψ(f, x) we simply reduce the term start Sf x to
normal form. To show that this system is in BFF via our rewriting formalism, we
need to exhibit a cost–size tuple interpretation for it that satisfies Definition 6.

4 Soundness

In order to prove soundness, let us consider a fixed finite orthogonal STRS R ad-
mitting a polynomially bounded cost–size interpretation such that it computes a
type-2 functional Ψ . We proceed to show that Ψ is in BFF roughly as follows:

1. Since R computes Ψ and admits a polynomially bounded interpretation, we
show that so does the extended system R+f (Definition 5). The restriction on
J s
:: (Definition 6) implies that JFSf wK

c
is bounded by a second-order polyno-

mial over |f |, |w|. We show this in Lemma 1. By compatibility (Theorem 1),
we can do at most polynomially many steps when reducing FSf w.

2. The cost polynomial restricts the size of any input that the function variable
F is applied to (e.g., a cost bound of 3+F c(m) implies that F is never called
on a term with size interpretation > m). This is the subject of Lemma 3.

3. Using the observations above, we then show that by graph rewriting we can
simulate R+f and compute each R+f -reduction step in polynomial time on
an OTM. This guarantees that Ψ is in BFF, Theorem 3.

4.1 Interpreting The Extended STRS, Polynomially

Our first goal is to provide a polynomially bounded cost–size interpretation to the
extended system R+f . We start with the observation that the size interpretation
of words in W is proportional to their length. Indeed, since J s

:: = λλxy.x + y + c
(Definition 6) let µ := max(J s

o ,J
s
i)+c and ν := J s

[]. Consequently, for all w ∈W :

|w| ≤ JwKs ≤ µ ∗ |w| + ν (1)

On Basic Feasible Functionals and the Interpretation Method 9

Recall that by Definition 4 the extended system R+f has possibly infinitely
many rules of the form Sfw → f(w). Such rules Sf represent calls for an oracle
to compute f in a single step. Thus, we set their cost to 1. The size should be
given by the length of the oracle output, taking the overhead of interpretation
into account. Hence, we obtain:

J c
Sf

= λλx.1 J s
Sf

= λλx.µ ∗ |f |(x) + ν

This is weakly monotonic because |f | is. It orients the rules in Rf because
JSf wK

c
= 1 > 0 = cost(f(w)), and JSf wK

s
= µ∗ |f |(JwK

s
)+ ν ≥ µ∗ |f |(|w|)+ ν ≥

µ ∗ |f(w)| + ν by definition of |f |, which is superior or equal to Jf(w)K
s
.

As J c
F is bounded by a second-order polynomial λλF cF sx.P , we can let

D(F, n) := P (λλx.1, λλx.µ ∗ F (x) + ν, µ ∗ n + ν). Then D is a second-order poly-
nomial, and D(|f |, |w|) ≥ J c

F (J
c
Sf
,J s

Sf
, JwK

s
) = cost(FSf w). By Theorem 1 we

see:

Lemma 1. There exists a second-order polynomial D so that D(|f |, |w|) bounds
the derivation height of FSf w for any f ∈W −→W and w ∈ W .

Notice that this lemma does not imply that Ψ is in BFF. It only guarantees
that there is a polynomial bound to the number of rewriting steps for such sys-
tems. However, it does not immediately follow that this number is a reasonable
bound for the actual computational cost of simulating a reduction on an OTM.
Consider for example a rule f (sn) t → f n (c t t). Every step doubles the size of
the term. A naive implementation – which copies the duplicated term in each
step – would take exponential time. Moreover, a single step using the oracle can
create a very large output, which is not considered part of the cost of the reduc-
tion, even though an OTM would be unable to use it without first fully reading
it.

Therefore, in order to prove soundness, we show how to realize a reason-
able implementation of rewriting w.r.t. OTMs. In essence, we will show that (1)
oracle calls are not problematic in the presence of polynomially bounded inter-
pretations, and (2) we can handle duplication with an appropriate representation
of rewriting.

4.2 Bounding The Oracle Input

We first deal with the reasonability of oracle calls. We will show that there exists a
second-order polynomial B such that if an oracle call Sf x occurs anywhere along
the reduction FSf w →+

R v, then |x| ≤ B(|f |, |w|). From this, we know that the
growth of the overall term size during an oracle call is at most |f |(B(|f |, |w|)).

Let P again be the polynomial bounding J c
F . Since P is a second-order poly-

nomial, each occurrence of a sub-expression F c(E) in P is a second-order poly-
nomial, and so is E. Let us enumerate these arguments as E1, . . . , En. We can
then form the new polynomial Q defined as

Q :=
∑

i

Ei where occurrences of F c(E′
j) inside Ei are replaced by 1

10 P. Baillot et al.

We let B(G, y) := Q(λλz.µ ∗G(z) + ν, µ ∗ y + ν).

Example 4. If P = λλF cF sx.x∗F c(3+F s(9 ∗x))+F c(12)∗F c(3+x∗F c(2))+5,
then Q = 3 + F s(9 ∗ x) + 12 + 3 + x ∗ 1 + 2 = 20 + F s(9 ∗ x) + x. We have
B(G, x) = 20+µ∗G(9∗(µ∗x+ν))+ν+(µ∗x+ν) = 20+2∗ν+G(9∗µ∗x+9∗ν)+µ∗x.

Now B gives an upper bound to the argument values for F c that are con-
sidered: if a function differs from J c

Sf
only on argument values greater than

B(|f |, |w|), then we can use it in P and obtain the same result. Formally:

Lemma 2. Fix f, w. Let G ∈ N −→ N with G(z) = 1 if z ≤ B(|f |, |w|). Then
P (G,J s

Sf
, JwK

s
) = P (J c

Sf
,J s

Sf
, JwK

s
).

This is proved by induction on the form of P , using that G is never applied on
arguments larger than B(|f |, |w|). Lemma 2 is used in the following key result:

Lemma 3 (Oracle Subterm Lemma). Let f :W −→W be a type-1 function
and w ∈W . If FSf w →∗

R+f
C[Sf x] for some context C, then |x| ≤ B(|f |, |w|).

Proof. In view of a contradiction, suppose there exist f, w, and x such that
FSf w →∗

R+f
C[Sf x] for some context C, and |x| > B(|f |, |w|). Let us now

construct an alternative oracle: let 0 : nat, s : nat ⇒ nat, S′f : word ⇒ word and
helper : nat ⇒ nat ⇒ nat, and for N := D(|f |, |w|), let R′

f,w be given by:

S′f x → f(x) if |x| ≤ B(|f |, |w|) helper 0 y → y

S′f x → helper pNq f(x) otherwise helper (sx) y → helper x y

Where pNq is the unary number encoding of N as introduced in Section 2.1.
Notice that by definition, the rules for S′f will produce f(x) in one step if |x| ≤
B(|f |, |w|), but they will take N + 2 steps otherwise. Also observe that Sf and
S′f behave the same; that is, Sf x and S′f x have the same normal form on any
input x. We extend the interpretation function of the original signature with:

J c
S′

f
= λλx.

{

1 if x ≤ B(|f |, |n|)
N + 2 if x > B(|f |, |n|)

J s
S′

f
= J s

Sf
(y)

J c
helper = λλxy.x + 1 J s

helper = λλxy.y J s
0 = 0 J s

s = λλx.x + 1

We easily see that this orients all rules in Rf,w. Then, by Lemma 2, cost(FS′f w) ≤

P (J c
S′

f
,J s

S′

f
, JwKs) = P (J c

Sf
,J s

Sf
, JwKs) ≤ D(|f |, |w|) = N . Yet, as we have

FSf w →∗
R+f

C[Sf x], we also have FSf w →R∪R′

f,w
C′[S′f x], where C′ is ob-

tained from C by replacing all occurrences of Sf by S′f . Since |x| > B(|f |, |w|)
by assumption, the reduction FS′f w →∗

R∪R′

f,w
C[S′f w] →

∗
R∪Rf,w′

C[f(x)] takes

strictly more than N steps, contradicting Theorem 1. ⊓⊔

On Basic Feasible Functionals and the Interpretation Method 11

v0 : @

v1 : @

v2 : add v3 : ⊥

v4 : ⊥

(a)

@

@

add ⊥

⊥

(b)

@

@

add @

⊥s

(c)

@

@

f @

g ⊥

(d)

Fig. 1: A term graph, its simplified version, and two graphs with sharing

4.3 Graph Rewriting

Lemma 1 guarantees that if R is compatible with a suitable interpretation, then
at most polynomially many R+f -steps can be performed starting in FSf w. How-
ever, as observed in Section 4.1, this does not yet imply that a type-2 functional
computed by an STRS with such an interpretation is in BFF. To simulate a re-
duction on an OTM, we must find a representation whose size does not increase
too much in any given step. The answer is graph rewriting.

Definition 7. A term graph for a signature Σ is a tuple (V, label, succ, Λ)
with V a finite nonempty set of vertices; Λ ∈ V a designated vertex called the
root; label : V −→ Σ ∪ {@} a partial function with @ fresh; and succ : V −→
V ∗ a total function such that succ(v) = v1v2 when label(v) = @ and succ(v) =
ε otherwise. We view this as a directed graph, with an edge from v to v′ if
v′ ∈ succ(v), and require that this graph is acyclic (i.e., there is no path from
any v to itself). Given term graph G, we will often directly refer to VG, labelG,
etc.

Term graphs can be denoted visually in an intuitive way. For example, using
Σ from Example 1, the graph with V = {v0, . . . , v4}, label = {v0, v1 7→ @, v2 7→
add}, succ = {v0 7→ v1v4, v1 7→ v2v3, v3, v4, v5 7→ ε} amd Λ = v0 is pictured
in Figure 1a. We use ⊥ to indicate unlabeled vertices and a circle for Λ. We
will typically omit vertex names, as done in Figure 1b. Note that the definition
allows multiple vertices to have the same vertex as successor; these successor
vertices with in-degree > 1 are shared. Two examples are denoted in Figures 1c
and 1d.

Each term has a natural representation as a tree. Formally, for a term s we let
[s]G = (pos(s), label, succ, ♯) where label(p) = @ if s|p = s1s2 and label(p) =
f if s|p = f; label(p) is not defined if s|p is a variable; and succ(p) = (1·p)(2·p) if
s|p = s1 s2 and succ(p) = ε otherwise. Essentially, [s]G maintains the positioning
structure of s and forgets variable names. For example, Figure 1b denotes both
[addx y]G and [addxx]G.

Our next step is to reduce term graphs using rules. We limit interest to left-
linear rules, which includes all rules in R+f (as R is orthogonal, and the rules
in Rf are ground). To define reduction, we will need some helper definitions.

12 P. Baillot et al.

Definition 8. Let G = (V, label, succ, Λ), v ∈ V . The subgraph reach(G, v)
of G rooted at v is the term graph (V ′, label′, succ′, v) where V ′ contains those
v′ ∈ V such that a path from v to v′ exists, and label′, succ′ are respectively
the limitations of label and succ to V ′.

Definition 9. A homomorphism between two term graphs G and H is a func-
tion φ : VG −→ VH with φ(ΛG) = ΛH , and for v ∈ VG such that labelG(v)
is defined, labelH(φ(v)) = labelG(v) and succH(φ(v)) = φ(v1) . . . φ(vk) when
succG(v) = v1 . . . vk. (If labelG(v) is undefined, succH(φ(v)) may be anything.)

Definition 10. A redex in G is a triple (ρ, v, φ) consisting of some rule ρ =
ℓ→ r ∈ R+f , a vertex v in VG, and a homomorphism φ : [ℓ]G −→ reach(G, v).

Definition 11. Let G be a term graph and v1, v2 vertices in G. The redirection

of v1 to v2 is the term graph G[v1 ≫ v2] ≡ (VG, labelG, succG′ , Λ′
G) with

succG′(v)i =

{

v2, if succG(v)i = v1

succG(v)i, otherwise
Λ′
G =

{

v2 if ΛG = v1

ΛG otherwise

That is, we replace every reference to v1 by a reference to v2. With these defini-
tions in hand, we can define contraction of term graphs:

Definition 12. Let G be a term graph, and (ρ, v, φ) a redex in G with ρ ∈
R+f , such that no other vertex v′ in reach(G, v) admits a redex (so v is an
innermost redex position). Denote ax for the position of variable x in ℓ, and
recall that ax is a vertex in [ℓ]G. By left-linearity, ax is unique for x ∈ vars(ℓ).
The contraction of (ρ, v, φ) in G is the term graph J produced after the following
steps: H (building), I (redirection), and J (garbage collection).

(building) Let H = (VH , labelH , succH , ΛG) where:
• VH = VG⊎{p ∈ pos(r) | r|p is not a variable} (⊎ means disjoint union);
• for v ∈ VG: labelH(v) = labelG(v) and succH(v) = succG(v)
• for p ∈ VH with r|p not a variable:

• labelH(p) = f if r|p = f and labelH(p) = @ otherwise
• succH(p) = ε if r|p = f; otherwise, succH(p) = ψ(1 · p)ψ(2 · p)

Here, ψ(q) = q if r|q is not a variable; if r|q = x then ψ(q) = φ(ax).
(redirection) If r is a variable x (so H = G), then let I = G[v ≫ φ(ax)].

Otherwise, let I = H [v≫ ♯], so with all references to v redirected to the root
vertex for r.

(garbage collection) Let J := reach(I, ΛI) (so remove unreachable vertices).

We then write G J in one step, and G n J for the n-step reduction.

We illustrate this with two examples. First, we aim to rewrite the graph of
Figure 2a with a rule add 0 y → y at vertex v. Since the right-hand side is a
variable, the building phase does nothing. The result of the redirection phase is
given in Figure 2b, and the result of the garbage collection in Figure 2c.

On Basic Feasible Functionals and the Interpretation Method 13

@

s
v: @

@ @

add 0 s

(a)

@

s
v: @

@ @

add 0 s

(b)

@

s @

s 0

(c)

Fig. 2: Reducing a graph with the rule add 0 y → y

Second, we consider a reduction by mult (sx) y → add y (multx y). Figure 3a
shows the result of the building phase, with the vertices and edges added during
this phase in red. Redirection sets the root to the squared node (the root of the
right-hand side), and the result after garbage collection is in Figure 3b.

@

@

mult

@

s 0

@

@

add

@

@

mult

(a)

@

@

add

@

@

mult

@

s 0

(b)

Fig. 3: Reducing a term graph with substantial sharing

Note that, even when a term graph G is not a tree, we can find a corre-
sponding term: we assign a variable var (v) to each unlabeled vertex v in G, and
let:

θ(v) =

θ(v1) θ(v2) if label(v) = @ and succ(v) = v1v2
f if label(v) = f

var(v) if label(v) is undefined

Then we may define [G]−1
G

= θ(ΛG). For a linear term, clearly [[s]G]
−1
G

= s
(modulo variable renaming). We make the following observation:

Lemma 4. Assume given a term graph G such that there is a path from ΛG

to every vertex in VG, and let [G]−1
G

= s. If G H then [G]−1
G

→+
R+f

[H]−1
G

.
Moreover, if s→R+f

t for some t, then there exists H such that G H.

Consequently, if →R+f
is terminating, then so is ; and if [s]G

n G for some

ground term s then s→∗
R+f

[G]−1
G

in at least n steps. Notice that if G does not

14 P. Baillot et al.

admit any redex, then [G]−1
G

is in normal form. Moreover, since R+f = R∪Rf

is orthogonal (as R is orthogonal and the Rf rules are non-overlapping) and
therefore confluent, this is the unique normal form of s. We conclude:

Corollary 1. If [FSf w]G
n G, then n ≤ D(|f |, |w|); and if G is in normal

form, then [G]−1
G

= Ψ(f,w).

4.4 Bringing Everything Together

We are now ready to complete the soundness proof following the recipe at the
start of the section. Towards the third bullet point, we make the following ob-
servation.

Lemma 5. There is a constant a such that, whenever G H by a rule in R,
then |H | ≤ |G|+ a, where |G| denotes the total number of nodes in the graph G.

Proof. In a step using a rule ℓ → r, the number of nodes in the graph can be
increased at most by |[r]G|. As there are only finitely many rules in R, we can
let a be the number of nodes in the largest graph for a right-hand side r. ⊓⊔

To see that graph rewriting with Sf can be implemented in an efficient way,
we observe that the size of any intermediary graph in the reduction [Gw]G →+

R

[q]G is polynomially bounded by a second-order polynomial over |f |, |w|:

Lemma 6. There is a second-order polynomial Q such that if [FSf w]G
∗ H,

then |H | ≤ Q(|f |, |w|).

Proof. Let Q(F, x) := x + D(F, x) ∗ (a + F (B(F, x))), where D is the polyno-
mial from Lemma 1, a is the constant from Lemma 5, and B is the polyno-
mial from Section 4.2. This suffices, because there are at most D(|f |, |w|) steps
(Lemma 1, Corollary corollary 1), each of which increases the graph size by at
most max(a, |f |(B(|f |, |w|))). ⊓⊔

All in all, we are finally ready to prove the soundness side of the main theo-
rem:

Theorem 3. Let R be a finite orthogonal STRS admitting a polynomially bounded
interpretation. If F computes a type-2 functional Ψ , then Ψ ∈ BFF.

Proof. Given (F,R), we can construct an OTM M so that for a given f ∈
W −→ W , the machine Mf executed on w ∈ W computes the normal form of
FSf w under →R+f

using graph rewriting. We omit the exact construction, but
observe:

• that we can represent each graph in polynomial space in the size of the graph;

• that we can do a rewriting step that does not call the oracle (so using a rule
in R) following the contraction algorithm we defined in Definition 12, which
is clearly feasible to do in polynomial time in the size of the graph;

On Basic Feasible Functionals and the Interpretation Method 15

• and that each oracle call (implemented in rewriting by a Rf -step Sf x → y)
is resolved by copying x to the query tape, transitioning to the query state,
and from the answer state copying y from the answer tape to the main tape.
By Lemma 3 this is doable in polynomial time in |f |, |w| and the graph size.

By Lemma 6, graph sizes are bounded by a polynomial over |f |, |w|, so using the
above reasoning, the same holds for the cost of each reduction step. In summary:
the total cost of Mf running on w is bounded by a second-order polynomial
in terms of |f | and |w|. As Mf simulates R+f via graph rewriting and R+f

computes Ψ , M also computes Ψ . By Definition 3, Ψ is in BFF. ⊓⊔

5 Completeness

Recall from Section 3 that to prove completeness we have to show the following:
if a given type-2 functional Ψ is in BFF, then there exists an orthogonal STRS
that computes Ψ and admits a polynomially bounded interpretation. We prove
this by providing an encoding of OTMs as STRSs that admit a polynomially
bounded interpretation.

The encoding is divided into three steps. In Section 5.1, we will define the
function symbols that will allow us to encode any possible machine configuration
as terms. In Section 5.2, we will encode transitions as reduction rules that rewrite
configuration terms. Lastly, we will design an STRS to simulate a complete
execution of an OTM in polynomially many steps. Achieving this polynomial
bound is non-trivial and is done in Sections 5.3–5.4.

Henceforth, we assume given a fixed OTM M , and a second-order polynomial
PM , such that M operates in time PM . For simplicity, we assume the machine
has only three tapes (one input/output tape, one query tape, one answer tape);
that each non-oracle transition only operates on one tape (i.e., reading/writing
and moving the tape head); and that we only have tape symbols {0, 1, B}.

5.1 Representing Configurations

Following 3, we have o, i : bit, :: : bit ⇒ word ⇒ word and [] : word. To represent
a (partial) tape, we also introduce b : bit for the blank symbol. Now for instance
a tape with content 011B01BB · · · (followed by infinitely many blanks) may be
represented as the list [o; i; i; b; o; i] of type word. We may also add an arbitrary
number of blanks at the end of the representation; e.g., [o; i; i; b; o; i; b; b].

We can think of a tape configuration — the combination of a tape and the
position of the tape head — as a finite word w1 . . . wp−1#wpwp+1 . . . wk (followed
by infinitely many blanks). Here, the tape’s head is reading the symbol wp. We
can split this tape into two components: the left word w1 . . . wp−1, and the right
word wp . . . wk. To represent a tape configuration, we introduce three symbols:

L : word ⇒ left R : word ⇒ right split : left ⇒ right ⇒ tape

Here, L,R hold the content of the left and right split of the tape, respectively.
While we technically do not need these two constructors (we could have split :

16 P. Baillot et al.

word ⇒ word ⇒ tape), they serve to make configurations more human-readable.
For convenience in rewriting transitions, later on, we will encode the left side of
the split in reverse order. Specifically, we encode w1 . . . wp−1#wpwp+1 . . . wk as

split (L [wp−1; . . . ;w2;w1]) (R [wp; . . . ;wk−1;wk])

The symbol currently being read is the first element of the list below R; in case
of R [], this symbol is B. For a concrete example, a tape configuration 1B0#10
is represented by: split (L [o; b; i]) (R [i; o]). Since we have assumed an OTM with
three tapes, a configuration of the machine at any moment is a tuple (q, t1, t2, t3),
with q a state and t1, t2, t3 tape configurations. To represent machine configura-
tions, we introduce, for each state q, a symbol q : tape ⇒ tape ⇒ tape ⇒ config.
Thus, a configuration (q, t1, t2, t3) is represented by a term qT1 T2 T3.

Example 5. The initial configuration for a machine Mf on input w is a tuple
(q0,#w,#B,#B). This is represented by the term

initial(w) := q0 (split (L []) (Rw)) (split (L []) (R [])) (split (L []) (R []))

To interpret the symbols from this section, we let (Sι,⊒ι) := (N,≥) for all ι,
let J c

f = λλx1 . . . xm.0 whenever f takes m arguments, and for the sizes:

J s
o = 0 J s

b = 0 J s
L = λλx.x J s

:: = λλxy.x + y + 1 J s
q = λλxyz.x + y

J s
i = 0 J s

[] = 0 J s
R = λλx.x J s

split = λλx.xy.x + y (for all states q)

Hence, JwKs = |w|, which satisfies the requirements of Theorem 2; the size of a
tape configuration w1 . . . wp−1#wp . . . wk is k, and the size of a configuration is
the size of its first and second tapes combined. We do not include the third tape,
as it does not directly affect either the result yielded by the final configuration
(this is read from the first tape), nor the size of a word the oracle f is applied
on.

5.2 Executing The Machine

A single step in an OTM can either be an oracle call (a transition from the
query state to the answer state), or a traditional step: we assume that an OTM

M has a fixed set T of transitions q
r/i, d
====⇒

t
l where q is the input state, l the

output state, t ∈ {1, 2, 3} the tape considered (recall that we have assumed that a
non-oracle transition only operates on one tape), r, i ∈ {0, 1, B} respectively the
symbol being read and the symbol being written, and d ∈ {L,R} the direction
for the read head of tape t to move. We will model the computation of M as
rules that simulate the small step semantics for the machine.

To encode a single transition, let step : (word ⇒ word) ⇒ config ⇒ config.

For any transition of the form q
r/i, L
====⇒

1
l (so a transition operating on tape 1,

and moving left), we introduce a rule (where we write 0 = o, 1 = i, B = b):

stepF (q (split (L (x::y)) (R (r::z)))u v) → l (split (L y) (R (x::i::z)))u v

On Basic Feasible Functionals and the Interpretation Method 17

Moreover, for transitions q
B/w, L
=====⇒

1
l (so where B is read), we add a rule:

stepF (q (split (L (x::y)) (R []))u v) → l (split (L y) (R (x::i::[])))u v

These rules respectively handle the steps where a tape configuration is changed
from u1 . . . up−1up#rup+2 . . . uk to u1 . . . up−1#upiup+2 . . . uk, and where a tape
configuration is changed from u1 . . . uk# to u1 . . .#uki.

Transitions where d = R, or on the other two tapes, are encoded similarly.
Next, we encode oracle calls. Recall that, to query the machine for the value

of f at u, we write u on the second tape, move its head to the leftmost position,
and enter the query state. Then, the content of this tape is erased and the image
of f over u is written in the third tape. Visually, this step is represented as:

(query, 〈tape1〉, v1 . . . vp#uB . . . , 〈tape3〉) (answer, 〈tape1〉,#B,#f(u))

This is implemented by the following rules:

stepF (query t1 (splitx (R y)) t3) → answer t1 (split (L []) (R []))
(split (L []) (R (F (clean y))))

clean (o::x) → o::(cleanx) clean (b::x) → []
clean (i::x) → i::(cleanx) clean [] → []

Here, clean : word ⇒ word turns a word that may have blanks in it into a bitstring,
by reading until the next blank; for instance replacing [o; i; b; i] by [o; i].

The various step rules, as well as the clean rules, are non-overlapping because
we consider deterministic OTMs. They are also left-linear, and are oriented using:

J s
clean = λλx.x J c

clean = λλx.x + 1
J s
step = λλFx.x + 1 J c

step = λλF cF sx.F c(x) + x+ 2

(Note that J s
step is so simple because the size of a configuration does not include

the size of the answer tape.) From the rules, the following result is obvious:

Lemma 7. Let Mf be an OTM and C,C′ be machine configurations of Mf such
that C C′. Then step Sf [C] →

+
R [C′], where [C] is the term encoding of C.

5.3 A Bound on the Number of Steps

To generalize from performing a single step of the machine to tracing a full
computation on the machine level, the natural idea would be to define rules
such as:

executeF (q x y z) → executeF (step(q x y z)) for q 6= end

executeF (end (split (Lx) (Rw)) y z) → cleanw

Then, reducing execute Sf initial(w) to normal form simulates a full OTM execu-
tion of Mf on input w. Unfortunately, this rule does not admit an interpretation,

18 P. Baillot et al.

as it may be non-terminating. A solution could be to give execute an additional
argument pNq suggesting an execution in at most N steps; this argument would
ensure termination, and could be used to find an interpretation.

The challenge, however, is to compute a bound on the number of steps in
the OTM: the obvious thought is to compute PM (|f |, |w|), but this cannot in
general be done in polynomial time because the STRS does not have access to
|f |: since |f |(i) = max{x ∈ N | |x| ≤ i}, there are exponentially many choices
for x.

To solve this, and following [21, Proposition 2.3], we observe that it suffices to
know a bound for f(x) for only those x on which the oracle is actually questioned.
That is, for A ⊆W , let |f |A = λλn.max{|f(x)| | x ∈ A ∧ |x| ≤ n}. Then:

Lemma 8. Suppose an OTM Mf runs in time bounded by PM (|f |, |w|) on input
w. If Mf transitions in N steps from its initial state to some configuration C,
calling the oracle only on words in A ⊆W , then N ≤ PM (|f |A, |w|).

Proof (Sketch). We construct f ′ with f ′(x) = 0 if x /∈ A and f ′(x) = f(x) if
x ∈ A. Then |f ′| = |f |A, and Mf ′ runs the same on input w as Mf does. ⊓⊔

Now, for A encoded as a term A (using symbols ∅ : set, setcons : word ⇒
set ⇒ set), we can compute |f |A using the rules below, where we use unary
integers as in Example 1 (0 : nat, s : nat ⇒ nat), and defined symbols len :
word ⇒ nat, max : nat ⇒ nat ⇒ nat, limit : word ⇒ nat ⇒ word, retif : word ⇒
nat ⇒ word ⇒ word, tryapply : (word ⇒ word) ⇒ word ⇒ nat ⇒ nat, tryall :
(word ⇒ word) ⇒ set ⇒ nat ⇒ nat. By design, retif x pnq y reduces to y if |x| ≤ n
and to [] otherwise; tryapply Sf x pnq reduces to the unary encoding of |F |{x}(n)
and tryall a x pnq yields |F |A(n).

len [] → 0 len (x::y) → s (len y)
max 0m→ m max (sn) 0 → sn max (sn) (sm) → s (maxnm)
limit []n→ [] limit (x::y) 0 → [] limit (x::y) (sn) → x::(limit y n)

retif []n z → z retif (x::y) 0 z → [] retif (x::y) (sn) z → retif y n z

tryapplyF an→ len (retif a n (F (limita n)))
tryallF ∅n→ 0 tryallF (setcons a tl)n→ max (tryapplyF an) (tryallF tl n)

An interpretation is provided in Appendix B. Importantly, the limit function
ensures that, in tryallF n we never apply F to a word w with |w| > n. Therefore
we can let JAK

s
= |A|, the number of words in A, and have J s

tryall = λλFan.F (n)
and J c

tryall = λλF cF san.1 + a+ F c(n) + 2 ∗ F s(n) + 2 ∗ n+ 6.
Now, for a given second-order polynomial P , fixed f, n, and a term A encoding

a set A ⊆W , we can construct a term ΘP
Sf ;pnq;A

that computes P (|f |A, n) using
tryall and the functions add,mult from Example 1. By induction on P , we have
JΘP

Sf ;pnq;A
K
s
= P (|f |, n), while its cost is bounded by a polynomial over |f |, n, |A|.

5.4 Finalising Execution

Now, we can define execution in a way that can be bounded by a polynomial
interpretation. We let execute : (word ⇒ word) ⇒ nat ⇒ nnat ⇒ nat ⇒ set ⇒

On Basic Feasible Functionals and the Interpretation Method 19

config ⇒ word and will define rules to reduce expressions executeF nmz a c
where

• F is the function to be used in oracle calls.

• n − 1 is a bound on the number of steps that can be done before the next
oracle call (or until the machine completes execution).

• m is essentially a natural number that represents the number of steps that
have been done so far. We use a new sort nnat with function symbols o : nnat
and n : nnat ⇒ nnat because we will let Snnat = (N,≤), so ordered in the
other direction. This will be essential to find an interpretation for execute.

• z is a unary representation of |w|, where w is the input to the OTM.

• c is the current configuration.

Using helper symbols F′ : (word ⇒ word) ⇒ nat ⇒ config ⇒ word, execute′ :
(word ⇒ word) ⇒ nat ⇒ nnat ⇒ nat ⇒ set ⇒ config ⇒ word, extract : tape ⇒
word and minus : nat ⇒ nnat ⇒ nat, we introduce the rules:

FF w → F′ F (lenw) (q0 (split(L []) (Rw)) (split(L []) (R [])) (split(L []) (R [])))

F′ F z c→ executeF ΘPM+1
F ;z;∅ o z ∅ c

executeF (sn)mz a (q t1 t2 t3) →
executeF n (nm) z (stepF (q t1 t2 t3)) for q /∈ {query, end}

executeF (sn)mz a (query t1 t2 t3) →
execute′ F n (nm) z (setcons (extract t2) a) (query t1 t2 t3)

execute′ F nmz a c→ executeF (minusΘPM+1
F ;z;a m)mz a (stepF c)

executeF nmz a (end t1 t2 t3) → extract t1
extract (split (Lx) (R y)) → clean y
minusx o → x minus 0 (n y) → o minus (sx) (n y) → minusx y

That is, an execution on FSf w starts by computing the length of w and
PM (|f |∅, |w|), and uses these as arguments to execute. Each normal transition
lowers the number n of steps we are allowed to do and increases the number n
of steps we have done. Each oracle transition updates A, and either lowers n by
one, or updates it to the new value PM (|f |A, |w|) − m, since we have already
done m steps. Once we read the final state, the answer is read off the first tape.

For the interpretation, note that the unusual size set of nnat allows us to
choose J s

minus = λλxy.max(x− y, 0) without losing monotonicity. Hence, in every
step executeF nmz a c, the value max(PM (JF Ks, JzKs)+1− JmKs, JnKs) decreases
by at least one. Since JΘPM+1F ; z; aK

s
= PM (JF K

s
, JzK

s
) regardless of a, we can

use this component as part of the interpretation. The full interpretation functions
for execute and F are long and complex, so we will not supply them here. They
can be found in Appendix B. We will only conclude the other side of Theorem 2:

Theorem 4. If Ψ ∈ BFF, then there exists a finite orthogonal STRS R such that
F computes Ψ in R and R admits a polynomially bounded interpretation.

20 P. Baillot et al.

6 Conclusions and Future Work

In this paper, we have shown that BFF can be characterized through second-order
term rewriting systems admitting polynomially bounded cost–size interpreta-
tions. This is arguably the first characterization of the basic feasible functionals
purely in terms of rewriting theoretic concepts.

For the purpose of presentation, we have imposed some mild restrictions that
we believe are not essential in practice. In future extensions, we can eliminate
these restrictions, such as allowing lambda-abstraction, non-base type rules, and
higher-order functions (assuming that F is still second-order). We can also allow
arbitrary inductive data structures as input.

Another direction we definitely wish to explore is the characterization of
polynomial time complexity for functionals of order strictly higher than two. It
is well known that the underlying theory in this case becomes less robust than
in type-2 complexity. As such, it is not clear which of the existing proposals for
complexity classes of higher-order polytime complexity we can hope to capture
within our framework.

References

1. Avanzini, M., Moser, G.: Polynomial path orders. Log. Methods Comput. Sci. 9(4)
(2013). https://doi.org/10.2168/LMCS-9(4:9)2013

2. Avanzini, M., Moser, G., Schaper, M.: Tct: Tyrolean complexity tool. In:
Chechik, M., Raskin, J. (eds.) Proceedings of TACAS 2016 conference. Lec-
ture Notes in Computer Science, vol. 9636, pp. 407–423. Springer (2016).
https://doi.org/10.1007/978-3-662-49674-9_24

3. Baillot, P., Dal Lago, U.: Higher-order interpretations and program complexity. In:
Proceedings of CSL 2012. LIPIcs, vol. 16, pp. 62–76. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik (2012). https://doi.org/10.4230/LIPICS.CSL.2012.62, A
journal version in Information and Computation (248), 2016

4. Baillot, P., De Benedetti, E., Ronchi Della Rocca, S.: Characterizing polynomial
and exponential complexity classes in elementary lambda-calculus. Inf. Comput.
261, 55–77 (2018). https://doi.org/10.1016/J.IC.2018.05.005

5. Beame, P., Cook, S.A., Edmonds, J., Impagliazzo, R., Pitassi, T.: The relative
complexity of NP search problems. J. Comput. Syst. Sci. 57(1), 3–19 (1998).
https://doi.org/10.1006/JCSS.1998.1575

6. Beckmann, A., Weiermann, A.: A term rewriting characterization of the polytime
functions and related complexity classes. Arch. Math. Log. 36(1), 11–30 (1996).
https://doi.org/10.1007/s001530050054

7. Bellantoni, S.J., Cook, S.A.: A new recursion-theoretic characteriza-
tion of the polytime functions. Comput. Complex. 2, 97–110 (1992).
https://doi.org/10.1007/BF01201998

8. Bonfante, G., Cichon, A., Marion, J., Touzet, H.: Algorithms with polyno-
mial interpretation termination proof. J. Funct. Program. 11(1), 33–53 (2001).
https://doi.org/10.1017/S0956796800003877

9. Bonfante, G., Marion, J., Moyen, J.: Quasi-interpretations a way to
control resources. Theor. Comput. Sci. 412(25), 2776–2796 (2011).
https://doi.org/10.1016/j.tcs.2011.02.007

https://doi.org/10.2168/LMCS-9(4:9)2013
https://doi.org/10.2168/LMCS-9(4:9)2013
https://doi.org/10.1007/978-3-662-49674-9_24
https://doi.org/10.1007/978-3-662-49674-9_24
https://doi.org/10.4230/LIPICS.CSL.2012.62
https://doi.org/10.4230/LIPICS.CSL.2012.62
https://doi.org/10.1016/J.IC.2018.05.005
https://doi.org/10.1016/J.IC.2018.05.005
https://doi.org/10.1006/JCSS.1998.1575
https://doi.org/10.1006/JCSS.1998.1575
https://doi.org/10.1007/s001530050054
https://doi.org/10.1007/s001530050054
https://doi.org/10.1007/BF01201998
https://doi.org/10.1007/BF01201998
https://doi.org/10.1017/S0956796800003877
https://doi.org/10.1017/S0956796800003877
https://doi.org/10.1016/j.tcs.2011.02.007
https://doi.org/10.1016/j.tcs.2011.02.007

On Basic Feasible Functionals and the Interpretation Method 21

10. Cobham, A.: The intrinsic computational difficulty of functions. In: Bar-Hillel,
Y. (ed.) Logic, Methodology and Philosophy of Science: Proceedings of the 1964
International Congress (Studies in Logic and the Foundations of Mathematics), pp.
24–30. North-Holland Publishing (1965)

11. Constable, R.L.: Type two computational complexity. In: Aho, A.V., Borodin,
A., Constable, R.L., Floyd, R.W., Harrison, M.A., Karp, R.M., Strong, H.R.
(eds.) Proceedings of the 5th Annual ACM Symposium on Theory of Comput-
ing, April 30 - May 2, 1973, Austin, Texas, USA. pp. 108–121. ACM (1973).
https://doi.org/10.1145/800125.804041

12. Dal Lago, U., Hofmann, M.: Realizability models and implicit
complexity. Theor. Comput. Sci. 412(20), 2029–2047 (2011).
https://doi.org/10.1016/J.TCS.2010.12.025

13. Danner, N., Royer, J.S.: Adventures in time and space. In: Morrisett, J.G.,
Jones, S.L.P. (eds.) Proceedings of the 33rd ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, POPL 2006, Charleston,
South Carolina, USA, January 11-13, 2006. pp. 168–179. ACM (2006).
https://doi.org/10.1145/1111037.1111053

14. Dershowitz, N.: Orderings for term-rewriting systems. Theor. Comput. Sci. 17,
279–301 (1982). https://doi.org/10.1016/0304-3975(82)90026-3

15. Giesl, J., Thiemann, R., Schneider-Kamp, P.: The dependency pair framework:
Combining techniques for automated termination proofs. In: Baader, F., Voronkov,
A. (eds.) Logic for Programming, Artificial Intelligence, and Reasoning, 11th Inter-
national Conference, LPAR 2004, Montevideo, Uruguay, March 14-18, 2005, Pro-
ceedings. Lecture Notes in Computer Science, vol. 3452, pp. 301–331. Springer
(2004). https://doi.org/10.1007/978-3-540-32275-7_21

16. Hainry, E., Kapron, B.M., Marion, J., Péchoux, R.: A tier-based typed program-
ming language characterizing feasible functionals. In: Hermanns, H., Zhang, L.,
Kobayashi, N., Miller, D. (eds.) LICS ’20: 35th Annual ACM/IEEE Symposium
on Logic in Computer Science, Saarbrücken, Germany, July 8-11, 2020. pp. 535–549.
ACM (2020). https://doi.org/10.1145/3373718.3394768

17. Hainry, E., Kapron, B.M., Marion, J., Péchoux, R.: Complete and tractable
machine-independent characterizations of second-order polytime. In: Bouyer, P.,
Schröder, L. (eds.) Foundations of Software Science and Computation Structures -
25th International Conference, FOSSACS 2022, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2022, Munich, Germany,
April 2-7, 2022, Proceedings. Lecture Notes in Computer Science, vol. 13242, pp.
368–388. Springer (2022). https://doi.org/10.1007/978-3-030-99253-8_19

18. Hainry, E., Péchoux, R.: Theory of higher order interpretations and appli-
cation to basic feasible functions. Log. Methods Comput. Sci. 16(4) (2020),
https://lmcs.episciences.org/6973

19. Hartmanis, J., Stearns, R.E.: Automata-based computational complexity. Inf. Sci.
1(2), 173–184 (1969). https://doi.org/10.1016/0020-0255(69)90014-0

20. Irwin, R.J., Royer, J.S., Kapron, B.M.: On characterizations of the ba-
sic feasible functionals (part i). J. Funct. Program. 11(1), 117–153 (2001).
https://doi.org/10.1017/s0956796800003841

21. Kapron, B.M., Cook, S.A.: A new characterization of type-2 feasibility. SIAM J.
Comput. 25(1), 117–132 (1996). https://doi.org/10.1137/S0097539794263452

22. Kapron, B.M., Steinberg, F.: Type-two polynomial-time and restricted lookahead.
In: Dawar, A., Grädel, E. (eds.) Proceedings of the 33rd Annual ACM/IEEE Sym-
posium on Logic in Computer Science, LICS 2018, Oxford, UK, July 09-12, 2018.
pp. 579–588. ACM (2018). https://doi.org/10.1145/3209108.3209124

https://doi.org/10.1145/800125.804041
https://doi.org/10.1145/800125.804041
https://doi.org/10.1016/J.TCS.2010.12.025
https://doi.org/10.1016/J.TCS.2010.12.025
https://doi.org/10.1145/1111037.1111053
https://doi.org/10.1145/1111037.1111053
https://doi.org/10.1016/0304-3975(82)90026-3
https://doi.org/10.1016/0304-3975(82)90026-3
https://doi.org/10.1007/978-3-540-32275-7_21
https://doi.org/10.1007/978-3-540-32275-7_21
https://doi.org/10.1145/3373718.3394768
https://doi.org/10.1145/3373718.3394768
https://doi.org/10.1007/978-3-030-99253-8_19
https://doi.org/10.1007/978-3-030-99253-8_19
https://lmcs.episciences.org/6973
https://doi.org/10.1016/0020-0255(69)90014-0
https://doi.org/10.1016/0020-0255(69)90014-0
https://doi.org/10.1017/s0956796800003841
https://doi.org/10.1017/s0956796800003841
https://doi.org/10.1137/S0097539794263452
https://doi.org/10.1137/S0097539794263452
https://doi.org/10.1145/3209108.3209124
https://doi.org/10.1145/3209108.3209124

22 P. Baillot et al.

23. Kawamura, A., Cook, S.A.: Complexity theory for operators in
analysis. ACM Trans. Comput. Theory 4(2), 5:1–5:24 (2012).
https://doi.org/10.1145/2189778.2189780

24. Klop, J.W., van Oostrom, V., van Raamsdonk, F.: Combinatory reduction sys-
tems: Introduction and survey. Theor. Comput. Sci. 121(1&2), 279–308 (1993).
https://doi.org/10.1016/0304-3975(93)90091-7

25. Kop, C., Vale, D.: Cost-size semantics for call-by-value higher-order
rewriting. In: Proc. FSCD. LIPIcs, vol. 260, pp. 15:1–15:19 (2023).
https://doi.org/10.4230/LIPIcs.FSCD.2023.15

26. Kop, C., Vale, D.: Tuple interpretations for higher-order complexity. In: Kobayashi,
N. (ed.) 6th International Conference on Formal Structures for Computation and
Deduction, FSCD 2021, July 17-24, 2021, Buenos Aires, Argentina (Virtual Con-
ference). LIPIcs, vol. 195, pp. 31:1–31:22. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik (2021). https://doi.org/10.4230/LIPIcs.FSCD.2021.31

27. Kusakari, K.: On proving termination of term rewriting systems with higher-order
variables. IPSJ Transactions on Programming 42(SIG 7 (PRO 11)), 35–45 (2001),
http://id.nii.ac.jp/1001/00016864/

28. Lankford, D.S.: On proving term rewriting systems are noetherian. Memo MTP-3
(1979), https://www.ens-lyon.fr/LIP/REWRITING/TERMINATION/Lankford_Poly_Term.pdf

29. Leivant, D.: A foundational delineation of computational feasiblity. In: Proceed-
ings of the Sixth Annual Symposium on Logic in Computer Science (LICS ’91),
Amsterdam, The Netherlands, July 15-18, 1991. pp. 2–11. IEEE Computer Society
(1991). https://doi.org/10.1109/LICS.1991.151625

30. Manna, Z., Ness, S.: On the termination of Markov algorithms. In: Proceedings of
the Third Hawaii International Conference on System Science. pp. 789–792 (1970)

31. Mehlhorn, K.: Polynomial and abstract subrecursive classes. J. Comput. Syst. Sci.
12(2), 147–178 (1976). https://doi.org/10.1016/S0022-0000(76)80035-9

32. Oitavem, I.: Implicit characterizations of pspace. In: Kahle, R., Schroeder-Heister,
P., Stärk, R.F. (eds.) Proof Theory in Computer Science, International Semi-
nar, PTCS 2001, Dagstuhl Castle, Germany, October 7-12, 2001, Proceedings.
Lecture Notes in Computer Science, vol. 2183, pp. 170–190. Springer (2001).
https://doi.org/10.1007/3-540-45504-3_11

33. Terese: Term rewriting systems, Cambridge tracts in theoretical computer science,
vol. 55. Cambridge University Press (2003)

A Innermost Compatibility Theorem for STRSs

In this section, we prove Theorem 1. The program is the same as in [25], with
some adaptations to the fact that we do not use lambdas and the cost component
is explicit as a cost′(·) function. Recall that in this paper, all rules are of base
type, i.e., they are fully applied. Since reduction is innermost, we have that for
a rule to be fired, the matching substitution (i.e., the substitution γ on the
base case ℓγ → rγ), does not map any variable to a term containing a redex.
We restrict to this type of substitutions and notice that cost′(xγ) = 0 for any
variable x.

We first make the following observation about our definitions:

Lemma 9. For all terms s t with t of base type: Js tKsα = JsKs(JtKs)α and Js tKcα,ζ =

JsKc(JtKs)α,ζ for all α, ζ.

https://doi.org/10.1145/2189778.2189780
https://doi.org/10.1145/2189778.2189780
https://doi.org/10.1016/0304-3975(93)90091-7
https://doi.org/10.1016/0304-3975(93)90091-7
https://doi.org/10.4230/LIPIcs.FSCD.2023.15
https://doi.org/10.4230/LIPIcs.FSCD.2023.15
https://doi.org/10.4230/LIPIcs.FSCD.2021.31
https://doi.org/10.4230/LIPIcs.FSCD.2021.31
http://id.nii.ac.jp/1001/00016864/
https://www.ens-lyon.fr/LIP/REWRITING/TERMINATION/Lankford_Poly_Term.pdf
https://doi.org/10.1109/LICS.1991.151625
https://doi.org/10.1109/LICS.1991.151625
https://doi.org/10.1016/S0022-0000(76)80035-9
https://doi.org/10.1016/S0022-0000(76)80035-9
https://doi.org/10.1007/3-540-45504-3_11
https://doi.org/10.1007/3-540-45504-3_11

On Basic Feasible Functionals and the Interpretation Method 23

Proof. By an easy case analysis: this holds both if s = x s1 · · · sn and s =
f s1 · · · sk t1 · · · tn (since t has base type, all higher-type arguments to f are given).

⊓⊔

Given a valuation α and substitution γ, we denote the γ-extention of α by
αγ ; the valuation defined by αγ(x) = JxγK

s

α. With that in mind we start with
some substitution lemmata.

Lemma 10. Let γ be a substitution mapping all variables to irreducible terms
and α be a valuation. Then, for any term s, JsγK

s

α = JsK
s

αγ .

Proof. By induction on the structure of s.

• If s is a variable, we have JxγK
s
α = αγ(x) = JxK

s
αγ .

• If s = t u is an application, we have

J(t u)γK
s
= JtγK

s
α(JuγK

s
α)

IH
= JtK

s

αγ (JuK
s

αγ) = Jt uK
s

αγ

⊓⊔

Let us move on to cost versions of substitution lemmata. First, notice that
we cannot directly define a γ-extention for cost valuations. Indeed, J·Kcα,ζ also
depends on a size valuation α. So given a size valuation α, we write ζγα to denote
the valuation ζγα = J·Kcα,ζ ◦ γ.

Lemma 11. Given cost–size valuations α, γ and a term s such that both s and
all its variables have a type of order at most 1. Then JsγK

c

α,ζ = JsK
c

αγ ,ζγ .

Proof. We consider two cases:

• For the first case, we get s = x s1 . . . sn, and
• If n = 0, we have JxγKcα,ζ = ζγα(x) = JxKcαγ ,ζγ by definition.
• If n > 0, we have

J(x s1 . . . sn)γK
c
α,ζ = J(xγ) (s1γ) . . . (snγ)K

c
α,ζ

lemma 9
= JxγKcα,ζ(Js1γK

s
α, . . . , JsnγK

s
α)

lemma 10
= JxK

c

αγ ,ζγ (Js1K
s

αγ , . . . , JsnK
s

αγ)

= J(x s1 . . . sn)K
c
αγ ,ζγ

• For the second case we have s = f s1 . . . sk t1 . . . tn. Recall that we fixed
f : (~ι1 ⇒ κ1) ⇒ · · · ⇒ (~ιk ⇒ κk) ⇒ ν1 ⇒ · · · ⇒ νl ⇒ ι as the general type
for f. Hence, since we consider s of type order at most 1, f must take at least
k arguments, and 0 ≤ n ≤ l.

J(f s1 . . . sk t1 . . . tn)γK
c
α,ζ

= Jf (s1γ) . . . (skγ) (t1γ) . . . (tnγ)K
c
α,ζ

= Jf(Js1γK
c

α,ζ , Js1γK
s

α, . . . , JskγK
c

α,ζ , JskγK
s

α, Jt1γK
s

α, . . . , JtnγK
s

α)

IH
= Jf(Js1K

c

αγ ,ζγ , Js1K
s

αγ , . . . , JskK
c

αγ ,ζγ , JskK
s

αγ , Jt1K
s

αγ , . . . , JtnK
s

αγ)

= Jf s1 . . . sk t1 . . . tnKcαγ ,ζγ

24 P. Baillot et al.

⊓⊔

Next, we connect the relationship between the two cost functions we defined.

Lemma 12. For any term s : ι so that both s and all its variables have type
order 0 or 1, and any normalized substitution γ, we have that cost(s)αγ ,ζγ ≥
cost′(sγ)α,ζ .

Proof. We again consider two cases:

• For the first case, let s = x s1 . . . sn. If n = 0 then cost(x)αγ ,ζγ = 0 by defini-
tion, and since we assumed that γ is normalized, also cost′(xγ)α,ζ = 0. If n >
0 and s has base type, then cost(s)αγ ,ζγ = ζγ(x)(Js1K

s

αγ ,ζγ , . . . , JsnK
s

αγ ,ζγ) +

Σn
i=1cost(si)αγ ,ζγ = Jγ(x)K

c

α,ζ(Js1γK
s

α, . . . , JsnγK
s

α)+Σ
n
i=1cost(si)αγ ,ζγ by Lem-

mas 10 and 11, which by Lemma 9 and the induction hypothesis ≥ J(xγ) (s1γ) · · · (snγ)K
c
+

Σn
i=1cost

′(siγ)α,ζ . Since xγ is in normal form, either this is exactly cost′(sγ),
or cost′(sγ) = 0 and we are done regardless. If n > 0 and s does not have
base type, we complete quickly with the induction hypothesis.

• For the second case, let s = f s1 . . . sk t1 . . . tn We have two cases whether
sγ is in normal form or not. In the first case, cost′(sγ)α,ζ = 0 and certainly
cost(s)αγ ,ζγ ≥ 0. For the second case, s is not in normal form.
If s has base type, then:

cost(s)αγ ,ζγ = cost(f s1 . . . sk t1 . . . tn)αγ ,ζγ

= JsK
c
αγ ,ζγ +

k
∑

i=1

cost(si)αγ ,ζγ +

n
∑

j=1

cost(sj)αγ ,ζγ

lemma 11
= JsγK

c

α,ζ +

k
∑

i=1

cost(si)αγ ,ζγ +

n
∑

j=1

cost(sj)αγ ,ζγ

IH
≥ JsγK

c

α,ζ +

k
∑

i=1

cost′(siγ)α,ζ +

n
∑

j=1

cost′(sjγ)α,ζ

= cost′(sγ)α,ζ

If not, then:

cost(s)αγ ,ζγ =

k
∑

i=1

cost(si)αγ ,ζγ +

n
∑

j=1

cost(sj)αγ ,ζγ

IH
≥

k
∑

i=1

cost′(siγ)α,ζ +

n
∑

j=1

cost′(sjγ)α,ζ

= cost′(sγ)α,ζ
⊓⊔

The lemma below is restricted to type-1 terms and we assume that size com-
patibility holds. This lemma is only needed in one specific step of the inductive
step prof of Theorem 1.

On Basic Feasible Functionals and the Interpretation Method 25

Lemma 13. Let (F,R) be a STRS satisfying the compatibility conditions of
Theorem 1 and s, t be type-1 terms of the same type. Assume that JsK

s

α ⊒ JtK
s

α.
Then JsK

c
α,ζ ≥ JtK

c
α,ζ whenever s→R t.

Proof. The proof is by induction on s→R t.

• For the base case we get:

JℓγK
c

α,ζ = JℓK
c

αγ ,ζγ

> cost(r)αγ ,ζγ , by compatibility

= JrK
c

αγ ,ζγ +
∑

JtK
c

αγ ,ζγ , where r D ti

≥ JrK
c

αγ ,ζγ = JrγK
c

α,ζby lemma 11

• For the second part, we recall that to get a type-1 term of arrow type, we
need to partially apply a function symbol or a variable, and since rules are
of base type, reduction does not occur at head position in s. Then we get
two cases:
• First, s = x s1 . . . sn, and assume w.l.g that x : ι1 ⇒ · · · ⇒ ιk ⇒ κ and
n < k. So we get x s1 . . . si . . . sn →R x s1 . . . si . . . sn with si →R s′i.

Jx s1 . . . si . . . snK
c
α,ζ = ζ(x)(Js1K

s
α, . . . , JsiK

s
α, . . . , JsnK

s
α)

⊒ ζ(x)(Js1K
s

α, . . . , Js
′
iK

s

α, . . . , JsnK
s

α)

= Jx s1 . . . s
′
i . . . snK

c

α,ζ

• The case for f s1 . . . si . . . sn is similar to the variable one, with the obser-
vation that by assumption JsiK

s
α ⊒ Js′iK

s
holds. Then we use the mono-

tonicity of J s
f .

⊓⊔

Finally, we can state and prove the innermost compatibility theorem.

Theorem 1 (Innermost Compatibility). Suppose R is an STRS compati-
ble with a cost–size interpretation F , then for any valuations α and ζ we have
cost′(s)α,ζ > cost′(t)α,ζ and JsKsα ⊒ JtKsα whenever s→R t.

Proof. The proof follows by induction on the reduction s→R t.

Size Case.
• In the base case, we have s →R t by ℓγ → rγ. Then we combine

the substitution lemma with the compatibility requirement for size, i.e.,
JℓKsα ⊒ JrKsα, as follows:

JℓγK
s

α = JℓK
s

αγ ⊒ JrK
s

αγ = JrγK
s

α

• In the application case, we simply apply the induction hypothesis and
the fact that in Js tK

s
= JsK

s
(JtK

s
), the function JsK

s
is weakly monotonic.

Cost Case.

26 P. Baillot et al.

• For the base case, we have that

cost′(ℓγ)α,ζ = JℓγK
c

ζ = JℓK
c

ζγ > cost(r)αγ ,ζγ ≥ cost′(rγ)α,ζ

• For the application case with a variable root symbol, we have that
x t1 . . . ti . . . tn →R x t1 . . . t

′
i . . . tn with ti →R t′i. By induction we get

cost′(ti) > cost′(t′i) and also use the size part JtiK
s ⊒ Jt′iK

s
. Then:

cost′(x t1 . . . ti . . . tn)α,ζ

= Jx t1 . . . ti . . . tnK
c

α,ζ +

n
∑

j=1

cost′(tj)α,ζ

= ζ(x)(Js1K
s

α, . . . , JsiK
s

α, . . . , JsnK
s

α) +
∑

j=1...n
j 6=i

cost′(tj)α,ζ + cost′(ti)α,ζ

≥ ζ(x)(Js1K
s

α, . . . , Js
′
iK

s

α, . . . , JsnK
s

α) +
∑

j=1...n
j 6=i

cost′(tj)α,ζ + cost′(ti)α,ζ ,

> ζ(x)(Js1K
s

α, . . . , Js
′
iK

s

α, . . . , JsnK
s

α) +
∑

j=1...n
j 6=i

cost′(tj)α,ζ + cost′(t′i)α,ζ

= cost′(x t1 . . . t
′
i . . . tn)α,ζ

• For the application case with a function root symbol where the reduction
is done in a base-type argument, we have that f s1 . . . sk t1 . . . ti . . . tn →R

f s1 . . . sk t1 . . . t
′
i . . . tn with ti →R t′i. Let us write ~s for s1 . . . sk and c(s)

for
k
∑

j=1

cost′(si)α,ζ below. We also abuse notation and write J~sKcα,ζ , J~sK
s
α

for Js1K
c

α,ζ , Js1K
s

α, . . . , JskK
c

α,ζ , JskK
s

α.

cost′(f ~s t1 . . . ti . . . tn)

= Jf ~s t1 . . . ti . . . tnKcα,ζ + c(s) +
n
∑

j=1

cost′(tj)α,ζ

= J c
f (J~sK

c
α,ζ , J~sK

s
α, Jt1K

s
α, . . . , JtiK

s
α, . . . , JtnKsα) + c(s) +

n
∑

j=1

cost′(tj)α,ζ

≥ J c
f (J~sK

c

α,ζ , J~sK
s

α, Jt1K
s

α, . . . , Jt
′
iK

s

α, . . . , JtnK
s

α) + c(s) +

n
∑

j=1

cost′(tj)α,ζ

> cost′(f ~s t1 . . . t
′
i . . . tn)

where in the last step we use cost′(ti) > cost′(t′i), given by the IH.
• For the application case with a function root symbol where the reduction

is done in a higher-type argument, we have that f s1 . . . si . . . sk t1 . . . tn →R

f s1 . . . s
′
i . . . sk t1 . . . tn with si →R s′i. Recall that by IH we get cost′(si) >

On Basic Feasible Functionals and the Interpretation Method 27

cost′(s′i). Also, si is a type-1 term and here we are under the compatibil-
ity conditions and JsiK

s ⊒ Js′iK
s

is valid by the size part of the theorem.
Hence the conditions of Lemma 13 are satisfied, so we get JsiK

c ≥ Js′iK
c
,

as well.
With this in hand we reason as follows:

cost′(f s1 . . . si . . . sk ~t)α,ζ

= J c
f (Js1K

c

α,ζ , Js1K
s

α, . . . , JsiK
c

α,ζ , JsiK
s

α . . . , JskK
c

α,ζ , JskK
s

α, J~tK
s

α)

+
∑

j=1...k,j 6=i

cost′(sj) + cost′(si) +

n
∑

j=1

cost′(tj)

by monotonicity of J c
f and JsiK

c ≥ Js′iK
c
,JsiK

s ⊒ Js′iK
s
, we get

≥ J c
f (Js1K

c

α,ζ , Js1K
s

α, . . . , Js
′
iK

c

α,ζ , Js
′
iK

s

α . . . , JskK
c

α,ζ , JskK
s

α, J~tK
s

α)

+
∑

j=1...k,j 6=i

cost′(sj) + cost′(si) +

n
∑

j=1

cost′(tj)

> J c
f (Js1K

c
α,ζ , Js1K

s
α, . . . , Js

′
iK

c

α,ζ , Js
′
iK

s

α . . . , JskK
c
α,ζ , JskK

s
α, J~tK

s

α)

+
∑

j=1...k,j 6=i

cost′(sj) + cost′(s′i) +

n
∑

j=1

cost′(tj)

= cost′(f s1 . . . s
′
i . . . sk ~t)α,ζ

⊓⊔

B Interpretations for Section 5

B.1 Interpretations for section 5.3

The omitted interpretation functions in section 5.3 are:

J s
len = λλx.x J c

len = λλx.x + 1
J s
max = λλnm.max(n,m) J c

max = λλnm.n+ 1
J s
limit = λλxn.n J c

limit = λλxn.n + 1
J s
retif = λλxnz.z J c

retif = λλxnz.n+ 1

It is easy to see that the corresponding rules are all oriented.
For tryapply, note that tryapplyF a pnq reduces to p|F(a)|q if |a| ≤ n, and to

p0q otherwise. Thus, it indeed returns exactly |F |{a}(n).

J s
tryapply = λλFan.F (n) J c

tryapply = λλF cF san.F c(n) + F s(n) + 2 ∗ n+ 4

We easily see that Jtryapply a nK
s
= Jlen (retif a n (F (limita n)))K

s
. As for the cost,

note that

cost(len (retif a n (F (limit a n))))
= Jlen (retif a n (F (limit a n)))K

c
+ Jretif a n (F (limita n))K

c
+

JF (limita nKc + Jlimit a nKc

= (F c(n) + 1) + (n+ 1) + F s(n) + (n+ 1) = F c(n) + F s(n) + 2n+ 3

28 P. Baillot et al.

Hence, also the tryapply rule is oriented.

To interpret sets and the apply rule, we use:

J s
∅ = 0 J c

∅ = 0 J s
setcons = λλxy.y + 1 J s

setcons = λλxy.0
J s
tryall = λλFan.F (n)

J c
tryall = λλF cF san.1 + a ∗ (F c(n) + 2 ∗ F s(n) + 2 ∗ n+ 6)

To see that the rule is oriented, note:

JtryallF (setcons a tl)nK
s
= F s(n)
= max(F s(n), F s(n))
= Jmax (tryapplyF an) (tryallF tl n)K

s

and

JtryallF (setcons a tl)nK
c

= 1 + (tl + 1) ∗ (F c(n) + 2 ∗ F s(n) + 2 ∗ n+ 6)
= 1 + tl ∗ (F c(n) + 2 ∗ F s(n) + 2 ∗ n+ 6)

+ 1 ∗ (F c(n) + 2 ∗ F s(n) + 2 ∗ n+ 6)
= JtryallF tl nK

c
+ (F c(n) + 2 ∗ F s(n) + 2 ∗ n+ 6)

= JtryallF tl nK
c
+ JtryapplyF anK

c
+ F s(n) + 2

= JtryallF tl nKc + JtryapplyF anKc + Jmax (tryapplyF an) (tryallF tl n)Kc + 1
> cost(max (tryapplyF an) (tryallF tl n))

B.2 Interpretations for section 5.4

We first supply the interpretation functions for the nnat symbols and the two
simple rules:

J s
o = 0 J c

o = 0
J s
n = λλx.x + 1 J c

n = λλx.0
J s
extract = λλx.x J c

extract = λλx.x + 2
J s
minus = λλxy.max(x− y, 0)

J c
minus = λλxy.x

These functions are all monotonic, and their rules are oriented (as can easily be
checked).

By induction on the polynomial P , we can find polynomials AP , BP such
that cost(ΘP

F ;z;a) ≤ JaK
s ∗ AP (F

c, F s, JzK
s
) + BP (F

c, F s, JzK
s
), assuming F , z

and a are in normal form.

To define our remaining interpretation functions, first let:

• θF,z,n,m := max(PM (F s, z) + 1−m,n)

• POLYF,z[x] := x ∗APM+1(F
c, F s, JzK

s
) +BPM+1(F

c, F s, JzK
s
), so the polyno-

mial bounding cost(ΘPM+1
F ;z;a) if JaKs = x.

On Basic Feasible Functionals and the Interpretation Method 29

Then, we can orient the size interpretations of the rewrite rules by the fol-
lowing interpretation:

J s
F = λλFn.n+ PM (F, n) + 1

J s
F′ = λλFzc.c+ PM (F, z) + 1

J s
execute = λλFnmzac.c+ θF,z,n,m

J s
execute′ = λλFnmzac.c+ 1 + θF,z,n,m

And the cost interpretations by:

J c
F = λλFn.(PM (F s, n) + 1) ∗ (

8 + 3 ∗ PM (F s, n) + 2 ∗ n+ F c(PM (F s, n) + n+ 1)+
POLYF,z[PM (F s, n) + 1]

) + 6 + 2 ∗ n+ POLYF,z[0]
J c
F′ = λλFzc.(PM (F s, z) + 1) ∗ (

8 + 3 ∗ PM (F s, z) + 2 ∗ c+ F c(PM (F s, z) + 1 + c)+
POLYF,z[PM (F s, z) + 1]

) + 4 + c+ POLYF,z[0]
J c
execute = λλFnmzac.θF,z,n,m ∗ (

5 + 2 ∗ (θF,z,n,m + c) + F c(θF,z,n,m + c)+
POLYF,z[θF,z,n,m + a] + PM (F s, z)

) + 3 + θF,z,n,m + c
J c
execute′ = λλFnmzac.(θF,z,n,m + 1) ∗ (

5 + 2 ∗ (θF,z,n,m + c+ 1) + F c(θF,z,n,m + c+ 1)+
POLYF,z[θF,z,n,m + a] + PM (F s, z)

) + 1

To see that these interpretations are correct, we first observe:

θF,z,sn,m = max(PM (F s, z) + 1−m,n+ 1)
= max(PM (F s, z) + 1− (m+ 1), n) + 1
= θF,z,n,m+1 + 1

(Because max(a+ 1, b+ 1) = max(a, b) + 1.) We also have, for all a:

θF,z,n,m = max(PM (F s, z) + 1−m,n)
≥ max(PM (F s, z) + 1−m, 0)
= max(PM (F s, z) + 1−m,max(PM (F s, z) + 1−m), 0)
= θ

F,z,JminusΘ
PM+1

F ;z;m
K
s
,m

The inequalities now follow by writing out definitions.

	On Basic Feasible Functionals and the Interpretation Method
	Introduction
	Preliminaries
	Higher-Order Rewriting
	Cost–Size Interpretations
	Basic Feasible Functionals

	Statement of the Main Result
	Soundness
	Interpreting The Extended STRS, Polynomially
	Bounding The Oracle Input
	Graph Rewriting
	Bringing Everything Together

	Completeness
	Representing Configurations
	Executing The Machine
	A Bound on the Number of Steps
	Finalising Execution

	Conclusions and Future Work
	Innermost Compatibility Theorem for STRSs
	Interpretations for Section 5
	Interpretations for sec:completeness:bound
	Interpretations for sec:completeness:execution

