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Abstract

Mean Opinion Score (MOS) has been a long-standing stan-
dard for perceptive evaluation of quality of speech synthesis
models; however, this criterion is hardly reproducible, and
costly. Automatic, neural MOS predictors have emerged as a
solution to the objective assessment of synthetic speech. These
predictors are trained once on data collected from past listening
tests, and thus may suffer from adaptation to new technology
breakthrough in speech synthesis. In this study, we investigate
the applicability of lifelong learning for MOS predictors, where
the training samples would be fed to the model in the chrono-
logical order. A sequential lifelong mode and a cumulative life-
long mode have been compared with traditional batch training
using the BVCC and Blizzard Challenge datasets. The experi-
ments show the advantages of lifelong learning in cross-corpus
evaluation as well as in a constrained data availability scenario.
Index Terms: speech synthesis, lifelong learning, speech qual-
ity evaluation, MOS prediction

1. Introduction

Over the recent decades, speech synthesis technologies have un-
dergone significant evolution, advancing from unit selection and
Hidden Markov Models to deep neural networks (see Figure 1).
Although each new approach faced its own unique challenges,
the synthesis quality of state-of-the-art Text-to-Speech (TTS)
and Voice Conversion (VC) systems has been steadily going up-
wards, to a point where the latest state-of-the-art neural systems
are claimed to be indistinguishable from natural speech [1, 2].

Synthetic speech quality is a multi-aspect concept which
is hard to define and even harder to assess. Three criteria are
typically considered: intelligibility (is the lexical content un-
derstandable?), naturalness (does the sample sound “human”?),
and expressivity (does the sample convey dynamics, intent,
emotion?). This study focuses on the evaluation of naturalness.
The most reliable approach for assessing the synthetic quality of
a TTS system involves conducting a perceptual test with human
listeners, which are instructed to give a subjective estimation
of a certain aspect of quality. This evaluation method comes
with certain limitations and drawbacks [3, 4]: its outcome may
exhibit variability [1] due to the inconsistencies in the testing
environment, the nature of listeners, and the formulation of in-
structions from one test to another.

The Mean Opinion Score (MOS) [5] stands as the prevalent
non-intrusive (without reference speech) method for evaluating
synthetic speech, involving the assignment of a quality score to
a given input signal. Other evaluation approaches, such as AB
comparison test or MUSHRA test [6] do exist; however, despite
facing criticism [4], MOS continues to be the most widely used
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Figure 1: A timeline of TTS models in the last decade.

perceptual evaluation method in the community, as a more effi-
cient alternative is yet to emerge.

The MOS provided by human listeners can serve as label
of training samples for a quality predictor system, to automate
the process of synthetic quality evaluation. Recent research has
exhibited a growing interest in this measurement, with the in-
troduction of systems such as MOSA-Net [7], LDNet [8], and
SSL-MOS [9]. Noteworthy initiatives like the VoiceMOS Chal-
lenge [10, 11] have established a comparative platform, featur-
ing a standardized evaluation protocol for predictive models,
and a publicly available dataset.

By focusing on the MOS predictor as a regressor model,
any MOS evaluation of the output from TTS and Voice Con-
version systems can serve as a training set. With the prolif-
eration of various types of TTS systems, the accumulation of
data through MOS evaluations has led to the creation of diverse
datasets [12, 13]. However, the combination of human answers
from different tests may prove inefficient, especially when deal-
ing with distinct domains such as different languages, applica-
tions, or TTS models. Notably, evaluations conducted through
the years can be influenced by contextual factors and listeners’
expectations of TTS quality. As reported in [13, 14], the quality
score of synthetic speech can be relative to available resources
and the time of evaluation.

The primary objective of this study is to incorporate the
yearly evolution of TTS systems into the training of the MOS
predictor. To the best of our knowledge, this is the first study
to introduce a lifelong learning approach [15, 16, 17, 18], also
known as continual learning, for MOS prediction. The training
data, consisting of synthetic signals and corresponding human-
sourced MOS scores, would be sequentially fed into the MOS
predictor model based on chronological order. The MOS pre-
diction performance of this approach will be compared to the
conventional method of providing training data as a whole
batch. The motivation behind adopting a lifelong learning strat-
egy is rooted in the availability of training data spanning differ-
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ent periods. The main questions to be addressed in this study
are as follows:

* When new data is collected, is it essential to re-train a model,
or is fine-tuning the last checkpoint sufficient?

* Does the cost of re-evaluating old synthetic speech in the
same period of time as training MOS predictors offer any ad-
vantages?

* What is the impact of adhering to the timeline of the data on
the generalization performance of a MOS predictor?

* How do limitations in resources, including computational
constraints and data volume, alter the results when compar-
ing the classical approach to the lifelong approach?

The study concentrates on assessing the impact of incre-
mentally nurturing the training data for the MOS predictor
model, particularly for utterance-level quality evaluation. The
underlying concept is that the training process can mirror the
evolution of TTS models with respect to quality, drawing par-
allels to the notion of curriculum learning [19], where the order
at which training samples are fed impacts the final results.

2. Method

To explore the impact of training synthetic quality predictors in
line with the historical availability of data, a temporal dataset
is required. The subsequent sections provide details on the
datasets, the baseline system used as the MOS predictor, and
the experimental protocol.

2.1. Data

The Blizzard Challenge [20] has been a long-standing bench-
mark for state-of-the-art TTS evaluation. Organizers have con-
ducted large-scale listening tests on synthetic speech samples
provided by participants using contemporary systems.

The collection of perceptual scores over time has created
an archive of the evolution of TTS systems, spanning the tran-
sition from unit selection to DNN-based TTS. With each edi-
tion of the Challenge focusing on different aspects of speech
synthesis (language, amount of data...), and the heterogeneity
in the models used and their specific artifacts, using traditional
machine learning schemes on this historical data seems unrea-
sonable. This motivates our investigation of lifelong learning.

In preparation for the VoiceMOS Challenge 2022 [10], syn-
thetic English speech samples from Blizzard Challenges 2011-
2016 were collected. This data was enriched with synthetic
speech excerpts from Voice Conversion Challenges 2016, 2018
and 2020, and additional samples produced with various ESP-
net TTS systems [21], amounting to 187 systems in total (in-
cluding natural speech). These samples were submitted to a
new, large-scale listening test in 2021: the human answers were
gathered into a dataset called BVCC.

However, we argue that human answers obtained from a
single listening test (at a single point in time) are not equivalent
to those gathered through listening tests conducted in the past: a
listener from 2008 might not have the same expectation of syn-
thetic speech quality as a listener from 2021 [14], nor will a fu-
ture listener. This passive bias may affect the listener’s opinion.
Consequently, we separately collect listening test answers, in
terms of naturalness, from the Blizzard Challenges 2008-2013,
on primary English tasks (EH1) only. This dataset will be re-
ferred to as BC in the following. Table 1 displays the number of
samples in BVCC and BC dataset with the different partitioning
of train/val/test sets.
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Table 1: Number of samples in two datasets (BC and BVCC)
and train/validation/test partitions

Blizzard Challenge data (BC)

Batch mode Lifelong mode | C. Lifelong mode
Year | train | val | test | train | val | test | train | val | test
2008 706 | 176 706 | 176
2009 545 1136 12511 312
20102529 631 - 518 | 130 - |1769| 442 -
2011 406 | 101 2175 543
2012 354 | 88 2529 631
2013 - - 563 - - | 563 - - 563

VoiceMOS Challenge data (BVCC)

2008 638 | 160 638 | 160
2009 546 | 137 1184 | 297
2010 547 1137 1731 434
2011437411096 | - 395 | 99 - 21261 533 -
2013 334 | 84 2460 | 617
2016 1124|281 3584 | 898
2018 790 | 198 437411096
2020 - - 1254 - - | 1254 - - 1254

2.2. Experiment
2.2.1. Choice of MOS prediction system

MOS prediction systems are typically prone to bad generaliza-
tion, given the context heterogeneity from one listening test
to another [9]. State-of-the-art systems thus take advantage
of large speech feature extractors such as HuBERT [22] or
wav2vec?2 [23] to gain in generalization ability, and can even
reach good performance on zero-shot prediction on unseen sys-
tems [11].

In order to select a system for our experiments, we ran
a comparison of the three baseline models of the VoiceMOS
Challenge 2022 [10]. SSL-MOS! [9] predicts MOS naturalness
by appending a single linear layer to wav2vec2.0-base. MOSA-
Net? [7] uses spectral features, waveform, and HuBERT embed-
dings. Finally, LDNet® [8] models a listener-dependent MOS
score directly from spectrograms (no large feature extractor in-
volved).

We compared the three architectures by retraining them
from scratch on the BVCC dataset, measuring correlation to
ground truth (Spearman Ranking Correlation Coefficient, fol-
lowing [10]) as well as training times. The official implementa-
tions were used. The three models achieved comparable accu-
racy, however, SSL-MOS has a much lower computational time
for training and inference. Consequently, we use this architec-
ture for our experiments.

2.2.2. Lifelong learning for MOS prediction

The typical training protocol for deep learning models consists
of iteratively feeding the entire dataset X in a random order,
with a stopping criterion after a given number of epochs. We
refer to this approach as Batch mode in the following.

In our specific context, the dataset X is collected and anno-
tated over multiple time periods: X = &3, UX;, U...UX;,, . We
are looking to train a model on this temporal data which is able
to predict the synthetic speech quality of newly collected data
Xt, ., (test set) as faithfully as possible to the opinion of a real

lgithub.com/nii-yamagishilab/mos-finetune-ssl
2github.com/dhimasryan/MOSA-Net-Cross-Domain
3github.com/unilight/LDNet



human listener. We assume that the implicit chronological in-
formation could help the model gain a better comprehension of
the evolution of naturalness perception over time, and could be
leveraged to improve prediction accuracy on new synthetic sam-
ples of unseen quality. In the lifelong learning training protocol,
we begin by training a model on &X},, then resume training on
X, only, until all data has been seen (¢,,). The data correspond-
ing to each time period is fed sequentially to the model, with-
out preserving old data. This is referred to as Lifelong mode
in the following. Additionally, we consider the same training
protocol, but by keeping data from all previous time periods
U?:l X, . We call this protocol Cumulative Lifelong mode (C.
Lifelong mode).

By comparing these three modes of learning, we study the
utility of aged training samples and the benefit of recycling
models trained on previous data. In Batch mode, we do not
recycle a trained model and use all data to train from scratch,
which gives same importance to all periods. In Lifelong mode,
we recycle a model trained on previous data, and task the model
with focusing only on new data and forgetting aged data [16].
In C. Lifelong mode, we recycle a model trained on previous
data and let it access all available data up to time ¢;.

For each training protocol, we randomly split the available
data at each time step (year) into training and validation sets
(80/20%), as shown in Table 1. All models are trained for
maximum 100 epochs, with early stopping of 5 epochs on val-
idation, using Stochastic Gradient Descent (SGD). The SGD
momentum is set to 0.9, the learning rate to le~°, and the shuf-
fled batch size to 4. Following [9], for a given audio sample, the
Mean Absolute Error (MAE) between the predicted value and
its ground truth label is used as the loss function. Finally, we
evaluate MOS prediction on the last available year (test) of BC
and BVCC.

2.2.3. Cross corpus evaluation

In order to measure the generalization of our MOS predictors to
unseen annotations, we evaluate the model trained on BC-train
on BVCC-test and vice-versa. It should be reminded that part of
BC-test samples were annotated in BVCC: we did not discard
those samples.

Furthermore, we also evaluate models trained on BC and
BVCC, on the test split (3001 files) of the SOMOS dataset [12].
SOMOS is a crowdsourcing evaluation of MOS naturalness of
200 English TTS systems collected in 2022. In order to keep
the same sampling rate between datasets, the samples of SO-
MOS are downsampled from 24kHz to 16kHz, assuming suffi-
cient perceptual consistency. We note that the perceptual impact
of downsampling on MOS is under-studied; we leave any inves-
tigation of this subject to future works.

2.2.4. Limited resources

The ultimate goal of a MOS prediction system is to mitigate the
need for human MOS answers. We investigate the performance
of models trained with our three protocols in conditions where
the annotation budget is limited. To simulate this situation, the
available data is randomly sampled down to 50% and 25%. Test
sets are left unchanged from Table 1.

We also introduce an additional version of Lifelong mode
where instead of disposing of all the old data, time periods are
considered in a “sliding window” fashion. So as new data is
added to the training data, the most ancient data is removed. In
this case, the model have access to the two most recent years in
the lifelong mode (X3, _, U X3,).
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3. Results

In line with the recommendation of [11], which underscores the
significance of quality rankings and the challenges associated
with interpreting MOS values [24], we choose to compare per-
formances using SRCC. Table 2 presents the SRCC of the MOS
predictor trained on BC and BVCC datasets, and evaluated on
BC, BVCC and SOMOS dataset.

3.1. Fine-tuning or retraining?

Table 2 showcases how Lifelong mode does not improve SRCC
in comparison to Batch mode, when evaluated on the test split
of the dataset it was trained on. However, there is no significant
difference in SRCC results between Batch and C. Lifelong mode
across both datasets.

Through the examination of the evolution of training with
Lifelong and C. Lifelong mode, a degradation in performance
on the test set has been noted when incorporating samples from
2013 in BVCC and 2012 in BC. This phenomenon is illus-
trated in Figure 2. The rationale behind this observation may
stem from the distinctive characteristics of samples from these
two years compared to the rest of the dataset: indeed, 2012
and 2013 mark the emergence of hybrid TTS (HMM + DNN
or unit selection + DNN), resulting in synthetic speech with
unique attributes. Additionally, as reported by [14], there was
an excessive control of prosody in the 2013 Blizzard Challenge
dataset, and TTS systems participating in the 2013 Blizzard
challenge benefited from a substantial volume of training data
(300h), leading to differences in synthetic quality compared to
resources from other years.

lifelong on BC
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Figure 2: Evolution of MAE as loss function on test and valida-
tion in Lifelong mode. The val set corresponds to current year
of training and test set corresponds to last available year.

Conducting an experiment on Lifelong mode without incor-
porating data from these specific years (2012 in BC and 2013
in BVCC) showed no improvement in prediction accuracy on
the test sets, implying this data is not useful to the learning pro-
cess. The lifelong learning approach enabled this investigation,
revealing the distinct nature of samples in certain years.

As a prospective application, the utility of conducting a per-
ceptual test to annotate new data can be validated through the
evaluation of the utility of a small subset.



3.2. Cross dataset evaluation

Table 2 shows a notable limitation in the generalization ability
of the MOS predictor across datasets. This observation aligns
with reported performances in [9]. A limitation of the classi-
cal Batch mode in generalization can be highlighted by exam-
ining the evaluation results on BC-test. A comparison between
Batch mode training with the BC-train and Batch mode train-
ing with the BVCC-train, which shares common synthetic sig-
nals with the BC-test, exposes this limitation. Training with the
BVCC dataset demonstrates lower performance (SRCC=0.74)
compared to the BC dataset (SRCC=0.84), despite the latter
containing a smaller number of samples.

However, the generalization ability of Lifelong mode (par-
ticularly C. Lifelong mode) is significantly higher than Batch
mode for most of the cases, which demonstrates an advantage
of this approach. For instance, examining the last column of
Table 2 reveals the advantages of training in C. Lifelong mode
when evaluating on SOMOS-test.

Another notable observation is that using the BC-train is
more efficient (with a lower number of samples and higher
performance) compared to using BVCC-train in cross-dataset,
when the test set is SOMOS. Some may argue that the lower
performance may be attributed to the presence of Voice Con-
version samples in BVCC. To test this hypothesis, utilizing only
common data (2008-2011) for both BC and BVCC, with an
equal number of training samples and excluding voice conver-
sion samples, indeed confirms the advantage of the BC dataset
over BVCC. The recent observation raises doubts about the ne-
cessity of re-annotation of synthetic speech on the day of train-
ing MOS predictors (the case of BVCC), especially when it in-
curs costs and leads to a degradation in performance.

Table 2: SRCC results of training on different datasets and
modes. Confidence intervals are calculated on 10 runs.

Training Test

Data Mode BC (2013) |BVCC(2020)| SOMOS
BC Batch | 0.837£0.008 | 0.721+0.060 |0.490+0.039
<2013 Lifelong |0.811+0.010 | 0.737+0.004 |0.484+0.019
C. Lifelong | 0.835+0.004 | 0.734+0.003 | 0.555+0.013
BVCC Batch | 0.744+0.110| 0.831+0.006 |0.337+0.120
<2020 Lifelong |0.820+0.010 | 0.814+0.007 |0.353+0.026
C. Lifelong | 0.836+0.006 | 0.811+0.009 |0.367+0.020

3.3. Limited resources

Table 3 presents the performance of Batch mode training and C.
Lifelong mode in situations where the annotation budget is con-
strained. A significant decline in performance on the BC dataset
(total 2529 training samples) is evident when only 25% (or even
50%) of the samples are utilized, emphasizing the importance of
utilizing all available samples in Batch mode. This performance
degradation is less pronounced on the BVCC dataset (total 4374
training samples).

One advantage of the proposed C. Lifelong mode is its abil-
ity to maximize information extraction in scenarios with limited
annotated samples. A notable contrast in performance between
Batch mode training and C. Lifelong mode is observed, espe-
cially when the number of training samples is more restricted
(utilizing only 25% of the BC dataset). Examining the perfor-
mance of these two training modes on the BVCC dataset, it is
evident that achieving a performance of SRCC=0.74 requires
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Table 3: Comparing SRCC of Batch and C. Lifelong modes

when applying a constraint on training set size.

25% 50%
BC Batch | 0.218+0.071 | 0.495+0.132
C. Lifelong | 0.805+0.011 | 0.818+0.008
BVCC B?tch 0.571£0.141 | 0.740+0.029
C. Lifelong | 0.745+£0.011 | 0.775+0.010

using 2187 samples in the Batch mode, while only 1094 sam-
ples are sufficient in C. Lifelong mode.

As explained in the experimental protocol (Section 2.2), the
computation time required for the lifelong mode is higher than
that for Batch mode. The number of training iterations (number
of epochs multiplied by the number of batches) needed to ob-
tain final checkpoints can indicate the necessary computational
resources. The training iteration counted in Batch and Lifelong
mode is almost the same. However, in C. Lifelong mode, this
number is approximately two times higher on the BC dataset
(and three times higher on the BVCC dataset). This disadvan-
tage highlights the cost of C. Lifelong mode, or the increased
opportunities for the model to be optimized during the training
process. To strike a balance between performance and compu-
tational time for Lifelong and C. Lifelong approaches, the con-
cept of sliding window lifelong (mentioned in Section 2.2.4)
was tested. The results indicate that although the training it-
eration count falls somewhere between that of Lifelong and C.
Lifelong mode, no significant difference of performance with
lifelong was observed.

4. Conclusions

This paper has explored the use of lifelong learning for training
MOS predictors for synthetic speech quality evaluation. The
traditional Batch mode of training was compared with two life-
long learning modes: sequential Lifelong mode and Cumula-
tive Lifelong mode. The experiments were conducted on the BC
and BVCC datasets, with additional evaluations on the SOMOS
dataset to assess generalization across datasets.

The findings suggest that fine-tuning a MOS predictor on
new data, as opposed to retraining it from scratch, can yield
benefits. While MOS predictors trained in Batch mode ex-
hibited higher performance on the same dataset, the adop-
tion of lifelong learning, especially C. Lifelong mode, demon-
strated improved generalization across datasets. Additionally,
in resource-constrained scenarios, such as reduced annotation
budgets, C. Lifelong mode showed acceptable performance
compared to the drastic degradation observed in the batch mode.
As a perspective application, the proposed lifelong approach
offers the opportunity for adaptation to new domains, such as
new languages or more specific aspects of quality. The primary
drawback of C. Lifelong mode remains its longer training time,
which can be deemed a reasonable trade-off for a time-robust
and reusable model.

Comparing the two available datasets of BC and BVCC,
our experiments in predicting MOS scores on recent synthetic
speech revealed that re-annotation of data is unnecessary, and
preserving data from previous perceptual evaluations is more
valuable.
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