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Abbreviations 

 

COPD Chronic obstructive pulmonary disease 

DLCO Lung diffusing capacity for carbon monoxide 

DLNO Lung diffusing capacity for nitric oxide 

DM Alveolar–capillary membrane diffusing capacity 

DMCO Alveolar–capillary membrane diffusing capacity 

for carbon monoxide 

FEV1 Forced expiratory volume in one second 

SpO2 Pulsed arterial oxygen saturation 

Vcap Pulmonary capillary blood volume 
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Abstract 

Introduction:  

Prolonged strenuous exercise can transiently decrease cardiac function. Other studies have 

identified three major exercise-induced pulmonary changes: bronchoconstriction, dynamic 

hyperinflation and pulmonary oedema with reduced alveolar-capillary membrane diffusing 

capacity. This study investigated whether athletes with one of these pulmonary dysfunctions 

following a very long-distance triathlon exhibit similar cardiac alterations as those without 

dysfunctions.  

Methods:  

Sixty trained male triathletes (age 39 ± 9 years) underwent baseline and post-race 

assessments, including echocardiography (with standard, 2D-strain and myocardial work 

assessments), spirometry and double-diffusion technique to evaluate alveolar-capillary 

membrane diffusing capacity for carbon monoxide (DMCO). Cardiac function in athletes with 

exercise-induced bronchoconstriction (> 10% decrease FEV1), dynamic hyperinflation (> 

10% decrease inspiratory capacity) or impaired diffusion capacity (> 20% decrease 

DMCO/alveolar volume) were compared with those without these dysfunctions.  

Results:  

The race lasted 14 h 20 min ± 1 h 26 min. Both systolic and diastolic cardiac functions 

declined post-race. Post-race, 18% of athletes had bronchoconstriction, 58% dynamic 

hyperinflation and 40% impaired diffusing capacity. Right and left ventricular standard and 

2D-strain parameters were similar before the race in all subgroups and changed similarly post-

race, except E/E', which decreased in the bronchoconstriction subgroup and increased in those 

with diffusion impairment. Global constructive work decreased by ~ 19% post-race (2302 ± 

226 versus 1869 ± 328 mmHg%, P < 0.001), more pronounced in athletes with diffusion 

impairment compared with others (- 26 ± 13 versus - 15 ± 9%, P = 0.001) and positively 

correlated with DMCO/alveolar volume reduction.  

Conclusion:  

After a very long-distance triathlon, bronchoconstriction and hyperinflation were not 

associated with significant cardiac changes, whereas impaired alveolar-capillary membrane 

diffusing capacity was associated with a more significant decline in myocardial function. 

These findings highlight the complex relationship between pulmonary gas exchange 

abnormalities and cardiac fatigue following prolonged strenuous exercise.  

  



1 Introduction 
 

 

Prolonged strenuous exercise, such as a very long-distance triathlon, induces significant 

metabolic, muscular and cardiopulmonary stress [1]. Athletes, whether recreational or 

professional, may challenge their cardiac and pulmonary capacities to physiological extremes 

despite regular training.  

 

Certain athletes may exhibit ‘cardiac fatigue’, characterized by a transient drop in both left 

and right ventricular systolic contractile function, along with impaired left ventricle diastolic 

filling, notably after long-distance triathlon [2–4]. While this post-exercise cardiac 

impairment is typically temporary, concerns arise regarding potential long-term deleterious 

adverse effects and the risk of ventricular arrhythmia with repeated participation in such 

events [5]. Cardiac function parameters are influenced by altered loading conditions at the 

race’s conclusion. However, employing new echocardiographic methods considering left 

ventricle pressure could reveal an intrinsic reduction in cardiac function [6]. 

 

At the pulmonary level, the high ventilatory demand during prolonged strenuous exercise 

induces mechanical stress on the pulmonary system and can lead to changes in ventilatory 

function [7], including changes in airway flow, such as exercise-induced bronchoconstriction 

[8], and in pulmonary mechanics, such as dynamic hyperinflation [9]. Moreover, studies 

observed mild alveolar–capillary oxygen diffusing capacity decrease in athletes after a 

marathon [10] or triathlon [11]. Those alterations could be linked to pulmonary interstitial 

oedema with increased radiologic lung density following these sporting events [12, 13]. 

However, the origin of this transient oedema, i.e. cardiac/haemodynamic origin or alveolar–

capillary lesions, has yet to be clarified. 

 

Cardiac and pulmonary systems are intimately linked through haemodynamic, mechanical and 

neurohumoral pathways. For example, airway obstruction (bronchoconstriction) and dynamic 

hyperinflation are usually associated with a substantial increase in end-expiratory pressure, 

which decreases the venous return, impairs ventricular loading conditions and could affect left 

ventricle ejection [14]. The reduced venous return could also influence pulmonary 

ventilation/perfusion mismatch, as shown in patients with heart failure with preserved ejection 

fraction [15]. Meanwhile, heart failure can lead to a decrease in airway flow due to 

peribronchovascular oedema [16] and a decrease in the oxygen diffusing capacity due to 

interstitial oedema, irrespective of the preservation or impairment of the left ventricle ejection 

fraction [17, 18]. Nevertheless, the association between cardiac and pulmonary function 

alterations observed in some athletes after prolonged strenuous exercise has never been 

investigated. 

 

The aim of this study was to assess cardiac and pulmonary dysfunction immediately following 

a very long-distance triathlon. In a large cohort of athletes, we specifically assessed cardiac 

function, including left ventricle 2D-strain and myocardial work, and pulmonary function, 

including volume, airflow, the alveolar–capillary membrane diffusing capacity (DM) and 

pulmonary capillary blood volume (Vcap). We investigated if athletes with pulmonary 

abnormalities, such as exercise-induced bronchoconstriction, dynamic hyperinflation or 

alveolar–capillary gas exchange anomalies, had more pronounced myocardial dysfunction 

than others. We hypothesized that, after the race, (1) myocardial function would be decreased, 

(2) pulmonary function would be altered in some athletes (evidence of exercise-induced 



bronchoconstriction, dynamic hyperinflation and DM reduction) and (3) the change in 

myocardial function would be more pronounced in case of pulmonary alterations. 

 

 

2 Methods 
 

Additional information about methodologies is available in Supplementary Information. 

 

 

2.1 Study Population 

 

This was a prospective study including 72 healthy male triathletes, aged 18–55 years, 

participating in a long-distance triathlon ( EmbrunManR: 3.8 km swim, 188 km cycling with 

a 4590 m positive elevation gain, and 42 km run). The non-inclusion criteria were subjects 

with known pulmonary or heart disease, rhythm disorder and presence of at least one 

cardiovascular risk factor. This study was approved by the French institutional review board 

CPP SUD MEDITERRANEE I on 11 April 2018. All patients enrolled in the study provided 

written consent. 

 

A medical evaluation of all participants was performed at rest 24–72 h before the race and 

after the race. The medical evaluation included vital signs (heart rate, electrocardiogram) and 

basic anthropometry (stature and mass). Next, participants completed echocardiography with 

a concomitant systolic and diastolic blood pressure measure (52 •+/- 17 min after crossing 

the finish line). Lastly, pulmonary function tests including spirometry and resting lung 

diffusing capacity were assessed (84 +/- 24 min after crossing the finish line). 

 

 

2.2 Echocardiography 

 

Echocardiographic images were obtained using five commercially available ultrasound 

systems (Vivid IQ, Vivid S70 and Vivid E95, 3Sc-RS probe, General Electric). Images were 

obtained by experienced sonographers followed a standardized protocol. Images, recorded 

with five electrocardiogram (ECG)-triggered cardiac cycles, were analysed offline using 

EchoPac 203 software (General Electric), averaging data from three cardiac cycles to assess 

standard and 2D-strain echocardiographic parameters as previously [19] (see supplemental 

methods). Myocardial work involved integrating the left ventricle global longitudinal strain 

and intra-left ventricle pressure, estimated non-invasively from brachial systemic blood 

pressure measurements, taken just before echocardiography, as described by Russel et al. [6]. 

A left ventricle pressure–strain loop curve was constructed, and additional parameters were 

calculated, including the global work index measured as the total work from mitral valve 

closure to opening, representing the pressure–strain loop area. Global constructive work was 

defined as myocardial work during segmental shortening in systole, and segmental 

lengthening during the isovolumetric relaxation phase. Global wasted work was the work 

performed during lengthening in systole and shortening in isovolumic relaxation associated 

with energy loss. Global work efficiency was expressed as the ratio between myocardial 

global constructive work and the sum of global constructive work and global wasted work. 

 

 

 

 



2.3 Pulmonary Function Testing 

 

Spirometry was conducted using a single spirometer (Medisoft-MGCd, Sorinnes, Belgium) in 

accordance with international recommendations [20]. A consistent operator performed slow 

vital capacity followed by forced expiration manoeuvres, each repeated at least three times for 

each athlete. The measured spirometry parameters included forced expiratory volume in one 

second (FEV1), slow vital capacity, inspiratory capacity and inspiratory reserve volume. 

Exercise-induced bronchoconstriction was defined as a post-race drop of more than 10% in 

FEV1 compared with pre-race, following established guidelines [21]. Dynamic hyperinflation 

of the lung was identified by a 10% decrease in the post-race inspiratory capacity, a threshold 

considered clinically significant [22]. The alveolar–capillary diffusing capacity was assessed 

as previously described [23] by studying the lung diffusing capacity for carbon monoxide 

(DLCO) and nitric oxide (DLNO) using the Hyp’Air system (Medisoft-MGCd, Sorinnes, 

Belgium). Measurements for DLCO and DLNO were conducted simultaneously in duplicate, 

with a 4-min rest between each measurement, according to the ERS standardization for 

single-breath determination of nitric oxide uptake in the lung [24]. Alveolar volume during 

breath hold was calculated using the He-dilution technique. The alveolar–capillary membrane 

diffusing capacity for carbon monoxide (DMCO) and pulmonary capillary blood volume 

(Vcap) were calculated using the Roughton and Forster method [25]. We defined a significant 

impairment in alveolar–capillary membrane diffusing capacity as a post-race decrease in 

DMCO per unit effective alveolar volume greater than 20%, compared with pre-race. This 

threshold is considered clinically relevant, as it approximates the difference observed between 

heart failure patients and healthy subjects [17]. Furthermore, in healthy individuals, 

meaningful changes in DMCO should exceed the reported 12% spontaneous variability in 

DMCO measurements [26]. Pulsed arterial oxygen saturation (SpO2) was measured using a 

Masimo SET R Rad-5 pulse oximeter with a finger sensor (Masimo, Danderyd, Sweden). To 

assess whether the changes in pulmonary function could be associated with changes in cardiac 

function, we divided the athletes into two subgroups according to the presence or not of either 

(1) exercise-induced bronchoconstriction, (2) dynamic hyperinflation or (3) alveolar–capillary 

membrane diffusing capacity impairment. 

 

 

2.4 Statistical Analysis 

 

Quantitative variables are presented as mean •+/- standard deviation (SD). Comparisons 

between the pre-race and postrace measurements were done using a paired Student’s t-test, 

after checking the normal data distribution. Subgroup comparisons whether an athlete had 

pulmonary impairment or not were done using unpaired Student’s t-tests. Correlations 

between athletes’ general characteristics and cardiac and/or pulmonary modifications were 

assessed using the Pearson correlation test. All P values were adjusted on the basis of the false 

discovery rate (FDR) for multiple tests applied to all P values together. Significance was set 

at 0.05 for all comparisons. The analyses were performed using GraphPad Prism software 

(version 8.2.1). 

 

 

 

 

 

 

 



3 Results 

 
3.1 Study Population 

 

Sixty of the 72 athletes examined pre-race were included in the final analysis (Fig. 1). The 

participants were on average 39 •+/- 9 years old and had trained 12 •+/- 3 h/week in the few 

months prior to the triathlon. Thirty-seven athletes (62%) had participated at least once in a 

very long-distance triathlon. The average race time was 14 h 20 min •+/-1 h 26 min (range 

11 h 30 min to 17 h 10 min). 

 

 
3.2 Cardiac Function in the Overall Population 

 

Cardiac data pre-race and post-race and the percentage change are presented in Table 1. All 

the athletes had a normal cardiac morphology and function pre-race. After the race, left 

ventricle ejection fraction, global longitudinal strain and stroke volume had decreased while 

the heart rate increased, resulting in unchanged cardiac output. We enhanced the myocardial 

function assessment by measuring the left ventricle myocardial work, which accounted for 

Fig. 1 Flow chart of enrolled athletes changes in loading conditions.  

 

 



 
Indeed, diastolic and systolic blood pressure both decreased after the race. From the pressure–

strain loop constructed, the global work index was calculated as the total work performed by 

the left ventricle. The global work index declined by 20% owing to a decrease in both left 

ventricle global longitudinal strain and intra-left ventricle pressure, as shown by the averaged 

pressure–longitudinal strain loops (Fig. 2A, B). The global work index includes global 

constructive work, defined as myocardial work during segmental shortening in systole, 

segmental lengthening during the isovolumetric relaxation phase and global wasted work 

associated with energy loss. Global constructive work had significantly decreased by 19% 

while global wasted work increased post-race in comparison with the pre-race findings (Fig. 

2B). Global work efficiency, constructive work divided by the sum of constructive work and 

wasted work, hence had decreased. The end-diastolic volume and diastolic function indexes 

including peak E and peak E′ had also decreased. The right ventricle was altered with 

increased end-diastolic and end-systolic areas and decreased systolic function with a reduction 

in fractional area shortening, tricuspid annular plane systolic excursion (TAPSE), right 

ventricle peak S′ velocity and longitudinal strain. 

 

 
 

 



3.3 Pulmonary Function in the Overall Population 

 

All pulmonary data pre-race and post-race and the percentage changes are presented in Table 

2. All athletes exhibited normal airflow and lung volume pre-race, whereas FEV1 and the vital 

capacity had significantly decreased post-race. Eleven athletes (i.e. 18% of the total 

population) presented with exercise-induced bronchoconstriction. The inspiratory capacity 

had also dropped in the whole population. Dynamic hyperinflation was observed in 35 

athletes (i.e. 58% of the total population). Alveolar–capillary gas exchange had also 

significantly altered post-race. The lung diffusing capacity for NO (DLNO) decreased to a 

greater extent compared with lung diffusing capacity for CO (DLCO), leading to a decreased 

DLNO/DLCO ratio post-race. There was, thus, a decrease in the DMCO/Vcap ratio post-race. The 

calculations revealed that the alveolar volume-adjusted DMCO had decreased to a greater 

extent than the alveolar volume adjusted Vcap, in line with the alveolar–capillary membrane 

conductance impairment indexed by the decrease in their DMCO per unit effective alveolar 

volume. Twenty-four athletes (40%) experienced significative impaired alveolar–capillary 

membrane diffusing capacity (DMCO per unit effective alveolar volume greater than 20%). 

The pulsed arterial oxygen saturation was not modified post-race in the whole population. 

 
3.4 Cardiac Function in Athletes with Exercise‑Induced Bronchoconstriction, 

Hyperinflation, Diffusion Impairment 

 

The general characteristics and the change in the pulmonary and cardiac function parameters 

of the different pulmonary alteration subgroups are presented in Table 3. The time to conduct 

the post-race pulmonary assessment did not differ between subgroups. All subgroups 

exhibited similar initial cardiac or pulmonary functions at pre-race, except for global work 

index, which was higher pre-race in athletes with exercise- induced bronchoconstriction 

compared with those without bronchoconstriction (P = 0.02, Supplemental Table S1). The 11 

athletes experiencing bronchoconstriction (Fig. 3A) displayed comparable post-race 

alterations in various left and right systolic cardiac function parameters, including left 

ventricle global work index and global constructive work (P = 0.481 and P = 0.514, 

respectively), compared with normal athletes (Fig. 3B, Table 3). Notably, they exhibited a 



significant 20% reduction in the left ventricle filling pressure index by E/E′ (P = 0.041). There 

were no discernible differences in age and race time between the two subgroups. 

 

 
 

 



The 35 athletes exhibiting dynamic hyperinflation (Fig. 4A) also showed comparable changes 

in left and right systolic and diastolic cardiac function parameters. Global work index and 

global constructive work were also similar (P = 0.354 and P = 0.962, respectively) when 

compared with normal athletes (Fig. 4B, Table 3). On average, they were 5 years younger (P 

= 0.048) than athletes without hyperinflation but had similar race times. 

 
 

 

Twenty-four athletes exhibited impaired diffusing capacity, as indexed by a decrease in DMCO 

per unit effective alveolar volume of > 20% (Fig. 5A). In comparison with their counterparts, 

these athletes demonstrated a more pronounced decline in global work index and global 

constructive work (P = 0.001 and P = 0.001, respectively) (Fig. 5B, Table 3). Notably, 

significant positive correlation was observed between the percentage change in diffusing 

capacity and global constructive work (Pearson r = 0.39, P = 0.004, Supplemental Fig. S1). 

The left ventricle filling pressure index by E/E′ increased by + 8% in athletes with impaired 

diffusing capacity, whereas it decreased by 10% in the other athletes (P = 0.025). Both 

subgroups were of the same age, but athletes with impaired diffusing capacity completed the 

race approximatively 1 h faster compared with those without changes in post-race diffusion 

(P= 0.021), mainly due to faster running time (P = 0.003). The percentage of change in 

DMCO/ alveolar volume was negatively correlated with total race time (Pearson r = 0.33, P = 

0.02, Supplemental Fig. S2). 

 

 

 



 

4 Discussion 
 

This study was carried out to investigate associations between pulmonary and cardiac 

function changes following prolonged strenuous exercise. A reduction in the alveolar– 

capillary membrane diffusing capacity post-race was found to be associated with a decrease in 

left ventricle systolic function, as revealed by a more pronounced decrease in myocardial 

work in those athletes. However, changes in ventilation flows and volumes, including 

exercise-induced bronchoconstriction and dynamic hyperinflation post-race, were not 

associated with changes in cardiac function. 

 

 

4.1 Exercise‑Induced Pulmonary Alterations and Cardiac Fatigue 

 

We observed a reduction in both cardiac and pulmonary function after prolonged strenuous 

exercise. The exercise induced cardiac fatigue was consistent with previous findings [27]. 

Furthermore, to evaluate left ventricle systolic function, we used new cardiac indexes of 

myocardial work which are less dependent on the haemodynamic and loading conditions, 

while providing prognostic information in the case of cardiac pathologies [28]. Our study 

revealed evidence of decreased myocardial work that was more marked than the decrease in 

left ventricle ejection fraction or global longitudinal strain, and increased global wasted work 

after the very long-distance triathlon race. There are currently very few data available 

regarding alterations in myocardial work after prolonged strenuous exercise. Erevik et al. 



reported similar results after a 91 km mountain bike leisure race, but without any change in 

left ventricle ejection fraction or global longitudinal strain [29]. They concluded that the 

myocardial work parameters were indicative of myocardial inefficiency that may precede a 

decrease in global left ventricle function, suggesting that myocardial work assessment could 

be a sensitive parameter to assess left ventricle function after long-duration races. 

 

In our study, 18% of athletes demonstrated exercise-induced bronchoconstriction, while 

dynamic hyperinflation was observed in 58%. The delay in post-race evaluation seems to 

influence the number of athletes showing post-exercise bronchoconstriction. Zavorsky et al. 

reported a higher proportion of athletes with bronchoconstriction (29%) 25 min following a 

semi-marathon and marathon [30]. Therefore, we cannot determine if conducting 

echocardiography and spirometry sooner after the race would have revealed any connection to 

cardiac fatigue. Vernillo et al. documented a 21% reduction in inspiratory capacity favouring 

dynamic hyperinflation after a mountain ultramarathon [31]. This phenomenon could be 

attributed to progressive alveolar air trapping [9]. Our study also identified a significant 

alteration in alveolar–capillary oxygen diffusing capacity post-race, reflected in decreased 

diffusing capacity for CO and NO, consistent with findings of other studies [11]. The decline 

in diffusing capacity for CO and NO suggests impairment of the alveolo-capillary membrane 

conductance of gas. This is supported by reductions in DMCO and DMCO per unit effective 

alveolar volume, as well as a marginal decrease in Vcap per unit effective alveolar volume. 

While DMCO and Vcap are computed variables, the decrease in the DLNO/DLCO ratio postrace 

aligns with a reduction in the DMCO/Vcap ratio [32]. Unlike bronchoconstriction, diffusion 

impairment appears to be relatively stable for several hours after arrival and is less dependent 

on the timing of the examinations [33]. Although desaturation might be anticipated due to the 

reduction in membrane diffusing capacity post-race, our overall athlete population did not 

exhibit this phenomenon. This finding is consistent with previous reports demonstrating rapid 

pulsed arterial oxygen saturation recovery post-race [34]. Furthermore, the observed drop in 

DLCO or DMCO post-race was likely insufficient to impact pulsed arterial oxygen saturation 

[35]. 

 

 

4.2 Relation Between Exercise‑Induced Pulmonary and Cardiac Dysfunction 

 

The comprehensive evaluation of both cardiac and pulmonary parameters in a substantial 

cohort was a notable strength of our study. A novel finding was the association between the 

post-race decrease in alveolar–capillary membrane conductance and the reduction in 

myocardial work. During exercise, increased cardiac output and pulmonary vascular pressure 

can elevate capillary permeability, potentially causing pulmonary oedema and capillary 

haemorrhage [36]. Post-exercise, pulmonary oedema can be gauged by the decline in 

alveolar–capillary membrane diffusing capacity, modification in X-ray lung density [10] or an 

increase in lung comet tails using transthoracic ultrasound [37]. Scant data exist on the 

relationships between pulmonary and cardiac function alterations following prolonged 

exercise. A lone study revealed that cardiovascular factors may contribute to pulmonary 

membrane conductance impairment post-exercise. Stickland et al. observed a positive 

correlation between the post-race drop in membrane diffusing capacity and post-race left 

ventricle systolic function evaluated in 12 endurance cyclists who underwent a 20 km 

simulated bicycle time trial [38]. Cyclists with the lowest left ventricle systolic function post-

time trial displayed the most impaired pulmonary membrane conductance. In our study, the 

connection between altered membrane conductance and cardiac fatigue could potentially be 



mediated by increased left ventricular filling pressures and diastolic function alterations. 

Athletes experiencing the most significant impact on myocardial work also exhibited the 

greatest drop in left ventricle relaxation during the diastolic phase. Those with greater 

membrane conductance impairment post-race also demonstrated an increased E/E′ ratio. This 

impaired myocardial contractile function may be linked to elevated pulmonary capillary 

pressure, potentially leading to pulmonary interstitial oedema. Although the mechanism may 

be different, Kagami et al. recently demonstrated an increase in extravascular lung water 

during recovery from maximal exercise echocardiography in patients with heart failure with 

preserved left ventricle ejection fraction [39]. Interestingly, the membrane diffusion 

impairment was more likely observed in the fastest athletes. It could be anticipated that these 

abnormalities are related to higher race intensity and a greater cardiopulmonary stimulation. 

In the context of exercise-induced pulmonary oedema, exercise intensity seems to have a 

prominent role [40]. However, we lack information on the actual level of exertion intensity 

during the race, which would be possible, for example, by knowing the average percentage of 

heart rate during the race compared with the athlete’s maximum heart rate. Since the athletes 

run the marathon faster, it is unlikely that the observed membrane diffusion abnormality 

impacted the subject’s performance, and the present findings are therefore more in favour of a 

marker than a limitation of physical performance. 

 

The absence of an association between bronchoconstriction and cardiac dysfunction following 

prolonged strenuous exercise in our study challenges the hypothesis of cardiac dysfunction 

influencing peribronchial congestion and bronchoconstriction, as documented in heart failure 

[16]. However, in the post-exercise context, no study findings have ever supported a potential 

link between exercise-induced bronchoconstriction and cardiac dysfunction. Conversely, 

dynamic hyperinflation may play a role in depressing left ventricle function in healthy 

subjects, particularly during the diastolic phase [41]. Air trapping increases end-expiratory 

pressure, exerting mechanical pressure on the heart and reducing venous return, as reported in 

chronic obstructive pulmonary disease [42]. Hyperinflation can also lead to pulmonary 

vascular compliance impairment, potentially reducing left ventricular pre-loading and, 

consequently, cardiac output [43]. Our study did not reveal any relationship between the 

inspiratory capacity drop and alterations in cardiac function. We propose that the 

hyperinflation phenotype observed after a race in healthy athletes may differ from that found 

in patients with chronic obstructive pulmonary disease (COPD), i.e. gas trapping in COPD 

versus decrease in expiratory time due to increased ventilatory requirements. In healthy 

subjects, voluntary hyperinflation during exercise has not been found to compromise cardiac 

function [44]. 

 

 

4.3 Study Limitations 

 

We acknowledge several limitations of our study. Some discrepancies between the Hyp'Air 

Compact PFT device used in our study and other devices such as the Jaeger MasterScreen Pro 

have been reported for DLNO [45]. Considering that the same device has been used to compare 

pre- and post-race, the difference observed in the present cannot be explained by a device 

specificity. The values of DLNO and DLCO depend on the alveolar gas concentrations inhaled 

(before diffusion) and, therefore, could be affected by the inhomogeneities of the pulmonary 

ventilation/perfusion ratios that can occur in post exercise [46], but this assessment is not 

evaluable by field methods. Due to the observational nature of our study, we cannot establish 

causal relationships or precisely identify underlying mechanisms. While our data demonstrate 



links between cardiac and pulmonary dysfunction after an ultraendurance triathlon, the exact 

mechanisms remain elusive. 

 

We propose an association between altered alveolar–capillary membrane diffusion capacity 

and increased myocardial workload mediated by elevated pulmonary capillary pressure. 

However, pulmonary capillary pressure was estimated using Doppler echocardiography alone. 

Future studies with right heart catheterization could confirm this hypothesis definitively. We 

defined hyperinflation as a decrease in inspiratory capacity, acknowledging that some authors 

have suggested that the decrease in inspiratory capacity may be more related to respiratory 

muscle fatigue than to hyperinflation itself [7]. This nuanced consideration warrants attention 

in interpreting our results. Differential effects depending on different modes of exercise 

(swimming, cycling, running, etc.) may affect differentially pulmonary function that was not 

been investigated in the present study and might be an area of further research. Lastly, our 

study included only men owing to limited participation of women in the race (30 of 1300 

participants). Although the comparison between male and female athletes would be 

interesting, it has been shown that ultramarathons negatively impact respiratory function with 

larger effect sizes in males compared with similar performances [37]. Addressing these 

limitations in future investigations will contribute to a more comprehensive understanding of 

the observed associations and their implications. 

 

 

5 Conclusion 
 

After prolonged strenuous exercise, triathletes exhibited a cardiac fatigue, as shown by a drop 

in myocardial work. At the pulmonary level, in some athletes we observed exerciseinduced 

bronchoconstriction, dynamic hyperinflation and a decrease in alveolar–capillary membrane 

diffusing capacity. Whereas triathletes with or without bronchoconstriction or hyperinflation 

had similar cardiac function modification, our study highlights—in a large cohort—that the 

decrease in alveolar–capillary membrane diffusing capacity was associated with the reduction 

in myocardial work post-race. These data provide new insight into the relationships between 

pulmonary gas exchange abnormalities and cardiac fatigue after prolonged strenuous exercise. 

Although our results supported the hypothesis of subclinical pulmonary oedema, further 

studies including a precise assessment of pulmonary capillary pressure would be useful to 

enhance insight into the mechanisms underlying these complex relationships.  
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