
HAL Id: hal-04742788
https://hal.science/hal-04742788v1

Submitted on 21 Oct 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

MATRaCAE: Time-based Revocable Access Control in
the IoT

Clémentine Gritti, Emanuel Regnath, Sebastian Steinhorst

To cite this version:
Clémentine Gritti, Emanuel Regnath, Sebastian Steinhorst. MATRaCAE: Time-based Revocable
Access Control in the IoT. SECRYPT 2024 - 21st International Conference on Security and Cryptog-
raphy, Jul 2024, Dijon, France. pp.274-285, �10.5220/0012825700003767�. �hal-04742788�

https://hal.science/hal-04742788v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

MATRaCAE: Time-based Revocable Access

Control in the IoT

Clémentine Gritti (INSA Lyon - INRIA, France)
Emanuel Regnath (Siemens, Munich, Germany)

Sebastian Steinhorst (Technical University of Munich, Germany)

October 15, 2024

Abstract: Internet of Things (IoT) promises a strong connection between digi-
tal and physical environments. Nevertheless, this framework comes with security
vulnerabilities, due to the heterogeneous nature of devices and the diversity of
their provenance. Furthermore, technical constraints (e.g. devices’ limited re-
sources) require to lighten the design of the underlying security protocols. Liu
et al. presented a system for data access with time-based control and direct user
revocation that are beneficial features in IoT. In this paper, we propose an exten-
sion of this system, called MATRaCAE, that involves multiple authorities and
considers binary time credentials. Doing so, we mitigate the key escrow problem
and comes with a better trade-off between key update frequency and number
of revoked users, which limited the applicability of Liu et al.’s scheme in IoT.
Our solution can be proved secure under the Decisional Bilinear Diffie-Hellman
Exponent assumption. Subsequently, we implement and evaluate MATRaCAE
to demonstrate its suitability to IoT frameworks.

Keywords: Attribute-Based Encryption, Time-based Access Control, Direct
Revocation, Internet of Things

1 INTRODUCTION

Technologies for the Internet of Things (IoT) have been explored eagerly to
offer better efficiency and productivity, but expand vulnerabilities and threats
along with technical challenges [Ali et al., 2015]. 75 billion devices will be in the
IoT world by 2025 and 127 new IoT devices are connected every second to the
Internet, yielding the management demanding [Patel et al., 2017]. In addition,
those devices have various manufacturing origins, not always well defined, and
have constrained computing and communication resources [Pham et al., 2016].
Those observations make IoT dependability, in particular reliability and avail-
ability, challenging [Macedo et al., 2014]. Devices continuously collect and ex-
change a huge amount of data, that is combined and refined through data ana-

1

lytics. IoT has produced more than 500 zettabytes of data per year since 2020,
and that number grows exponentially. Developing IoT for capitalizing fresh pre-
cious information brings extra security concerns [Hwang, 2015]. Consequently,
we are interested in developing an efficient access control system for secure data
exchanges in IoT networks.

Yet, our solution must be developed carefully. Due to devices’ ubiquity and
vulnerable high configurations, IoT networks have been involved in many cyber
attacks [Pa et al., 2015]. Access control in IoT usually implies a centralized
architecture, raising single points of failure with unpredictable threats. The
large number of devices and dynamicity of IoT networks force to go beyond basic
identity assignment techniques as for the Public Key Infrastructure. Trivial
key management is restricting since each device should maintain a substantial
number of keys to interact with the network. In addition, it is essential to achieve
low latency and high reliability. When time-sensitive data is collected, data
processing may produce results too late to be useful. For instance, some control
decisions in autonomous vehicles require sub-microsecond response times, while
industrial control systems need response in tens of microseconds to avoid damage
and ensure safety [Mekki et al., 2019]. Hence, our access control system should
consider time as an essential feature along with effective key management and
device revocation to overcome the aforementioned limitations.

In this paper, we introduce MATRaCAE 1, a Multi-Authority Time-based
Revocable Ciphertext-Policy Attribute-based Encryption scheme for fine-grained
access control in IoT, which extends the work proposed in [Liu et al., 2018]. An
effective balance between key updates and device revocation permits to offer
security guarantees against the above risks while satisfying IoT dependability.
Specifically, an access control is built on top of devices’ role credentials (e.g.
sensing temperature), allowing to share collected data securely within an IoT
network. Multiple authorities are in charge of distributing key material to de-
vices, averting the key escrow problem. Direct device revocation keeps sensitive
data protected even when a device’s secret key is compromised. Moreover, time
credentials are used in addition to role credentials, emphasizing the ephemeral
value of shared data, while avoiding recurrent communication between devices
and authorities. Having short time periods of access allows faster expiration of
corrupt device keys, improving device management in IoT networks.

IoT Use Case. Figure 1 illustrates an example of our access control system
in a smart home. Several temperature sensors are scattered in a house. They
collect temperature values once every few minutes. They encrypt their time-
sensitive data according to an access policy, containing roles and time periods.
An actuator is connected to these sensors (possibly indirectly, via a gateway).
The actuator has received role and time credentials from multiple authorities.
Having limited storage capacity, the sensors upload their encrypted data to
a proxy (e.g. a cloud server), seen as an intermediary between sensors and
actuator. Within the rest of the paper, we assume that the proxy exists and

1The full version can be found at https://eprint.iacr.org/2021/140

2

Role authorities Time authority

Sensors

Actuator

Proxy
Request

Credentials

Encrypted
Data

Encrypted
Data

Decrypted
Data

Figure 1: In a smart home, multiple temperature sensors are scattered and an actuator
adjusts temperature in response to sensors’ collected data.

is intimately linked to sensors, hence we omit to mention it explicitly. The
actuator sends requests to the proxy for access to sensors’ data every short time
interval, of the order of minutes. The proxy replies to the actuator’s requests
by forwarding the encrypted collected data. The actuator is able to recover
the data in plain if and only if it has been granted with credentials satisfying
sensors’ assigned access policies. Having the plain data, the actuator adjusts
the temperature accordingly.

1.1 Contributions

We propose an extension, called MATRaCAE, of the access control system
presented in [Liu et al., 2018] (referred as LYZL) with the following features to
better fit in IoT:

• Device access control is built on top of role and time credentials, as in
[Liu et al., 2018].

• The participation of multiple role authorities, rather than a unique one
as in [Liu et al., 2018], alleviates the key escrow problem. Nonetheless, author-
ities must uniquely identify devices. Indeed, an unauthorised device must not
access data using a credential from a role authority that incorrectly matches a
credential from another role authority.

• A novel time-based access control is designed using binary trees, instead of

3

31-ary trees as in [Liu et al., 2018], to better apply to IoT frameworks. Moving
the time structure from 31-ary trees (based on the Gregorian calendar) to 2-ary
trees obliges to carefully specify a process for setting time periods. However,
the result is more efficient and adaptable to time-sensitive IoT use cases.

• A direct approach based on a publicly available list for device revocation
limits damages from compromised devices’ secret keys, as in [Liu et al., 2018].

• Asymmetric pairings are chosen, rather than symmetric pairings as in
[Liu et al., 2018], to increase the system security and efficiency, as proved in
[Guillevic, 2013]. Shifting from symmetric pairings to asymmetric pairings incur
less versatility in computing components. Indeed, inputs must be ordered to
ensure that pairing calculations are still possible (e.g. successful decryption).

We obtain a better balance between key update and device revocation com-
pared to [Liu et al., 2018], making MATRaCAE suitable for IoT networks. We
adapt the Ciphertext-Policy Attribute-Based Encryption (CP-ABE) scheme and
security model from [Liu et al., 2018] to follow the multi-authority setting, and
prove our scheme secure under the Decisional Bilinear Diffie-Hellman Exponent
(BDHE) assumption. We also implement and evaluate MATRaCAE to confirm
its dependability in IoT.

1.2 Related Work

Attribute-Based Encryption. Identity-Based Encryption (IBE) [Shamir, 1985]
is a public-key cryptographic primitive that uses some unique information about
the user identity as her public key. The corresponding secret key is generated
by a trusted authority, based on the public key. Attribute-Based Encryption
(ABE) [Sahai and Waters, 2005, Bethencourt et al., 2007] is a variant of IBE.
The user secret key and ciphertext are dependent upon attributes. The decryp-
tion of a ciphertext is possible if and only if the attributes of the key match
the attributes of the ciphertext. There are two types of ABE schemes, that are
closely related. Their difference comes from the access policy being linked either
to the key (KP-ABE) or to the ciphertext (CP-ABE).

Multi-authority ABE schemes have been proposed over the last decade [Rouselakis and Waters, 2015,
Datta et al., 2021, Ambrona and Gay, 2023], but without incorporating revoca-
tion and time-based mechanisms. On the other hand, several revocable ABE
schemes have been presented [Sahai et al., 2012, Yang and Jia, 2014, Liu et al., 2018,
Liu et al., 2020, Zhang et al., 2019, Zhang et al., 2022b], but are prone to the
key escrow problem. In [Sahai et al., 2012], revocation is made possible through
time-related binary trees, but in the case of KP-ABE only. In [Yang and Jia, 2014],
revocation, conducted by the attribute authorities, implies to update the se-
cret keys of non-revoked users. In [Liu et al., 2018], a time-based CP-ABE
is combined with direct revocation tools. However, time design choices in-
duce ineffective trees. In [Liu et al., 2020, Zhang et al., 2019], direct revoca-
tion is provided but the solutions suffer from ineffecient time-based control. In
[Zhang et al., 2022b], revocation is possible but key updates must be performed
by specific authorities.

4

Attribute-Based Encryption in IoT. In [Yao et al., 2015], an ABE scheme
without any pairing operation is presented to save costs and possibly be used
for IoT. [Oualha and Nguyen, 2016] extends [Bethencourt et al., 2007] with a
focus on IoT, but pre-computed values, generated by a trusted authority, in-
cur extra storage. More recently, IoT access control solutions [Lu et al., 2021,
Zhang et al., 2021, Zhang et al., 2023] have been proposed combining ABE with
new technologies such as blockchain and lightweight cryptography. However, all
the aforementioned works lack of essential features, such as device revocation
and key escrow mitigation. Other ABE-based IoT systems [AboDoma et al., 2021,
Zhang et al., 2022a, Yan et al., 2023] with revocation and computation outsourc-
ing have been presented. Nevertheless, computation outsourcing requires trust
assumptions and key escrow issues are not considered.

2 BUILDING BLOCKS

Multiple Authorities. We enhance LYZL by involving multiple authorities.
In [Liu et al., 2018], one fully trusted authority is responsible of generating the
key material of users. Such a configuration may be subject to key escrow and
single point of failure. By sharing the generation of devices’ keys among sev-
eral authorities, we reduce trust assumptions made on these authorities while
enforcing the security of MATRaCAE. We assume that one authority remains
honest at all time to keep MATRaCAE secure.

Revocation. Reasons for revocation can be diverse: (i) The device left the
IoT network, thus the key should no longer be usable; (ii) The device lost its
key and was attributed a new one, hence the old key should no longer be usable;
(iii) The device has one of its credentials changed and thus has received a new
key with this new credential, and the old key should no longer be usable.

Existing revocation approaches rely on key updates of non-revoked devices or
cloud assistance. However, the former does not allow direct revocation while the
latter encounters management issues when the number of devices becomes huge.
Another approach allows to revoke devices by appending their identities in a
public list. Such a list is included in each ciphertext in its latest version. Hence,
key update is not needed, avoiding communication burdens. However, the list
may grow significantly over time, in particular in large IoT networks. A solution,
suggested in [Liu et al., 2018], is to find a balance between the frequency of key
updates and the length of the revocation list. This list accepts a maximum
number of revoked devices such that, once reached, new keys are distributed and
the list is emptied. Key updates are defined such that they happen just before
the list is full. A time period is specified with an expiry date such that, once
passed, the device is no longer able to access data. Devices’ keys are updated
with a new time period. If a device is revoked before its key expires, then its
identity is added to and kept in the revocation list until the next key update.
Note that a device may be revoked definitely from the network, and its key is
no longer updated. This direct revocation mechanism is used in MATRaCAE.

5

 Days:

Root with initial time 01/01/2024

1 …... 31

Janv ...… Dec dum ...… dum

1 …...

2024 2025 dum …… dum

Janv ...… Dec dum ...… dum Months:

Years:

31

Figure 2: Tree set for 2 years, from “01 January 2024” until “31 December 2025”
(included) [Liu et al., 2018]. Let ”dum” denote dummy nodes.

Access Tree. In [Liu et al., 2018], a continuous time period is defined during
encryption such that only users with time credentials completely covering that
time period can decrypt. If a user has time credential “January 2024” while the
encryptor has set “from 01 to 15 January 2024”, then the former successfully
decrypts. Such properties are kept when designing MATRaCAE. A set cover
approach is used to select the minimum number of tree nodes that represent
the valid time periods. The root node is implicitly set as a starting time. Each
non-root node accounts for a time period such that leaves are days, leaves’
parents are months and leaves’ grand-parents are years. Let T be the depth
of the tree and each node have z children. The time is represented as a z-
ary string {1, 2, · · · , z}T−1 and a time period is denoted with a z-ary element
(τ1, τ2, · · · , τη) for some η < T . No numerical value is given in [Liu et al., 2018],
hence we propose to make some assumptions from the reading. A 2-year interval
between two key updates is claimed to be reasonable and time periods are based
on year, month and day. We infer that T = 4 and z = 31 (there are at most
31 days in a month). Thus, the root and nodes representing years have z = 31
children, even if intervals are 2 years long and years comprise 12 months. This
approach is cumbersome because there are 31−2 = 29 dummy nodes at the year
level, 29∗(31−12) = 551 dummy nodes at the month level and 29∗19∗31 = 17081
dummy nodes at the day level. Figure 2 illustrates the above 2-year period
example from LYZL.

We now describe the LYZL access tree depicting time intervals. The set

6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Days:

2 2 2 2 2 2 2 2

4 4 4 4

8 8

16
Root with initial time 01/01/2024

Access time period

Figure 3: Tree set from “01 January 2024” until “16 January 2024” (included). A
time period is defined for 7 days. Keys correspond to nodes with blue-line circles.

cover mechanism allows to find the minimum number of nodes representing the
time validity range. Let a validity time range be from “30 November 2024” until
“31 December 2025”. The selected nodes in Figure 2 would be the node “30”
with parent “November” and grand-parent “2024”, the node “December” with
parent “2024”, and the node “2025”. Let ητ be the number of selected nodes and
T be the depth of the tree such that ητ < T . Let T = (τ1, τ2, · · · , τητ

) be the set
cover representing the time validity range. Following the above example, ητ = 3
such that τ1 = “30 November 2024“, τ2 = ”December 2024“, and τ3 = ”2025“.
We have not mentioned the presence of the dummy nodes to not overload the
understanding. However, they must be included in the set cover, thus ητ >> 3.

In MATRaCAE, a tree is also used for time-based access control. A time
authority manages trees and assigns time intervals as devices’ credentials. We
choose a binary structure rather than a 31-ary structure, avoiding the presence
of dummy nodes. In addition, we focus on short time periods (of the order
of days) according to our IoT time-sensitive data scenario. The root defines a
starting time and the number of leaves determines the amount of days between
two key updates. To keep the tree with a reasonable depth T , the number of
leaves must be relatively small. A path from the root to a node is denoted as a
string in {0, 1}T−1 where 0 denotes the left child and 1 denotes the right child of
a given node. Following the above 2-year period example, our binary tree would
have 730 leaves, so a depth T = 10. A complete binary tree of depth T = 10 has
1023 nodes (including dummies). However, following [Liu et al., 2018], a 31-ary

7

tree with 29791 nodes (including dummies) would be built, making computation
and storage costs noticeably worse than ours.

In Figure 3, the tree has depth T = 5, hence 16 leaves (thus 16 days).
The time interval starts on “01 January 2024” and ends on “16 January 2024”
(included). Here, a device receives some time key material for a time validity
range of 7 days, from “04 January 2024” until “10 January 2024” (included).
The device is given 3 key components as illustrated by blue circles: one for the
leaf node representing day 4, one for the grand-parent from day 5 until day 8,
and one for the parent for days 9 and 10. Following [Liu et al., 2018], a 31-ary
tree of depth T = 4 would incur 7 keys, one for each day, for the same time
interval.

Similarly to [Liu et al., 2018], an access tree represents time periods in MA-
TRaCAE. Rather than using 31-ary strings {1, 2, · · · , 31}T−1, we consider bi-
nary strings {0, 1}T−1 such that a node represented as 0 means going to the left
child and as 1 means going to the right child. Let the validity time range be
from “04 January 2024” until “10 January 2024”. The selected nodes are the
ones circled in blue in Figure 3. Here, T = (τ1, τ2, τ3) where τ1 = (0, 0, 1, 1),
τ2 = (0, 1) and τ3 = (1, 0, 0).

Bilinear Pairing and Group. Let G1, G2 and GT be multiplicative cyclic
groups of prime order p. A pairing e is a map e : G1 ×G2 → GT such that: (i)
Given g1 ∈ G1, g2 ∈ G2 and a, b ∈ Zp, e(g

a
1 , g

b
2) = e(g1, g2)

ab (bilinearity); (ii)
There exist g1 ∈ G1 and g2 ∈ G2 such that e(g1, g2) ̸= 1GT

(non-degeneracy);
(iii) There exists an efficient algorithm to compute e(g1, g2) for all g1 ∈ G1 and
g2 ∈ G2 (computability).

Given as input a security parameter 1λ, the algorithm Gen outputs the tuple
(p,G1,G2,GT , e) where G1,G2, GT are multiplicative cyclic groups of prime
order p and e : G1 ×G2 → GT is a pairing.

When G1 = G2, the pairing is symmetric, as in [Liu et al., 2018]. When
G1 ̸= G2, the pairing is asymmetric. Designing a scheme with asymmetric pair-
ings (rather than symmetric pairings) offers better performances and improves
the security [Guillevic, 2013]. MATRaCAE extends LYZL with asymmetric
pairings to enhance its security in IoT.

Decisional q-BDHE Assumption. Given P⃗ = (g1, g
s
1, g

a
1 , · · · , ga

q

1 , ga
q+2

1 , · · · , ga2q

1 , g2, g
s
2, g

a
2 , · · · , ga

q

2 ,

ga
q+2

2 , · · · , ga2q

2) ∈ G2q+1
1 × G2q+1

2 and Q ∈ GT , where s, a ∈ Zp, g1 ∈ G1 and
g2 ∈ G2, the Decisional q-Bilinear Diffie-Hellman Exponent (BDHE) problem

is defined as to decide whether Q = e(g1, g2)
saq+1

or a random element in GT .
The security of MATRaCAE relies on the Decisional q-BDHE assumption.

Access Structure and Linear Secret Sharing. Let P = {P1, P2, · · · , Pn}
be a set of parties. A collection C ⊆ 2P is monotone if for all A,B, such
that A ∈ C and A ⊆ B then B ∈ C. An access structure is a collection
C ⊆ 2P \ {∅}. The sets in C are said to be authorized. In MATRaCAE, this
structure represents access policies and is used for role-based access control.

8

A Secret Sharing Scheme (SSS) Π over a set of parties P is a Linear SSS
(LSSS) if the following conditions hold [Beimel, 1996]: (i) The shares of the
parties form a vector over Zp; (ii) There are a l × ν matrix M and a function
ρ that maps the i-th row, for i ∈ [1, l], to an associated party ρ(i). Let s ∈ Zp

be a secret to be shared, and γ2, · · · , γν be random exponents from Zp. Let
v⃗ = (s, γ2, · · · , γν) be a column vector and Mv⃗ be the vector of l shares of the
secret s according to Π such that the share (Mv⃗)i belongs to party ρ(i).

We define the linear reconstruction property as follows. Let Π be an LSSS for
an access structure C, S ∈ C be an authorized set and I = {i; ρ(i) ∈ S} ⊂ [1, l].
There exist constants {ωi ∈ Zp}i∈I such that, if {λi} are valid shares of any
secret s according to Π, then

∑
i∈I ωiλi = s. The constants ωi can be found in

time polynomial in the size of M . Moreover, for any unauthorized set S /∈ C,
the secret s should be information theoretically hidden from the parties in S.
Let the vector (1, 0, 0, · · · , 0) be the target vector for LSSS. Given an authorized
set of rows I in the matrix M , the target vector is in the span of I. On the
other side, given an unauthorized set of rows I, the target vector is not in the
span of the rows of I. Also, there is a vector w⃗ such that w⃗(1, 0, 0, · · · , 0) = −1
and w⃗Mi = 0 for all i ∈ I. In MATRaCAE, the LSSS matrix has rows labeled
by role attributes.

Role Attributes and Indexation. In [Liu et al., 2018], an attribute uni-
verse is associated with the unique authority such that attributes are all differ-
ent. In MATRaCAE, each role authority Ak has its own attribute universe Uk

such that the union of all the attribute universes forms the network universe
U = ∪Ak

Uk. Attribute universes are all disjoint by defining attributes uniquely
as follows. Let a role be “temperature” and two authorities refer to “Room A”
and “Room B” respectively. Hence, the two attributes are determined uniquely
as “RoomA||temperature” and “RoomB||temperature” respectively. The au-
thorities define their own universes and assign role credentials based on those
universes in devices’ keys. Key updates w.r.t. roles are not frequent (e.g. “tem-
perature” remains for a dedicated sensor but its location may change). Devices
can decrypt data if the access policy contains their role attributes.

Indexation works as follows. Let N be the number of role authorities. Let Ak

be the role authority with universe Uk containing Uk attributes, for k ∈ [1, N].

Attribute indices in Uk associated with Ak are (
∑k−1

j=1 Uj + 1), · · · , (
∑k−1

j=1 Uj +

Uk). To simplify the reading, let k||i = (
∑k−1

j=1 Uj + i) for i ∈ [1, Uk]. Let
I = {i; ρ(i) ∈ S} ⊆ [1, l] and {ωi ∈ Zp}i∈I be the set of constants such
that if the set {λi} contains valid shares of a value s according to the ma-
trix M , then

∑
i∈I ωiλi = s, as defined previously. Let A be the set of role

authorities whose attributes are in the access structure. Let π : k → π(i)
be defined as ∃!(Ak ∈ A, j ∈ [1, Uk]) such that ρ(i) = k||j. This surjective
function exists since each attribute is defined uniquely in the network universe
U = ∪Ak

Uk. An attribute in U is uniquely controlled by one authority Ak. To
explain the functionality of the function π, there exists a publicly computable
function Fπ : U → Ak that maps one attribute to a specific role authority

9

[Rouselakis and Waters, 2015]. From this mapping, let a second labeling of
rows be defined in the access structure ((M,ρ), ρ′) such that it maps rows to
attributes through ρ(·) = Fπ(ρ

′(·)).

3 MATRaCAE

Phase Algorithm Role Authority Time Authority Sensor Actuator

Initialization
Setup PP PP PP PP

RAKeyGen PKk, SKk

TAKeyGen PK,SK

Key Generation
RUKeyGen

RSKID,k−−−−−−−−−−−−−−−−−−−−−−−−−−→
TUKeyGen

TSKID−−−−−−−−−−−−→

Encryption-Decryption
Encrypt

CT−−−−−−−−−→
Decrypt m

Figure 4: Overview of MATRaCAE.

An overview of MATRaCAE is given in Figure 4. MATRaCAE is composed of
seven algorithms run over three phases:

Initialization. This phase, run only once, sets the system parameters.
• Setup(1ζ , R) → PP . The algorithm Setup generates the public parameters

made available to all authorities and devices. Let R − 1 be the maximum
number of revoked devices. On inputs the security parameter 1ζ and R, the
algorithm Setup outputs the public parameters PP . First, run the algorithm
Gen and obtain two bilinear groups G1,G2 of prime order p with generators g1
and g2 respectively, along with a third group GT of prime order p and a pairing
e : G1×G2 → GT . Pick at random δ, α1, · · · , αR ∈R Zp. Set α⃗ = (α1, · · · , αR)

⊤

and F⃗ = gα⃗1 = (gα1
1 , · · · , gαR

1)⊤ = (f1, · · · , fR)⊤. The public parameters are

PP = (p,G1,G2,GT , e, g1, g
δ
1, g2, F⃗).

• RAKeyGen(PP,Uk) → (PKk, SKk). The algorithm RAKeyGen generates
the public and secret keys of each role authority. Let Uk be the number of
role attributes in the universe Uk associated with the role authority Ak. On
inputs the public parameters PP and Uk, the algorithm RAKeyGen outputs the
public key PKk and the secret key SKk of Ak. Pick at random κk ∈R Zp and
hk||1, · · · , hk||Uk

∈R G1 (these elements hk||i will be used for role-based access
control w.r.t. Ak). The public key is PKk = (e(g1, g2)

κk , hk||1, · · · , hk||Uk
) and

the secret key is SKk = κk.
• TAKeyGen(PP, T) → (PK,SK). The algorithm TAKeyGen generates the

public and secret keys of the time authority. Let T be the depth of the binary
tree associated with the time authority B. The time is represented as a binary
string {0, 1}T−1. On inputs the public parameters PP and T , the algorithm

10

TAKeyGen outputs the public key PK and the secret key SK of B. Pick at
random σ ∈R Zp and V0, V1, · · · , VT ∈R G1 (the elements Vj will be used for
time-based access control w.r.t. B). The public key is PK = (e(g1, g2)

σ, V0, V1,
· · · , VT) and the secret key is SK = σ.

Key Generation. The authorities create devices’ key material. For 1 ≤ k ≤
N , the role authority Ak generates keys based on roles, defined in the universe
Uk. Role-based key updates for non-revoked devices are run occasionally (e.g.
every few months). The time authority B generates keys based on time intervals,
denoted as TID where ID is the device identity. Time-based key updates are
run more frequently (e.g. every few days/weeks).

• RUKeyGen(PP, (PKk, SKk), ID, SID,k) → RSKID,k. The algorithm RUKey-
Gen generates the secret key of the device w.r.t. its roles. Let SID,k be the role
attribute set of a device with identity ID and associated with the role author-
ity Ak. Let k||x ∈ SID,k denote the attribute uniquely defined in the network
universe U = ∪Ak

Uk by determining the associated authority Ak and the role
x within Uk. On inputs the public parameters PP , the public and secret keys
PKk and SKk of Ak, ID and SID,k, the algorithm RUKeyGen outputs the se-
cret key RSKID,k of the device with identity ID, role attribute set SID,k and
associated with Ak. First, pick at random uk, tk ∈R Zp. Then, compute the
following:

Dk,0 = gtk2
D′

k,0 = guk
2

Dk,1 = gκk
1 gδtk1 fuk

1 = gκk
1 gδtk1 gα1uk

1

Kk,x = htk
k||x for k||x ∈ SID,k

Fk,i = (f−IDi−1

1 fi)
uk for i ∈ [2, R]

The secret key is RSKID,k = (Dk,0, D
′
k,0, Dk,1, {Kk,x}k||x∈SID,k

, {Fk,i}i∈[2,R])
and includes a description of SID,k.

• TUKeyGen(PP, (PK,SK), ID, TID) → TSKID. The algorithm TUKey-
Gen generates the secret key of the device w.r.t. its access time period. Let TID

be the time validity range of the device with identity ID and associated with
the time authority B. On inputs the public parameters PP , the public and
secret keys PK and SK of B, ID and TID, the algorithm TUKeyGen outputs
the secret key TSKID of the device with identity ID, time validity range TID

and associated with B. Let T be the set cover representing TID which consists
of time elements τ = (τ1, · · · , τητ) ∈ {0, 1}ητ where ητ < T for any τ ∈ T. First,

11

pick at random β, vτ ∈R Zp for τ ∈ T. Then, compute the following:

D0,τ = gvτ2 for τ ∈ T

D1,τ = gσ1 f
β
1 (V0

ητ∏
j=1

V
τj
j)vτ for τ ∈ T

D2 = gβ2
Lj,τ = V vτ

j for j ∈ [ητ + 1, T] and τ ∈ T

Ei = (f−IDi−1

1 fi)
β for i ∈ [2, R]

The secret key is TSKID = ({D0,τ , D1,τ}τ∈T, D2, {Lj,τ}j∈[ητ+1,T], τ∈T, {Ei}i∈[2,R])
and includes a description of TID.

Encryption-Decryption. Let an access policy be (M,ρ) where M is a l× ν
matrix and the function ρ associates rows of the matrix M to role attributes.
Let a decryption time period be Tdec. A device encrypts collected data m based
on (M,ρ) and Tdec, along with the up-to-date revocation list R (with up to R−1
revoked devices), resulting in a ciphertext CT . Another device, granted with
role and time credentials satisfying (M,ρ) and Tdec respectively, successfully
decrypts CT and recovers m.

• Encrypt(PP, {PKk}Ak∈A, PK,m,R, (M,ρ), Tdec) → CT . The algorithm
Encrypt generates a ciphertext of the message m. Let A be the set of role
authorities whose role attributes are in the access policy. Let m be the message
to be encrypted. Let R = (ID1, · · · , IDr) be the revocation list containing
r < R revoked devices. Let (M,ρ) be a LSSS access structure, defining the role
access policy. Let Tdec be the decryption time period of the ciphertext. On
inputs the public parameters PP , the public keys PKk of the role authorities
Ak ∈ A, the public key PK of the time authority B, m, R, (M,ρ) and Tdec,
the algorithm Encrypt outputs a ciphertext CT . Let τdec = (τ1, · · · , τηdec

) ∈
{0, 1}ηdec be the binary representation of Tdec, where ηdec < T . First, choose
a secret s from Zp and pick at random γ2, · · · , γν ∈R Zp. Set the vector v⃗ =
(s, γ2, · · · , γν). Then, for i ∈ [1, l], compute λi = ⟨v⃗,Mi⟩, where Mi is the i-th
row of M . Let FR(Z) = (Z− ID1) · (Z− ID2) · · · (Z− IDr) = y1+ y2Z+ · · ·+
yrZ

r−1 + yr+1Z
r be a polynomial defining the revocation list. If r + 1 < R,

then set the coefficients yr+2, · · · , yR equal to 0. Then, compute the following:

C0 = m · e(g1, g2)σs ·
∏

Ak∈A
e(g1, g2)

κks

C ′
0 = gs2

C ′′
0 = (fy1

1 · · · fyR

R)s

C ′′′
0 = (V0

ηdec∏
j=1

V
τj
j)s

Ci = gδλi
1 h−s

ρ(i) for i ∈ [1, l]

12

The ciphertext is CT = (C0, C
′
0, C

′′
0 , C

′′′
0 , {Ci}i∈[1,l], (M,ρ)) and includes de-

scriptions of Tdec and A.
• Decrypt(PP,CT,R, {RSKID,k}Ak∈A, TSKID) → m/ ⊥. The algorithm

Decrypt attempts to recover the message m from the ciphertext using appropri-
ate secret parameters. On inputs the public parameters PP , the ciphertext CT ,
the revocation list R, the role secret keys RSKID,k of the device with identity
ID and associated with Ak ∈ A and the time secret key TSKID of the device
with identity ID and associated with B, the algorithm Decrypt outputs m or
⊥.

Let X⃗ = (1, ID, · · · , IDR−1) for the identity ID and Y⃗ = (y1, · · · , yR)
where the exponents yi have been defined during the encryption phase. Hence,
⟨X⃗, Y⃗ ⟩ = y1 + y2ID + · · · + yrID

r−1 + yr+1ID
r = FR(ID). If r + 1 < R,

then the coefficients yr+2, · · · , yR are equal to 0. Let SID = ∪Ak∈ASID,k be
the disjoint union of all the role attribute sets SID,k of the device with identity
ID and associated with Ak ∈ A. Let τdec be the binary representation for the
decryption time period Tdec and T be the set cover representing the time validity
range TID. Let us define the following conditions:

• Insufficient roles attributes: SID does not satisfy (M,ρ);

• Revoked device: ID ∈ R, that is ⟨X⃗, Y⃗ ⟩ = FR(ID) = 0;
• Invalid access time period: Tdec is not completely covered in TID, that is

τdec and all its prefixes are not in T.
If any of the above conditions occurs, then output ⊥ and abort. Otherwise,

since ⟨X⃗, Y⃗ ⟩ ≠ 0, compute the following:

Fk =

R∏
i=2

F yi

k,i = (f
−⟨X⃗,Y⃗ ⟩
1

R∏
i=1

fyi

i)uk

ξk,1 =

(
e(Fk, C

′
0)

e(C ′′
0 , D

′
k,0)

) −1

⟨X⃗,Y⃗ ⟩

= e(g1, g2)
α1suk

E =

R∏
i=2

Eyi

i = (f
−⟨X⃗,Y⃗ ⟩
1

R∏
i=1

fyi

i)β

ξ′1 =

(
e(E,C ′

0)

e(C ′′
0 , D2)

) −1

⟨X⃗,Y⃗ ⟩
= e(g1, g2)

α1sβ

Let I ⊆ [1, l] be defined as {i; ρ(i) ∈ SID} and {ωi ∈ Zp}i∈I be the set of
constants such that if the set {λi} contains valid shares of a value s according
to the matrix M , then

∑
i∈I ωiλi = s. In addition, there is a surjective function

from I to A determined as follows. Let π : k → π(i) be defined as ∃!(Ak ∈
A, j ∈ [1, Uk]) such that ρ(i) = k||j. Such function exists since each attribute is
defined uniquely in the network universe U = ∪Ak

Uk. Then, compute:

ξ2 =
∏
i∈I

(
e(Ci, Dπ(i),0) · e(Kρ(i), C

′
0)
)ωi

=
∏

Ak∈A
e(g1, g2)

δstk

13

If τdec = (τ1, · · · , τηdec
) ∈ T, then D1,τdec should be one component of the secret

key TSKID. Otherwise, let τ ′dec = (τ1, · · · , τη′
dec

) denote the prefix such that
η′dec < ηdec and τ ′dec ∈ T. Then, derive a key component D1,τdec from TSKID

with respect to τ ′dec by calculating D1,τdec = D1,τ ′
dec

∏ηdec

j=η′
dec+1 L

τj
j,τ ′

dec
and set

τdec = τ ′dec. Finally, recover the message m as follows:

m = C0 · ξ2 ·
e(D0,τdec , C

′′′
0) · ξ′1

e(D1,τdec , C
′
0)

·
∏

Ak∈A

ξk,1
e(Dk,1, C ′

0)

Correctness. We first calculate Fk. Implicitly, the device must not have been

revoked to get a correct result Fk =
∏R

i=2 F
yi

k,i = (f
−⟨X⃗,Y⃗ ⟩
1

∏R
i=1 f

yi

i)uk . Using

the above result, we calculate ξk,1 =
(

e(Fk,C
′
0)

e(C′′
0 ,D′

k,0)

) −1

⟨X⃗,Y⃗ ⟩
= e(g1, g2)

α1suk . If the

device has been revoked, then we cannot calculate it since we need ⟨X⃗, Y⃗ ⟩ ≠ 0.

We then calculate E =
∏R

i=2 E
yi

i = (f
−⟨X⃗,Y⃗ ⟩
1

∏R
i=1 f

yi

i)β . Using the above re-

sult, we calculate ξ′1 =
(

e(E,C′
0)

e(C′′
0 ,D2)

) −1

⟨X⃗,Y⃗ ⟩
= e(g1, g2)

α1sβ . If the device has been

revoked, then we cannot calculate it since we need ⟨X⃗, Y⃗ ⟩ ≠ 0. Using the linear
reconstruction property of the LSSS access structure, meaning that role cre-
dentials are prepared for verification, we calculate ξ2 =

∏
i∈I

(
e(Ci, Dπ(i),0) ·

e(Kρ(i), C
′
0)
)ωi

=
∏

Ak∈A e(g1, g2)
stkδ. Finally, we recover the message m by

computing C0 · ξ2 ·
e(D0,τdec

,C′′′
0)·ξ′1

e(D1,τdec
,C′

0)
·
∏

Ak∈A
ξk,1

e(Dk,1,C′
k,0)

= m where the role at-

tributes cancel out with the ones embedded in the access policy (linear recon-
struction property), while the time interval fits in the decryption time period
(set cover mechanism).

Security Model. To prove MATRaCAE secure, either one role authority
whose some attributes are included in the access policy is honest or the time
authority is honest. If all authorities are malicious and collude, then the key
generation can easily be altered to the advantage of these authorities. W.l.o.g.,
we assume that there is an honest role authority.

We consider a selective security model defined by a game between an ad-
versary E and a challenger C [Waters, 2011]. E first selects a challenged access
structure (M∗, ρ∗), a challenged revocation list R∗, a challenged set A∗ of role
authorities whose attributes are in (M∗, ρ∗), and a challenged decryption time
period T ∗

dec. She then receives the public parameters and authorities’ public
keys. E can query devices’ secret keys that cannot be used to decrypt CT ∗. E
selects an honest authority Ak∗ ∈ A∗ [Chase, 2007]. Therefore, she can request
secret keys for a device with identity ID and attribute set SID as long as the
device has insufficient attributes from Ak∗ to decrypt.

Initialization: E submits (M∗, ρ∗), R∗ and T ∗
dec to C. She also determines

A∗ of role authorities whose attributes are in (M∗, ρ∗) and one honest authority
Ak∗ ∈ A∗.

14

Setup: C runs the algorithms Setup, RAKeyGen and TAKeyGen and gives to
E the public parameters PP , the public keys PKk for all Ak and the public key
PK for B.

Query Phase 1: E makes secret key queries corresponding to the device with
identity ID such that:

• The secret keys RSKID,k result from the role attribute sets SID,k;
• The secret key TSKID results from the time range TID.
At least one of the following conditions must hold:
• Let SID = ∪Ak∈A∗SID,k be the disjoint union of all the role attribute sets

SID,k of the device with identity ID and associated with Ak ∈ A∗. SID does
not satisfy (M∗, ρ∗), meaning that there must be at least one honest authority
Ak∗ ∈ A∗ from which E never requests enough attributes to decrypt CT ∗.
The honest authority Ak∗ replies such that SID,k∗ does not satisfy (M∗, ρ∗),
meaning that (M∗, ρ∗) cannot contain attributes from Ak∗ only. In addition, E
never queries the same authority twice with the same identity ID.

• ID ∈ R∗, meaning that the device has been revoked.
• T ∗

dec is not completely covered in TID, meaning that τ∗dec and all its prefixes
are not in the set cover T of T .

Challenge: E submits two messages m0 and m1 of equal length. C picks a
random bit b ∈ {0, 1} and encrypts mb using (M∗, ρ∗), R∗, T ∗

dec and Ak∗ ∈ A∗.
The challenged ciphertext CT ∗ is given to E .

Query Phase 2: This phase is similar to Phase 1.
Guess: E outputs b′ ∈ {0, 1} and wins if b′ = b.
The advantage of E in the game is defined as AdvE = Pr[b′ = b] − 1/2.

MATRaCAE is said to be selectively secure if no probabilistic polynomial-time
E has non-negligible advantage in the above game.

Security Proof Sketch. We only sketch the tricks used in our security proof
due to page limitation. Let a reduction be as follows: if one can break MA-
TRaCAE, then one can break the Decisional q-BDHE assumption. Assuming
that the Decisional q-BDHE assumption holds, then there is no probabilistic
polynomial-time E that can selectively break MATRaCAE with a challenged
access structure (M∗, ρ∗), a challenged revocation list R∗ and a challenged de-
cryption time period T ∗

dec, along with a set A∗ of role authorities whose at-
tributes are in (M∗, ρ∗) and an honest authority Ak∗ ∈ A∗.

When proving our solution secure, we need the reduction to program the
challenged ciphertext CT ∗ into the public parameters PP . An attribute may
be associated with multiple rows in the challenged matrix M∗, meaning that
the function ρ∗ is not injective. This is similar to a value appearing in different
leaves in a tree. For instance, let ρ∗(i) = z for fz based on the i-th row of the
matrix M∗. If z = ρ∗(i) = ρ∗(j) for some i, j such that i ̸= j, then this is a
problem since we have to program both rows i and j. In the reduction, the
above conflict is solved by using different elements in the Decisional q-BDHE
assumption. We can thus program different rows of the matrix M∗ into one
element corresponding to an attribute.

15

4 EXPERIMENTAL ANALYSIS

While MATRaCAE extends LYZL [Liu et al., 2018], we choose to not compare
the two schemes. By design, LYZL is more efficient than MATRaCAE. The
participation of multiple authorities (rather than a single one) in MATRaCAE
makes key generation an heavier process by design. We showed in Section 2 that
our choice of binary trees rather than 31-ary trees is more pertinent and effective
for our time-sensitive IoT use cases. Note that only a theoretical analysis was
given in [Liu et al., 2018], making the claims about its deployability in realistic
environments (e.g. a business) limited.

Environment. We test our solution on a Raspberry Pi 4B with a Quad Core
ARM64 Cortex-A72 CPU running at 1.5 GHz with 8 GB of 3200 MHz SDRAM.
The Raspberry Pi is a low-cost accessible device and is a realistic assumption
of the type of computational power that IoT devices will have in a near future.
Indeed, it has been claimed recently that IoT devices’ CPU and GPU double
every 3-4 years [Sun et al., 2020]. The programming language is Python3.6 and
the library is Python-based Charm Crypto [Akinyele et al., 2011]. For all our
benchmarks, we execute 1000 tests and calculate the average time (in millisec-
onds).

Parameters. In IoT, access policies contain up to 30 attributes and devices
are allocated around 10 attributes [Ambrosin et al., 2016, Yao et al., 2015]. Roles
can be related to the IoT functionalities, locations and permissions to specific
operations such as Read and Write. Our implementation considers short time
intervals. Algorithms RAKeyGen and RUKeyGen can be run in parallel, hence, we
only test MATRaCAE with one role authority. Unless specified, we consider the
following parameters for our testing: (i) The role authority Ak has 4 attributes;
(ii) The device has 2 attributes w.r.t. the role authority Ak; (iii) The time period
consists of 16 days (T = 5); (iv) The access policy contains 4 attributes (M has
4 rows); (v) Decryption requires 2 attributes (2 rows will be used). We choose
to not test bigger numbers of attributes, since we aim for closely matching re-
alistic IoT frameworks [Ambrosin et al., 2016, Yao et al., 2015]. Moreover, the
efficiency of MATRaCAE will be impacted with large attribute numbers since
many components (e.g., keys, ciphertexts) depend on those numbers.

Elliptic Curves. Implementing MATRaCAE requires to generate cyclic groups
of prime orders built from an elliptic curve. We selected the following ellip-
tic curves [Miyaji et al., 2000, Galbraith, 2001, Akinyele et al., 2011]: (i) SS512
and SS1024 with 512-bit and 1024-bit base fields respectively; (ii) MNT curves
with 159-bit, 201-bit and 224-bit base fields respectively. The results are shown
in Figure 5. We provide the security level (in bits) in brackets aside the name
of the elliptic curve. RAKeyGen and TAKeyGen have similar time results for
all elliptic curves. Except with SS1024, Setup and Encrypt also get comparable
time outputs. While SS1024 offers the highest security level, the running times

16

Curve/Algorithm Setup RAKeyGen TAKeyGen RUKeyGen TUKeyGen Encrypt Decrypt
SS512 (80) 8.1 4.0 9.4 21.3 31.7 26.8 18.7

SS1024 (112) 92.7 4.3 5.8 240.6 387.9 193.7 300.4

MNT159 (70) 7.5 2.3 3.5 12.9 21.8 21.0 37.8

MNT201 (90) 10.1 3.0 3.9 16.6 27.9 23.5 41.9

MNT224 (100) 13.0 3.8 5.0 21.5 36.7 28.1 61.2

Figure 5: Running times (ms) of all algorithms w.r.t. elliptic curves.

of most of the algorithms are noticeably impacted. Decryption with curves
MNT159 and MNT201 requires around twice the time with SS512, for a similar
security level. While MNT224 guarantees a higher security level than SS512, the
decryption algorithm takes 3 times longer than the former. Based on a trade-off
between efficiency and security, we select the curve SS512 for subsequent tests.

Revocation. Let R − 1 be the maximum number of revoked devices. We
are interested in observing how the parameter R affects the execution time of
MATRaCAE. We test all algorithms except RAKeyGen and TAKeyGen for which
R is not an input. We conduct a first experiment with R ∈ {5, 10, 15, 20, 25, 30}.
Result are shown in Figure 6. We observe that R has a low impact on encryption
and decryption, as expected. Indeed, they rather depend on the value r = 4 that
is fixed in the experiment. The running time of Setup depends on R, with a light
increase with larger values. The running times of RUKeyGen and TUKeyGen are
linear in R. Hence, R must remain reasonable to permit an interesting trade-off
between the frequency of key updates and the length of the list R. We suggest
that R can be up to 15 to keep the running time of RUKeyGen below 100
ms. A larger value would negatively impact the applicability of MATRaCAE
by noticeably slowing down device key management in the IoT network. We
conduct a second experiment with R = 10 (i.e. the maximum number of revoked
devices is 9) and r ∈ [1, 9]. R and r are inputs of Encrypt and Decrypt only. We
are interested in seeing how those two algorithms are affected by r. The results
are shown in Figure 7. Encryption and decryption timings linearly increase with
r. The effect is stronger for encryption than for decryption. Larger the number
of revoked devices is, more computing resources are needed for encryption.

Binary tree. We vary the tree depth T in [5, 12]. TAKeyGen and TUKeyGen
depend on T . The execution time of those algorithms is impacted by the con-
struction of the tree and the execution of the set cover to find the minimum
number of nodes to represent the time interval. The results are shown in Table
1. For T ∈ [5, 8], the time required to build the binary tree and to find the
minimum cover set is strictly less than 1 ms. For T = 9 and above, the time
increases exponentially, since the number of leaves scales with 2T . In IoT, it is
important to keep the time required to build the binary tree below 1 ms. For
instance, temperature sensors collect data once every few minutes, thus require

17

Figure 6: Running times (ms) of Setup, RUKeyGen, TUKeyGen, Encrypt and Decrypt
w.r.t. R.

Figure 7: Running times (ms) of Encrypt and Decrypt w.r.t. r.

18

T 5 6 7 8 9 10 11 12
Time < 1 < 1 < 1 < 1 1 2 3 6

Table 1: Running times (ms) of combined TAKeyGen and TUKeyGen w.r.t. T .

Figure 8: Running times (ms) of RAKeyGen w.r.t. role attributes (authority).

very short time periods for access (few days), so small trees. Defining trees with
reasonable depth moderates storage costs, hence T = 5 is a judicious choice.

Key Generation. The number of attributes controlled by a role authority
Ak has a linear influence on the time needed to generate the keys PKk and
SKk. Let this number vary in [1, 20]. The results are shown in Figure 8. Each
attribute adds around 1 ms in computing the keys. The number of role attributes
per device has an impact on the time required to generate the key RSKID,k.
Let the number of attributes from Ak be 15 and the number of role attributes
per device vary in [2, 15]. The results are shown in Figure 9. We observe that
the time needed to generate RSKID,k is linear in the number of role attributes
given to the device. Each attribute adds around 1 ms in computing the key. By
having multiple role authorities, we manage to dispatch all the role attributes
among them such that each role authority has only a small attribute subset and
shares the computing resources to compute the devices’ keys.

19

Figure 9: Running times (ms) of RUKeyGen w.r.t. role attributes (device).

Encryption-Decryption. Let the number of attributes in the access policy
vary in [1, 12]. This number (i.e. the number of rows in the matrix M) has
an effect on the running time of Encrypt. The results are shown in Figure
10. The running time of Encrypt is linear in this number. 2 ms are added for
each extra attribute. There could be up to 30 attributes in the access policy
[Ambrosin et al., 2016, Yao et al., 2015]. With 30 attributes, a message could
be encrypted in 76 ms, which is reasonable. Decrypt depends on the number of
matrix rows needed to recover the message. Let the number of attributes for
decryption (i.e. the number of rows) vary in [1, 12]. The results are shown in
Figure 11. The running time of Decrypt is linear in the number of attributes
needed for decryption. 1.5 ms are added for each extra attribute. There could
be up to 10 attributes needed to decrypt a ciphertext [Ambrosin et al., 2016,
Yao et al., 2015]. With 10 attributes, a message could be recovered in 30 ms,
which is rational.

5 CONCLUSION

In this paper, we designed a new solution called MATRaCAE for secure access
control in IoT, using CP-ABE with attributes representing device roles and time
intervals and equipped with a direct revocation mechanism. We devised a novel
approach based on binary trees for securing time-sensitive data exchanges in
IoT. This allows us to find an interesting, yet effective, trade-off between the
frequency of key updates and the length of the revocation list. We gave the

20

Figure 10: Running times (ms) of Encrypt w.r.t. number of attributes in the access
policy (rows).

Figure 11: Running times (ms) of Decrypt w.r.t. number of attributes for decryption
(rows).

21

intuition to prove MATRaCAE secure under the Decisional BDHE assumption.
Implementation and evaluation showed that MATRaCAE is fully deployable in
IoT.

References

[AboDoma et al., 2021] AboDoma, N., Shaaban, E., and Mostafa, A. (2021). Adap-
tive time-bound access control for internet of things in fog computing architecture.
Int. J. of Comp. and App., pages 1–12.

[Akinyele et al., 2011] Akinyele, J. A., Green, M. D., and Rubin, A. D. (2011). Charm:
A framework for rapidly prototyping cryptosystems. Cryptology ePrint Archive,
Report 2011/617.

[Ali et al., 2015] Ali, Z. H., Ali, H. A., and Badawy, M. M. (2015). Internet of Things
(IoT): Definitions, Challenges and Recent Research Directions. Int. J. of Comp.
App., 128(1):37–47.

[Ambrona and Gay, 2023] Ambrona, M. and Gay, R. (2023). Multi-authority abe for
non-monotonic access structures. In PKC’23, pages 306–335.

[Ambrosin et al., 2016] Ambrosin, M., Anzanpour, A., Conti, M., Dargahi, T.,
Moosavi, S. R., Rahmani, A. M., and Liljeberg, P. (2016). On the Feasibility of
Attribute-Based Encryption on Internet of Things Devices. IEEE Micro, 36(6):25–
35.

[Beimel, 1996] Beimel, A. (1996). Secure Schemes for Secret Sharing and Key Distri-
bution. PhD thesis, Israel.

[Bethencourt et al., 2007] Bethencourt, J., Sahai, A., and Waters, B. (2007).
Ciphertext-policy attribute-based encryption. In SP’07, pages 321–334.

[Chase, 2007] Chase, M. (2007). Multi-authority attribute based encryption. In
TCC’07, pages 515–534.

[Datta et al., 2021] Datta, P., Komargodski, I., and Waters, B. (2021). Decentralized
multi-authority abe for dnfs from lwe. In EUROCRYPT’21, pages 177–209.

[Galbraith, 2001] Galbraith, S. D. (2001). Supersingular curves in cryptography. In
ASIACRYPT’01, pages 495–513.

[Guillevic, 2013] Guillevic, A. (2013). Comparing the pairing efficiency over
composite-order and prime-order elliptic curves. In ACNS’13, pages 357–372.

[Hwang, 2015] Hwang, Y. H. (2015). IoT Security & Privacy: Threats and Challenges.
In IoTPTS’15.

[Liu et al., 2018] Liu, J. K., Yuen, T. H., Zhang, P., and Liang, K. (2018). Time-based
direct revocable ciphertext-policy attribute-based encryption with short revocation
list. In ACNS’18, pages 516–534.

[Liu et al., 2020] Liu, Z., Wang, F., Chen, K., and Tang, F. (2020). A new user revo-
cable ciphertext-policy attribute-based encryption with ciphertext update. Secur.
Commun. Netw., 2020:1–11.

[Lu et al., 2021] Lu, X., Fu, S., Jiang, C., and Lio, P. (2021). Security and privacy
challenges for intelligent internet of things devices view this special issue. Sec. and
Comm. Netw., 2021.

22

[Macedo et al., 2014] Macedo, D., Guedes, L. A., and Silva, I. (2014). A dependability
evaluation for internet of things incorporating redundancy aspects. In ICNSC’14,
pages 417–422.

[Mekki et al., 2019] Mekki, K., Bajic, E., Chaxel, F., and Meyer, F. (2019). A com-
parative study of lpwan technologies for large-scale iot deployment. ICT Express,
5(1):1–7.

[Miyaji et al., 2000] Miyaji, A., Nakabayashi, M., and Takano, S. (2000). Characteri-
zation of elliptic curve traces under FR-reduction. In ICISC’00, pages 90–108.

[Oualha and Nguyen, 2016] Oualha, N. and Nguyen, K. T. (2016). Lightweight
attribute-based encryption for the internet of things. In ICCCN’16, pages 1–6.

[Pa et al., 2015] Pa, Y. M. P., Suzuki, S., Yoshioka, K., Matsumoto, T., Kasama,
T., and Rossow, C. (2015). IoTPOT: Analysing the Rise of IoT Compromises. In
WOOT’15, pages 9–9.

[Patel et al., 2017] Patel, M., Shangkuan, J., and Thomas, C. (2017). What’s new
with the Internet of Things? Technical report, McKinsey.

[Pham et al., 2016] Pham, C., Lim, Y., and Tan, Y. (2016). Management architecture
for heterogeneous iot devices in home network. In GCCE’16, pages 1–5.

[Rouselakis and Waters, 2015] Rouselakis, Y. and Waters, B. (2015). Efficient
statically-secure large-universe multi-authority attribute-based encryption. In
FC’15, pages 315–332.

[Sahai et al., 2012] Sahai, A., Seyalioglu, H., and Waters, B. (2012). Dynamic creden-
tials and ciphertext delegation for attribute-based encryption. In CRYPTO’2012,
pages 199–217.

[Sahai and Waters, 2005] Sahai, A. and Waters, B. (2005). Fuzzy identity-based en-
cryption. In EUROCRYPT’05, pages 457–473.

[Shamir, 1985] Shamir, A. (1985). Identity-based cryptosystems and signature
schemes. In CRYPTO’84, pages 47–53.

[Sun et al., 2020] Sun, Y., Agostini, N. B., Dong, S., and Kaeli, D. (2020). Summa-
rizing CPU and GPU design trends with product data. arXiv 1911.11313.

[Waters, 2011] Waters, B. (2011). Ciphertext-policy attribute-based encryption: An
expressive, efficient, and provably secure realization. In PKC’11, pages 53–70.

[Yan et al., 2023] Yan, X., Tu, S., Alasmary, H., and Huang, F. (2023). Multiauthority
ciphertext policy-attribute-based encryption (MA-CP-ABE) with revocation and
computation outsourcing for resource-constraint devices. MDPI Appl. Sc., 13(20).

[Yang and Jia, 2014] Yang, K. and Jia, X. (2014). Expressive, efficient, and revocable
data access control for multi-authority cloud storage. IEEE Trans. on Paral. and
Dist. Syst., 25(7):1735–1744.

[Yao et al., 2015] Yao, X., Chen, Z., and Tian, Y. (2015). A lightweight attribute-
based encryption scheme for the internet of things. Future Gener. Comput. Syst.,
49(C):104–112.

[Zhang et al., 2022a] Zhang, J., Li, T., Jiang, Q., and Ma, J. (2022a). Enabling effi-
cient traceable and revocable time-based data sharing in smart city. Eurasip J. on
Wirel. Comm. and Netw., 2022(3).

23

[Zhang et al., 2019] Zhang, Q., Wang, S., Zhang, D., Wang, J., and Zhang, Y. (2019).
Time and Attribute Based Dual Access Control and Data Integrity Verifiable
Scheme in Cloud Computing Applications. IEEE Access, 7:137594–137607.

[Zhang et al., 2022b] Zhang, R., Li, J., Lu, Y., Han, J., and Zhang, Y. (2022b). Key
escrow-free attribute based encryption with user revocation. Inf. Sc., 600:59–72.

[Zhang et al., 2023] Zhang, T., Wang, C., and Chandrasena, M. I. U. (2023).
Blockchain-assisted data sharing supports deduplication for cloud storage. Con-
nect. Sc., 35(1).

[Zhang et al., 2021] Zhang, Y., Nakanishi, R., Sasabe, M., and Kasahara, S. (2021).
Combining IOTA and Attribute-Based Encryption for Access Control in the Internet
of Things. MDPI Sensors, 21(15):50–53.

24

