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Abstract

In recent years, a large number of CertificateLess Aggregate Signature
(CLAS) schemes have been proposed to overcome both the complexity
of Public Key Infrastructure (PKI) certificate management and the key
escrow problem. These CLAS schemes have mostly been developed for the
Internet of Things (IoT). However, the current CLAS schemes require the
trusted authority to manage all the devices in a network, whose number
and turn-over are huge.
One way to alleviate devices’ management in IoT while improving access
to resources is to consider a distributed architecture. In this paper, we in-
troduce OASIS, an Organizational CertificateLess Aggregate SIgnature
Scheme in IoT networks. OASIS is a hierarchical CLAS scheme that
delegates the devices’ management workload to multiple entities, while
mitigating PKI certification and key escrow issues. We prove the security
of OASIS in the random oracle model. Furthermore, the experimental
results show that OASIS is well suitable for IoT distributed systems.

Keywords: Certificateless aggregate signatures, Organizational chart, Dis-
tributed networks, Internet of Things, Random oracle model.

1 Introduction

A distributed network has its components and data depend on multiple sources.
Such a network configuration allows every entity to communicate with one an-
other without going through a centralized point. In particular, a distributed
network is a collection of multiple, independently run networks that are col-
lectively managed. In this paper, we designate those independent networks as
sub-networks.

Over the last few years, distributed computing has been seen as a beneficial
technology for the Internet of Things (IoT) to improve its security, scalability
and efficiency. IoT connects devices to networks through information sensing
equipment. Devices collect and exchange data to realize intelligent identifi-
cation, positioning, tracking, supervision and other functions. For instance,
devices share and process medical data in Healthcare Wireless Medical Sen-
sor Networks (HWMSNs) to improve patients and practitioners’ experiences
[Kumar and Lee(2012)].
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1.1 Problem Statement

With the rapid development of IoT technologies, many practical applications
have been developed to serve individuals’ daily lives, such as wireless medical
care monitoring [Saeed et al.(2018)]. Distributed networks in IoT have brought
a lot of convenience to companies and individuals; however, they expand in
size and complexity rapidly. Consequently, maintaining their performance and
availability has become increasingly difficult. Challenges include security, data
consistency, sub-network latency, and resource allocation.

Let us illustrate those limitations with a use case: wireless sensor networks,
that have become an omnipresent application in healthcare [Ko et al.(2010)].
This emerging technology enables healthcare entities (e.g. patients, practi-
tioners, hospitals) to improve and grow the quality and efficacy of medical
treatments and processes. HWMSNs aim to offer real-time medical informa-
tion transfer, reliable patient-practitioner communication, patient mobility and
energy-efficient routing. Online, instant data sharing in healthcare improves
the efficiency and availability of medical care. Nevertheless, deploying this
recent technology at a large scale in distributed systems without posing the
security concerns impacts the integrity of highly sensitive medical information
[Kumar and Lee(2012)]. The huge number of devices in a medical distributed
network may impede the security if they collect and exchange altered data.
Technical challenges encountered in HWMSNs include the constrained resources
of medical sensing devices (e.g. storage, bandwidth, power consumption), im-
pacting the quality of medical service and the interoperability between devices
in the network [de Schatz et al.(2012)]. Therefore, medical data privacy, and
thus patients’ safety, which are essential requirements of healthcare applica-
tions, must be considered carefully based on such constraints.

Security in distributed systems must consider communication mechanisms
among entities (e.g. entity authentication, and data integrity and confiden-
tiality) and access control to system resources [Ameen et al.(2012)]. As seen
above, based on incomplete and/or altered medical information, a practitioner
may make an unwise or erroneous diagnosis to a patient, putting her life in
danger [Zhang et al.(2019)]. Digital signatures are a mechanism to achieve data
integrity, thus preventing and detecting unauthorized modification of sensitive
data.

A distributed system is deployed over the Internet, thus requires a strong
Public Key Infrastructure (PKI). In a PKI, entities’ public keys are authenti-
cated by certification authorities through certificates. However, the manage-
ment of certificates is complicated, especially when a distributed network in-
volves many devices with a high turn-over. An extension of digital signature
schemes uses the identity of the entities to generate their keys. The advantage
is that verifying the signature of a signer only requires her identity, rather than
her public key certified by a certification authority. Nevertheless, identity-based
schemes suffer from the key escrow problem as keys are generated by a unique
trusted Key Generation Center (KGC).

Al-Riyami and Paterson [Al-Riyami and Paterson(2003)] introduced Certifi-
cateLess Public Key Cryptography (CL-PKC) to overcome heavy certificate
management in PKI and key escrow problem in identity-based schemes. CL-
PKC uses identities of entities to create their key pairs (as in identity-based

2



schemes) while reducing the trust on the KGC by letting the entities gener-
ate their own secret value necessary for signing messages. In a CertificateLess
Signature (CLS) scheme, the KGC is responsible of registering the devices em-
bedded in the network by generating their partial signing keys. Each device
also creates their own secret value. The device needs both the partial sign-
ing key and secret value to sign a message. Nevertheless, the CLS scheme in
[Al-Riyami and Paterson(2003)] suits environments with few participating enti-
ties, where a verifier can easily check signatures of signers one by one. Such an
assumption must not apply to distributed IoT networks, where the number of
devices is too high, and so the verifier’s workload.

One variant of CLS is CertificateLess Aggregate Signature (CLAS) [Gong et al.(2007),
Au et al.(2007)]. The difference between CLS and CLAS comes when verifying
the signatures. In CLAS schemes, the signatures are aggregated, resulting into
one global signature. Therefore, the verifier only needs to check one signature
for the whole group of signers. Such a design allows to carefully address the
technical challenges encountered in expanded distributed architectures. Never-
theless, there remains one issue with the KGC dealing alone with a huge number
of devices connected to a network and managing all their keys directly.

1.2 Idea

We introduce OASIS, an Organizational CertificateLess Aggregate SIgnature
Scheme in distributed networks for IoT. To alleviate KGC’s management work-
load, we distribute a network into smaller sub-networks, such that each of them
is managed by a gateway connected to the KGC and devices are grouped into
different sub-networks. This creates a 2-level hierarchy as for an organizational
chart. The KGC (root) is now responsible of generating the secret key of each
sub-network’s gateway. Then, each gateway (intermediate level) generates the
partial signing key of the devices connected to it, using both its secret key and a
secret value picked at random by the gateway itself. The device (bottom level)
signs a message using both the partial signing key and a secret value picked
at random by the device itself. Since both the gateway and devices have their
own secret values, key escrow issues are overcome at all levels in the distributed
network. As in traditional CLAS schemes, individual signatures are aggregated.
Verification of individual signatures and aggregate signatures is a public process.

In addition to improve the PKI management, this organizational design al-
lows to better control unfortunate events at devices’ level. Let us suppose that
a corrupted device aims to infect the network. With a traditional design, the
whole network can be a victim of the attack. However, with our hierarchical
setting, only the sub-network with the corrupted device may suffer from the
attack, while the rest of the network can remain as normal. Indeed, let’s the
KGC decide to discard the connection with the attacked sub-network by, for ex-
ample, revoking the corresponding gateway, while still manages the remaining
sub-networks that have not been subject to the attack.

Our scheme extends Gritti et al.’s 2-level Identity-Based Aggregate Sig-
nature (2-IBAS) scheme [Gritti et al.(2018b)] by embedding techniques from
[Al-Riyami and Paterson(2003)] to mitigate KGC’s workload and key escrow
problem. 2-IBAS was developed specifically for IoT by taking into account the
huge number of devices in networks, their heterogeneity in terms of provenance
and design, and their limited resources in terms of communication, computation
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and storage. However, this scheme suffers from the key escrow problem since
devices must solely rely on a trusted entity to obtain their signing keys. Instead,
we enable devices to generate their own secret value, that is used as an input for
signature generation in addition to their partial signing key delivered by their
gateway. Similarly, the gateway needs two secret keys, one from the KGC and
one from itself, to generate the partial signing keys of devices connected to it.
We prove that our scheme is secure regarding Type-I and Type-II adversaries in
the random oracle model [Al-Riyami and Paterson(2003)]. We also verify that
our scheme is realistically deployable in distributed networks such as for IoT.

1.3 Related Work

To eliminate the use of certificates and to prevent the key escrow problem, Al-
Riyami and Paterson [Al-Riyami and Paterson(2003)] introduced the concept of
CL-PKC and proposed the first CLS scheme. Each entity owns two secret keys:
one is generated by the KGC and one is generated by the entity itself. Both keys
are needed to generate a signature on a message. Nevertheless, Huang et al.
[Huang et al.(2005)] described an attacker that can successfully forge a certifi-
cateless signature in Al-Riyami and Paterson’s security model. The authors pro-
posed a new scheme to fix this problem. Boneh et al. [Boneh et al.(2003)] pre-
sented an Aggregate Signature (AS) scheme. In this scheme, the signatures, on
different messages and from various signers, are collected and aggregated, result-
ing into one unique, global signature. The verifier only needs to check the latter
to validate all the signatures. Such a design greatly reduces the workload at the
verifier’s side. Subsequently, multiple schemes have been proposed applicable
to IoT environments, such as AS schemes [Shen et al.(2018)], identity-based AS
schemes [Shen et al.(2017)], CLS schemes [Huang et al.(2005), Au et al.(2007)]
and CLAS schemes [Gong et al.(2007), Zhang and Zhang(2009), He et al.(2013)].
Recently, other CLAS proposals have been released [Shen et al.(2019), Kamil and Ogundoyin(2019),
Cui et al.(2018), Kumar et al.(2018), Gayathri et al.(2019), Y. Zhan and Lu(2021),
Yang et al.(2021), Thumbur et al.(2021)], with the aim of finding a good trade-
off between efficiency and security based on the technical IoT constraints. Most
of the papers suggested pairing-free CLASs, since pairing operations are no-
ticeably costly and thus not suitable for resource-constrained devices. How-
ever, We et al. [Wu et al.(2018)] found out that Kumar et al.’s CLAS scheme
[Kumar et al.(2018)] is vulnerable to a honest-but-curious KGC. They then sug-
gested a better version of the CLAS scheme. Moreover, Liu et al. [Liu et al.(2020)]
pointed out that Gayathri et al.’s scheme [Gayathri et al.(2019)] is not secure.
They proposed an improved pairing-free CLAS scheme. Nevertheless, all the
aforementioned CLAS solutions do not consider an organizational chart in the
network. Indeed, the KGC is directly responsible of all the devices, by gener-
ating their partial signing key, rather than the gateway of the sub-network in
which devices are installed. When a distributed IoT network comprises a huge
number of devices, such as an HWMSN, a 2-level hierarchy allows a better and
easier management of devices and their keys at the KGC’s side.
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2 OASIS Definition

2.1 Use Case

First, let’s imagine OASIS in Healthcare Wireless Medical Sensor Networks
(HWMSNs). The KGC is in charge of the network of a hospital and of the sub-
networks. Each sub-network is led by a gateway and contains multiple devices
connected to the gateway. For instance, the sub-network is a medical room
equipped with sensing devices that monitor various elements of the patient (e.g.
heart pulsation, glucose level). Each device collects raw data at regular time
intervals and submits it to the gateway. To guarantee that the collected data
has not been tampered in transit, the device signs the data. The gateway col-
lects the signature/data pairs and aggregates the signatures to obtain one global
signature representing the sub-network. This allows to reduce the data traffic:
instead of having a huge number of devices’ individual signatures being broad-
cast over the whole network, only few aggregate signatures from the gateways
of sub-networks are actually submitted to the KGC. A verifier (public entity)
checks the validity of each sub-network’s signature. We depict our use case in
Figure 1.

  

Subnetwork 1

Subnetwork 2

Network

VerifierHospital (KGC)

Gateway

Gateway

Sensors

Sensors Sub-network

Gateway

Device 1 Device 2 Device 3

Aggregation

Figure 1: [LEFT] A hospital (KGC) comprises 2 sub-networks (gateways). A
gateway registers its sensors and forwards the aggregate signatures to the veri-
fier. [RIGHT] Each device in a sub-network generates a signature and forwards
it to its gateway. The gateway collects individual signatures and aggregates
them.

2.2 Overview

Let us describe the four entities involved in OASIS:
• The KGC is a single trusted authority per IoT distributed network. The
KGC identifies and registers the gateways in the network by delivering to each
of them a secret key through a secure communication channel.
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• The gateway receives a secret key from the KGC and creates a secret value
by itself. From this secret value, a public key is generated and made available
to the network. Using both the secret key and secret value, it identifies devices
that are installed in its sub-network and delivers their partial signing keys. It
also collects the signatures of all the devices in its sub-network. It optionally
checks each signature individually. Once all validity checks pass, the gateway
aggregates the signatures, resulting into one global signature.
• The device receives a partial signing key from the gateway it is connected to.
It also generates a secret value by itself. From this secret value, a public key
is generated and made available to the network. It must uses both the partial
signing key and secret value to sign a message. The device is expected to create
one signature per round, by embedding a counter in its signature. The public
key is used to verify the signature.
• The verifier verifies the validity of the aggregate signature given the messages
of devices, the public keys of the devices, and the public key of the gateway. If
the validity check passes, then it means that the data collected by its devices
have not encountered any modification in transit. The verification is made
public.

2.3 Formal Definition

Let us describe the algorithms of OASIS:
• Setup(λ) → (params,msk). On input a security parameter λ, the Setup
algorithm, run by the KGC, outputs the public parameters params and the
master secret key msk.
• KeyGengat(params,msk, Ii)→ ski. On inputs the public parameters params,
the master secret key msk and the identity Ii of the gateway, the KeyGengat
algorithm, run by the KGC, outputs the secret key ski of the gateway. The key
is sent to the gateway over a secure channel.
• SecretGengat(params) → βi. On inputs the public parameters params, the
SecretGengat algorithm, run by the gateway, outputs the secret value βi. The
value is securely kept by the gateway.
• PubKeyGengat(params, βi) → pki. On inputs the public parameters params
and the secret value βi of the gateway, the algorithm PubKeyGengat, run by the
gateway, outputs the public key pki.
• PartKeyGendev(params, ski, βi, Ii,j) → pski,j . On inputs the public param-
eters params, the secret key ski and secret value βi of the gateway, and the
identity Ii,j of the device connected to the gateway, the PartKeyGendev algo-
rithm, run by the gateway, outputs a partial signing key pski,j . The key is sent
to the device over a secure channel.
• SecretGendev(params) → xi,j . On inputs the public parameters params, the
SecretGendev algorithm, run by the device, outputs the secret value xi,j . The
value is securely kept by the device.
• KeyGendev(params, pski,j , xi,j) → ski,j . On inputs the public parameters
params, the partial signing key pski,j and secret value xi,j of the device, the
KeyGendev algorithm, run by the device, outputs the complete signing key ski,j .
• PubKeyGendev(params, xi,j , pki) → pki,j . On inputs the public parameters
params, the secret value xi,j of the device and the public key pki of the gateway,
the PubKeyGendev algorithm, run by the device, outputs the public key pki,j .
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KGC Gateway Device Verifier

Setup

KeyGengat−−−−−−−−−−−→

SecretGengat
PubKeyGengat

PartKeyGendev−−−−−−−−−−−→

SecretGendev
KeyGendev
PubKeyGendev

Sign←−−−−−−−−−−−

Verify

Aggregate−−−−−−−−−−−−−−−−−−−−−−→

VerifyAgg

Table 1: Flow chart of OASIS. Arrows link a source entity which runs the
algorithm with the appropriate inputs with a destination entity which receives
the output.

• Sign(params, ski,j ,mj , cnt)→ σi,j . On inputs the public parameters params,
the signing key ski,j of the device, a message mj and a fresh counter cnt, the
Sign algorithm, run by the device, outputs a signature σi,j on message mj .
• Aggregate(params, {σi,j}j∈[1,l])→ σi. On inputs the public parameters params,
the set {σi,j}j∈[1,l] of all signatures of devices connected to the gateway, the
Aggregate algorithm is run by the gateway as follows.
Optionally, the gateway first runs the algorithm Verify to check that each signa-
ture σi,j is valid given the message mj . If at least one signature is not valid, then
the gateway aborts. Otherwise, it proceeds by aggregating all the signatures in
{σi,j}j∈[1,l] to obtain the aggregate signature σi.
• Verify(params, Ii, Ii,j , σi,j ,mj , pki,j) → {”Accept”, ”Reject”}. On inputs the
public parameters params, the identity Ii of the gateway, the identity Ii,j of
the device, the signature σi,j , the message mj and the public key pki,j of the
device, the algorithm Verify, run by the gateway before aggregation, outputs
either “Accept”, i.e. σi,j is a valid signature for the message mj , or “Reject”,
i.e. σi,j is not valid.
• VerifyAgg(params, Ii, {Ii,j}j∈[1,l], σi, {mj}j∈[1,l], {pki,j}j∈[1,l])→ {”Accept”, ”Reject”}.
On inputs the public parameters params, the identity Ii of the gateway, the set
of identities {Ii,j}j∈[1,l] of the devices connected to the gateway, the aggre-
gate signature σi, the set of messages {mj}j∈[1,l] and the set of public keys
{pki,j}j∈[1,l] of the devices connected to the gateway, the algorithm VerifyAgg,
run by the verifier, outputs either “Accept”, i.e. σi is a valid aggregate signature
for all message {mj}j∈[1,l], or “Reject”, i.e. σi is not valid.

We depict the flow chart of our proposed solution in Table 1.
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2.4 Security Models

Correctness

Let us be given (params,msk)← Setup(λ), the secret key ski ← KeyGengat(params,msk, Ii),
the secret value βi ← SecretGengat(params) and the public key pki ← PubKeyGengat
(params, βi) of the gateway with identity Ii, the partial keys pski,j ← PartKeyGendev(params, ski, βi, Ii,j),
the secret values xi,j ← Secret− Gendev(params), the signing keys ski,j ←
KeyGendev(params, pski,j , xi,j) and the public keys pki,j ← PubKeyGendev(params, xi,j ,
pki) of the devices with identity Ii,j for j ∈ [1, l], connected to the gateway with
identity Ii. Let σi,j ← Sign(params, ski,j ,mj , cnt) be the signatures of the
devices based on their respective messages mj and the fresh counter cnt, for
j ∈ [1, l]. Let σi ← Aggregate(params, {σi,j}j∈[1,l]) be the signature obtained
from aggregating the signatures σi,j for j ∈ [1, l]. For each j ∈ [1, l], the al-
gorithm Verify(params, Ii, Ii,j , σi,j ,mj , pki,j) outputs “Accept”. Moreover, the
algorithm Verify− Agg(params, Ii, {Ii,j}j∈[1,l], σi, {mj}j∈[1,l], {pki,j}j∈[1,l]) out-
puts “Accept”.

OASIS also guarantees that individual and aggregate signatures are existen-
tially unforgeable. We combine CLAS and 2-IBAS security models [Al-Riyami and Paterson(2003),
Gritti et al.(2018b)] to embed the hierarchical structure of OASIS into our se-
curity models. This means that at least one entity is not corrupted at each
hierarchical level, i.e. one gateway and one device respectively. We allow ad-
versaries to extract secret/partial signing keys for identities of their choice. We
define Game I and Game II for the adversaries A1 and A2 respectively. The
honest-but-curious adversary A1 cannot access the master secret key msk but
can replace public keys of any entity (gateway and device) with a value of its
choice. The malicious adversary A2 can access the master secret key msk (held
by the KGC) but cannot replace any public keys.

Game I

Game I between the challenger C1 and adversary A1 is defined as follows.
Setup: On input the security parameter λ, the challenger C1 runs the Setup

algorithm to get the master secret key msk and the public parameters params.
C1 sends params to A1 and keeps msk.

Queries: The adversary A1 performs a polynomially bounded number of
queries.
• Secret/partial signing key queries: A1 requests the secret/partial signing key of
an entity with identity I (either a gateway or a device). C1 runs the appropriate
key generation algorithm and sends the secret/partial signing key to A1.
• Public key queries: A1 requests the public key of an entity with identity I
(either a gateway or a device). C1 runs the appropriate public key generation
algorithm and sends the public key to A1.
• Secret queries: A1 requests the secret of an entity with identity I (either a
gateway or a device). C1 runs the appropriate secret generation algorithm and
sends the secret to A1.
• Public key replacement queries: A1 chooses a new public key pk′ for an entity
with identity I and C1 records such a replacement.
• Signature queries: A1 requests the signature on a message m. C1 runs the
appropriate signature generation algorithm and sends the signature to A1.
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Forgery: A1 outputs a set of l devices with identity {I∗i,j}, connected to
the same gateway with identity I∗i , with the set of their corresponding public
keys {pk∗i,j}, a set of messages {m∗

j}, and an aggregate signature σ∗
i .

The adversary A1 wins the game if:
• σ∗

i is a valid aggregate signature.
• Secret/partial signing key queries and secret queries have never been made
for at least one identity in the set {I∗i,j} and for I∗i (i.e. there is at least one
uncorrupted identity for each entity type). W.l.o.g., let us assume that such
identities are I∗i and I∗i,1 (i.e. j = 1).
• Signature queries have never been made on (I∗i , I

∗
i,1,m

∗
1).

Game II

Game II between the challenger C2 and adversary A2 is defined as follows.
Setup: On input the security parameter λ, the challenger C2 runs the Setup

algorithm to get the master secret key msk and the public parameters params.
C2 sends params and msk to A2.

Queries: The adversary A2 performs a polynomially bounded number of
queries.
• Partial signing key queries: A2 requests the partial signing key of an entity
with identity I (only a device as the adversary can generate itself the secret key
of the gateway by using the master secret key msk). C2 runs the appropriate
key generation algorithm and sends the partial signing key to A2.
• Public key queries: A2 requests the public key of an entity with identity I
(either a gateway or a device). C2 runs the appropriate public key generation
algorithm and sends the public key to A2.
• Secret queries: A2 requests the secret of an entity with identity I (either a
gateway or a device). C2 runs the appropriate secret generation algorithm and
sends the secret to A2.
• Signature queries: A2 requests the signature on a message m. C2 runs the
appropriate signature generation algorithm and sends the signature to A2.

Forgery: A2 outputs a set of l devices with identity {I∗i,j}, connected to
the same gateway with identity I∗i , with the set of their corresponding public
keys {pk∗i,j}, a set of messages {m∗

j}, and an aggregate signature σ∗
i .

The adversary A2 wins the game if:
• σ∗

i is a valid aggregate signature.
• Partial signing key queries have never been made for at least one identity in
the set {I∗i,j} (i.e. there is at least one uncorrupted identity for devices). Secret
queries have never been made for at least one identity in the set {I∗i,j} and for
I∗i (i.e. there is at least one uncorrupted identity for each entity type). W.l.o.g.,
let us assume that such identities are I∗i and I∗i,1 (i.e. j = 1).
• Signature queries have never been made on (I∗i , I

∗
i,1,m

∗
1).

2.5 Going further

We choose to separate KeyGengat from SecretGengat for the gateway, and PartKeyGendev
from SecretGendev and KeyGendev for the device. Doing so, we explicitly define
the steps taken by the KGC (resp. the gateway) from the gateway (resp. the
device). Even if all those algorithms aim for generating keys, they are run by
different entities. Separating algorithms allows to emphasize such differences.
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We assume that devices can sign at the same time or sequentially. We use
indexes to simplify the reading of the scheme and to identify the devices and
their signatures, but do not impose any strict order among devices. When such
an order is not enforced, then a time window is determined for each round,
where signatures are generated and collected as long as the round is not over.

Let us now suppose that a device missed a round by not sending its signature
on time. Consequently, the algorithms Aggregate and VerifyAgg are simply run
without including any inputs from this missing device. Nevertheless, tracking
missing devices may be beneficial if happening at multiple rounds. Extra steps
may be taken to ensure that those devices are still functional. We let such
features as future work.

3 OASIS Instantiation

The 2-IBAS scheme [Gritti et al.(2018b)] extends the 2-level Identity-Based
Multi-Signature scheme [Gritti et al.(2018a)] by using the Gentry-Ramzan tech-
nique [Gentry and Ramzan(2006)] to allow devices to sign personal messages
that are all distinct instead of signing pre-selected common messages. Infor-
mally, entities first sign a common dummy message, that is the round counter
cnt, as in [Gritti et al.(2018a)], and then embed their personal message into this
signatures.

Following techniques from [Al-Riyami and Paterson(2003)], OASIS allevi-
ates the key escrow problem at the gateway level by letting the second element β
of the KGC’s master secret keymsk in Gritti et al.’s scheme [Gritti et al.(2018b)]
be the gateway’s secret value βi. This implies that the element h2 of the pub-
lic parameters in [Gritti et al.(2018b)] is actually the gateway’s public key pki.
OASIS prevents the key escrow problem at devices’ level by letting each device
complete its partial signing key pski,j generated by the KGC with an addi-
tional random secret value xi,j to obtain the secret key ski,j , and compute the
corresponding public key from that secret value.

3.1 Background

Bilinear Maps

Let G and GT be two multiplicative cyclic groups of prime order p according to
the security parameter λ. Let g be a generator of G. Let e : G × G → GT be
a bilinear map such that: (1) Bilinearity: ∀u, v ∈ G,∀a, b ∈ Zp, e(u

a, vb) =
e(u, v)ab; (2) Non-degeneracy: e(g, g) ̸= 1GT

; (3) Symmetry: ∀a, b ∈ Zp,
e(ga, gb) = e(g, g)ab = e(gb, ga). Finally, G is a bilinear group if the group
operation in G×G and the bilinear map e are both efficiently computable.

Computational Diffie-Hellman Assumption

We define the Computational Diffie-Hellman (CDH) problem as follows. Let
G be a group of prime order p according to the security parameter λ. Let
a, b ∈ Zp and g be a generator of G. The problem is: Given a CDH tuple
(g, ga, gb), it remains hard to compute gab ∈ G. The CDH assumption holds if
no probabilistic polynomial-time adversary A has non-negligible advantage in
solving the CDH problem.
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3.2 Construction

To simplify the presentation of our construction, we only consider the case where
l devices are connected to one gateway.
• Setup(λ) → (params,msk). Given the security parameter λ, let G,GT be
two cyclic multiplicative groups of prime order p. Let g be a generator of G
and e : G × G → GT be a bilinear map. The KGC randomly chooses α ∈ Z∗

p

and compute h = gα. Let H1, H2, H3 : {0, 1}∗ → G and H4 : {0, 1}∗ → Z∗
p be

four cryptographic hash functions seen as random oracles. Finally, the KGC
sets the public parameters as params = (p,G,GT , e, g, h,H1, H2, H3, H4) and
the master secret key as msk = α.
• KeyGengat(params,msk, Ii)→ ski. The KGC computes gi = H1(Ii) and sets
the secret key ski of the gateway with identity Ii as ski = gαi .
• SecretGengat(params) → βi. The gateway picks at random βi ∈ Z∗

p and sets
it as its secret value.
• PubKeyGengat(params, βi)→ pki. The gateway computes pki = gβi and sets
it as its public key.
• PartKeyGendev(params, ski, βi, Ii,j) → pski,j . Given the secret key ski and
secret value βi, the gateway generates the partial signing key of the device with
identity Ii,j as follows. It first computes gj,0 = H2(Ii,j , 0), gj,1 = H2(Ii,j , 1),

D
(1)
i,j = ski · gβi

j,0 and D
(2)
i,j = ski · gβi

j,1. It then sets the partial signing key as

pski,j = (D
(1)
i,j , D

(2)
i,j ).

• SecretGendev(params)→ xi,j . The device picks at random xi,j ∈ Z∗
p and sets

it as its secret value.
• KeyGendev(params, pski,j , xi,j) → ski,j . Given its partial signing key pski,j

and secret value xi,j , the device computes E
(1)
i,j = (D

(1)
i,j )

xi,j and E
(2)
i,j = (D

(2)
i,j )

xi,j

and sets the signing key as ski,j = (E
(1)
i,j , E

(2)
i,j ).

• PubKeyGendev(params, xi,j , pki) → pki,j . Given its secret value xi,j and the

gateway’s public key pki, the device computes F
(1)
i,j = hxi,j and F

(2)
i,j = pk

xi,j

i

and sets the public key as pki,j = (F
(1)
i,j , F

(2)
i,j ).

• Sign(params, ski,j ,mj , cnt)→ σi,j . Let the round counter cnt be a fresh string

for that round. The device parses its signing key ski,j as E
(1)
i,j and E

(2)
i,j . It then

randomly chooses tj ∈ Z∗
p and computes gcnt = H3(cnt), aj = H4(mj , Ii,j , cnt)

and the elements B
(1)
i,j = g

tj
cnt · E

(1)
i,j · (E

(2)
i,j )

aj and B
(2)
i,j = gtj . The device sets

the signature as σi,j = (B
(1)
i,j , B

(2)
i,j , cnt).

• Aggregate(params, {σi,j}j∈[1,l]) → σi. Given the (optionally verified) signa-

tures σi,j = (B
(1)
i,j , B

(2)
i,j , cnt), for j ∈ [1, l], with the same counter cnt from the l

devices connected to the gateway, the latter generates the aggregated elements

S
(1)
i =

∏l
j=1 B

(1)
i,j and S

(2)
i =

∏l
j=1 B

(2)
i,j . It sets the aggregate signature as

σi = (S
(1)
i , S

(2)
i , cnt).

• Verify(params, Ii, Ii,j , σi,j ,mj , pki,j)→ {”Accept”, ”Reject”}. Given the iden-
tity Ii of the gateway and the identity Ii,j of a device connected to the gate-
way, the device’s personal message mj , and the corresponding signature σi,j =

(B
(1)
i,j , B

(2)
i,j , cnt), the gateway checks whether the following equation holds:
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e(B
(1)
i,j , g) = e(H3(cnt), B

(2)
i,j ) · e(H1(Ii), (F

(1)
i,j )

1+aj )

·e(H2(Ii,j , 0) ·H2(Ii,j , 1)
aj , F

(2)
i,j )

where aj = H4(mj , Ii,j , cnt). If the above equation holds, then the gateway
outputs ”Accept”; otherwise, it outputs ”Reject”.
• VerifyAgg(params, Ii, {Ii,j}j∈[1,l], σi,j , {mj}j∈[1,l], {pki,j}j∈[1,l])→ {”Accept”, ”Reject”}.
Given the identity Ii of the gateway and the set of identities {Ii,j}j∈[1,l] of the
l devices connected to the gateway, the set of their messages {mj}j∈[1,l], and

the corresponding aggregate signature σi = (S
(1)
i , S

(2)
i , cnt), the verifier checks

whether the following equation holds:

e(S
(1)
i , g) = e(H3(cnt), S

(2)
i ) ·

l∏
j=1

(e(H1(Ii), (F
(1)
i,j )

1+aj )

·e(H2(Ii,j , 0) ·H2(Ii,j , 1)
aj , F

(2)
i,j ))

where aj = H4(mj , Ii,j , cnt). If the above equation holds, then the verifier
outputs ”Accept”; otherwise, it outputs ”Reject”.

3.3 Security Proofs

Correctness

Due to the page limit, we only show that the equation from VerifyAgg holds.
Showing that the equation from Verify holds works similarly. Let l be the number
of devices connected to the gateway. Let Ii be the identity of the gateway and

{Ii,j}j∈[1,l] be the set of identities of the devices. Let σi = (S
(1)
i , S

(2)
i , cnt)

be the aggregate signature and {mj}j∈[1,l] be the set of the devices’ messages.
Let aj = H4(mj , Ii,j , cnt) with cnt being the fresh counter for that round of
signatures.
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e(S
(1)
i , g) = e(

l∏
j=1

B
(1)
i,j , g)

= e(g
∑l

j=1 tj
cnt , g) · e(gα

∑l
j=1 xi,j

i , g) · e(
l∏

j=1

g
βixi,j

j,0 , g)

·e(gα
∑l

j=1 ajxi,j

i , g) · e(
l∏

j=1

g
βiajxi,j

j,1 , g)

= e(gcnt, S
(2)
i ) · e(gi,

l∏
j=1

hxi,j )

·e(gi,
l∏

j=1

(hxi,j )aj ) ·
l∏

j=1

(
e(gj,0, pk

xi,j

i ) · e(gaj

j,1, pk
xi,j

i )
)

= e(H3(cnt), S
(2)
i ) ·

l∏
j=1

(e(H1(Ii), (F
(1)
i,j )

1+aj )

·e(H2(Ii,j , 0) ·H2(Ii,j , 1)
aj , F

(2)
i,j ))

Game I: Overview of the Security Proof.

Here, we only give an overview of the proof of Game I. We show that OASIS is se-
cure against Type-I adversaries in the random oracle model, as long as the CDH
problem is hard. We let the reader refer to [Al-Riyami and Paterson(2003),
Gritti et al.(2018b)] for more details. The Type-I adversary A1 wishes to break
the security of OASIS in the random oracle model. The challenger C1 attempts
to solve the CDH problem by interacting with A1. A CDH tuple (g, ga, gb) is
given to C1. The hash functions H1, H2, H3 and H4 are controlled by C1,
by managing their associated lists. W.l.o.g., we assume that there is only
one sub-network, hence only one gateway with identity I∗i , such that l de-
vices are connected to it. We reduce the security of OASIS to that of 2-IBAS
[Gritti et al.(2018b)] in which the adversary can modify the public key presented
by C1. Such a reduction uses a specific knowledge extractor KE algorithm to
manage signature queries. The knowledge extraction algorithm KE has access
to the lists of H3 and H4. Then, we reduce to that of the difficulty in solving
the CDH problem.

Game II: Sketch of the Security Proof.

We only sketch the proof of Game II. We show that OASIS is secure against
Type-II adversaries in the random oracle model, as long as the CDH prob-
lem is hard. We provide some intuition on a challenger C2 being success-
ful in solving the CDH problem while interacting with a Type-II adversary
A2. We let the reader refer to [Gentry and Ramzan(2006), Gritti et al.(2018a),
Gritti et al.(2018b)] for more details. The Type-II adversary A2 wishes to break
the security of OASIS in the random oracle model. The challenger C2 attempts
to solve the CDH problem by interacting with A2. A CDH tuple (g, ga, gb)
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is given to C2. The hash functions H1, H2, H3 and H4 are controlled by C2.
W.l.o.g., we assume that there is only one sub-network, hence only one gateway
with identity I∗i , such that l devices are connected to it. The idea of the proof
is to let the public key of the gateway with identity I∗i be pk∗i = gb. Implicitly,
β∗
i is equal to b. Therefore, we let the adversary A2 submit public key and

secret queries on identities of devices connected to the gateway with identity
I∗i . We now describe how the challenger C2 replies to queries involving hash
computations.
H1 queries: To answer, C2 randomly chooses an element νi in Zp and computes
gi = gνi . We recall that the adversary A2 has access to the master secret key
msk = α, and thus can compute gαi .

H2 queries: To answer, C2 picks at random µj,0, µj,1 ∈ Zp and defines g
β∗
i

j,0

as gbµj,0 and g
β∗
i

j,1 as gbµj,1 . Nevertheless, C2 sometimes computes gj,0 = gµj,0 ·
(ga)µ

′
j,0 and gj,1 = gµj,1 · (ga)µ

′
j,1 for some elements µ′

j,0, µ
′
j,1 ∈ Zp. Thus, in

such a situation, C2 is not able to answer to a partial signing key generation
query on identity Ii,j . However, in the case of this identity Ii,j being the target
choice of A2, the forgery of the latter could help C2 solve the CDH problem.
H3 queries: To answer, C2 computes gcnt = (ga)dcnt for a known random
exponent dcnt ∈ Zp most of the time. Nevertheless, it sometimes computes
gcnt = gccnt for another known random exponent ccnt ∈ Zp.
H4 queries: To answer, B randomly chooses an element ξj and computes
aj = gξj if it knows dcnt. Otherwise, it calculates aj = gξ such that the

exponent ξ is a unique value that helps cancel out the multiple of gab in B
(1)
i,j .

C2 is able to reply to a signature query on identity Ii,j , counter cnt and
message mj by controlling the H2, H3 and H4 oracles, although it cannot get
the signing key linked to the identity Ii,j . There are two cases: (1) C2 knows
dcnt, from gcnt = (ga)dcnt . Then, C2 computes the value of the exponent t′

such that the value gbt
′

cnt deletes the multiple of gab that comes in the other

terms of the signing element B
(1)
i,j . It finally sets B

(2)
i,j = (gb)t

′
; (2) C2 does not

know dcnt, from gcnt = (ga)dcnt . However, it can sometimes fix the exponent
aj = H4(mj , Ii,j , cnt) to be the unique value in Z∗

p such that the multiples of

gab cancel out in the signing element B
(1)
i,j . Hence, C2 is able to generate a

valid signature. If the unique value aj is divulged for the identity Ii,j , then
C2 is allowed to re-use this trick later. Suppose now that C2 does not abort,
A2 gives a forgery on identity I∗i,j , message m∗

j and counter cnt for which the

exponents µj,0 and µj,1, from g
β∗
i

j,0 = gbµj,0 and g
β∗
i

j,1 = gbµj,1 , are not known, and
the exponent aj is not determined regarding the aforementioned trick. Then,
C2 obtains the value of gab with high probability given A2’s forgery.

4 OASIS Evaluation

4.1 Comparison with 2-IBAS

The 2-IBAS scheme is the closest to OASIS in terms of computational bench-
mark. The former was analysed and claimed as deployable in IoT [Gritti et al.(2018b)].
Let us consider one gateway and l devices connected to it. Compared to 2-IBAS,
there are l+1 extra random secret values, one extra exponentiation for the gate-
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way’s public key, 2l extra exponentiations for the devices’ signing keys and 2l
extra exponentiations for the devices’ public keys in OASIS. Devices’ signature
generation and verification. along with signature aggregation, incur the same
amount of operations in OASIS and 2-IBAS. The overall operational process
of the aggregate signature verification is similar in both schemes; however the
number of operations differs in OASIS and 2-IBAS. We detail those changes in
Table 2.

Type of operation Number in 2-IBAS Number in OASIS

Pairing 4 2 + 2l
Multiplication in GT 2 l + 1
Exponentiation 2 + l 2l
Addition in Zp l l
Multiplication in G l + 1 l

Table 2: Numbers of operations for VerifyAgg in 2-IBAS and OASIS.

Running VerifyAgg is more cumbersome in OASIS than in 2-IBAS, with
roughly 2l extra pairing computations and twice more exponentiations. How-
ever, verification is led by a powerful verifier, which is not limited in terms of
computation, communication and storage, contrary to the devices within the
network. Hence, it would not impact the feasibility of OASIS in IoT distributed
systems.

4.2 Implementation

We have implemented our solution in a sub-network with one gateway and l
devices. We chose the cryptographic library MIRACL1, an open source SDK
for elliptic curve cryptography. MIRACL enables to build security into PC but
also constrained environments, such as IoT. We used a processor 2.4 GHz Intel
i5 520M to run our tests. We tested our solution with l = 10, 50 and 100 devices
to represent a wide range in one sub-network. We did not include the algorithms
SecretGengat and SecretGendev since there is no costly operation. Table 3 lists
the four Super-Singular Curves (SSCs) proposed by MIRACL. MIRACL enables
pre-computation mechanisms to optimize costly pairing calculations.

Embedding AES
Curves Field Modulus/exponent degree security

SSC 1 GF(p) 512-bit modulus 2 80 bits
SSC 2 GF(p) 1536-bit modulus 2 128 bits
SSC 3 GF(2m) m = 379 4 80 bits
SSC 4 GF(2m) m = 1223 4 128 bits

Table 3: Super-singular curves provided by MIRACL.

Timings, shown in Table 4, were collected per algorithm, based on exponen-
tiations and multiplications in G, and pairings in GT . The algorithms Sign and

1https://github.com/miracl/MIRACL/tree/master

15



Verify were run for one device. The algorithms Aggregate and VerifyAgg were
run for l devices, where l = 10, 50 or 100. Pairing calculation optimization is
denoted as (o).

Algorithms \ Curves SSC 1 SSC 2 SSC 3 SSC 4

Setup 1.49 0.38 13.57 2.57
(o) 0.30 – 3.01 –
KeyGengat 1.49 0.38 13.57 2.57
(o) 0.30 – 3.01 –
PubKeyGengat 1.49 0.38 13.57 2.57
(o) 0.30 – 3.01 –
PartKeyGendev 4.47 1.14 40.71 7.71
(o) 0.90 – 9.03 –
KeyGendev 2.98 0.76 27.14 5.14
(o) 0.60 – 6.02 –
PubKeyGendev 2.98 0.76 27.14 5.14
(o) 0.60 – 6.02 –
Sign 7.45 1.90 67.85 12.85
(o) 1.50 – 15.05 –
Aggregate for l = 10 11.92 3.04 108.56 20.56
(o) 2.40 – 24.08 –
Aggregate for l = 50 71.52 18.24 651.36 123.36
(o) 14.4 – 144.48 –
Aggregate for l = 100 146.02 37.24 1329.86 251.86
(o) 29.4 – 294.98 –
Verify 13.19 4.97 130.49 77.54
(o) 4.05 – 47.17 –
VerifyAgg for l = 10 81.23 29.99 749.15 444.20
(o) 20.25 – 196.93 –
Aggregate for l = 50 383.63 141.19 3498.75 2073.80
(o) 92.25 – 862.53 –
VerifyAgg for l = 100 761.63 280.19 6935.75 4110.80
(o) 182.25 – 1694.53 –

Table 4: Timings in milliseconds.

Selecting the curve SSC 3 implies bigger times for all algorithms. However,
with pairing calculation optimization, then timings are similar to SSC 4, for
which the optimization is not supported. Moreover, SSC 1 enables the system
to run 10x faster than with SSC 3, for the same security level. Similarly, the
system runs almost 15x slower with SSC 4 compared to SSC 2. Hence, without
optimization and a higher security level, the best results come with SSC 2. With
optimization and a lower security level, the best results come with SSC 1.

Algorithms for key generation operate fast when run independently. How-
ever, when considering those six algorithms and the two additional ones for
secret generation as one unique algorithm, key generation noticeably takes a
longer time. A distributed network includes multiple sub-networks, so multiple
gateways and devices. Hence, timings for key generation would depend on the
total number of entities. However, such remarks could be mitigated since key
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generation is handled by powerful entities (KGC and gateways) and remains
occasional (static keys).

Signing remains quicker than verifying, since the former has no pairing cal-
culation, which is the most expensive operations. The algorithm Aggregate runs
faster than VerifyAgg for the same reasons. Execution times for Aggregate and
VerifyAgg are roughly linear in the number l of signers in a sub-network, since
their number of operations is O(l). Pairing pre-computations, available for SSC
1 and SSC 3, are beneficial; however, at the cost of a lower security level (80
bits). We recall that the verifier is powerful with no resource constraints and
checks much less signatures compared to the total number of devices in the net-
work thanks to the aggregation mechanism, hence yielding pairings acceptable.

As for most of IoT networks, execution times depend on the total number of
participating entities. Nevertheless, our distributed architecture enables to keep
a number of devices relatively low in each sub-network. For instance, 20 sensors
per human body would be installed in a HWMSN [Ragesh and Baskaran(2012)].
Therefore, OASIS could be deployed in an IoT distributed environment; espe-
cially when implemented with SSC 1/(o) for 80-bit security and with SSC 2 for
128-bit security.

5 Conclusion and Future Work

We presented OASIS, a new CLAS scheme for IoT with an organizational archi-
tecture based on 2 levels, mitigating the complex PKI certification management.
To alleviate the key escrow problem succinct to identity-based schemes, OASIS
enables gateways and devices to create their own secret value. We gave intu-
itions to prove our scheme secure in the random oracle model. We also evaluated
our solution to verify its suitability in IoT distributed networks.

OASIS considers a 2-level hierarchy, with a KGC, few gateways and multiple
devices. Future work will consider an organizational chart with N levels to
obtain a more generic solution in larger distributed networks. Moreover, we
quickly discussed how devices missing a round could be handled. Future work
will focus on formal mechanisms to track those missing devices.

References

[Al-Riyami and Paterson(2003)] S. S. Al-Riyami and K. G. Paterson. 2003.
Certificateless public key cryptography. In Proc. Cryptology-ASIACRYPT,
Vol. 2894. Lecture Notes Computer Science, Springer, 452–473.

[Ameen et al.(2012)] M. A. Ameen, J. Liu, and K. Kwak. 2012. Security and
privacy issues in wireless sensor networks for healthcare applications. J.
Med. Syst.. 36, 1 (2012), 93–101.

[Au et al.(2007)] M. H. Au, Y. Mu, J. Chen, D. S. Wong., J. K. Liu, and G.
Yang. 2007. Malicious KGC attacks in certificateless cryptography. In Proc.
ACM Symp. Inf. Comput. Commun. Sec. 302–311.

[Boneh et al.(2003)] D. Boneh, C. Gentry, B. Lynn, and H. Shacham. 2003. Ag-
gregate and verifiably encrypted signatures from bilinear maps. In Proc.

17



Cryptology-EUROCRYPT, Vol. 2656. Lecture Notes Computer Science,
Springer, 416–432.

[Cui et al.(2018)] J. Cui, J. Zhang, H. Zhong, R. Shi, and Y. Xu. 2018. An
efficient certificateless aggregate signature without pairings for vehicular
ad hoc networks. Inf. Sci. 451 (2018), 1–15.

[de Schatz et al.(2012)] C. H. Vallejos de Schatz, H. P. Medeiros, F. K. Schnei-
der, and P. J. Abatti. 2012. Wireless medical sensor networks: design
requirements and enabling technologies. Telemed J. E. Health 18, 5 (2012),
394–399.

[Gayathri et al.(2019)] N. B. Gayathri, G. Thumbur, P. R. Kumar, M. Z. U.
Rahman, P. V. Reddy, and A. Lay-Ekuakille. 2019. Efficient and secure
pairing-free certificateless aggregate signature scheme for healthcare wire-
less medical sensor networks. IEEE Internet of Things J. 6, 5 (2019),
9064–9075.

[Gentry and Ramzan(2006)] C. Gentry and Z. Ramzan. 2006. Identity-Based
Aggregate Signatures. In Proc. Int. Conf. Theor. Pract. PKC. 257–273.

[Gong et al.(2007)] Z. Gong, Y. Long, X. Hong, and K. Chen. 2007. Two certifi-
cateless aggregate signatures from bilinear maps. In Proc. ACIS Int. Conf.
Softw. Eng., Artif. Intell., Netw., Parallel/Distrib. Comput. 188–193.

[Gritti et al.(2018a)] C. Gritti, R. Molva, and M. Önen. 2018a. Lightweight
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