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Abstract

Targeting RNA with small molecules represents a promising yet relatively unex-

plored avenue for the design of new drugs. Nevertheless, challenges arise from the

lack of computational models and techniques able to accurately model RNA systems,

and predict their binding affinities to small molecules. Here, we tackle these difficul-

ties by developing a tailored state-of-the-art approach for absolute binding free energy

calculations of RNA-binding small molecules. To do so, we combine the advanced
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AMOEBA polarizable force field, which accounts for both accurate multipolar electro-

statics and many-body effects, to the newly developed Lambda-Adaptive Biasing Force

(Lambda-ABF) scheme associated to refined restraints allowing for efficient sampling.

Furthermore, to capture the free energy barrier associated to challenging RNA confor-

mational changes, we apply machine learning to identify effective collective variables in

order to use them into further enhanced sampling simulations based on an evolution

of metadynamics. Applying this computational protocol to a complex Riboswitch-like

RNA target, we demonstrate quantitative predictions. These results pave the way for

the routine application of free-energy simulations in RNA-targeted drug discovery, thus

providing a significant reduction in their failure rate.

Introduction

RNA-targeting therapeutics offer an attractive alternative to reach traditionally undruggable

proteins and expand the druggable target space in the human genome. Indeed, RNA can

adopt three-dimensional (3D) structures, conferring varied functional roles in human biol-

ogy as well as disease-related dysfunction. They are unique molecules capable of interacting

with all three major forms of biological macromolecules: proteins, DNAs, and RNAs. Due to

their diverse mechanisms of action, including gene silencing, splice modulation, and protein

interaction, RNA therapeutics offer a versatile platform for drug development.1–4

Therapeutic strategies to target RNA include nucleotide-based agents such as (i) antisense

oligonucleotides (ASOs), small interfering RNA (siRNA), and microRNAs (miRNAs) that

can directly target messenger RNAs (mRNAs) and noncoding RNAs (ncRNAs) through

Watson–Crick base pairing, (ii) clustered regularly inter-spaced short palindromic repeats

(CRISPR) gene editing that can directly modify target RNA sequences to treat specific dis-

orders, (iii) and small molecules that recognize RNA structures.2 While ASOs and CRISPR

editing have been invaluable to the field of chemical biology, their applications in therapeutics
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lacks efficient delivery strategies and presents significant adverse reactions.5,6 These faced

difficulties are due to their physico-chemical properties (size, charge,...), off-target effects,

interactions with the immune system, rapid clearance and nuclease degradation. Alterna-

tively, small molecules offer a promising alternative with potential for oral bio-availability

and blood–brain barrier penetration. In particular, the extensive medicinal chemistry knowl-

edge allows to systematically optimize pharmacokinetics and potency. Moreover, functional

RNAs or RNA motifs are highly structured and form binding pockets or clefts that are ac-

cessible by small molecules.

Overall, targeting RNA with small molecules is emerging as a promising drug discovery ap-

proach. Such molecules interact with various target RNA substrates, including RNA struc-

tural motifs (such as hairpins, bulges, and internal loops), RNA enzymes (ribozymes), and

specific RNA sequences.7,8 Several binders have been identified and exhibit various modes of

action (MOAs), from simple binding to direct cleavage or recruitment of endogenous nucle-

ases. These molecules modulate diverse biological processes, such as inhibiting bacterial and

viral translation (e.g. ribocil and a riboswitch in Escherichia coli,9 2-aminobenzimidazole

derivatives and the hepatitis C internal ribosome entry site (IRES),10 respectively), and di-

recting splicing by acting as molecular glues with cellular proteins (e.g., branaplam11 and

the FDA-approved risdiplam12).

Challenges arise when tackling these systems throughout the drug discovery process and

more specifically at the early stages, where the computer-aided drug design (CADD) tools

and simulation approaches are essential to characterize the target. Understanding its struc-

tural dynamics as well as its mechanism of action and interplay with other partners will guide

the implementation of a pertinent inhibition or modulation mechanism. However, current

methods face significant challenges in addressing the key obstacles associated with struc-

ture determination, accurate computational models, and reliable affinity prediction methods,
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which are the key elements required to guide the initial molecular design and rational drug

optimization phases.

RNA’s chemical composition is distinct from proteins due to a highly electronegative sur-

face potential associated to a limited buried surface area. It is highly charged, dynamic,

and can adopt different conformations. In addition, divalent metal ions play an important

role in its structural stability. Since RNA is also surrounded by ions and polarizable water

molecules, it makes its targeting very challenging without having a reliable computational

model that encompasses an accurate treatment of electrostatics.13,14 This can be addressed

by using second-generation force fields that account for many-body polarization effects.15,16

Indeed, their inclusion in simulation play a key role in predicting biophysical properties

governing the interactions between a target, its environment, and a potential drug candi-

date.17 This is the case of AMOEBA, an advanced multipolar polarizable force field that

employs atomic induced dipoles to include polarization effects and atomic multipoles, up to

quadrupoles, to represent the anisotropy of permanent electrostatics.18,19 These non-additive

effects are essential for accurately ranking affinities of small molecules.13,20,21 Although po-

larizable force fields were traditionally considered as computationally slow, limiting their

early adoption, recent advances in computing hardware, especially GPUs (Graphics Process-

ing Unit) have greatly improved the situation.22 Further couplings with enhanced sampling

techniques strongly increased the molecular dynamics (MD) timescales accessible to these

simulations.14,23–28

Computing free energies of binding in silico has become a routinely used tool in drug discov-

ery projects.29,30 Among the existing techniques, alchemical ones, where the transformation

of interest is made through a non-physical path, has proven to be both efficient and reliable,

especially for relative free energies of binding (RBFE) between compounds.31 Computing

Absolute Binding Free Energies (ABFE) is more challenging but also more directly useful

for drug discovery as it does not rely on the knowledge of a reference compound and is
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not limited to ligands sharing a similar binding mode. Computing binding affinities of small

molecules bound to RNA or DNA with such methods remain a daunting challenge when com-

pared to proteins.32–36 Given the particular nature of RNA, it is considerably more sensitive

to the protocol adopted than in the case of small molecule-protein complexes, especially

when the ligand is large, charged, with highly flexible, elongated structure. In addition,

both the RNA target and the ligand remain exposed to the solvent and the counterions, in

contrast to ligand-protein complexes in which the ligand is in a partly buried protein cavity

and interacts with only a limited number of "discrete" water molecules without intrusions

from a counterion, which is common in RNA systems.

Furthermore, the shape of the ligand and its binding mode, i.e. intercalation or groove bind-

ing, will impact the overall protocol used to get ABFEs, especially in terms of the choice and

the number of restraints used to keep the ligand in place during simulations and facilitate

convergence.37,38 Other aspects such as the discretization of the alchemical path (i.e. the

so-called "lambda windows" used in standard methods) and the sampling time are critical

factors that should be taken into account when developing a tailored protocol within a well-

defined workflow for ABFE calculations for RNA (and DNA) small molecule binders.27,32,39

Moreover, the free energy barrier associated with the significant conformational change that

may exist between the Apo and Holo structures of the target is notoriously challenging to

estimate.40

A recently developed technique, the Lambda-Adaptive Biasing Force (Lambda-ABF) ap-

proach, grounded on λ-dynamics combined with a newly developed multiple-walker adaptive

biasing force bias, bypasses the discretization of the alchemical path and enables efficient

sampling of orthogonal degrees of freedom through the variable nature of the alchemical vari-

able. In combination with a recently introduced restraint scheme,38 it has shown improved

performance compared to more standard methods.27

In this work, the inhibition of the hepatitis C internal ribosome entry site (HCV-IRES)
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IIa subdomain by 2-aminobenzimidazole derivatives is taken as a case study to address the

aforementioned challenges and to illustrate how advanced and state-of-the-art computational

techniques can be employed to compute the affinity of a class of small molecules for their

RNA target with high accuracy.

The HCV-IRES is essential for the initiation of viral protein synthesis and adopts well-defined

folds that are potential targets for antiviral translation inhibitors. The 3D structure of the

IRES domain IIa in complex with a benzimidazole translation inhibitor at 2.2 Å resolution

(PDB ID 3TZR) was determined and provides insights into inhibiting its function.10,41 This

system is chosen for its complexity that makes it one of the most challenging systems for

atomistic simulations and absolute binding affinity calculations. First, the ligand-binding site

has an intricate architecture, organized by a metal spine at the back of the cavity. Addition-

ally, it contains three magnesium ions as intrinsic structural components (Fig. 1). Moreover,

the inhibitors are 2-aminobenzimidazole derivatives containing 2 to 3 positive charges, as

well as several aromatic and non-aromatic cycles with lengthy arms (see Fig. 2).42 Finally,

the comparison of the structures of bound and unbound RNA shows that the RNA under-

goes a dramatic ligand-induced conformational adaptation from an L-shaped to an extended

form, creating a deep pocket that resembles the substrate binding site in riboswitches. Also,

the aforementioned three magnesium ions undergo adaptive reorganization upon binding of

the benzimidazole ligand.41

In order to comprehend the binding mode of these inhibitors and reproduce their binding

affinities, we have resorted to a computational model that accounts for the underlying effects

of polarization and electron anisotropy, AMOEBA,18,43,44 recently parameterized for DNA

and RNA using quantum chemistry (QC) methods19 and tested in several oligonucleotide

simulations.32,33,45 We have also used the massively parallel GPU-accelerated molecular dy-

namics Tinker-HP software package22,23,46,47 coupled to the Colvars library.27,48 We have put
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in place a novel state-of-the-art approach for ABFE calculations tailored for Riboswitch-like

RNA using the Lambda-ABF scheme27 combined with positional, orientational, and con-

formational restraints.38 We also propose a strategy to estimate the free energy difference

associated to the conformational change between the Apo and the Holo structure of the

Riboswitch through advanced simulation techniques leveraging machine learned collective

variables.49

Methods

System preparation

The initial input for the simulation comprises the 3D X-ray structure of Riboswitch-like RNA

in the presence of a benzimidazole derivative (ligand 4 shown in Fig. 1 and Fig. 2d), obtained

from the Protein Data Bank (PDB ID: 3TZR, resolution 2.21 Å). Using this structure as a

starting point, we generated the input for all other ligands illustrated in Fig. 2. Concerning,

ligands 5 and 6 which are diastereomers they were designed to be conformationally restricted

benzimidazoles to increase the binding, and the desired conformation was separated by

HPLC.42 Hence, for our simulations the desired 3D conformation was generated based on

ligand 4 (SS0 in 3TZR). For consistency, we used a 30-mer RNA, as depicted in Fig. 1b, with

all compounds. In the work of Seth et al., ligands 4, 5, and 6 were measured with a 40-mer

construct, while ligands 1, 2, and 3 were measured with the 29-mer construct. However,

this does not significantly affect the KD value or the ranking, given that the results for

compound 3 reported in Tables 2 and 3 of the paper42 are consistent. Compound 3 was

tested with both the 29-mer and 40-mer RNA and it was found to have a slightly stronger

binding to the 29-mer (KD=10 µM in the 40-mer compared to 17 µM in the 29-mer). Given

the experimental measurement error, we expect the results to be within the same range.
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Figure 1: Structural features of the Riboswitch-like RNA-Benzimidazole com-
plex. (a) Overall view of the Riboswitch-like RNA complex with Benzimidazole (ligand
4) after equilibration. The ligand is depicted in fluorescent blue. Three Mg2+ ions, shown
in green, are coordinated by surrounding water molecules. (b) Schematic representation of
interactions within the ligand-binding site. Hydrogen bonds are depicted by dashed lines.
Non-Watson–Crick base pairs are shown with solid lines and symbols according to Leontis et
al.50 Stacked lines (≡) denote base stacking and intercalation of the ligand, which is colored
pink. Residues that interact with the benzimidazole are in red. (c) Detailed view of the
ligand-binding site. The bases of G52 and A53, which form the intercalation site for the
benzimidazole scaffold, are shown in pink. The purine base of G110 is colored yellow. Hy-
drogen bond interactions between G110 and the ligand are depicted with dashed lines and
labeled as HB1 and HB2. Possible hydrogen bonds between the NH+ group of the ligand
and A109 and G52 are also shown by dashed lines. (d) Surface representation highlighting
the ligand-binding pocket. The interaction regions of A53 and G52 are colored pink, G110
is shown in yellow, and A109 is depicted in orange.
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Figure 2: 2D chemical structures of translation inhibitors. Left: 2D structure of the
scaffold with common atoms labeled 1 to 7. The potential growing regions are highlighted
as R1 and R2. Panels (a) to (f) display the 2D structures of ligands 1 through 6. For each
ligand, the dissociation constant (KD) and the corresponding size of RNA are reported from
Ref. 42.

AMOEBA Force field parameters

The systems studied here are highly charged and dynamic, while being surrounded by ions

and polarizable water molecules. To accurately model these systems, we employed the

AMOEBA force field, which accounts for polarization and anisotropy through a multipo-

lar representation of electrostatics. AMOEBA has been recently parameterized for DNA

and RNA based on QC methods and validated in several oligonucleotide simulations.19 Addi-

tionally, we used the Tinker-HP software on GPUs46 for efficient computational performance.

Generating AMOEBA Force Field Parameters for Small Molecules: Ligand parameterization

is performed using QC calculations and the Poltype package51 which facilitate the automated

generation of AMOEBA parameters. The process begins with an SDF file defining the atom

coordinate, bond order, ionic state, etc. Prior to geometry optimization, one conformation

was selected from 500 conformers generated by the RDKit tool. Structure characteristics
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including intra-molecular hydrogen bonds, radius of gyration, solvent-accessible surface area

were considered during the selection. Key torsion angles were kept frozen to the values of the

selected conformer during subsequent MP2/6-31G(d) geometry optimization to maintain the

preferred conformation. Two single-point (SP) calculations were performed on the optimized

structure using the Psi4 software:52 MP2/6-311G(d,p) for low-level and MP2/aug-cc-pvtz for

high-level. Electron density from the low-level SP was used with the GDMA program53 (with

switch value 0) to generate initial atomic multipoles (charges, dipoles, and quadrupoles).

Electron density from high-level SP was employed to calculate the electrostatic potential

(ESP) on defined grids surrounding the molecule. The POTENTIAL program within Tin-

ker 8 software54 further refined the dipoles and quadrupoles by fitting them to reproduce

the ESP. Valence (bond, angle, stretch-bend, and opbend), van der Waals (VDW), and tor-

sion terms were matched using SMARTS patterns and assigned from published parameter

databases.55 Notably, VDW parameters for aromatic rings were assigned using those from a

previous study56 due to their improved interactions with DNA and RNA. For any missing

torsion parameters, a conventional spin-and-fit procedure was used. This involved restrained

optimization using the xtb program57 with GFN-2 model58 and SP energy calculations at

ωb97x-d59/6-311+G(d) level in Psi4 software.52 To minimize computational cost and po-

tential steric clashes during rotating the bond of the whole ligand, a fragment molecule

containing the fitted torsions was extracted from the ligand and used for torsion parameter

fitting.

MD Simulations

All systems were neutralized by adding the appropriate number of counterions (K+) in a

water box of 80 Å × 80 Å × 80 Å such that the distance between the FLAP and its periodic

images is at least 16 Å. The systems contain ∼52,000 atoms and were subject to NVT and

NPT simulations for equilibration before production.
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The systems underwent initial minimization using Tinker-HP "minimize" program, followed

by a gradual heating process in 250 ps intervals. The temperature was increased from 50 K

to 100 K, 200 K, and 300 K under the NVT ensemble, with RNA-ligand atoms restrained

using a force constant of 10 kcal/(mol·Å2). During this step, MD simulations were conducted

using the Verlet integrator with a time step of 1.0 fs. Subsequently, the systems were equi-

librated in the NPT ensemble at 1 atm using the same restraints with force constants of 10

and 5 kcal/(mol·Å2), each for 0.5 ns, using the RESPA integrator60 and a time step of 2 fs.

To relax the water molecules around the ions at 300 K, a 10 ns restrained MD simulation

was run for each system with a force constant of 1 kcal/(mol·Å2), followed by simulations

where the restraint was applied only to phosphate (P) atoms and Mg2+ ions with a force

constant of 1 kcal/(mol·Å2), run for 5 ns. The ligands were stabilized by employing distance-

to-bound-configuration (DBC) restraints38 through the Colvars library,48 constraining their

root mean square deviation (RMSD) from the bound configuration. For DBC definition,

all the ligands’ heavy atoms and the RNA heavy atoms within a 4 Å radius of the ligand

were included. Temperature and pressure were controlled by the Bussi61 thermostat and

Berendsen62 barostat, respectively. Van der Waals interactions utilized a 9 Å cut-off, while

electrostatic interactions were treated by particle mesh ewald (PME)63 with a real-space

cutoff of 7 Å. Induced dipoles were calculated with a Preconditioned Conjugate Gradient

(PCG) solver with a convergence tolerance of 1 ×10−5 Debye.64

The polyanionic nature of RNA attracts water molecules and counterions, influencing its

stability. Additionally, Mg2+ ions can shed their hydration shells and establish strong in-

teractions with specific sites in the RNA, promoting local structural rearrangements. To

mitigate artifacts during the production phase, positional restraints were applied to the

phosphate (P) atoms and Mg2+ ions with a force constant of 1 kcal/(mol·Å2). To prevent

fraying, distance restraints were added to enforce the hydrogen bonds between the terminal

base pairs. The partially restrained simulations were run for 40 ns for production.
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Distance-to-Bound-Configuration (DBC) coordinate for Binding Pose

Determination and Restraint Definition

Accurate alchemical absolute free energy calculations require the use of restraints to ensure

proper convergence. Typically, these restraints involve harmonic restraints between centers

of mass of the ligand and the binding site (positional restraints)65 or more sophisticated

methods like ’Boresch’ restraints,66 which act on distances, angles, and dihedrals (positional

and orientational restraints). In this study, we employed a more refined approach using DBC

collective variables. DBC measures the RMSD of ligand coordinates relative to the mov-

ing frame of the receptor’s binding site.38 This metric captures positional, orientational and

conformational deviation of the ligand in a single collective variable. The restraint is flat-

bottomed with a starting value that matches the distribution characteristic of the binding

mode. This distribution can be efficiently monitored using the Colvars Dashboard67 within

the VMD software.68 Depending on the binding scenario, this distribution will be narrow

for poses that are tightly bound, while it will be broader for systems with a diverse set of

loosely bound configurations. The primary goal of these restraints is to restrict sampling

during the decoupling process to those configurations that are relevant in the fully coupled

state and thus facilitate convergence.

Lambda-ABF for Absolute Binding Free Energy (ABFE) Simulations

As stated above, we have resorted here to alchemical free energy simulations in which the

ligand is progressively “alchemically” decoupled from its environment, first in complex with

the Riboswitch host, and separately from the bulk solvent. The standard free energy of bind-

ing is obtained through a thermodynamic cycle. Such techniques require the sampling of
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the alchemical Hamiltonians. State-of-the-art methods typically use a predefined λ schedule

with simulations at fixed λ values and a post-processing stage in which free energy differ-

ences are computed using estimators such as Thermodynamic Integration (TI)69 or Free

Energy Perturbation (FEP).70 However, these fixed-λ simulations can hinder the relaxation

of orthogonal degrees of freedom that may benefit from a variable λ exploration which can

be made possible through additional enhanced sampling techniques such as Hamiltonian

Replica Exchange71 or Expanded Ensemble methods.72 Here, we used the newly developed

Lambda-ABF approach27 which enables efficient relaxation of orthogonal degrees of freedom

due to the variable nature of λ, as well as ergodic sampling thanks to the ABF bias. Its

sampling efficiency has been shown to be superior compared to more traditional techniques.

We utilized its implementation within Tinker-HP, in combination with the Colvars library,48

which facilitates user-friendly convergence estimation without requiring post-processing, and

allows integration with other CV-based methods.

For calculating the free energy surface of our systems at T=300 K, we used four walkers

with the Lambda-ABF method and decoupled VDW and Electrostatics (ELE) interactions

sequentially in separate legs. Each walker was run for 50 ns per leg. We ran three indepen-

dent replicas for each setup. As for the free energy cost associated with the release of the

DBC restraint, it is computed in the gas phase through TI by progressively releasing it to a

compatible harmonic distance restraint which can then be computed analytically.27,38,73

During the alchemical decoupling, the phosphate atoms of the RNA backbone and the Mg2+

ions were restrained with a slight force constant of 1 kcal/(mol·Å2). It allows to , (i) prevent

any destructuration, (ii) measure the ligand binding contribution independently from any

Apo-Holo conformation changes by fixing the endpoint of the thermodynamic cycle.

Concerning the ion concentration used, it is well known that it can significantly impact

the results of binding affinities,74 especially for charged systems such as RNA-ligand com-
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plexes.75 Reproducing all experimental conditions is crucial to get meaningful results in free

energy simulations. However, methodological issues can arise when computing electrostatics

using standard methods like PME in periodic boundary conditions. Although finite size

effects diminish with larger simulation boxes, they may still be non-negligible in practice.76

A notable issue occurs with PME in non-neutralized boxes which happen by default when

scaling down electrostatics of ligands during alchemical simulations. In the reference exper-

imental setup for mass spectrometry (MS) based binding assay that was used to measure

the KD, the incorporation of a physiological ion concentration was not evoked.42 Given the

positively charged nature of all the ligands reported here (2 to 3 positive charges) we cannot

scale down the charge of anions to maintain a neutral charge of the simulation box in this

setup. We have thus employed two distinct protocols for ABFE calculations:

• Neutralized setup (Neut.): K+ counter-ions were added to neutralize the system, which

led to non neutral boxes in the full decoupling state (total charge of 2 to 3, depending

on the ligand). This setup allows us to assess the impact of non neutral boxes and the

absence of physiological ions on binding affinities.

• Physiological Ion Concentration (Phys.): 0.15 Molar of KCl were added to the system

2 to 3 Cl− ions had their charge scaled down during ligand scaling (neutral boxes

maintained). This setup aims at replicating physiological conditions more closely and

evaluating the effect of physiological ionic strength on the computed binding affinities.

OPES Explore

OPES Explore77 is a CV-based enhanced sampling technique which is an evolution of meta-

dynamics.78 It aims at broadening the system’s sampling to a target probability distribution

known as the Well-tempered distribution, defined as

ptg(s) ∝ [P (s)]
1
γ
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where P (s) represents the unbiased marginal distribution of chosen collective variables (CVs),

and γ is the bias factor controlling the broadening.

To achieve this, Gaussian kernels are employed to reconstruct ptg(s), which in turn determines

the bias potential V (s) through the following recursive strategy at step n:

V (s) = (γ − 1)kBT log

(
ptg(s)
Z

+ ε

)
ptg(s) =

1

n

n∑
k=1

Gk(s, sk)

where kB is the Boltzmann constant, T is the temperature set by the thermostat, Z is a

normalization factor, and Gk(s, sk) represents the Gaussian kernel deposited at step k.

The initial Gaussian kernel width, often denoted as SIGMA, typically corresponds to the

standard deviation of s in the initial basin. The bias factor γ is typically set using γ =

∆E/(kBT ), where ∆E is the barrier parameter. The regularization term ε ensures stability

and is related to ∆E through ε = e−∆E/(kBT (1−1/γ)).

The barrier parameter ∆E sets a limit on the maximum bias energy that OPES79 can

introduce into the system. It should be large enough to facilitate transitions away from the

initial basin while preventing the system from accessing irrelevant high-energy states that

are difficult to reverse.

For further details, refer to the original literature introducing the OPES method.77,79

Enhanced CV Design using Deep-LDA

Deep-LDA49 is a way to define CV that correspond to a transition between two conforma-

tional states. It is rooted in Linear Discriminant Analysis (LDA),80 a classical technique in

classification tasks. Here, it is tailored to differentiate between Apo and Holo states observed

in unbiased system simulations.

Standard LDA optimizes Fisher’s ratio wTSbw
wTSww

, where w defines the discriminant direction

s(R) = wTd(R). Here, Sb and Sw represent between- and within-class scatter matrices
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respectively, calculated from descriptor distributions in Apo and Holo states.

Deep-LDA extends LDA by employing a neural network (NN) to process Nd descriptors d,

optimizing LDA within the last hidden layer h. The resulting Deep-LDA CV s = wTh offers

a non-linear, expressive projection that has proven effective in various applications.81–83 To

enhance usability in simulations, we apply a cubic transformation, sw = s+ s3,81,84 ensuring

smoother distributions.

Results

In this section, we first assess the binding mode of the studied small molecules to their RNA

target, followed by computing their binding affinities. Finally, we explore the conformational

changes between the Apo and Holo states of the RNA.

Binding mode analysis

The RNA architecture of the ligand-binding pocket consists of the phosphate of U56, which

is rotated into the RNA helix major groove, and two magnesium ions anchored between the

phosphate oxygen atoms and the bases of A57 and U59 (Fig. 1b). The extreme contortion of

the RNA backbone that directs the U56 phosphate into the helix interior is further pinned in

place by hydrogen bonds between the C55 phosphate and 2’-hydroxyl groups of the flanking

residues A54 and U56. The elaborate network of backbone and metal interactions forces the

base of A54 to project away from the RNA whereas residues C55 and U56 tightly pack in

the RNA helix major groove as well as against the backbone of C58 and U59 (Fig. 1d). The

third magnesium ion closes part of the solvent exposed part of the ligand site by bridging

the RNA strands with interactions at the base of A53 and the C108 phosphate. The top

and bottom part of the binding pocket are stabilized by base triples which form through

cross-bracing interactions along the RNA helix with A53 docking at the Hoogsteen edge of

A109 and A57 interacting with the sugar edge of C111. Additional hydrogen bonds sta-
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bilize the distorted internal loop in the benzimidazole complex and include interactions of

the U56 phosphate with the C58 base and of the C55 2’-hydroxyl with the A53 base (Fig. 1b).

Figure 3: 3D representation of the binding modes of the studied ligands and their
interactions with the environment. Ligands are depicted in licorice style and colored
in cyan, while the phosphate backbone is represented by a yellow meshed ribbon. Green
arrows indicate hydrogen bond donors, and purple circles indicate π-π stacking interactions
between the G52, A53 bases and the ligand. The positively charged nitrogen (N) atoms are
shown in red with a superscript (+). The chirality labels are displayed as S or R for chiral
centers. Panels (a) to (c) represent the aforementioned information for ligands 1 through 6,
respectively.

Understanding this intricate architecture is key to analyzing how the ligands interact with

the RNA structure. It is well-known that the contribution of hydrogen bonding and stacking

interactions are predominate in RNA recognition.85 Following the detailed relaxation pro-

cess described in the simulation setup, we analyzed the binding modes obtained from the 40

ns MD simulations. Figure 3 illustrates the binding modes of all ligands within the target

RNA. Three primary interactions are identified as crucial for stabilizing the ligand within

the binding pocket: (i) a π-π stacking interaction occurs between the ligand and the nucleic

bases G52 and A53, (ii) two hydrogen bonds (labeled HB1 and HB2) formed between the
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central core of the ligand (benzimidazole) and G110 (see Fig. 1c), and (iii) an additional

ionic interaction is established between the NH+ moiety of the dimethylazanium group at

the end of each arm of the ligand and the non-bridging phosphate oxygen atoms (PO) of

A109 (or G110) and the PO of G52 (or A53) on the opposite strand (depicted as Na and Nb,

respectively in Fig. 3).

With these key interactions established, their evolution as a function of time was computed

throughout the trajectory and for each ligand; the normalized distributions are shown in

Fig. 4. For the π-π stacking interactions, we computed the distance between the center of

mass (labeled as COM) of the purine rings of G52 and A53, and the COM of the benzim-

idazole scaffold of the ligand (refered to as LIGCOM in Fig. 4). For the distances between

G52COM and LIGCOM, the results reveal that for most ligands, the distribution is narrow

and centers around 4.1 to 4.4 Å, consistent with the typical π-π interaction range of 3.3 to

4.4 Å. In contrast, for ligands 1 and 2, the distribution is broader, with ligand 1 centering

around 4.8 Å while showing a shoulder at 4.0 Å. As for ligand 2, the distribution centers

around 4.3 Å with a shoulder at 5 Å. This is concomitent with the fact that ligand 1 is a

non-binder, while ligand 2 is the weakest binder in the list. Similarly, the distribution of

distances between A53COM and LIGCOM shows a comparable trend for all ligands. Here, the

distribution also centers around a narrow range, specifically between 3.6 to 3.8 Å for ligands

3 to 6. This indicates that the overall trend in interaction distances is consistent with the π-π

stacking interactions observed with G52COM, albeit with a slightly shorter average distance

for the interactions involving A53COM.

Next, the hydrogen bond interactions, HB1 and HB2, were analyzed. For these interactions,

ligand 1 exhibits a broader distribution, suggesting a weaker and more transient interac-

tion. In comparison, ligand 6 exhibits a narrower distribution, centered around 2 Å with the

highest intensities, reflecting strong and consistent interactions. Ligands 3, 4, and 5 show a

peak similar to ligand 6 for HB2, although with slightly lower intensity for HB1. Ligand 2
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shows a similar peak as the other ligands; however, it has a tail at low probability, suggesting

occasional weaker interactions.

Finally, regarding the ionic interaction, the Na atom of ligands 2, 3, and 4 forms a hydrogen

bond with the phosphate (PO) atoms of A109, as indicated by a sharp peak around 2 Å.

Ligand 6 is unique in forming an HB with the PO atom of G110. For the second arm of the

ligand (Nb atom), ligands 4, 5, and 6 alternate between the PO atom of G52 and that of

A53, as evidenced by multiple peaks in the distribution, one of which is centered around 2

Å. Ligands 1, 2, and 3 are also the only ligands that do not form a HB with the PO atom

of G52, nor with A53, except for a rare HB with the PO atom of G52 at 2 Å for ligand 3.

Binding Affinity Calculations

To accurately predict the binding affinities of extended charged ligands (bearing 2 to 3

charges) bound to a long 30-mer riboswitch-like RNA with three structural Mg2+ ions as

intrinsic components in the vicinity of the binding pocket, we have developed a specific pro-

tocol utilizing the Lambda-ABF method and DBC restraints.

As free energy is a state function, the computed ∆Gs are fundamentally independent of the

intermediate states sampled during an alchemical simulation. This allows for tailored mod-

ifications in these states to ensure better sampling and convergence as it is routinely done

in restraining the ligand to keep it in the binding site while scaling down its non-bonded

interactions with the environment. As mentioned earlier, different types of restraints exist

that can either be positional, or positional and orientational. However, these two methods

suffer from distinct limitations,27,38 especially when considering elongated ligands containing

two flexible arms. What is required in such systems is positional, orientational as well as

conformational restraints, that can be defined through the newly developed DBC collective

variable, which is the RMSD of the ligand in the moving reference frame of the binding

site.38 Therefore, to facilitate sampling and maintain the ligand in the binding site, we em-

ployed DBC restraints between the benzimidazole ring of all ligands and heavy atoms from
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Figure 4: Normalized distributions of key interaction quantities for six ligands.
Panels (a) to (h) show the distributions for distances between (a) G52COM and LIGCOM, (b)
A53COM and LIGCOM, (c) HB1 distances, (d) HB2 distances, distances between (e) A109PO
and LIGNa, (f) G110PO and LIGNa, (g) LIGNb and G52PO, (h) LIGNb and A53PO. The colors
represent different ligands as indicated in the legend.
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the RNA binding site. The selected atoms are highlighted in SI Fig. S15.

Besides, it is well known that starting alchemical simulations from Holo structures may lead

to incomplete relaxation towards the Apo structure.86 This incomplete relaxation can result

in a significant free energy difference, potentially causing errors of several kcal/mol in the final

prediction. Typically, to address this, all predicted affinities are usually shifted by a common

value to account for this discrepancy.86 This adjustment assumes that all systems experi-

ence the same degree of relaxation from the Holo to the Apo state. To ensure the validity of

this assumption, facilitate the sampling and maintain structural stability of the RNA-ligand

complex, we implemented slight restraints with a force constant of 1 kcal/(mol·Å2) on the

phosphate (P) atoms of RNA and Mg2+ ions. These adjustments were designed to avoid

impacting the fully bound state, ensuring the integrity of the complex throughout the sim-

ulations. This approach allows us to independently estimate and account for the relaxation

effect, thus improving the accuracy of our absolute binding affinity calculations.

In the case of our system, it is known that benzimidazole inhibitors can induce a conforma-

tional change characterized by a widened interhelical angle in the IRES subdomain IIa.41,87,88

This conformation facilitates the undocking of subdomain IIb from the ribosome, leading to

the inhibition of IRES-driven translation in HCV-infected cells. As illustrated in Fig. 5,

the L-shaped RNA structure in the Apo state is known to adopt a straighter configura-

tion.41,87,88 Apart from the restructuring of several nucleic bases, this conformational change

also includes a rearrangement of Mg2+ ion positions (Fig. 5a and b). To mitigate any po-

tential bias from such known conformational changes, we applied the restraints described

earlier. This approach helps ensure that such known rearrangements are properly accounted

for, thereby improving the reliability of our ABFE calculations.

To obtain the free energy surface for each system at T = 300K, we ran three replicas, each

utilizing four walkers. Calculations were conducted in both the complex (bound state) and
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solvent (ligand in the bulk) phases. For the complex phase, simulations ran for approximately

50 ns for both VDW and ELE legs. In contrast, a 20 ns run was enough for convergence

in the solvent phase for both VDW and ELE components. Raw data from each replica are

provided in the Supplementary Information (SI), Tables S1 and S2. All convergence plots

are provided in SI, see Figs. S1 to S24. The free energy cost associated with the release

of the DBC restraint is readily computed in the gas phase using TI.38,73 This is achieved

by gradually releasing the restraint to a compatible harmonic distance restraint, the cost of

which can be computed analytically (see Table S3 in SI).

Figure 5: Conformational Differences between Apo and Holo Forms of RNA. (a)
L-shaped structure of the Apo state (PDB ID: 2nok) and (b) straight structure of the Holo
state (PDB ID: 3tzr). (c) Alignment of the Apo and Holo structures. The positions of
Mg2+ ions in each structure are illustrated, denoted as ia and ih for the Apo and Holo states
respectively, where i = 1− 3. The key bases within the binding pocket are highlighted, with
G110 in dark yellow and G52 and A53 in pink.

As described in Computational Details, we have employed two distinct setups for ABFE

calculations, one consisting of a neutralized system (Neut.) and a second including a

physiological ion concentration (Phys.). The computed ∆G values in neutralized condi-

tion (∆GComp-Neut) and in the presence of physiological ion concentration (∆GComp-Phys) are

presented in Table 1 and compared with the experimental data. The raw absolute binding
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Table 1: The values of KD, experimental, and computed ∆G for each ligand. Com-
puted ∆GComp are reported for two different conditions (in kcal/mol): neutralized complex
(∆GComp−Neut) and including physiological ion concentration (∆GComp−Phys). For Lig-
ands 4, 5, and 6, the experimental ∆GExp is measured on a 40-mer RNA, while for the rest,
the 29-mer is used. The computed ∆GComp and errors represent the mean and standard
error of the mean from three replicas for each ligand. The raw data for computed ∆G is
reported in parentheses.

Ligand KD ∆GExp ∆GComp−Neut(∆GComp−raw) ∆GComp−Phys(∆GComp−raw)
1 >200 >-5.05 -0.07 (-10.43) ± 0.92 -0.76 (-12.08) ± 0.88
2 40 -6.01 -6.61 (-16.96) ± 0.68 -6.67 (-18.00) ± 0.83
3 8 -6.69 -6.53 (-16.88) ± 1.54 -6.58 (-17.90) ± 0.75
4 0.86 -8.27 -7.13 (-17.48) ± 0.65 -8.42 (-19.75) ± 1.35
5 3.5 -7.44 -7.21 (-17.56) ± 0.81 -5.66 (-16.98) ± 0.19
6 0.72 -8.39 -9.60 (-19.95) ± 1.54 -9.75 (-21.08) ± 0.05

free energies (∆GComp−raw) consistently exhibit stronger values (favorable) compared to the

experimental results. In order to account for the Apo-Holo conformational change, the raw

binding free energy (∆GComp-raw) is converted to the final binding free energy ∆GComp by

adding a constant shift, which is calculated as follows ∆Gshift =
∑

i G
Exp
i −

∑
i G

Comp
i

N
,86 so that

the mean of computed free energies is equal to the mean of experimental free energies. This

shift yield a value of 10.35 ± 0.91 kcal/mol for the neutral setup and 11.33 ± 1.19 kcal/mol

in the presence of physiological ion concentration. Despite this slight difference, the results

are consistent within the error margins.

The correlation plots are illustrated in Fig. 5. Upon including the systematic shift between

the calculated and experimental binding free energies to accommodate the Apo-Holo protein

reorganization free energy, we observe a correlation between computed and experimental

results across the entire dataset of 0.7 (Pearson r), with a root mean square error (RMSE) of

0.81 kcal/mol and a mean absolute error (MAE) of 0.70 kcal/mol for the neutralized setup

(Fig. 5a). For the setup with a physiological ion concentration, a correlation of 0.7 with an

RMSE of 1.05 kcal/mol and an MAE of 0.84 kcal/mol was observed (Fig. 5b). It’s worth

noting that ligand 1 was excluded from the analysis as it is predicted to be a non-binder in
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agreement with the experimental measurement which showed no binding at 200 µM. These

results show a solid reproduction of the binding mode and a good ranking, with ligand 6 and

ligand 4 identified as the most potent and ligand 1 as a non-binder.

Eventhough the experimental KD measurements were done with 2 different constructs, this

shouldn’t have a large effect on the affinities, as seen for the example of Compound 3, where

KD=10 µM in 40-mer compared to 17 µM in the 29-mer,42 which translate into 0.3 kcal/mol

of difference, or on ranking the selected compounds in our study, it nonetheless might slightly

effect the observed correlations. This is also without considering the error on the experimen-

tally measured affinities.

Figure 6: Experimental vs Computed ∆G values. (a) Neutralized complex, and (b)
complex with physiological ion concentration. Computed ∆G and errors are the mean and
standard error of the mean from three replicas for each ligand. The dark shaded region spans
± 1 kcal/mol; the lighter region spans ± 2 kcal/mol. The color bar represents the absolute
value difference between experimental and computed values. Pearson r, RMSE, and MAE
are reported in the right bottom corner of each plot. The ∆G value of non-binder ligand 1
is reported on the top corner of each panel.
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Apo-Holo conformational change

As mentioned in the above subsection, the ∆Gshift resulting from the energy difference be-

tween the computed ∆G and experimental values is estimated to be between 10.35 and 11.35

± 1.0 kcal/mol, primarily reflects the Apo-Holo conformational change. To substantiate these

findings, employing more direct computational methods is crucial. Given the substantial free

energy barrier associated with the Apo-Holo transition, capturing this difference accurately

requires advanced sampling techniques. As illustrated in Fig. 5, the Apo-Holo conformational

change involves complex collective motions that are challenging to capture with standard

methods. To address this, we employed the OPES-Explore77,79 enhanced sampling method

in conjunction with Deep-LDA,49 a machine learning-based technique specifically designed

to identify effective CVs for complex transitions.

To identify the Deep-LDA CV, we conducted an unbiased simulation of 40 ns from both Apo

and Holo structures, incorporating 47 descriptors that included distances and angles between

various P atoms and three Mg2+ ions. Subsequently, we performed exploratory OPES sim-

ulations, each lasting 10 to 15 ns, with applied biases ranging from 2 to 15 kcal/mol on the

Deep-LDA CV. Notably, a transition from the Apo to the Holo state was observed around

10 ns when the applied bias exceeded 13 kcal/mol (see Fig. S26 and S27 in SI), which aligns

well with the energy change estimated from our Lambda-ABF calculations. However, the

conformational changes of specific bases is not captured by the P and Mg atoms in our

Deep-LDA CV as well as the still approximate nature of the OPES strategy.

Despite the inherent challenges in achieving precise free energy calculations given the sys-

tem’s complexity, our approach provides a valuable qualitative approximation of the free

energy barrier associated with the Apo-Holo conformational change.
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Discussion

The complexity and dynamic nature of RNA, combined with its critical role in various bi-

ological processes, makes it a very difficult target in drug discovery. However, with these

challenges, it becomes essential to harness the latest computational techniques in order to

predict the binding affinities between drug candidates and the target of interest with high

precision. In this study, we present a state-of-the-art approach for calculating ABFEs of

RNA-binding small molecules for application in drug discovery, showcasing its effectiveness

in a challenging RNA system: the HCV-IRES Riboswitch-like RNA. This system presents a

highly charged and flexible RNA structure, an intricated binding site with three magnesium

ions as intrinsic components, ligands with multiple positive charges and several aromatic

and non-aromatic cycles with lengthy arms, as well as a substantial ligand-induced confor-

mational change between the Apo and Holo states.

All in all, by combining the computational performance of the GPU-accelerated Tinker-

HP package to enhanced sampling and machine learning, while leveraging the accuracy of

the AMOEBA force field, we are able to model challenging drug discovery targets such as

RNA and to compute absolute binding affinities to guide drug design with the Lambda-

ABF methodology. This synergy not only overcomes the limitations of available free energy

methods but also establishes a new standard in computational modeling of RNA-ligand inter-

actions. The present work represents a new achievement in computational methodologies for

drug design, where the complexities of RNA and other challenging targets can be addressed

with unparalleled accuracy and speed, thus guiding the development of RNA-targeted ther-

apeutics with precision and confidence.

Supporting Information

Additional figures S1-S24 showing the convergence plots of all alchemical simulations; tables

S1 and S2, show the electrostatic and van der Waals decomposition of the Potential of
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Mean Force (PMF). Illustration of the atoms involved in the definition of the DBC restraint

(Figure S25) as well as the contribution of these restraints to the free energy reported in

Table S3. Figures S26 and S27 report the RMSD of the biased trajectory corresponding to

the Apo/Holo conformational change and the associated PMF.
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