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We investigate a 2d-conservative lattice gas exhibiting a dynamical active-absorbing phase tran-
sition with critical density ρc. We derive the hydrodynamic equation for this model, showing that
all critical exponents governing the large scale behavior near criticality can be obtained from two
independent ones. We show that as the supercritical density approaches criticality, distinct length
scales naturally appear. Remarkably, this behavior is different from the subcritical one. Numerical
simulations support the critical relations and the scale separation.

Models displaying dynamical phase transitions have at-
tracted increasing scrutiny in recent years. Such models
are tightly related to self-organizing criticality: open sys-
tems dynamically adjust their density in order to reach
a critical state at density ρc, often displaying non-trivial
scaling properties. This phenomenon manifests itself, in
a closed system, as a dynamical phase transition: below
ρc, the system reaches an absorbing state, while above
ρc, it remains in a quasi-stationary active state.
A fundamental example of such a model is the con-

strained conservative lattice gas (CLG) [1], also referred
to as facilitated exclusion process in the recent literature.
It is defined as an exclusion particle system (i.e. any sys-
tem site cannot contain more than one particle) on a d-
dimensional lattice, where so-called active particles jump
randomly at rate 1 to each empty nearest neighbor[2]. A
particle is considered active if at least one of its neighbor-
ing sites is also occupied, and the total number of par-
ticles is conserved. Related models featuring an absorb-
ing phase transition have generated an intense research
activity, like for instance the paradigm Manna sandpile

model [3–6]. In particular many of these models, includ-
ing the CLG, exhibit a hyperuniform critical state [7, 8],
for which we still have a limited knowledge. The CLG has
been investigated numerically in [1, 7–9] when d ≥ 2 and
theoretically in [10–16] when d = 1. We focus here on
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the 2-dimensional case, and recall some previous results
already obtained in the 1-dimensional case.

Clearly, this system remains active whenever ρ > 1/2,
and could reach an absorbing state whenever ρ ≤ 1/2. It
appears, however, that in dimension d > 2, the dynami-
cal critical density ρc is strictly smaller than 1/2. That
is, in the regime (ρc, 1/2], even though an absorbing state
will be ultimately reached in any finite system, on physi-
cally relevant timescales a quasi-stationary active state is
observed. In order to illustrate this phenomenon, the av-
erage absorption time is numerically represented in Fig. 1
in both subcritical and supercritical regimes.

The CLG is reflection symmetric and isotropic, and
therefore its macroscopic density profile ρ, taken in the
diffusive space-time scaling limit, is expected to be a
solution to the parabolic equation ∂tρ = div

(

D(ρ)∇ρ
)

with scalar diffusion coefficient D(ρ). In the subcritical
regime ρ < ρc the particles become blocked in subdiffu-
sive time scales (see Fig. 1a), therefore D(ρ) = 0. When
the initial profile has both subcritical and supercritical
regions, the supercritical phase progressively invades the
subcritical “frozen” areas. That is, one should interpret
the above hydrodynamic equation as a Stefan problem.
In dimension 1 this result is established mathematically
in [14], and exploits the explicit expression of the station-
ary states, a feature that is lost in higher dimensions.

In this letter we explore the scaling properties of the
two-dimensional model, with a particular focus on the
active phase. We study the critical exponents for all
relevant macroscopic quantities, both theoretically and
numerically, as it has been done for other models, for
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(a) ρ = 0.279

(b) ρ = 0.334

FIG. 1. Median absorption time in a closed box, of size chang-
ing from 5 to 100. In the subcritical phase (a) the absorption
time grows sub-linearly with the system size. In the supercrit-
ical phase (b) it grows exponentially fast, and the figure illus-
trates nicely that the geometric correlation length, which sep-
arates the absorbing regime from the quasi-stationary regime,
is roughly ξ ≈ 20 at ρ = 0.334.

instance in [17]. We are able to deduce relationships be-
tween those critical exponents, which are of independent
interest, and check them by simulations.

Macroscopic observables. Of particular interest are
the critical and near criticality behavior of the model. It
has been noted in [7] that the CLG could have two sepa-
rate length scales near criticality. While in their simula-
tions these two scales seem to coincide, we will see here
that in the supercritical phase they differ. Let us define:

• The geometric correlation length ξ⊥: this is the
scale which is mostly used in the literature [18,
Section 3.3], and is the one discussed in [1]. It
describes the spread of activity. More precisely, to
sustain activity, particle clusters must self-activate,
i.e., a particle activates its neighbor, which further
activates its neighbors, until closing a cycle and re-
activating the particle we started with. The diam-
eter of this self-activated structure is described by
the geometric correlation length ξ⊥.

This means that, for a finite system of size L, if
L ≪ ξ⊥, then there is no quasi-stationary state,
and in that case activity will decay until dying out.
On the other hand, if L ≫ ξ⊥, then the activity
behaves in the same manner as L = ∞.

• The 2-point correlation length ξ×(ρ): This is the
length over which the 2-point correlation function
decays. This scale is referred to as the crossover

length in [7], where the authors show, in the sub-
critical phase, that: below ξ× the absorbing state is
hyperuniform [19, 20]; above ξ× it is Poisson-like.

Both length scales diverge when approaching critical-
ity, as ξ⊥ ∼ (ρ− ρc)

−ν⊥ and ξ× ∼ (ρ− ρc)
−ν× , for some

critical exponents ν⊥ and ν×, which we now investigate.
In [1, 7], several other critical exponents are deter-

mined. Notably, in the latter the authors show that the
CLG’s absorbing state is hyperuniform, i.e. the number
of particles N in a ball or radius R has standard devia-
tions of order Rζ , for ζ smaller than d/2.
We are interested in the hydrodynamic behavior of the

CLG, whose diffusion coefficient D(ρ) behaves, close to
ρc, as (ρ− ρc)

α for some exponent α. In order to under-
stand the noise’s amplitude, we also consider the com-

pressibility χ(ρ) ∼ (ρ−ρc)
γ . For the CLG, the dominant

parameter for the system is the density of active parti-

cles, ρa(ρ). However, the notion of active particles is in
fact ambiguous, since one may or may not count as ac-

tive particles who are fully surrounded by other particles
(and therefore cannot move). For this reason, we distin-
guish between ρa(ρ) ∼ (ρ− ρc)

β , the density of particles
having at least one occupied neighbor (which is the one
considered in [1]), and the activity a(ρ) ∼ (ρ−ρc)

b ≤ 3ρa,
which counts the local number of possible jumps. We will
see further that in fact both exponents β and b coincide
(Fig. 3). This means that the perimeter of clusters of
active particles is of the same order as their volume.

Relations between critical exponents. By numerical
simulations we are able to get all the critical exponents
in the case d = 2. In dimension d = 1, we have exact
values, as discussed below.
A number of relations can be derived between the rel-

evant critical exponents [18]. Most of them are standard,
a detailed derivation will be given in a companion article
[21]. The first one ties the compressibility to the particle
fluctuations and the activity correlation length, as

γ = ν×(d− 2ζ). (1)

This relation can be obtained by considering the struc-
ture factor Sρ(k) (see [22, Section II.2.1]), which en-
capsulates the 2-point statistics of the distribution at a
fixed time [19]. By the scaling hypothesis, Sρ(k) can
only depend on k via the combination ξ×k. Moreover,
Sρ(0) = χ(ρ), and at criticality Sρc

(k) ∼ C|k|d−2ζ when
|k| is small. These three facts impose the form

Sρ(k) = χ

(

1 +
C

χξd−2ζ
×

|ξ×k|
d−2ζ

)

, (2)
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and hence χξd−2ζ
× remains of order 1 as ρ → ρc. This

implies equation (1).
A similar scaling relation can be obtained for the geo-

metric correlation length. Indeed, at scales smaller than
ξ⊥ the system looks critical, so that the critical density
fluctuations are larger than ρ − ρc, and “hide” the off-
criticality. The scale ξ⊥ is therefore characterized by the

relation ξζ−d
⊥ ≈ ρ−ρc. This yields the following relation:

ν⊥(d− ζ) = 1. (3)

The next relation stems from Einstein’s relationD = σ/χ
and the fact that the noise amplitude is determined by
the number of possible particle jumps σ = a (see [22,
Section II.2] for instance): this leads to

α = b− γ. (4)

Finally, the following relation is a consequence of a par-
ticular property of the CLG, called gradient condition

[22, 23], which relies on well-chosen jump rates for the
system. Under this condition,

∂t〈ni〉 =
∑

j∼i

{

〈na,j〉 − 〈na,i〉
}

, (5)

where 〈ni〉 (resp. 〈na,i〉) denotes the average number of
particles (resp. active particles) at site i. At the macro-
scopic level, this identity translates as

∂tρ = ∆
(

ρa(ρ)
)

, (6)

and yields in turn that D(ρ) = ρ′a(ρ). Near criticality,
this implies

α = β − 1. (7)

Note that equations (4) and (7) give β − b = 1 − γ. As
an interesting consequence, the fact that β = b, i.e. that
clusters of active particles have volume and perimeter of
the same order, implies γ = 1. In Table I we give all
exponents in both d = 1 and d = 2 cases. The former are
exact values, while the latter are numerically computed.

Hydrodynamics and scale invariance. Near criti-
cality, we are interested in the macroscopic evolution of
u := ρ − ρc. It evolves according to the fluctuating hy-
drodynamic equation

∂tu = div
(

D∇u+
√

2DχW
)

. (8)

The noise W depends on the scale at which we look: at
distances above ξ× correlations are small and W is white
noise, while for distances smaller than ξ× the noise W
will have non-trivial correlations:

〈W (0, 0) ·W (x, t)〉 =

{

δ(t)δ(x), |x| > ξ×,

δ(t)|x|−ϑ, |x| < ξ×,
(9)

obs. D χ ξ⊥ ξ× Var(N) ρa a

exp. α γ ν⊥ ν× ζ β b z

d = 1 0 1 1 1 0 1 1 2
d = 2 -0.38 1 and 1.07 0.77 1.8 0.70 0.62 0.62 1.51

0.78a 0.775b 0.63a 1.52a

a obtained in [1]
b obtained in [7]

TABLE I. Critical exponents related to observables, in d = 1
and d = 2. The 1-dimensional exponents are exact, see below.
In the 2-dimensional case, the first line is obtained either di-
rectly from our simulation results, or extracted from scaling
relations. The second line contains simulation results taken
from previous articles. In our case, the exponents ν× and ζ

are extracted from the simulation of Fig. 4. The exponents
β and b are taken from the one of Fig. 3a. The exponent
γ is simulated twice: the value 1 obtained from Fig. 3 and
equation (4). The value 1.07 is obtained from Fig. 4. The
exponent α is calculated using equation (7), ν⊥ from equation
(3) and z from (11).

for some exponent ϑ. In the regime below ξ×, the density
fluctuations are proportional to ℓζ−d, hence equation (8)
must be invariant under the parameter rescaling

(u, x, t) 7→

(

u

ℓd−ζ
,
x

ℓ
,
t

ℓz

)

. (10)

This forces ϑ to be equal 1− ζ/d, and

z = (ζ − d)(1 − β) + 2. (11)

We emphasize that on a length above ξ× the scale in-
variance is not the same, and in particular the dynamic
exponent z will change. This scale separation has been
noted qualitatively in [1].

One-dimensional case. The one-dimensional case d =
1 has been recently under scrutiny, and its macroscopic
evolution is now quite well understood. It has been
proved rigorously [13, 14] that the critical density is given
by ρc = 1/2, and the diffusive supercritical phase progres-
sively invades the subcritical phase via flat interfaces,
until either one of the phases disappears. In this re-
spect, a crucial feature of the one-dimensional case lies in
its explicit supercritical grand canonical states πρ either
parametrized by the density ρ ≥ 1/2 or the active den-
sity ρa(ρ) = (2ρ−1)/ρ. These grand canonical states can
be defined sequentially, by filling an arbitrary site with
probability ρ, and then following each empty site by a
particle with probability 1, but each particle by another
particle with probability ρa(ρ).
Precisely, the hydrodynamic limit in d = 1 is given by

∂tρ = ∂x(D(ρ)∂xρ), with diffusion coefficient

D(ρ) = ρ′a(ρ) = ρ−21{ρ>ρc} (12)

and critical exponent α = 0. The explicit construction
of the grand-canonical state πρ yields the other observ-
ables for ρ ≥ ρc, as well as their critical exponent (see
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[15]): namely the activity a(ρ) = ρ−1(1−ρ)(2ρ− 1) with
b = 1, and the compressibility χ(ρ) = ρ(1 − ρ)(2ρ − 1),
with γ = 1. Moreover, the stationary measure can be
seen as a nearest-neighbor spin system with chemical po-
tential µ, and an interaction which gives infinite costs to
two neighboring empty sites. This can be solved using
standard methods involving the transfer matrix (see [24,
Chapter 6]), which here is given by

(

0 e−µ

1 e−µ

)

.

All the relevant quantities and exponents for the one-
dimensional model are listed in Table I.

Numerical simulations. We note that in finite systems
the critical density depends slightly on the geometry, so
that in the analysis of the simulated data we do not en-
force a single critical density for systems of different sizes
or boundary conditions.
In order to numerically derive the diffusion coefficient

and verify relation (7), we simulate a cylindrical sys-
tem, i.e. periodic in the vertical direction, of size L put
in contact at the left and right boundaries with parti-
cle reservoirs with respective densities λl and λr . More
specifically, at the boundary, particles are removed at
rate 1 − λl, 1 − λr, and empty sites are filled at rate λl,
λr. In our simulations, boundary particles are always
considered active.
When λl = λr = λ the system reaches a quasi-

stationary state with density ρ(λ). For our particular
choice of boundary interactions, ρa(ρ(λ)) = λ, meaning
that the reservoirs enforce the density of active particles
and not the total density of particles. This relation is,
however, not universal, and depends on the exact bound-
ary dynamics considered.
In order to estimate the diffusion coefficient, we fix

λl = λ and λr = λ + ε with small ε > 0. We measure
the total net number of particles Nt crossing the system
up to time t. In general, we expect the current to be
proportional to ε

Nt

t
= K(λ)ε, (13)

where K(λ) = D(ρ)ρ′(λ). Since our system is gradient
and for our specific choice of reservoirs, we should obtain
K = 1. which is verified by our simulation, see Fig. 2. In
particular this shows that α = β − 1.
In more general models (for instance when the gradient

property is not satisfied) we do not necessarily expect
K to be constant, but still of order 1 (namely, neither
diverging nor decaying as ρ → ρc).
The scaling exponents β and b can be found by simu-

lating the system with cylindrical geometry, maintaining
one reservoir at density λl = 0 and the other one at den-
sity λr = 1. We then measure, at each section x of the
cylinder, ρ(x), ρa(x) and a(x). See Fig. 3.
Thanks to the gradient property of the model and our

choice of reservoirs, ρa grows linearly with the horizontal

FIG. 2. Nt as a function of t for different reservoir densities.
See equation (13).

(a)

(b)

FIG. 3. Simulating ρ(x), ρa(x) and a(x) in a system with
reservoirs λl = 0, λr = 1.

distance, from λl at x = 0 to λr at x = 1. This is verified
in our simulation (Fig. 3a). Thanks to this result, the
relation ρa ∝ (ρ − ρc)

β can then be written as ρ ∼ ρc +
x1/β . By fitting ρ(x) in Fig. 3a we obtain β = 1.60−1 =
0.62. Finally, noting that for small x the activity a is
linear in x (Fig. 3b), we conclude β = b.

In order to find the remaining exponents, we estimate
the structure factor Sρ(k) for different values of ρ. This
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FIG. 4. We show here a collapse of Sρ(k) for different values
of ρ. Fitting the data shows that χ(ρ) = 0.61(ρ−0.3361)−1.07

and ξ× = 0.03(ρ − 0.3361)−1.77 . Indeed, after this rescaling
the curves Sρ(k) collapse as expressed in equation (2). The
fit (black curve) is given by Sρ(k) = 0.61(ρ − 0.3361)1.07 +
0.07|k|0.60 .

is done on a system with periodic boundaries (in both
directions). By fitting the data to equation (2), posing
χ = Cχ(ρ− ρc)

γ and ξ× = C×(ρ− ρc)
−ν× , we obtain the

values in Table I. See Fig. 4.
All the simulations used in this article are open access,

available at https://github.com/alexandreroget/2D_
FacilitatedExclusionProcess.

Conclusion. In this article, we discussed the critical
scaling for the CLG. We saw that there are three inde-
pendent critical exponents, β, b, and ζ, that all other
exponents (α, γ, ν⊥, ν×, z) could be deduced from. Due
to repulsion, active cluster sizes are of order 1, so their
perimeter is proportional to the volume, thus β = b and
all scaling is described by two independent exponents.
We numerically computed several critical exponents for

the 2d–CLG (see Table I), and confronted them both with
those critical relations, and the numerical values in [1]
and [7] for CLG with simultaneous jumps. We obtained
very good agreement between them; with the exception

of ζ and ν×. While our numerical values fit the theoret-
ical relations introduced above, they are different from
those of [7]. The reason seems to be that we approach
the critical state from ρ > ρc, while [7] do from ρ < ρc.
Recently, [8] went further investigating the approach to
hyperuniformity from the subcritical regime; on the con-
trary to [7], they find that the critical exponent ν× (which
they denote γ1) is different from ν⊥.

We emphasize the existence of two distinct correlation
lengths, one characterizing the size of self-activating clus-
ters, and the other one characterizing the two-points cor-
relation decay. This distinction is a specific feature of
the quasi-stationary regime (ρc, 1/2), and for this reason
does not exist in one dimension. We conjecture that it is
a common feature of any dimension d ≥ 2, because the
rigid structure necessary to reach a frozen state at density
ρ = 1/2− ε results in the quasi-stationary regime.

Unlike in the one-dimensional case, the diffusion coef-
ficient D(ρ) has negative exponent (see Table I), and is
therefore discontinuous at ρc. We note that the diffusion
term operating in the supercritical phase instantly cre-
ates at the boundary non-zero density gradients. There-
fore, this discontinuity does not create a quantitative dif-
ferent behavior than the 1d–Stefan problem, which has
a finite critical diffusion coefficient (12). That is, sub-
critical regions are frozen while particles in supercritical
regions diffuse; and the interfaces between them move as
the supercritical regions invade the subcritical ones. The
divergence of D is balanced out by small non-zero den-
sity gradients, resulting in a finite current. Hence, as in
dimension one, the interfaces move with finite speed.
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[9] S. Lübeck, Scaling behavior of the absorbing phase tran-



6

sition in a conserved lattice gas around the upper critical
dimension, Phys. Rev. E 64, 016123 (2001).

[10] A. Ayyer, S. Goldstein, J. L. Lebowitz, and E. R. Speer,
Stationary states of the one-dimensional facilitated asym-
metric exclusion process, arXiv:2010.07257.

[11] S. Goldstein, J. L. Lebowitz, and E. R. Speer, Exact so-
lution of the facilitated totally asymmetric simple exclu-
sion process, Journal of Statistical Mechanics: Theory
and Experiment 2019, 123202 (2019).

[12] S. Goldstein, J. L. Lebowitz, and E. R. Speer, The
discrete-time facilitated totally asymmetric simple exclu-
sion process, Pure Appl. Funct. Anal. 6.

[13] O. Blondel, C. Erignoux, M. Sasada, and M. Simon, Hy-
drodynamic limit for a facilitated exclusion process, Ann.
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