
HAL Id: hal-04742482
https://hal.science/hal-04742482v1

Submitted on 17 Oct 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Copyright

Emerging New Roles for Low-Code Software
Development Platforms
Jean-Marie Mottu, Gerson Sunyé

To cite this version:
Jean-Marie Mottu, Gerson Sunyé. Emerging New Roles for Low-Code Software Development Plat-
forms. 5th International Workshop on Modeling in Low-Code Development Platforms at the MODELS
conference, Sep 2024, Linz (AUSTRIA), Austria. �10.1145/3652620.3688337�. �hal-04742482�

https://hal.science/hal-04742482v1
https://hal.archives-ouvertes.fr


Emerging New Roles for Low-Code Software Development
Platforms

Jean-Marie Mottu
jean-marie.mottu@ls2n.fr

Nantes Université, IMT Atlantique, CNRS,
LS2N, UMR 6004
Nantes, France

Gerson Sunyé
gerson.sunye@ls2n.fr

Nantes Université, CNRS,
LS2N, UMR 6004
Nantes, France

ABSTRACT
Low- and no-code development platforms have introduced two new
development roles: the platform engineer and the citizen developer.
While the former are still software developers who implement the
low- and no-code platforms, the latter use them to develop their
domain applications. In practice, however, we believe that the cit-
izen developer role is shared by two people. For example, in the
teaching domain, the citizen developer role is shared between a
teacher and his assistant. The first is the domain practitioner, while
the second is the domain engineer. The Domain Engineer uses the
development platform to create a tailored platform for the teacher,
who uses it to create an application that will be for his students, the
end users. To explore the possibility of differentiate these two roles
in current low-code development platforms, we used two differ-
ent low-code platforms—Mendix and OutSystems—to implement
two case studies. These case studies reveal the limitations of cur-
rent platforms for specializing platforms with functionalities close
to those of low-code development platforms. To compare these
two platforms, we consider a list of features that these platforms
must satisfy. The results show that current low-code development
platforms cannot fully support these new roles.

CCS CONCEPTS
• Software and its engineering→ Application specific devel-
opment environments.
ACM Reference Format:
Jean-Marie Mottu and Gerson Sunyé. 2024. Emerging New Roles for Low-
Code Software Development Platforms. In ACM/IEEE 27th International
Conference on Model Driven Engineering Languages and Systems (MODELS
Companion ’24), September 22–27, 2024, Linz, Austria. ACM, New York, NY,
USA, 10 pages. https://doi.org/10.1145/3652620.3688337

1 INTRODUCTION
Low-code and no-code are growing development approaches sup-
ported by many platforms [15]. They bridge the gap between de-
velopment and operations by supporting the active involvement
of non-developer domain experts, called citizen developers, in the
application development life cycle.

Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or affiliate of a national govern-
ment. As such, the Government retains a nonexclusive, royalty-free right to publish
or reproduce this article, or to allow others to do so, for Government purposes only.
Request permissions from owner/author(s).
MODELS Companion ’24, September 22–27, 2024, Linz, Austria
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0622-6/24/09
https://doi.org/10.1145/3652620.3688337

A low-code development platform (LCDP) is designed for do-
main experts without IT skills, who want to build applications. It
migrates application development from manual coding using tra-
ditional programming languages to designing applications with
graphical user interfaces, pre-built components, and parameters.
The user interfaces, business logic, and data services are built using
visual diagrams and, in some cases, manual coding. Domain experts
who do not want or need to code can use a no-code development
platform (NCDP), which is easier to configure but produces less
customizable applications.

There are many low- and no-code platforms on the market that
are generic for developing applications of any domain. Moreover,
some of them are dedicated to a domain, especially Dedicated NCDP.
The citizen developer can then develop an application using the
concepts, logic, and processes of a specific domain.

For instance, these platforms allow a teacher to independently
create and deploy a quiz application for her students. She can choose
an LCDP if she needs to set rules using code, an NCDP if the quiz
requires less customization, or a dedicated Learning Management
System (LMS), such as Moodle1.

This choice seems to be driven by the amount of code, allow-
ing citizen developers to avoid coding and focus on their domain
expertise. A main interest of low-code and no-code is to provide
citizen developers with platforms to develop by themselves without
outsourcing to software developers. However, it hides how they
can apply their domain expertise.

These development platforms generally help domain experts
reduce the amount of code they need to write. However, citizen
developers who want to concentrate on a specific domain require a
platform that is tailored to their needs or the ability to customize
their domain. They must then either (i) select a dedicated plat-
form that is designed for their specific domain, (ii) work with a no-
code platform despite its customization limitations, or (iii) receive
training in building domain-specific applications using a low-code
platform.

Dedicated platforms are not a universal solution: there is not a
dedicated platform for every domain, and creating such a platform
is a typical programming challenge. In addition, while dedicated
platforms can meet most of the needs of a particular domain, im-
plementing new features is still the responsibility of a software
developer, which is beyond the capabilities of citizen developers.

While a generic NCDP requires the domain expert to accept its
limitations, a generic LCDP requires him to learn how to model
her domain from generic components and code domain-specific

1https://moodle.org

https://orcid.org/1234-5678-9012
https://doi.org/10.1145/3652620.3688337
https://doi.org/10.1145/3652620.3688337
https://moodle.org


MODELS Companion ’24, September 22–27, 2024, Linz, Austria Jean-Marie Mottu and Gerson Sunyé

rules [13]. Some NCDPs and LCDPs can also be extended by creat-
ing dedicated components or specializing execution rules, but this
involves coding tasks, whether dedicated or generic.

Increasing the domain specialization of a platform decreases the
amount of code, indeed, but reduces the possibility to personalize
the platform unless asking the help of developers, again. Hence,
a domain expert that faces coding difficulties or limitations of a
platform will still be dependent on a software developer. A teacher
can be frustrated by a limitation of her LMS but not enough to
decide to invest in developing an LMS by her own, even using an
LCDP or to ask a developer to develop or extend a platform.

Nevertheless, we still believe that low-code and no-code can
benefit domain experts. We have noticed that citizen developer is
not just one role, but rather several roles within each domain. We
have categorized them into two groups: domain practitioners and
domain engineers. These roles, involved in different stages of devel-
opment, can take advantage of low-code and no-code at different
times and frequencies. Their involvement depends greatly on the
life cycle of each domain: domain practitioners develop applications
for end users, while domain engineers focus on developing appli-
cations for domain practitioners. More specifically, they specialize
in turning generic low-code development platforms into tailored
no-code development platforms.

For example, while a teacher spends most of her time with stu-
dents, preparing her lessons or evaluating their work (for example,
through quizzes), educational engineers are focused on assisting
teachers by creating new methods and tools. The teacher is the
domain practitioner, she is the citizen with less developing knowl-
edge, while the educational engineer is the domain engineer with
more aptitude for development. In the approach we propose, the
domain engineers are the low-coders. They can be trained to use
low-code platforms to prepare them for the needs of the domain
practitioners. They can introduce concepts, logic, and processes
into the platform so that the domain practitioner can use it as much
as possible as Dedicated No-Code Platforms. For instance, educa-
tional engineers can create quiz components, with the concepts of
questions, answers, and grades. Then the teachers can fill in the
questions, the expected answers, the notation, grading scale, and
combine them into multiple quiz applications.

In this paper, we present several experiments conducted to eval-
uate how two low-code platforms fit into this separation of roles,
where the role of citizen developer is split into two new roles. We
consider two research questions:

• RQ1: Is it possible to specialize an LCDP to a specific domain?
• RQ2: Can an LCDP manage two roles of citizen developers?

To this end, we develop two applications with the following
criteria:

(1) the distinction between the two citizen developer roles is
explicit;

(2) while there is already a dedicated development platform, it
does not meet our needs. We need to differentiate citizen
developer roles to provide them with Low-code/No-code
management of their part of the development.

The first case study is an application for teachers who want
to design personalized exercise sheets for their students with the
help of a pedagogical engineer on the exercise components. The

second case study is an application to simulate manufacturing sys-
tems. It helps a production systems engineer design machines and
interactions between them, while production operators design ma-
chine assemblies and simulate their performance before physically
reconfiguring a production line.

We use two leading LCDPs: Mendix and OutSystems. We exam-
ine the functionality of these platforms to achieve role separation
in a given scenario and discuss the limitations we encounter. These
preliminary experiments give us a better understanding of how
LCDP can integrate different citizen developer roles.

The rest of this paper is organized as follows: Section 2 describes
the background of the low-code and no-code domain. In Section 3
we propose an approach of dividing the domain expert into two
roles. Section IV discusses a feature list of low-code platforms that
we would like the tailored no-code platform to still have once
specialized to a domain, and describes a couple of experiments
made, and how two LCDPs fit the proposed approach. The paper
concludes with a discussion of the limitations and future work in
Section V.

2 BACKGROUND: DEMOCRATIZING
SOFTWARE DEVELOPMENTWITH
LOW-CODE AND NO-CODE

The traditional software development process has historically been
the domain of professional developers with specialized program-
ming skills. However, recent advances have led to low-code and
no-code approaches that aim to democratize software development
by empowering users with limited technical backgrounds. This
section presents both approaches, highlighting their key features
and potential benefits.

2.1 Low-Code Development: Reduce Coding
Low-code development platforms provide a visual development
environment that facilitates the creation of software applications
with minimal coding [16]. These platforms target citizen develop-
ers, who are business users without formal software development
training, but with domain expertise [13]. There are several key
features [4] that make LCDPs suitable for these developers:

• Visual Modeling: Logic and workflows are represented visu-
ally using drag-and-drop elements, enabling intuitive appli-
cation design even for non-programmers [14].

• Data Integration: Seamless integration of data from various
sources (databases, spreadsheets, cloud applications) allows
citizen developers to leverage existing data for their applica-
tions [13].

• Pre-Built Components and Templates: Reusability is pro-
moted through pre-built components and templates that
serve as building blocks for common functionalities, acceler-
ating development [8].

The integration of citizen developers into the development pro-
cess through LCDP offers several advantages:

• Increased Innovation: They can rapidly prototype and deploy
solutions addressing specific domain challenges due to their
deep business understanding [7].



Emerging New Roles for Low-Code Software Development Platforms MODELS Companion ’24, September 22–27, 2024, Linz, Austria

• Improved Agility: Organizations gain the ability to build
custom applications internally, enabling faster responses to
changing market demands [2].

• Reduced Development Costs: Lower reliance on professional
developers can lead to significant cost savings [15].

LCDPs provide easy-to-use visual environments for creating
software applications with attractive user interfaces, responsive
designs, and minimal programming skills [16]. In particular, visual
modeling allows users to drag and drop on the user interface [4].
This makes it easier to use, especially for developers who want to
be able to use the platform intuitively.

2.2 No-Code Development: No More Coding
No-code development platforms take the concept of democrati-
zation a step further [5]. They enable the creation of software
applications entirely without writing code [4]. This caters to an
even broader user base, including individuals with minimal tech-
nical backgrounds, entrepreneurs, and those seeking to automate
personal workflows.

NCDPs accomplish usability through the following features [4]:
• Restrictive Drag-and-Drop Interfaces: Pre-built components
can be dragged and dropped onto a visual canvas to build
applications.

• Pre-Defined Functionality: The need for custom coding is
eliminated through libraries of pre-built features and inte-
grations offered by NCDPs.

• WYSIWYG Editors: What You See Is What You Get (WYSI-
WYG) editors allow users to build and preview their applica-
tion in real-time.

2.3 Extending LCDP/NCDP: the Coding
Comeback

While LCDP and NCDP main difference is on the use of coding to
configure parts of the application, many LCDPs and NCDPs offer
extension mechanisms.

Even when considering Dedicated LCDP/NCDP, extension mech-
anisms requires solid programming skills. For instance, Moodle
extension requires PHP and HTML coding2.

To extend a platform, the citizen developer then requires the help
of a software developer and to come back to a classic development
life cycle.

2.4 State of the Low-Code/No-Code Market
The low-code development market has exploded in recent years,
attracting both service providers and users. It is projected to reach
a massive market size by 2025 [17]. This surge in demand, coupled
with growing competition, creates a thriving financial landscape
for companies and investors. Low-code development offers the
potential for increased ROI and reduced development costs. There
are several LCDP vendors, with some prominent players listed in a
categorization system (Figure 1). The integration of generative AI
with low-code development is already underway, promising further
market expansion. This could be achieved through AI-powered

2https://support.moodle.com/support/solutions/articles/80001075418-how-to-
create-a-moodle-plugin

Figure 1: Gartner Magic Quadrant [11]

functions that automate tasks or generate code, leading to faster
development and potentially lower costs.

Popular LCDPs include Mendix3, OutSystems4, Microsoft Power
Apps5, and Salesforce6. Popular NCDPs include Bubble7, Wix8,
Zapier9, and Glide.10

2.5 Empower Domain Expert to Develop with
LCDP/NCDP

As explained earlier, citizens with some programming skills are the
target users of LCDP. Citizen developers with programming skills
can tackle more complex development tasks and take advantage
of additional functionality that requires more than drag-and-drop
usage. Application domain can differentiate LCDPs from NCDPs.
LCDPs are most useful in industries such as healthcare, web and
mobile application development, and manufacturing [4]. These
industries often require complex, customized solutions that require
the integration of specialized functionality and a seamless user
experience. NCDPs, on the other hand, are well-suited for building
reports, analysis, and monitoring applications [10]. While they
excel at simplifying the development of such applications, they
have limitations that prevent the customization of graphical user
interfaces and the implementation of advanced business rules that
are often important for the development of enterprise-level software
solutions [3]. As a result, the choice between LCDPs and NCDPs

3https://www.mendix.com/
4https://www.outsystems.com/
5https://www.microsoft.com/power-platform/
6https://www.salesforce.com/platform/low-code-development-platform/
7https://bubble.io
8https://www.wix.fr
9https://zapier.com
10https://www.glideapps.com

https://support.moodle.com/support/solutions/articles/80001075418-how-to-create-a-moodle-plugin
https://support.moodle.com/support/solutions/articles/80001075418-how-to-create-a-moodle-plugin
https://www.mendix.com/
https://www.outsystems.com/
https://www.microsoft.com/power-platform/
https://www.salesforce.com/platform/low-code-development-platform/
https://bubble.io
https://www.wix.fr
https://zapier.com
https://www.glideapps.com


MODELS Companion ’24, September 22–27, 2024, Linz, Austria Jean-Marie Mottu and Gerson Sunyé

seems to be guided by the complexity of the application to be
developed and the coding ability of the citizen developer instead of
the domain itself.

Kirchhof et al. observed that existing LCDPs mostly do not en-
compass domain knowledge [6]. It is then difficult for a domain
expert to focus on their domain, while the effort to model it is a
costly preliminary step. One can ask, if currently low-code is not
more a progress for developers to gain in productivity while reduc-
ing repetitive programming, instead of helping domain experts to
develop their domain application by themselves.

As far as we know, domain specialization seems to be reserved
for Dedicated NCDPs, platforms with a classic life cycle, designed
by the platform engineer to satisfy experts in one domain at a time.
Some of them have extension mechanisms or are LCDP platforms
that allow advanced users to develop their components. This is
useful when a company wants to promote its product by developing
components in a dedicated LCDP or NCDP. Let us imagine an
industrial company that develops robots and wants its robots to
be integrated into platforms dedicated to the simulation of the
industrial production chain. Then, the performance of production
lines that may include such robots can be evaluated. However, this
type of extension is not directly available to citizen developers and
is instead outsourced to software developers, who then handle the
development life cycle.

3 EMERGING NEW SOFTWARE
DEVELOPMENT ROLES

Software development is usually the responsibility of software en-
gineers who receive a specification from a client who wants to
propose an application to her users (e. g., a store manager who or-
ders an application for her cashiers). It involves a development life
cycle with iterations, and at the very end, a functional application
is delivered and hopefully validated. Agile methods and continu-
ous delivery reduce the time it takes to develop and improve an
application. However, while users and clients are more involved,
the development is still up to the software engineers. This section
presents how the citizen developer role emerged, and why it should
not be seen as a single role, but as the emergence of a couple of
domain application development roles.

3.1 LCDP and NCDPs to Promote Citizen
Developers as an Active Role in the Middle
of a 3-Role Architecture

LCDP and NCDP promote citizen developers as an active role. They
provide tools for citizen developers to develop applications by them-
selves, managing their own projects. Reducing coding allows citizen
developers to consider starting their development projects while
keeping control over the development cycle.

3.1.1 The Citizen Developer in the Middle of a 3-Role Architecture.
Usually, LCDP and NCDP involve three main roles, as illustrated at
the top of Figure 2. First, the software engineers create and main-
tain LCDP and NCDP. Second, the citizen developer is a domain
expert who uses an LCDP or NCDP to create applications. She uses
her technical skills and brings in-depth knowledge of the specific

domain in which the software will be used, which guarantees its rel-
evance and usefulness. Third, the end-user can use the application
developed.

The citizen developer is the key person responsible for creating
applications for her users. She may be the sole developer and users,
building applications for herself. Alternatively, several citizen de-
velopers can collaborate to create large applications for multiple
users. They should follow the four main steps of development using
LCDP/NCDP [14]. First, they model data using drag-and-drop capa-
bilities to configure the data schema of the application. They create
entities, associate them with each other, and set constraints and
dependencies. Second, they design the user interface by configuring
screens and parts of them. They also manage the authorization pro-
cesses required to access the application and ensure security. Third,
they specify the application behavior by managing and maintaining
processes and domain logic rules using visual tools. Fourth, they
integrate services through APIs that require careful management
of the data structure and databases.

These steps lead to application deployment, which is greatly
facilitated by platforms that offer cloud hosting, for most of them.
After that, the application can be maintained and updated by the
citizen developer according to her own life cycle.

The LC and NC approaches, while functional, can lead to rigid
and non-adaptable solutions. Citizen developers may encounter
challenges in translating their business knowledge into the various
elements required for their tasks. These platforms offer predefined
structures with limitations that can be overcome through LCDP
coding, but this may hinder the flexibility needed to fully express
complex business processes for domain expert citizen developers.
There are two main drawbacks. First, these platforms propose non-
domain-specific predefined structures, requiring the adaptation of
the citizen developer’s knowledge. Second, modeling a domain in
LCDP is costly and challenging to maintain and update without
software development skills. Even platform extensions, including
dedicated ones, do not provide an optimal solution for domain
expert citizen developers, as they can lead back to dependency on
software engineers.

3.2 Sharing the Responsibility in a 4-Role
Architecture:
Splitting the Citizen Developer Role

We identify a set of roles, not a single role, as citizen developer. It
is not a set of roles only based on the amount of coding, which
would distinguish citizen developers using LCDP (the oneswhomay
code) and those using NCDP (the ones who do not code, sometimes
called Citizen Makers [18]). There are a couple of roles based on
domain expertise and life cycle. We distinguish between the domain
engineer and the domain practitioner, as shown at the bottom of
Figure 2. The domain practitioner has a role close to the theoretical
citizen developer: she is a domain expert who wants to develop
applications focusing on her domain and manage their life cycle.
However, we believe that investing in training to master LCDP is
too costly for her, while in most situations she already works with
other domain experts: the domain engineers.

11Images from Freepik Storyset https://fr.freepik.com/auteur/stories

https://fr.freepik.com/auteur/stories


Emerging New Roles for Low-Code Software Development Platforms MODELS Companion ’24, September 22–27, 2024, Linz, Austria

Software Engineer
(Mendix, OutSystems Engineers)

Citizen Developer
(Teaching Expert: Teacher)

Final User
(Student)

Citizen Developers : 
Domain Engineer and Domain Practitioner

(Teaching Experts: Pedagogical Engineer and Teacher)

Provides a 
LCDP

or NCDP

Provides a 
domain 

application

Software Engineer
(Mendix, OutSystems Engineers)

Provides a 
LCDP

Final User
(Student)

Provides a 
domain 

application

Specializes 
a LCDP

Specializes 
a LCDP

Figure 2: Moving from the Traditional 3-Role Architecture to the Proposed 4-Role Architecture.11

The domain engineer helps the domain practitioner improve her
methods, procedures, and tools. The domain engineer has almost
the same domain expertise, but her life cycle is different because
she is not constrained by the practice and rhythm of a domain that
depends on its end users.

Therefore, the specialization on a domain increases from the
left to the right of Figure 2. A domain engineer can specialize in
an LCDP for a domain to be used by several domain practitioners.
Each domain practitioner can then develop several applications
for different final users. For instance, a pedagogical engineer can
specialize a generic LCDP to the teaching domain by introducing
components to be incorporated into quiz applications. Then dif-
ferent teachers, let us say in different disciplines, can create quiz
applications for math, grammar, and physics evaluations, to be used
by their many students of different groups. The separation of the
citizen developer roles allows then the domain practitioner to focus
on her domain (e. g., a teacher focusing on teaching math), and to
create many applications.

The domain practitioner uses the LCDP to periodically create or
update applications (e. g., a teacher makes a quiz application at the
end of a lesson). The domain engineer manages the specialization
of the LCDP with another life cycle, probably a two-step one: a long
iteration to specialize the LCDP to her domain, and several shorter
iterations to update and introduce new domain components when
the domain practitioner requires it. The cycle is supposed to be
less constrained than one involving software developers: domain
engineer and domain practitioner are supposed to be close to each
other, and the first still uses an LCDP, which is easier to use with
training than her role can expect her to get.

3.3 Specialization of an LCDP
To the best of our knowledge, the specialization of an LCDP is not
a feature of existing platforms. They propose to model the domain
and define its rules using prebuilt components, but they do not
explicitly propose to distinguish between the two roles of citizen
developers. In particular, they do not allow a citizen developer to
consider only elements modeled for her domain when building an
application.

Another strategy that we will consider in the experiments of the
next section is the possibility of developing an application with an
LCDP that is domain-specific and, as far as possible, an NCDP, so
that it can be used as a Tailored NCDP by the domain practitioner.
We distinguish such a Tailored NCDP from a Dedicated NCDP,
the latter is developed by a software engineer and the former is a
domain specialization of an LCDP that can be done by the domain
engineer.

Figure 3 illustrates the expected architecture. Software engineer
group develops an LCDP and domain engineer group specializes the
LCDP, by modeling the domain, defining the rules, and producing a
Tailored NCDP. Domain practitioner group uses the Tailored NCDP
to develop domain applications that focus only on their domain.
Final users can then use the domain applications. Groups can be one
or several actors. In addition, in the life cycle, the domain engineer
may require software engineers with LCDP extensions requiring
programming skills. In the same way, the domain practitioners may
require new or specialized components from the domain engineers.

4 EXPECTED FEATURES OF TAILORED NCDP
In this section, we identify the expected features of a tailored NCDP
and what is necessary to specialize in an LCDP to meet the 4-role
architecture. We consider two LCDPs and two case studies to eval-
uate how actual leading LCDPs can manage the 4-role architecture



MODELS Companion ’24, September 22–27, 2024, Linz, Austria Jean-Marie Mottu and Gerson Sunyé

Figure 3: Distribution of roles and life cycle in the proposed 4-Role Architecture

proposed. These preliminary experiments give us a better under-
standing of how LCDP can integrate different citizen developer
roles.

4.1 Case Studies
To this end, we develop two applications with the following criteria:

(1) the distinction between the two citizen developer roles is
explicit;

(2) there is already a Dedicated LCDP, but it does not meet our
needs. We need to differentiate citizen developer roles to
provide them with Low-code/No-code management of their
part of the development.

4.1.1 Teaching Application. The first case study is an application
for teachers who want to design personalized exercise sheets for
their students with the help of a pedagogical engineer on the ex-
ercise components. The aim is to create an application in which
different types of exercises can be created: multiple choice exer-
cises, exercises with simple questions, and exercises with multipart
questions (particularly for mathematical operations).

The first case study involves creating an application for teachers.
The application will allow teachers to work with a pedagogical
engineer to design personalized exercise sheets for their students.
The goal is to develop an application that offers different types
of exercises: multiple-choice, simple and multipart questions (for
mathematical operations), etc.

As detailed before, splitting the citizen developer role into a
couple of roles is well known:

• The Pedagogical Engineer is a domain engineer
• The Teacher is the domain practitioner

There exist dedicated Learning Management Systems (LMS),
such as Moodle12. However, extending Moodle requires PHP and
HTML coding, which is not supposed to be a citizen developer task
but a Software Developer one.

4.1.2 Manufacturing Simulation Application. The second case study
is an application to simulate manufacturing systems. It assists a
production systems engineer design machines and interactions
between them, while production operators design machine assem-
blies, simulate their execution, and assess their performance before
physically reconfiguring a production line.

Splitting the citizen developer role is a task that we consider in
the RODIC13 research project, while still being challenging [1]:

• Domain engineer is the production systems engineer
• Domain practitioner is the Production Operator

There are dedicated simulators available, such as FlexSim14. How-
ever, FlexSim offers many settings when modeling machines and
production lines, which is a prohibitive investment for Produc-
tion Operators. Moreover, extending it, for instance with a new
FlexScript class requires C++ programming, which is not supposed
to be a citizen developer task but a Software Developer one.

4.2 Mendix and OutSystems LCDPs
We consider two leading LCDPs: Mendix and OutSystems.

Mendix is an LCDP that enables users to create web and mobile
applications with minimal coding. It provides a visual development
environment where users can drag-and-drop components to create
application logic, user interfaces, and data models [12].

12https://moodle.org
13https://rodic.ls2n.fr/
14https://www.flexsim.com/

https://moodle.org
https://rodic.ls2n.fr/
https://www.flexsim.com/


Emerging New Roles for Low-Code Software Development Platforms MODELS Companion ’24, September 22–27, 2024, Linz, Austria

OutSystems is a platform for the rapid development and deploy-
ment of modern applications. Designed to meet the complexity
and needs of the enterprise, OutSystems is an enterprise-grade
LCDP [9].

4.3 Description of Required Features for LCDP
Specialization

In this section, we introduce a feature diagram that presents differ-
ent terms for describing the functionality required to use an LCDP
to create a tailored NCDP. By analyzing the platforms presented
in the previous section, we have identified and modeled their vari-
ability and commonalities in terms of concrete features. First, we
consider five of the features listed in the taxonomy created by Sa-
hay et al. [14]. They outline the features that facilitate the selection
and comparison of different LCDPs. From these general character-
istics, we have selected those that we believe are important for the
transition from an LCDP to a tailored NCDP. To do this, we relied
on the implementation of the education case study with the two
LCDPs. Then, based on the case studies, we identified three other
specific features. All of these features are listed in the Figure 4,
which shows a high-level feature diagram where each sub-node
represents a major point of variation. Details of the features are
given in Table 1.

Figure 4: Feature Diagram Representing the Top-Level Areas
of Variation to Use an LCDP to Create a Tailored NCDP

Graphical User Interface (GUI). This group of features repre-
sents those that allow users to interact with the platform through
graphical elements such as buttons, drop-down menus, or icons,
using drag-and-drop, point-and-click, and other tools, rather than
having to write code.

Both citizen developer roles require an easy-to-use GUI to model
their domain and develop domain applications. The domain engi-
neer expects to model the domain and specialize pre-built compo-
nents with low-code. In addition, the domain practitioner expects
to combine specialized components without code. In both situa-
tions, graphical elements (drag and drop, point and click, etc.) are
required.

In the first case study, the pedagogical engineer uses drag and
drop to create exercise components. In the tailored NCDP, the
teacher expects to be able to drag and drop these components to

combine them into a set of exercises on a screen. If a teacher finds
that a component cannot be moved, she expects the pedagogical
engineer to provide that option rather than doing it for her, each
time it is needed.

Access Control & Restriction. This set of features allows for
precise control over user access rights to different application parts.
Only authorized users can access and modify specific data or func-
tions. Access control defines specific access rights for users based
on their roles and responsibilities as citizen developers.

While access control is natively manageable in LCDP according
to a 3-role architecture, split citizen developer roles need to be
encapsulated. The domain engineer would like to give the domain
practitioners limited rights, for example, to use a specialized com-
ponent but not to modify it. However, the domain practitioners
cannot be considered as classical end users, since the actual end
users of the developed domain application should also have access
control managed, this time by domain practitioners.

In the second case study, the production systems engineer can de-
fine components to model robots with restrictions that he does not
want a production operator to lift while using them in a simulation
(for safety reasons, for example).

Collaborative Development. This group of features represents
functionality that allows several people to work on the same project.
Several domain engineers may want to collaborate when specializ-
ing an LCDP. Several domain practitioners may want to collaborate
when developing a domain application with a tailored NCDP.

In addition, as shown in Figure 2, domain practitioners may ask
domain engineers for new or adapted specialized components.

In the first case study, if teachers feel that functionality is missing
in the NCDP, they can create a ticket and the pedagogical engineer
can see this ticket and make the necessary corrections accordingly.

Dynamic Development. This group of features represents those
that allow the application to evolve continuously over time by
modifying it without having to redeploy it.

These features are important for the transition between the
LCDP and the NCDP because they reduce the dependency between
domain engineers and domain practitioners. If the domain engi-
neers need to modify or add components to the tailored NCDP
they created, the domain practitioners do not have to wait for a
new deployment. Similarly, if the domain practitioners update the
application they created, end users do not have to wait for a new
deployment.

In the first case study, if the teachers want to go beyond creat-
ing exercises by creating an exam, for example, the pedagogical
engineer should be able to add a component related to exams in
the tailored NCDP without having to perform a deployment that
might corrupt existing data (existing exercises).

Independent Deployments. Independent Deployments ensure
that the domain application created from a tailored NCDP can be
deployed independently of the NCDP. For example, the domain
application can run when the tailored NCDP is not in use.

In the second case study, several production operators can con-
figure and run their simulations independently of each other and
the production systems engineer.



MODELS Companion ’24, September 22–27, 2024, Linz, Austria Jean-Marie Mottu and Gerson Sunyé

Dynamic Content Database. This group of features represents
a storage system that allows users to store and manage different
types of content that can be retrieved, updated, and displayed in
applications according to user interactions or predefined rules.

These features facilitate the transition between general data
types (in the LCDP) and specific data types (in the tailored NCDP).
It allows the domain practitioner to create concrete types that
concretize the formal types defined by the domain engineer.

In the first case study, the pedagogical engineer can create an
exercise type, while the teacher can specify the exercise type with
the subject of her choice, e. g., mathematics or grammar.

Interoperability. This group of features represents functionality
that enables collaboration with other platforms and integration of
functionality from existing software systems.

This allows domain engineers to include functionality specific to
the domain of the tailored NCDP being created. At the same time,
it reduces the technical nature of their work. The domain engineers
can focus on the functionality required by the domain practitioner.

In the first case study, the pedagogical engineer does not need
to redevelop a grade-entry service; she can synchronize her ap-
plication with an existing grade-entry service. Teachers can also
integrate tools tailored to the subject they teach. For example, math
teachers can use tools to visualize geometric figures.

Reusability. This group of features represents the reuse of existing
data or predefined models. These features reduce development time
for the domain practitioner and enable better collaboration with
the domain engineers, as well as technical simplicity for the domain
practitioner.

They allow the domain practitioner to create a new model from
an existing one, created by the domain engineers. In addition, the
technical requirements for the domain practitioner are reduced,
contrasting with the domain engineers, who must to increase these
technical requirements and skills to implement the functionality.

In our case study, the pedagogical engineer is able to create
templates on the LCDP (exercise, question) to enable the teacher to
create their own useful tools for the students.

4.4 Feature List
In order to effectively assess the capabilities of each platform in the
context of our given case study, we constructed a comparison table
in Table 1. This table describes the different features and function-
alities offered by each platform. By systematically comparing these
attributes, prospects can make informed decisions about which
platform is best suited for their specific needs.

Table 1 uses the following legend:

• : features are natively present on the platform for domain
engineer and domain practitioner.

• : features are present for domain engineer but not for the
domain practitioner, or LCDP offers an alternative (plugins,
etc) for domain practitioner.

• : features are present for everyone.

5 CHALLENGES & OPPORTUNITIES
5.1 Observed Limitations
Our two case studies implemented on the top of Mendix and Out-
Systems, revealed some limitations of these platforms for creating a
tailored NCDP, in the education and manufacturing domains. Con-
sidering the teaching case study, one of their main disadvantages
is that it is only possible to do text-based exercises. This precludes
the use of images, advanced mathematical expressions, and dif-
ferent question formats, limiting their use in a variety of subjects.
In addition, both platforms have difficulty handling multiple valid
solutions, especially for text-based answers with potential varia-
tions. As a result, these platforms are less effective for open-ended
questions and for promoting deeper learning through more var-
ied and engaging exercise styles. At this stage of our study, we do
not know how to address these limitations without requiring an
extension of the LCDP. Other problems have arisen with the use
of different formats and web browsers. The inability to use data in
a variety of formats hinders compatibility with open and widely
used formats, which can cause problems for institutions that are
required to use these formats. In addition, browser compatibility
issues and complex upgrade processes between major versions have
been identified.

The choice of platform for its specialization and implementing
the 4-role architecture must take these limitations into account.

5.2 Possible Improvements
Recent years have witnessed a revolution in software development,
characterized by the rise of low-code and no-code development
approaches. The emergence of citizen developers, who have do-
main expertise but limited programming skills, has changed the
role of the developer. Low- and No-coders use platforms with visual
interfaces and drag-and-drop tools to simplify application develop-
ment, democratize software creation, and reduce dependence on
traditional coders. While traditional coders focus on critical tasks,
low-code, and non-coders accelerate development cycles by taking
on simpler aspects such as interface design. Low-code aims to get
domain experts more involved in software development by limiting
technical elements. LCDP and NCDP provide visual environments
for creating applications with a streamlined interface, simplifying
the development process.

We pointed out in this paper that citizen developers should not
be considered as a single role. It is too restrictive to focus on the
amount of coding they can implement, but rather on how they
can consider only their domain and manage different development
life cycles. The transition to a 4-role architecture instead of a 3-
role is motivated by the need to integrate citizen developers more
effectively into the software development process. Initially, citizen
developers took on the role of both platform developers and end
users. However, this approach has its limitations, not only because
of the lack of technical skills of the users but also because of the
domains that require more people.

For these reasons, a new 4-role architecture is being considered.
This involves several citizen developers acting as domain engineers
and domain practitioners.



Emerging New Roles for Low-Code Software Development Platforms MODELS Companion ’24, September 22–27, 2024, Linz, Austria

Feature Description
Graphical User Interface
Drag-and-drop Allows users to simply drag and drop graphical elements (such as multiple choice questions,

text boxes, images) to build their own customized worksheets.
Logical diagram Provides a visual representation (in the form of a diagram) of the underlying logic of an

application, showing data flows, decisions, and interactions between the various components.
Structural diagram Provides a visual representation of the entities and their relationships within an application.

These diagrams are used to design the structure of the database, defining the entities (in the
form of tables) and the relationships between them.

Advanced bug report Enables advanced error management, including error localization, legible and precise explana-
tion and relevant information (in visual form) to help understand and resolve errors.

Point and click Allows users to create and modify application components simply by clicking on predefined
elements on the graphical interface, such as data fields or buttons.

Access Control & Restriction
Role creation Allows administrators or authorized users to create new roles within the platform. These roles

define the different levels of authorization and privileges granted to users according to their
responsibilities and needs within the system.

Role authorization management Enables administrators to manage the authorizations associated with each role created in the
system. It provides a set of tools for precisely defining the actions and resources that each
role is authorized to access.

Widget access control Enables users to define andmanage permissions for accessing and interacting with specific user
interface elements or widgets within their applications, ensuring security and data integrity.

Feature access control Empowers users to regulate and manage permissions for accessing and utilizing specific
functionalities or capabilities within their applications, enhancing security and governing
user interactions.

Collaborative Development
Tickets manager Allows the creation of tickets, individual tasks to be carried out within a project
Version manager Allows the creation of several versions for the parallel development of several functions. It

also allows changes to be reversed.
Advanced reports Allows users to create detailed reports on the project: how the project works, general problems,

updates made, etc.
Dynamic Development
Platform extensibility Allows developers to modify or add content to an already deployed application without

needing to republish or reinstall the entire application.
Possibility support Allows users to add additional code (hard code, extensions, etc.) to an existing application to

create new features that are not available in the initial features of the LCDP.
Independent Deployments
Deployment for the domain engineer Allows the domain engineer to make application updates available to all platform users.
Deployment for the domain practitioner Allows the domain practitioner to make updates to the application available to end-users

of the platform. There is no need to contact the domain engineer for a simple update of the
exercises provided.

Dynamic Content Database
Import / export / filling Allows users to efficiently work with data from various sources, exchange data with external

systems, and populate data fields to build and configure applications.
Add data type Allows users to select and configure data types when defining data schemes, allowing users

to specify the characteristics of their data fields intuitively. This simplifies the process of
designing and managing data structures within applications without requiring users to write
complex code.

Data schema Refers to the structure or blueprint that defines the organization and relationships of data
within a database or storage system. It specifies the types of data that can be stored, the format
in which it is stored, and the relationships between different data entities.

Interoperability
Plug-ins extensions Allows the LCDP to be extended by integrating plug-ins or extensions from external sources.
Possibility of using an API Enables users to integrate third-party services such as time management tools and easily

adapt to technological developments and new requirements by integrating new services and
updating existing functionality.

Reusability
Template and model creation Allows domain engineers to create components that can be reused by the domain practitioners,

who in turn, can customize these models without requiring advanced technical skills.
Application extension Allows domain engineers to extend the features of their platform through the extensions

offered by the LCDP, without requiring any coding or changes to the LCDP.
Table 1: Taxonomy to Use an LCDP to Create a Tailored NCDP



MODELS Companion ’24, September 22–27, 2024, Linz, Austria Jean-Marie Mottu and Gerson Sunyé

Features Mendix OutSystems
Graphical User Interface
Drag-and-drop
Logic diagram
Modeling diagram
Advanced bug report
Point-and-click
Access Control & Restric-
tion
Role Creation
Role authorization man-
agement
Widget access control
Features access control
Collaborative Develop-
ment
Tickets manager
Version Manager
Advanced reports
Dynamic Development
Platform extensibility
Possibility support
Independent Deploy-
ments
Deployment for LC-CD
Deployment for NC-CD
Dynamic Content Data-
base
Import / export / filling
Add data type
Data schema
Interoperability
Plug-ins extensions
Possibility of using an
API
Reusability
Templates and Models
creation
Application extension

Table 2: Platform Comparison Table

The goal of the case studies was to show how today’s low-code
platforms support this type of architecture. The case studies exam-
ined two implementations on Mendix and OutSystems and revealed
limitations in creating tailored NCDPs for education and manufac-
turing. These LCDPs have difficulty separating the roles of citizen
developers due to technical constraints. The LCDPs tested did not
allow us to implement tailored no-code platforms. Plug-ins were
conceivable, but not within the reach of every citizen developer.

At this point, we cannot answer the research questions positively,
and to accomplish these goals, we would need to experiment with
other LCDPs and other case studies.

6 ACKNOWLEDGEMENTS
Thiswork is supported by the FrenchNational ResearchAgency (ANR)
[grant number ANR 21 CE10 0017]. We would like to thank all the
students of Nantes Université who participated in this study, in
alphabetical order, Izzedine Issa AHMAT, Hiba AJABRI, Christella
ARISTOR, Nathan DESHAYES, Afi Sabine EKLO, Kylian GERARD,
Aurelien PAGEOT, Quentin POISBLAUD, Rayane TABTI.

REFERENCES
[1] Hiba Ajabri, Jean-Marie Mottu, and Erwan Bousse. 2024. Defining KPIs for

Executable DSLs: A Manufacturing System Case Study. In 12th International
Conference on Model-Based Software and Systems Engineering (MODELSWARD
2024). SCITEPRESS - Science and Technology Publications, Rome, Italy, 169–178.
https://doi.org/10.5220/0012361000003645

[2] Alexander C Bock and Ulrich Frank. 2021. Low-code platform. Business &
Information Systems Engineering 63 (2021), 733–740.

[3] Mauro AADa Cruz, Heitor TL de Paula, Bruno PGCaputo, Samuel BMafra, Pascal
Lorenz, and Joel JPC Rodrigues. 2021. Olp—a restful open low-code platform.
Future Internet 13, 10 (2021), 249.

[4] Hind El Kamouchi, Mohamed Kissi, and Omar El Beggar. 2023. Low-code/No-
code Development: A systematic literature review. In 2023 14th International
Conference on Intelligent Systems: Theories and Applications (SITA). IEEE, 1–8.

[5] Edona Elshan, Ernestine Dickhaut, and Philipp Alexander Ebel. 2023. An investi-
gation of why low code platforms provide answers and new challenges. Hawaii
International Conference on System Sciences 56 (2023), 6159–6168.

[6] Jörg Christian Kirchhof, Nico Jansen, Bernhard Rumpe, and Andreas Wortmann.
2023. Navigating the Low-Code Landscape: A Comparison of Development
Platforms. In 2023 ACM/IEEE International Conference onModel Driven Engineering
Languages and Systems Companion (MODELS-C). IEEE, 854–862.

[7] Désirée Krejci, Satu Iho, and Stéphanie Missonier. 2021. Innovating with em-
ployees: an exploratory study of idea development on low-code development
platforms. In European Conference On Information Systems, ECIS2021.

[8] Eder Martinez and Louis Pfister. 2023. Benefits and limitations of using low-code
development to support digitalization in the construction industry. Automation
in Construction 152 (2023), 104909. https://doi.org/10.1016/j.autcon.2023.104909

[9] Ricardo Martins, Filipe Caldeira, Filipe Sa, Maryam Abbasi, and Pedro Martins.
2020. An overview on how to develop a low-code application using OutSystems.
In 2020 International Conference on Smart Technologies in Computing, Electrical
and Electronics (ICSTCEE). IEEE, 395–401.

[10] Giorgia Masili. 2023. No-code Development Platforms: Breaking the Boundaries
between IT and Business Experts. International Journal of Economic Behavior
(IJEB) 13, 1 (2023), 33–49.

[11] Oleksandr Matvitskyy, Kimihiko Iijima, Mike West, Kyle Davis, Akash Jain, and
Paul Vincent. 2023. Magic Quadrant for Enterprise Low-Code Application Platforms.
Technical Report. Gartner.

[12] Mendix. 2024. Deliver game-changing software. In Mendix Low-Code Plateform
Features - Low-Code App Development Tools. (Online) https://www.mendix.com/
platform/ -Accessed: (28/04/2024).

[13] Davide Di Ruscio, Dimitris Kolovos, Juan de Lara, Alfonso Pierantonio, Massimo
Tisi, and Manuel Wimmer. 2022. Low-code development and model-driven
engineering: Two sides of the same coin? Software and Systems Modeling 21, 2
(2022), 437–446.

[14] Apurvanand Sahay, Arsene Indamutsa, Davide Di Ruscio, and Alfonso Pieranto-
nio. 2020. Supporting the understanding and comparison of low-code develop-
ment platforms. In 2020 46th Euromicro Conference on Software Engineering and
Advanced Applications (SEAA). IEEE, 171–178.

[15] Raquel Sanchis, Óscar García-Perales, Francisco Fraile, and Raul Poler. 2019. Low-
code as enabler of digital transformation in manufacturing industry. Applied
Sciences 10, 1 (2019), 12.

[16] Khushi Talesra and GS Nagaraja. 2021. Low-code platform for application de-
velopment. International Journal of Applied Engineering Research 16, 5 (2021),
346–351.

[17] Jason Wong and Kyle Davis. 2022. Harness the Disruptive Powers of Low-Code: A
Gartner Trend Insight Report. Technical Report. Gartner.

[18] Taiki Yoshida. 2023. Microsoft Power Apps and generative AI helps citizen
maker upskill and transform career. https://www.microsoft.com/en-us/power-
platform/blog/power-apps/microsoft-power-apps-and-generative-ai-helps-
citizen-maker-upskill-and-transform-career/

https://doi.org/10.5220/0012361000003645
https://doi.org/10.1016/j.autcon.2023.104909
https://www.mendix.com/platform/
https://www.mendix.com/platform/
https://www.microsoft.com/en-us/power-platform/blog/power-apps/microsoft-power-apps-and-generative-ai-helps-citizen-maker-upskill-and-transform-career/
https://www.microsoft.com/en-us/power-platform/blog/power-apps/microsoft-power-apps-and-generative-ai-helps-citizen-maker-upskill-and-transform-career/
https://www.microsoft.com/en-us/power-platform/blog/power-apps/microsoft-power-apps-and-generative-ai-helps-citizen-maker-upskill-and-transform-career/

	Abstract
	1 Introduction
	2 Background: Democratizing Software Development with Low-Code and No-Code
	2.1 Low-Code Development: Reduce Coding
	2.2 No-Code Development: No More Coding
	2.3 Extending LCDP/NCDP: the Coding Comeback
	2.4 State of the Low-Code/No-Code Market
	2.5 Empower Domain Expert to Develop with LCDP/NCDP

	3 Emerging New Software Development Roles
	3.1 LCDP and NCDPs to Promote Citizen Developers as an Active Role in the Middle of a 3-Role Architecture
	3.1.1 The Citizen Developer in the Middle of a 3-Role Architecture

	3.2 Sharing the Responsibility in a 4-Role Architecture: Splitting the Citizen Developer Role
	3.3 Specialization of an LCDP

	4 Expected Features of Tailored NCDP
	4.1 Case Studies
	4.1.1 Teaching Application
	4.1.2 Manufacturing Simulation Application

	4.2 Mendix and OutSystems LCDPs
	4.3 Description of Required Features for LCDP Specialization
	4.4 Feature List

	5 Challenges & Opportunities
	5.1 Observed Limitations
	5.2 Possible Improvements

	6 Acknowledgements
	References

