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Abstract

In the problem of airports and railways with unsplittable demand (ARUD), we are given a complete
graph G = (V,E) with weights on the vertices a : V → R+, and the length of the edges ℓ : V ×V →
R+. Additionally, a positive integer k serves as the capacity parameter. We are also provided with a
function b : V → N that defines a non-zero demand for each city. The goal is to compute a spanning
forest R of G and a subset A ⊆ V of minimum cost such that each component in R has one open
facility and the total demand in each component is at most k (the capacity constraint). The cost
of the solution (A,R) is defined as

∑
v∈A a(v) +

∑
e∈E(R) ℓ(e). This problem is a generalization

of the Airport and Railways (AR) problem introduced by Adamaszek et al. (STACS 2016). In
Adamaszek et al. version, each vertex has a unit demand.

This paper presents a bi-criteria approximation algorithm for the metric ARUD problem in the
sense that the algorithm is allowed to exceed the capacity constraints by O(k) while the cost of
the solution is compared with the cost of an optimal solution that does not violate the capacity
constraint. Our approach builds upon an existing approximation algorithm for the metric AR prob-
lem, developed by Adamaszek et al. (STACS 2018), and further leverages the well-known rounding
algorithm of Shmoys and Tardos for the Generalized Assignment Problem (GAP). Assuming the
total demand is polynomially bounded in the number of vertices, our algorithm runs in polynomial
time. We also show that it is NP-hard to find an approximate solution for ARUD within any factor
without violating the capacity constraints. This is the case even when each demand is polynomially
bounded in the number of vertices. Furthermore, we determine the complexity of ARUD for some
fixed values of k.
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1 Introduction

The work by Adamaszek et al. [AAM16] integrates the facility location problem with network
design in the following manner. Suppose we have a set of cities that require airports. We can build
an airport in a city, directly meeting the demand of that city, or we can connect the city to an airport
constructed elsewhere via railways. Naturally, airports have capacity limits; each airport can serve
at most k cities (or, more generally, k units of demand). Under these constraints, the objective is
to minimize the total cost required to satisfy the cities’ demands. The total cost comprises both
the expense of constructing the airports and the cost of building the railway network.

The Airports and Railways problem (AR), as articulated in [AAM16], can be described in a
more formal manner. We are presented with a complete graph G = (V,E) where V corresponds to
the cities and E is the potential railways between the cities. We are also given a : V → R+ which
defines the cost of opening facilities (airports) at the vertices. Additionally, ℓ : E → R+ defines
the cost of the edges (the cost of constructing railways between the cities.) The parameter k in the
input designates the capacity of each facility. The goal is to select a subset A ⊆ V (the facilities)
and a spanning forest R = {R1, R2, . . .} of G such that each component Ri of R has one vertex
in A, i.e. has an opened facility. Moreover, the size of each component is at most k (the capacity
constraint.) The cost of a feasible solution (A,R) is measured as

COST(A,R) =
∑
u∈A

a(u) +
∑

e∈E(R)

ℓ(e).

We define the unsplittable demand version of the problem, denoted by ARUD, by introducing
the function b : V → N+, which determines the demand of each vertex. Similarly, we have the
capacity constraints

∀Ri ∈ R,
∑
u∈Ri

b(u) ≤ k .

Note that in the AR problem, we have b(u) = 1 for all u ∈ V , while in ARUD, we have 1 ≤ b(u) ≤ k
for each u ∈ V . In the metric version of the AR problem (also in ARUD), the length function
ℓ : V × V → R+ defines a metric over V . In this paper, we establish the convention that any
reference to the AR or ARUD problem will pertain to their metric version, unless explicitly indicated
otherwise.

Exact complexity of ARUD. As observed in [AAM16], AR and consequently ARUD are NP-
hard even for Euclidean graphs with unit airport costs. In a subsequent work [AAKM18], the
authors have shown a polynomial time algorithm for the case where k = ∞. Their algorithm works
for non-metric length functions as well. Here, we show in the case of k = 2, the ARUD problem
(with even non-metric edge lengths) admits a polynomial time algorithm. This fact is established
through a reduction to the min-cost perfect matching problem. However, when k = 3, we show
metric AR is NP-hard even for inputs with uniform airport costs. The proofs of these facts are
presented in Section 3.

Approximation algorithms for ARUD. A simple reduction from the Bin-Packing problem
illustrates that there is no polynomial time approximation algorithm for ARUD that satisfies the
capacity constraint. More formally we have the following hardness result for the ARUD problem.
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Theorem 1.1. Unless P = NP , there is no polynomial time approximation algorithm for the
ARUD problem without violating the capacity constraint, even when the demand of each vertex is
polynomially bounded in the number of vertices.

We give a proof of this theorem in Section 3. It must be noted a similar fact has been previ-
ously reported regarding related problems, including the capacitated facility location problem with
unsplittable demand [BH12, BSS16].

To overcome the computational barrier of approximating ARUD, we resort to bi-criteria ap-
proximation algorithms. More specifically, we consider algorithms that are allowed to violate the
capacity constraint in a limited manner 1 The following definition formalizes the concept of bi-
criteria (or bi-factor) approximation algorithms for the ARUD problem.

Definition 1.2. Let OPT(I) denote an optimal solution for a given instance I of the ARUD prob-
lem. Let f ≥ 1 and f ′ ≥ 1 be reals. Algorithm A is called a (f, f ′) approximation algorithm for
ARUD if given an instance I the algorithm finds a solution (A,R) with the cost at most f times
COST(OPT(I)). The solution (A,R) satisfies every constraint except that the size of each component
in R is allowed to exceed k but not f ′k.

Note that, unlike ARUD, the AR problem can be approximated within a factor of O(log n) with-
out violating the capacity constraints. This fact has been shown in a recent work by Salavatipour
and Tian [ST24]. On the other hand, there exists a bi-factor approximation algorithm for the AR
problem (with better approximation factor) as shown by Adamaszek et al. [AAKM18].

Lemma 1.3. [AAKM18] Let ε ∈ (0, 1] such that kε is an integer. There is a polynomial time
(43(2 +

1
ε ), 1 + ε) bi-factor approximation algorithm for the AR problem.

In this paper we show a similar result for the ARUD problem by demonstrating a reduction to
the AR problem. The following theorem, elaborated in Section 2, is the main technical achievement
of this paper.

Theorem 1.4. Given a polynomial time (α, β) bi-factor approximation algorithm for the AR prob-
lem, there is a polynomial time (2α, β+2) bi-factor approximation algorithm for the ARUD problem
assuming the demands are polynomially bounded in the number of vertices.

In order to show this result, we transform an instance of ARUD into an instance of AR by
considering each unit demand as a separate vertex. This approach permits the division of demands
and their routing to various facilities. Subsequently, we address the resulting uniform demand
scenario by employing an algorithm designed for the AR problem, such as the one derived from
Lemma 1.3. The solution obtained is cost-effective when compared to the optimal solution; however,
it results in split demands. To merge the distributed demands and prevent them from being split,
we apply the rounding algorithm developed by Shmoys and Tardos for the Generalized Assignment
Problem [ST93, STA97]. This method allows us to achieve a cost-efficient solution that adheres to
capacity constraints with only minor infringements. Consequently we get the following corollary.
Note that here we have used the result of Lemma 1.3 while setting ε = 1.

Corollary 1.5. There is a polynomial time (4, 4) bi-factor approximation algorithm for the ARUD
problem assuming the input demands are polynomially bounded in |V |.

Note that, in a similar manner, we get a (O(log n), 3) bi-factor approximation algorithm by
applying the result of Salavatipour and Tian [ST24] as mentioned above.

1In some texts, this is referred to as approximation algorithms with resource augmentations.
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1.1 Related Works

The ARUD problem extends traditional optimization challenges, including Bin-Packing (refer to
Theorem 1.1) and Minimum Spanning Tree. Additionally, this problem is connected to well-
researched optimization problems such as the Capacitated Facility Location with Unsplittable De-
mand [STA97, BH12, BSS16]. The latter bears a resemblance to ARUD, with the distinction that
the components within the solution must adhere to a star topology. The works [AAM16, AAKM18]
consider variants of the AR problem where the topology of the components is required to be a
path. Another important related problem is the Capacitated Tree Covering Problem studied in
[Trö19, TT20]. This problem is a special case of ARUD where the airport costs are uniform.
The authors in [TT20] have shown a 1 + 1

7 approximation algorithm for this problem. Another
well-studied related problem is the Capacitated Vehicle Routing Problem (CVRP) introduced by
Dantzig and Ramser in 1959 [DR59]. In this problem, the goal is to cover all the vertices with a
network of cycles with minimum cost such that each cycle contains a common vertex which is a net-
work depot. Haimovich and Rinnooy Kan in [HRK85] gave the first constant factor approximation
algorithm for the unsplittable demand version of CVRP. Blauth et al. [BTV21] have improved the
approximation factor for this problem. Friggstad et al. [FMRS21] and Grandoni et al. [GMZ22]
have given the best-to-date approximation ratios for CVRP in general metrics and in the Euclidean
plane, respectively. Mathieu and Zhou gave a (1.5+ϵ)-approximation algorithm for the unsplittable
CVRP and a PTAS for the unit demand CVRP on trees [MZ23a, MZ23b]. Another related problem
is the Capacitated Minimum Spanning Tree [JR05] where the goal is to find a network of trees with
the minimum cost under the requirement that each tree should be connected to a specified root
and satisfy a certain capacity constraint.

The Generalized Assignment Problem (GAP) and the rounding algorithm in [ST93] have been
widely used in the context of approximation algorithms for various combinatorial optimization
problems [ST93, STA97, KPR00, DKK+00, RV18, BCFN19].

1.2 Preliminaries

The Generalized Assignment Problem (GAP). The Generalized Assignment Problem, as
introduced by [ST93], involves a collection of jobs J and machines M . The objective is to assign
each job j ∈ J to a machine i ∈ M , where executing job j on machine i requires pij units of
processing and has a cost of rij . In addition, each machine has a processing capacity of Pi, with a
total budget constraint of B. The aim is to determine an assignment of jobs to the machines that
meet the processing capacity of each machine while keeping the total cost below or equal to B.

The problem can be modeled (fractionally) with the following set of linear constraints. Here
xij represents a fraction of job j that has been assigned to the machine j.

∑
i∈M

xij=1 for each job j ∈ J (1)∑
j∈J

pijxij ≤ Pi for each machine i ∈ M (2)

∑
i∈M

∑
j∈J

rijxij ≤ B (3)

xij ≥ 0 for each i ∈ M and j ∈ J (4)
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Shmoys and Tardos [ST93] have proven the following lemma (see also the discussion in [STA97]
for a similar application of this result.)

Lemma 1.6. Any feasible solution x can be rounded, in polynomial time, to an integer solution
that is feasible if the right-hand side of (2) is relaxed to Pi +maxj pij .

2 A bi-factor approximation algorithm

This section presents our bi-factor approximation algorithm for the ARUD problem. Our algorithm
consists of several steps, which are detailed in the following subsections. The main steps of the
algorithm are summarized in Algorithm 3 (the Main Procedure).

2.1 Converting to uniform demand

Given the input I = (G, a, ℓ, b, k), we begin by running the procedure ConvertToUniform to cre-
ate a larger instance I+ with uniform demand. The description of ConvertToUniform procedure
is stated in Algorithm 1. The following observation is crucial in the analysis of our algorithm.

Algorithm 1 ConvertToUniform Procedure

Input: The instance I = (G, a, ℓ, b, k) with non-uniform demand
Output: The instance I+ = (G+, a+, ℓ+, k) with uniform demand

1. Let G+ be an empty graph.

2. For each u ∈ V (G) with demand b(u), add the set of vertices X(u) = {u1, . . . , ub(u)} to G+.
Note that for each u ∈ V (G) and i ∈ [b(u)], ui represents a vertex with unit demand in G+.

3. For each u ∈ V (G), set a+(u1) = a(u) and a+(ui) = ∞ for i > 1. In other words, all the
vertices in the cluster X(u) have infinite costs except for one of them.

4. For each ui ∈ X(u) and vj ∈ X(v), let ℓ+(ui, vj) = ℓ(u, v).

Observation 2.1. COST(OPT(I+)) ≤ COST(OPT(I)).

Proof. Let (A∗, R∗) be an optimal solution for the non-uniform instance I. The solution (A∗, R∗)
can be converted to a solution for the uniform demand instance I+ = ConvertToUniform(I)
without increasing the cost. To explain, a tree R∗

i ∈ R∗ that goes through a vertex u ∈ G, can be
extended to a tree R+

i that spans all the vertices in the cluster X(u). Since the lengths of the edges
within the clusters are zero, the transformation does not add an extra cost. Moreover for u ∈ A,
in the solution I+, we open a facility at u1 ∈ X(u), which has the same cost by definition.

2.2 A solution with divided demands

Using the algorithm in [AAKM18], we compute a solution (A+, R+) for the uniform instance I+.
The following observation about (A+, R+) is used in the subsequent arguments.
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Observation 2.2. Let R+ = {R+
1 , · · · , R+

q } be the trees in the forest R+. Each component R+
i has

exactly one opened facility and at most βk number of vertices. Moreover, each cluster X(u) in G+

has at most one opened facility.

Proof. These facts follow from the description of ConvertToUniform procedure and the guaran-
tees of the algorithm in Lemma 1.3.

2.3 Building a non-split assignment

The pair (A+, R+) may not represent a viable solution for the non-uniform instance I. Primarily,
the forest R+ spans a different graph, and more significantly, the demand within a cluster X(u)
could be directed towards various facilities. See Figure 1 for an example. Given (A+, R+), we build
a solution (A,R) for the unsplittable instance I in several steps. First, we determine the set of
facilities A which is the easiest part.

Definition 2.3. For each x ∈ V (G+), let Super(x) denote the vertex u ∈ V (G) where x ∈ X(u).

We let A = {Super(x) |x ∈ A+}. In other words, if X(u) contains a facility in the graph G+, we
declare u ∈ V (G) as a facility in graph G. The following observation follows from the definitions.

Observation 2.4. Let COST(A+) =
∑

x∈A a+(x) and similarly let COST(A) =
∑

x∈A a(x). We
have COST(A+) = COST(A).

Concerning the facilities, we do not observe an escalation in the transformation cost. The
primary challenge lies in identifying a suitable assignment F : V (G) → A that respects the capacity
constraints in a reasonably approximate manner, while also ensuring that the connection cost does
not rise significantly. For v ∈ V (G+), let F+(v) denote the assigned facility of v under (A+, R+). A
crucial aspect to consider is that, to prevent a substantial rise in the connection costs, when we set
F (u) = f where f ∈ A we ensure there is a vertex v ∈ X(u) which is served by a facility in X(f)
under the assignment F+. Note that the solution (A+, R+) has already paid the cost of connecting
v to its designated facility in A+. Therefore, intuitively, we expect a small increase in the cost
of the railways. To achieve this, we follow the steps in the description of NonSplitAssignment
procedure.

Algorithm 2 NonSplitAssignment Procedure

Input: A,F+ : V (G+) → A+

Output: F : V (G) → A

1. Let C be the clusters in G+ without an open facility.

2. Run the procedure GAP(C,A) as explained in Section 2.3.1. Let F ′ : C → A be the returned
assignment.

3. For each cluster S ∈ C, choose an arbitrary vertex x from S and let F (Super(x)) = F ′(S).

4. For each cluster S that has an open facility y ∈ A+, we let F (Super(y)) = Super(y).

The steps 1− 3 of the procedure handle the clusters without an open facility. To find facilities
for these clusters, we use a reduction to the Generalized Assignment Problem and the rounding
algorithm of Lemma 1.6.
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(a) (b)

Figure 1: (a) A pictorial representation of an intermediate solution with divided demands. Big
circles represent the cluster of vertices. Vertices in black represent the open facilities. (b) The
figure shows the associated non-split solution after running the steps 4-5 of the Main Procedure in
Algorithm 3

2.3.1 Reduction to GAP

To model the problem as a GAP instance, the clusters without an open facility, namely C =
{Cj}j∈J , represent the jobs and the facilities A = {ai}i∈M represent the machines. For all facilities
i ∈ M , we set the capacity Pi = βk. For cluster Cj and the facility ai, we set pij = |Cj |. We set
rij = 0 iff the component in R+ that owns the open facility in X(ai) intersects with Cj , otherwise it
is set to infinity (a large enough number). Finally we set B = 0. Note that the last two assignments
are done to prevent the allocation of a cluster Cj to a facility ai where the open facility in X(ai)
does not serve a vertex in Cj according to the assignment F+.

Fact 2.5. Using the setup as detailed above, the associated GAP instance has a feasible fractional
solution x.

Proof. If the cluster Cj has t members that are served by the facility ai, we set xij = t
|Cj | . All

other variables are set to zero. The reader can check that this is a feasible solution.

Consequently, by Lemma 1.6, in polynomial time, we can round the solution x and compute an
assignment F ′ : C → A such that meets the requirement mentioned above, and further no facility
receives more than k new vertices. Note that the extra k vertices come from the GAP rounding
algorithm.

The clusters with an open facility. Finally, in step 4 of the procedure, we handle the clusters
with an open facility. We give all the demand within the cluster X(u) with an open facility to the
vertex u. This increases the load of a facility by at most k (since the total demand in a cluster is
at most k.) Wrapping up, we can state the following observation.

Observation 2.6. The assignment F : V (G) → A satisfies the following two properties:

1. If F (z) = u then there is v ∈ X(z) where F+(v) = u1.

2. The load of each facility ai ∈ A is at most (β + 2)k.
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2.4 The last step: building the trees

Having the assignment function F : V (G) → A, it remains to construct the associated trees. For
a facility u ∈ A, let F−1(u) be the set of vertices that have been assigned to u. For each u ∈ A,
we build an MST over F−1(u). Let Ru be the resulting tree. The algorithm’s output includes the
collection R = {Ru}u∈A along with the set of facilities A. The following lemma relates the cost of
R to the cost of the edges in R+. This lemma and Observations 2.6 and 2.4 together prove our
main theorem.

Lemma 2.7. We have
∑

e∈E(R) ℓ(e) ≤ 2
∑

e∈E(R+) ℓ
+(e).

Proof. Let Ru be a component in R with an open facility u ∈ A. By the definition of A, the solution
(A+, R+) has opened a facility at the vertex u1 ∈ X(u). Let T be the tree in R+ that owns the
open facility u1 ∈ A+. We claim

∑
e∈Ru

ℓ(e) ≤ 2
∑

e∈E(T ) ℓ
+(e). This will prove our lemma because

for each Ru ∈ R, we have found a distinct T ∈ R+ with the cost at least half of
∑

e∈Ru
ℓ(e).

The edges of T are of two types: (a) the internal edges (the edges between the vertices in the
same cluster), and (b) the cross-cluster edges (the edges between the vertices in different clusters.)
Disregarding the internal edges, each cross-cluster edge in E(T ) corresponds to an edge of G. Let
H be a subgraph of G consisting of the vertices and the edges in G that T has touched. Namely,
we let V (H) = {Super(v) | v ∈ V (T )} and

E(H) = {(x, y) | x ∈ V (G), y ∈ V (G), x ̸= y, and ∃u ∈ X(x),∃v ∈ X(y) where (u, v) ∈ E(T )}

An important observation here is that V (Ru) ⊆ V (H). To see this, let z be an arbitrary vertex
in Ru. By definition, we must have F (z) = u. By Observation 2.6, there is v ∈ X(z) where
F+(v) = u1. Therefore, the tree T spans the vertex v, and hence z = Super(v) belongs to V (H).

Also note that the subgraphH is connected. Finally, the tree Ru is an MST over V (Ru) ⊆ V (H).
We show

∑
e∈Ru

ℓ(u) ≤ 2
∑

e∈H ℓ(e) which follows from the metric property of the length function
ℓ. Let K be an MST over V (H). We double the edges of K and construct an Eulerian tour L of
the doubled tree. The tour L = v1, · · · , vp = v1 visits all the edges in H exactly once. From the
sequence L, we pick the first visit of a vertex in V (Ru) and jump over the repeating vertices or
those in V (H) \ V (Ru). The result v′1, · · · , v′q is a permutation of the vertices in V (Ru). By the
metric property of the function ℓ : V × V → R+, the length of the edge ℓ(v′i, v

′
i+1) is at most the

sum of the length of edges that have been jumped over. Consequently, we have∑
e∈Ru

ℓ(e) ≤
q−1∑
i=1

ℓ(v′i, v
′
i+1) (since R(u) is an MST over V (Ru))

≤
p−1∑
i=1

ℓ(vi, vi+1) (since ℓ is a metric)

≤ 2
∑

e∈E(K)

ℓ(e) (by the doubling of the edges in K)

≤ 2
∑

e∈E(H)

ℓ(e) (since K is an MST over V (H) and H is connected)

≤ 2
∑

e∈E(T )

ℓ+(e) (by definition of H).
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The main steps of our algorithm for the ARUD problem is stated in Algorithm 3.

Algorithm 3 The Main Procedure

Input: Non-uniform instance I = (G, a, ℓ, b, k)
Output: Solution (A,R)

1. Run ConvertToUniform procedure. Let I+ = (G+, a+, ℓ+, k) be the output of the proce-
dure.

2. Run the AKMM18 algorithm over I+. Let (A+, R+) be the output of the algorithm.

3. Having (A+, R+), compute the assignment F+ : V (G+) → A+

4. Run the NonSplitAssignment procedure to obtain the assignment F : V (G) → A.

5. For each u ∈ A, build an MST tree Ru over F−1(u).

6. Ouput the forest R = {Ru}u∈A and the set A as the solution.

3 Hardness of ARUD

This section states our results on the hardness of ARUD. We begin with the proof of Theorem 1.1.
Then, we state two lemmas on the complexity of ARUD for fixed values of k.

Proof of Theorem 1.1. Let X = (x1, · · · , xn, t, B) be an instance of the Bin-Packing problem.
The Bin-Packing problem asks if n items with non-zero integer sizes x1, · · · , xn can be packed into
t bins where each bin has capacity B. It is known that Bin-Packing is NP-complete even when
the item sizes {xi} are polynomially bounded in n [GJ79]. Given the instance X, we construct
an instance Y = (G, a, ℓ, b, k = B + 1) of the ARUD problem as follows. The graph G has n + t
vertices. Corresponding to each item i, we put a vertex vi inG. Additionally we have t extra vertices
u1, · · · , ut. For each i ∈ {1, · · · , n}, we set a(vi) = 1 and b(vi) = xi. Also for each i ∈ {1, · · · , t}, we
set a(ui) = 0 and b(ui) = 1. All the edge lengths ℓ(e) are set to zero. It is clear that the instance
Y has zero cost if and only if X is a yes instance of the Bin-Packing problem. Consequently, an
approximation algorithm for ARUD can distinguish between yes and no instances. This completes
the proof.

Lemma 3.1. Assuming k = 2, one can find an optimal solution for a given ARUD instance
I = (G, a, ℓ, b, k) in polynomial time.

Proof. To prove the statement, we establish a reduction to the minimum weight perfect matching
problem [Edm65a, Edm65b]. Since k = 2, we have b(v) ∈ {1, 2} for each v ∈ V (G). Let n = |V (G)|.
We construct the weighted undirected graph G′ = (V ′, E′) on 2n vertices described as follows. For
each v ∈ V (G), we add a new vertex v∗. We let V ′ = V (G) ∪ V ∗ where V ∗ = {v∗ | v ∈ V (G)}.
The edge set of G′ is defined as follows. For each v ∈ V (G) we add the edge (v, v∗) to E′ with
length a(v). Between all pairs vertices in V ∗, we add an edge with zero length. Finally, for each
pair u, v ∈ V (G), we add the edge (u, v) if b(u) + b(v) ≤ 2. In this case, we define the length of the
edge (u, v) as min{a(u), a(v)}+ ℓ(u, v). This finishes the definition of G′.
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Clearly, G′ has a perfect matching. To prove the lemma, we show a feasible solution (A,R) with
cost x for the instance I corresponds to a perfect matching M with cost x in G′ and vice versa.

We show only one direction. The other direction follows in a similar manner. Let M = ∅. Note
that a component in Ri ∈ R is either an isolated vertex u ∈ V (G) (an open facility) or a single
edge e = (u, v). In case Ri is an edge e, we include e in M , otherwise if Ri = u we add the edge
(u, u∗) to M . We do this for each component in R. To complete the perfect matching, we select
an arbitrary perfect matching between the un-matched vertices in V ∗ and add it to M . It can be
seen that the cost of M (the total weight of the edges in M) equals COST(A,R). This finishes the
proof.

Lemma 3.2. The AR problem is NP-hard even when k = 3 and the airport costs are uniform.

Proof. We establish a reduction from the P2 Partition problem. In the P2 Partition problem, we
are given an undirected graph H on 3n vertices and we are asked if there are n vertex-disjoint paths
of length 2 in graph H (in other words, we ask if H has a perfect 2-path matching 2.) It is known
that P2 Partition is NP-Complete [GJ79]. Let H be an instance of the P2 Partition problem. We
construct an instance I = (G, a, ℓ, k) of the metric AR problem as follows. Let V (G) = V (H). We
define ℓ(u, v) = 1 iff the edge (u, v) exists in H otherwise we set ℓ(u, v) = 2. This defines a metric
since the edge weights are either 1 or 2. Moreover, we set a(u) = 2 for each u ∈ V .

Suppose H has a perfect 2-path matching. In this case, there is a solution (A,R) for I with
cost 4n. Note that each 2-path costs 4, and we have n of these paths. Dividing the cost over the
vertices, the average cost of satisfying the demand of each vertex is 4

3 . Now, suppose H has no
perfect 2-path matching. In any solution (A,R), for instance I, there will be a component Ri ∈ R
with a vertex u ∈ Ri with a cost greater than 4

3 . There are three possibilities:

1. Ri is a 2-path that has an edge of length 2. In this case, the cost of each vertex in Ri is at
least 5

3 .

2. Ri is a single edge. In this case, the cost of each vertex in Ri is at least
3
2 .

3. Ri is an isolated vertex. In this case, the cost of the isolated vertex is 2.

Consequently, when H has no perfect 2-path matching, there will be a vertex with a cost greater
than 4

3 in I (note that when we have k = 3 and a(u) = 2 for all u, the cost of each vertex will be
at least 4

3 .) Hence, in this case, the cost of any solution for I is greater than 4n. This finishes the
proof.

References

[AAKM18] Anna Adamaszek, Antonios Antoniadis, Amit Kumar, and Tobias Mömke. Approxi-
mating airports and railways. In 35th Symposium on Theoretical Aspects of Computer
Science (STACS 2018). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018.

[AAM16] Anna Adamaszek, Antonios Antoniadis, and Tobias Mömke. Airports and railways:
Facility location meets network design. In 33rd Symposium on Theoretical Aspects of
Computer Science (STACS 2016). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik,
2016.

2Here a 2-path refers to a simple path consisting of two edges.

10



[BCFN19] Suman Kalyan Bera, Deeparnab Chakrabarty, Nicolas Flores, and Maryam Negahbani.
Fair algorithms for clustering. In Hanna M. Wallach, Hugo Larochelle, Alina Beygelz-
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